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Summary

Automation of the manual system for the meteorological navigation of ships in
the North Atlantic Ocean requires that the following tasks be computerized:

€)) the construction of wind charts from pressure charts of the northern part
of the Atlantic Ocean;

2 the composition of wave charts with the aid of this wind information;

3) the determination of the least-time track with the assistance of these wave
charts.

In this paper the third point is dealt with. The problem of computing the least-time
track is a special case of the control problem of Bolza. The problem of Bolza is
treated in Section 3. In Section 4 it is shown that, under certain conditions, the solu-
tions of the Euler-Lagrange equations depend continuously on the initial values of the
Lagrange multipliers. This property, which holds both in the case of restricted and
unrestricted manoeuvrability, forms the basis of a method for the computation of the
least-time track. This method is considered in Section 6. An example is shown in
Section 7. In Section 5 attention is paid to the problem of minimizing fuel consump-
tion, and in Section 2 we give a description of the coordinate system used in practical

computations. Finally an example of a computer program, written in ALGOL-60, is
presented in Section 8.



Samenvatting

Automatisering van het manuele systeem voor de meteorologische navigatie van
schepen op het noordelijk gedeelte van de Atlantisch Oceaan betekent dat de vol-

gende werkzaamheden verricht zullen moeten worden met behulp van een reken-
machine:

(1) de constructie van windkaarten uit luchtdrukkaarten van het noordelijk
gedeelte van de Atlantische Oceaan;
2 de samenstelling van goltkaarten met behulp van deze windinformatie;

3) de bepaling van de kortste-vaartijd route met gebruikmaking van deze golf-
kaarten. :

In deze publicatie wordt het derde punt behandeld. Het probleem betreffende het
berekenen van de kortste-vaartijd route is een speciaal geval van het probleem van
Bolza uit de theorie van optimaal geregelde processen. Het probleem van Bolza
wordt besproken in hoofdstuk 3. In hoofdstuk 4 wordt aangetoond dat de oplossingen
van de Euler-Lagrange vergelijkingen, onder bepaalde voorwaarden continu af-
hangen van de beginwaarden van de Lagrange multiplicatoren. Deze eigenschap, die
geldt zowel in het geval van beperkte als onbeperkte manoeuvreerbaarheid vormt de
basis van een methode voor het berekenen van de korste-vaartijd route. Deze methode
wordt beschouwd in hoofdstuk 6. Een voorbeeld wordt getoond in hoofdstuk 7. In
hoofdstuk 5 besteden we aandacht aan het probleem van het minimaliseren van het
brandstofgebruik en in hoofdstuk 2 geven we een beschrijving van het codrdinaten-
systeem, dat gebruikt wordt bij de werkelijke berekeningen. Een voorbeeld van een

rekenprogramma, geschreven in ALGOL-60, wordt tenslotte gepresenteerd in hoofd-
stuk 8.
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1 Introduction

Optimal ship routing is a term meaning that we seek to find a route for a ship
during its transit over the ocean between two given places so that a certain criterion
(e.g. transit time, damage to cargo, fuel consumption or comfort of passengers) is
optimized. In the case dealt with here the transit time is minimized, and in this con-
nection we speak of minimal-time ship routing. In order to compute the least-time
path, all the disturbing forces which may influence the ship on its way must be known.
One of the most important forces which a ship encounters is formed by the disturbed
ocean surface. As a consequence we assume here that the state of the ocean surface
is fully known beforehand.

In practice this is not the case for the time being. Today we work with a weather
forecast of 72 hours. In order to recommend the best possible route, this weather
forecast is assumed to be valid during this time, leading to a route which may be
changed every 12 hours when the next forecast is available. Nevertheless, it is of
great importance now, when computing the best possible route step by step, to be
compared at a later stage with the optimal route, and in the future, when longer-term
forecasts will be available, to have a method at one’s disposal for numerical computa-
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Fig. 1 Definition of bearing of ship to waves (arrow indicates wave motion).
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tion of the least-time track on an operational scale. It was the aim of developing such
a method which led to this paper.

Let us first consider the history of ship routing. This history goes back to the middle
of the nineteenth century, when Maury (1855) recommended least-time tracks for
sailing vessels based on statistical wind and current data compiled from ships’ logs.
In those days the wind direction was of course extremely important.

The conversion from sail to other means of propulsion made Maury’s work obso-
lete. Although developments in aviation led to several investigations on this subject,
it was not until more than a century later that James (1957) introduced a manual
method for the calculation of least-time tracks for ships. His method can be described
as follows. Depending on the relative wave direction resulting in head, beam and
following waves (see Fig. 1) he constructed, in an empirical manner, graphs showing
the connection between the ship’s speed and the significant wave height as illustrated
in Fig. 2.

By analysis of these data (including ocean current) the least-time track is constructed
by introducing time fronts analogous to wave fronts in geometrical optics (see also
Section 4).

The introduction of the computer led to the development of several methods for the
computation of the least-time track. These methods can be roughly divided into two
groups: one group using networks partly or wholly covering the navigation area
(such as developed by Braddock (1968) and Zoppoli (1972)), and a second group

SHIP'S
SPEED

FOLLOWING WAVES

BEAM WAVES

HEAD WAVES

—» SIGNIFICANT WAVE HEIGHT
Fig. 2
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containing applications of the calculus of variations or optimal control theory (e.g.
Bleick and Faulkner (1965) or Marks et al. (1968)). In most methods the ship’s velocity
is approximated by a polar velocity diagram of elliptic form constructed by means
of empirical data as presented in Fig. 2. We shall return to this subject in Section 6.
For a theoretical treatment of the response of a ship to waves, the reader is referred
to publications such as those of the Society of Naval Architects and Marine Engi-
neers. In our opinion, application of the optimal control theory is preferable for
practical reasons (see Section 6) when computing the least-time track. As a con-
sequence the method presented here is an application of results of this theory.

Let us now consider some practical aspects of ship routing at the Royal Netherlands
Meteorological Institute (KNMI). The Ship Routing Office was established at the
KNMI in 1961. The activities of this Office can be generally outlined as follows.

(a) To supply information it is first necessary to collect a variety of data, such
as the synoptic surface pressure analysis of the North Atlantic (delivered twice daily
by the Weather Service of the KNMI), 500-mb charts for 72 hours ahead (transmitted
by the National Oceanographic and Atmospheric Administration at Suitland),
ship’s reports containing wind and wave data, usually every 6 hours (from selected
ships), information on ocean currents (from the US Hydrographic Office), the oc-
currence of pack ice, etc. The North Atlantic analyzed surface pressure charts are

converted into corresponding wind velocity charts which are corrected by means of
reported winds in the ship’s reports.

(b) These wind charts are converted into wave charts, containing the significant
wave height and direction of sea and swell, by manual analysis of the fetch and

duration of the various wave generating areas. The wave charts are in turn corrected
by ship’s reports on waves.

(©) Given a specified ship and a well-defined operational policy, it is possible to
obtain an average speed that the ship can maintain during 6 or 12 hours in different
directions subject to the disturbing forces of the ocean surface.

With the aid of the above information the best possible route is recommended.
Afterwards, following the manual method of James (1957), a least-time track is
additionally constructed using the analyzed wave charts. Finally, sailing times along
fixed routes, such as great circle and rhumb line, are calculated.

A survey of the points of departure and arrival of ships handled by the Routing
Office is given in Fig. 3. The number of routed ships increased from 38 in 1961 to 711
in 1973. Recently an initial attempt was made at the KNMI to automate the manual
routing method by successive numerical computation of wind charts, wave charts and
least-time track. Results are found in Bijlsma en Van Rietschote (1972), Bijlsma en
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Fig. 3
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Folkers (1973) and Bijlsma, Van Rietschote en Folkers (1973). As mentioned above
only the numerical method for the computation of the least-time track is dealt with
here. Theoretical aspects of this method are considered in Section 4, practical aspects
in Section 6. Section 2 contains a description of the coordinate system and Section 3
a summary of relevant results of optimal control theory. An example is presented in
Section 7. In Section 5, attention is paid to the problem of minimum-fuel routing.
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2 The coordinate system

In order to simplify the computations, the navigation area is mapped conformally
onto a plane by means of stereographic projection, which is commonly used in
meteorology. We shall give a short description of this projection. In stereographic
projection, the earth’s surface is mapped onto a plane V, which is parallel or equal
to the tangent plane at a point S of the earth’s surface, by assigning to each point P
of the spherical earth a point P’ which is the point of intersection of V and the straight
line through P and S’, the point diametrically opposite S. In the case under considera-
tion, the point S coincides with the north pole and the plane V passes through the

circle of 60N latitude (see Fig. 4). We speak of a polar stereographic projection in this
case.

Instead of geographical coordinates, we shall use here spherical coordinates
@ and ¢ (see Fig. 5).

In the plane V we first introduce polar coordinates r and 8 with the mapped north
pole as origin and a scale factor s so that the following relation holds (see Fig. 4)

N
S

Fig. 4
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ZERO MERIDIAN

Fig. 5

r = R (1 + cosn/6) tan ¢/2.
s

Next we consider an orthogonal coordinate system with coordinates x, and x,

where the x, axis is parallel to the projection of the meridian of 30W longitude (see
Fig. 6).

The relation between polar and rectangular coordinates is given by

X, = Xy, + I sin (6 — n/6),
do

@.1)

Xy = Xz, + I cos (6 — n/6),
do

where x,, and x,, are the coordinates of the projected north pole and d, the mesh

distance corresponding to 3180km at 60N where the projection is true. From 2.1)
we find the inverse transformation

9 = arctan {(xl - xln) / (x2 - x2n)} + 7[/65
¢ =2 arctan {ag\/(x; — x1,)* + (x; — X,,)?}

2.2)
with

sd,

o= R(1 + cos n/—6~) ’
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Fig. 6

By differentiating (2.1) we find the local transformation

dx, = m(¢) R {sin (9 — n/6)d¢ + cos (6 — n/6) sin ¢ db},
dx, = m(¢) R {cos (§ — n/6)d¢p — sin (6 — n/6) sin ¢ d6}
with

1 + cos m/6

m(@)= "1 ¥ cos 9)

Hence it follows that differential distances on the earth’s surface must be multiplied
by the map factor m(¢) in order to convert them into differential distances in the
(x4, X,) plane. In the practice of ship routing we are also concerned with sailing along
the great circle or thumb line as we saw in Section 1. We shall therefore give a short
derivation of their equations in the (x,, x,) or (r, ) plane.

(a) great circle
Let the pole P of a great circle have the spherical coordinates 6, and ¢,. Then in the
spherical triangle NPQ (see Fig. 7) the relation

cos (0 — 6,) = — (tan ¢ tan ¢y) ™" 2.3)
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holds. Combination of (2.2) and (2.3) gives the equation of the projection of the great

circle in the (x,, x,) plane, which is a circle again, as was to be expected. As a result
we find

(x, — xm)z + (X3 — X5,)° = Sg
with

Xim = X15 + So sin ¢, sin (6 — n/6),
Xam = X2n + o S0 ¢o €0s (8, — 7/6) and s, = (aq cos Po) L.

The spherical coordinates 6, and ¢, are simply found by substituting the coordinates
of two points of the great circle in (2.3).

(b) rhumb line

Owing to the fact that we are applying conformal mapping, it is clear that the
rhumb line is mapped as a logarithmic spiral, with the projection of the north pole
as its centre, satisfying the equation

r=ry exp {a(6 — 0,)}
with
a=1In(ry/ry) [ (0, — 0,) and

r= i:- (1 + cos #/6) tan ¢,/2 (i=1,2),

where (¢4, 6,) and (¢,, 0,) are the coordinates of two points of the rhumb line.

Fig. 7
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3 Necessary conditions for a minimum

In this section we shall summarize the conditions necessary for a minimum for the
problem of Bolza. As an introduction to this, let us first consider our basic problem of
minimizing the transit time for a ship of known performance. The equations of motion
of a ship in a Cartesian coordinate system with coordinates x, and x, are given by

Xy =V(t, x;, X5, p) cOs p+ S, (8, x;, X3),
xZ = V(ta X1y X2, P) sin 4 + S2(t’ X1, x2)'

Here the dot denotes differentiation to the time t. Further V (, x,, x,, p) gives the
(maximum attainable) speed of the ship relative to the water as a function of the
position coordinates x; and x,, the time ¢ and the course p. The functions S, (1, x,, x,)
and S,(t, x,, x,) denote the velocity components of the ocean current. In practice
these components are nearly time-independent during a winter or summer season.

The path of the ship is completely determined by the initial values of x, and x,

and by the value of p(t) over the voyage, so that the problem is to determine the
function

p(y O<t<ty

which will minimize the transit time ¢, among all paths with prescribed conditions
on the initial and final values x,(0), x,(0), x,(t,) and x,(,). Instead of the problem

described above, we consider the following, more general problem in the calculus of
variations.

Consider a class of functions

u) (=1..,pito<t<ty)
and a class of arcs
x(t) i=1,...,n),
connected by the differential equations
X =fi(t, x, v) W=uy, .. upx=x4,...Xx,) 3.1)
and end conditions

x;(to) = Xi0, X;i(t1) = X;5. 3.2
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We now seek to find a set of functions u () and x;(f) which minimizes an integral
of the form

t
I =j Jo(t, x, w)dt. 3.3
to
This problem is called the control problem of Bolza. The functions

u )

are called control functions. The problem described initially is clearly a special case
of the control problem of Bolza. We now distinguish two cases. First we consider
the unrestricted case where no conditions are imposed on the control functions u j
or the coordinates x;. In the second case, however, these variables are restricted to
a closed set.

In practical ship routing this means that the navigation area for the ship is bounded
or that certain courses are forbidden.

CASE 1: The unrestricted case

We now return to the control problem of Bolza as formulated above. We restrict
ourselves in this case to elements t, x = (x,, ..., x,) and u = (uy, . .., u,) which lie
in open sets T, X and U. These elements are called admissible. The cases where U or
X is a closed set are extensions of the classical calculus of variations and are dealt
with in textbooks on optimal control theory (see for instance Pontryagin (1962) or
Hestenes (1966)). These cases are considered in the second part of this section.

We consider arcs

C: x@u() (o<t<tyi=1..,nj=1,...,p)

such that

(a) the functions u(t) are continuous on the interval to <t < t,. In addition

the functions f;(t, x, u) (i =0, . . ., n) are assumed to be continuously differentiable
of the second order with respect to x and u and continuously differentiable with
respect to ¢.

(b) its elements (¢, x, u) are admissible.

Suppose now that an arc

C% X0, u'(r)
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which is normal in the sense described below in this section and satisfies conditions
(a) and (b) minimizes (3.3) subject to equations (3.1) and (3.2). Then there exist
continuously differentiable multipliers A(t) = {Ao(1), . . ., A,()}, 4o(f) = constant < 0
not vanishing simultaneously and a function

H@t.x,u, )= Y Af;,
i=o0

so that conditions (1), (2), (3) and (4) described below hold on C°. For a proof of the
results of this section one is referred to Hestenes (1966).

(€)) The first necessary condition. On C° the Euler-Lagrange equations

xi=H;_‘,;.i=—Hx,,Hw=0 (i=1,...,n;j=1,...,p)
hold and also the equation

dH
~— =H,
dt

Variables as subscripts denote partial differentiation. In the case of movable ends
the differentials of x;; (s = 0, 1) are connected by the transversality condition

i Aty dx,; =0  (s=0,1).
i=1

@ The necessary condition of Weierstrass. Along C° the inequality
H(t,x°% u,2) < H(t, x°% u° )
must hold for every admissible element (¢, x°, ). In addition
H{t,, x°(t), u°(t,), At,)} = 0.
The generalization of the conditions (1) and (2) in the case where U is a closed set
is known as Pontryagin’s maximum principle and is considered in the second part of

this section. Solutions of the Euler-Lagrange equations with continuous control

functions are called extremals. As an immediate consequence of the condition of
Weierstrass we have

3) The necessary condition of Legendre. At each element (t, x°, u°, 1) of C°
the inequality
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P
j.kz=1 Hu;uk fjék < 0

holds for any non-zero ¢ = (¢, .. ., ¢p). If the determinant

IHlllekI (j,k=1,--.,P)

isdifferent from zero the arc C° will be called non-singular. This concept of non-singul-
arity will be dealt with in more detail in Section 4. There still remains one necessary

condition. In order to describe this condition we introduce the concept of variation.
Let

C*: xi(t, &), uy(t, €) i=1..,nj=1..,p
be a one-parameter family of arcs satisfying equations (3.1) and (3.2) and containing

C°for ¢ = 0. Since equations (3.1) and (3.2) are identities in & we find, taking derivatives
with respect to e at e = 0,

V= h‘;lAu,y,, + nguv} i=1,..,n), (34)
yi(t)=0 (s=0,1), 3.5)
where
Aip = fixns Bij = fiup ¥i(8) = x,,(2, 0) and 0;(1) = u,,(t, 0).
The arc

o on®o(®  (=1,..,nj=1,..,pito<t <t,)

is called the variation of the family C* along x° if the functions v ;(t) are continuous
and the functions y,(f) have continuous derivatives for ly <t < t,. Weare now in
a position to define normality. The arc C° will be called normal if there exist 2n
variations

i Y@, (o=1,...,2n)

satisfying equation (3.4) such that no linear combination of these arcs satisfies equa-
tion (3.5). This is the case if and only if the determinant

yi (o)

o i=1..,m0=1,...,2n
yi(ty) ( )
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is different from zero. Normality ensures the existence of the one-parameter family C°.
The second variation I, (y) of I along C°is obtained by evaluating I along the family C*
and then differentiating twice to ¢ at & = 0. This second variation is given by

t
12(}’) = - [ 2(0{[, y(t)s D(t)} dt’
o to
where
n n P P
2(0(t, y’ D) = Z ngx;.yiyh + 2 Z 2 mekyivk + Hl‘j“kvjvk'
i,h=1 i=1 k=1 Jk=1
The fourth necessary condition can now be formulated as follows.
4) The second-order condition. The second variation I,(y) of I along C° is

such that
I,(y) >0

for every variation y satisfying equations (3.4) and (3.5).
As a consequence of normality, the equality sign for the multiplier A, is excluded,
so that by choosing 4o = — 1 the multipliers A,(f) (i=1, ..., n) are unique. In the

practical problems discussed in this paper, the condition of normality is assumed to
be fulfilled.

CASE 2: The restricted case

The results of the foregoing part of this section can be generalized in the case where
the arcs

C: x;(1), u;(t)
not only satisfy equations (3.1) and (3.2) but also a set of additional constraints. Since
we are primarily interested in the governing equations of our problem contained in
the necessary conditions (1) and (2), we shall only consider generalizations of these

conditions. First we assume that U is a closed set.

U IS A CLOSED SET.
We consider inequality constraints of the form

¢l(t’ x; u) S 0 (l = 1, .. ey q) (3.6)

which involve the control variable explicitly. The functions ¢,(t, x, u) are assumed
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to be continuously differentiable. An element (¢, x, u) is called admissible if the sets
T and X are open, while u is restricted to a closed set U. Let

c’: x°(1), u’ (1)

be an arc which satisfies conditions (a) and (b) and minimizes (3.3) subject to equa-
tions (3.1), (3.2) and condition (3.6). Let moreover the matrix

(dn) (I=lL,...I;k=1,...,p)
have rank r at each point (1, x, u) satisfying ¢, =0 (I =1, . . ., ). Then there exist

continuously differentiable and continuous multipliers A(z) = {1,(?), . . ., (D}, Ao =
constant < 0 and u(f) = {u, (), ..., 1y(1)}, and a function

Hexuim= 3 Afi- 3 udy
so that conditions (1) and (2) described below hold on C°.
€)) The first necessary condition. On C° the equations

¥ =Hdi=-H,H,=0,¢,<0 (i=1...nj=1,..,p;l=1,...q)
hold and also the equation
dH

~~ =H,
dt ¢

Moreover u(t) > 0(/=1,..., q) where y,(t) = 0 at each point of C° at which
¢, <0.

2 The second necessary condition. Along C° the inequality
H(t, x% u, 4,0) < H(t, x°, u°, A, 0)
must hold for every admissible element (¢, x°, ) for which ¢,(z, x°, u) <0.
So far we have considered the maximum principle contained in conditions (1) and
(2) on an open set X. We now continue with the case where the trajectory x lies partly

or wholly on the boundary of a closed set X, i.e. we consider constraints of the form

Ym(x) <0 (m=1,...,0). 3.7
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The functions ¥,,(x) are assumed to be continuously differentiable of the second
order.

The set U may be open or closed. Analogous to the foregoing, the concept of
admissibility is defined.

X IS A CLOSED SET.
As before, we consider an arc
c’: X2, u(®)

which satisfies equations (3.1), (3.2) and condition (3.7), and minimizes (3.3).
Let the matrix

(i:ZI'/’mx.-ﬁuk) m=1,..,r;k=1,...,p)

have rank r. Then there exist continuously differentiable and continuous multipliers
A® = {4®,...,24,®}, o = constant < 0 and v(t) = {ri(®, .., (0}, and a
function

H(t, X, U, '1’ V) = igoliﬁ - i i vmwmxif; ’

m=1 i=1

so that the following equations hold on C°.
(6)) The first necessary condition. On C° the equations
=Hyh=—-H,H, =0 (i=L..,n;j=1,...,p)

hold and also

dH

—— =H,
dt ¢

Moreover the multipliers v,,(f) (m =1, . . ., r) are non-increasing on t, < ¢t < ¢, and
are constant on every interval on which

Um{x°()} < 0.
@ The second necessary condition. Along C° the inequality

H(t, x% u, 4, v) < H(t, x°, u° 4, v)
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must hold for every admissible element (t, x°, u) for which Ym(x% < 0.

Moreover, if U is a closed set, u must also satisfy conditions of the form (3.6).
This concludes the results of the general theory. In the next section we shall apply these

results to the problem of ship routing in order to derive the necessary equations for
this problem.
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4 Time fronts and extremals

In this section we return to the problem of minimizing the transit time. We shall
derive some properties of extremals which form the basis of a method for the com-
putation of the least-time track. The problem under consideration was to determine

a function
p( O<tgyy,

so that it minimizes the transit time ¢; subject to the equations
xl = V(t’ Xy5 X2, P) Cos p + Sl(ta X1, x2)a

Xy = V(t, Xy, X3, p) sin p + S,(t, x4, X,)
with
x;(0) = x;0, x;(t;) = x4 (i=1,2).

Let us first consider the case of unlimited manoeuvrability.

CASE 1: Unlimited manoeuvrability

4.1)

4.2)

Application of the results of Section 3 with n =2, u;, =p, ty =fixed =0, f, =1,

fi=Vcosp+ S, and f, = Vsin p + S, yields the equations

2

'1'1 = - Z A‘i(Vixl + Six;),
i=1
2

'{2 = - ‘Zl li(l/ixz + Six;)’

2
> AV, =0,
i=1

where ¥V, = V cos pand V, = V sin p.

(4.3)

“4.4)

(4.5)

First of all we would point out that the H-function vanishes along an extremal,

so that

2
S A(Vi+S)=—2y>0.
i=1 )

(4.6)
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V.V,

e WAVE MOTION
-

Fig. 8 The ship is situated at O. 0 is the angle between the ship’s heading and the wave direction.

A second remark concerns the case of a movable end point. In the case of an optimal

transit time ¢, differential changes in the coordinates of the end point are connected
by the relation

_i A(t)dx;, = 0. 4.7

Equations (4.5), (4.6) and (4.7) have a simple geometrical meaning, as we shall see
below. At this point it is convenient to introduce a polar velocity diagram as shown
in Fig. 8, giving the ship’s velocity as a function of the angle between the ship’s
heading and the wave direction for fixed values of Xy, X5 and ¢ (see Section 6). This
velocity diagram will be called the indicatrix after Caratheodory (1904), (see also
Bolza (1909)), although strictly speaking the ocean current should also have been

taken into account.
Next we consider a theorem on systems of differential equations

.}‘)k=f;c(t’y1,---,yms) (l‘:=1,..., n)

depending on a parameter s. For a proof one is referred to Coddington and Levinson
(1955, p. 58).

THEOREM 1.

Fork =1, ..., n the following assumptions are made concerning the real functions
St Y15 o o5 Yoy 5).

@ Je(t, Y1 - . ., ¥n 8) is a continuous and bounded function of the variables
Yi5--wYmsandtfora <t < b.
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(b) for s = s, and a,(so) = o there exists a unique system of functions
¥x(t, So) = yr(t) satisfying the equations

Yie(t,8) = o(s) + J‘ Sl y1 (4,9), . . ., yu(t, 5), s}dt 4.8)

witha < t, < b.
Let moreover

lim o (s) = af,
L ind )

then every solution y, (¢, s) of (4.8) also satisfies the relation
lim y,(t, s) = y; (9.

s+ 80

In conclusion we give a theorem on implicit functions. For a proof one is referred
to Hestenes (1966, p. 22).

THEOREM 2.
Consider a system of n simultaneous equations

JiZy oo 2 Vi Y) =0 (i=1,...,n).

We assume that

(a) the functions f;(z,, . . ., Zm, Y1, . - -» V) are real continuous functions on an
open set S.
(b) the partial derivatives

Jiy, G,j=1,...,n)

are continuous on S. Let the functional determinant be given by

D =|f, .
Suppose that the relations
[z oz Ve YD) =0,D(28, .. 20, 33, .. V) # 0O
hold at a point (23, .. ., 22, ¥3, ..., ¥°) in S. Then there exist continuous functions

Vi(2) = yi(z, . v s Z)
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in a neighbourhood of z° such that

7@ =y, f{2, 31@)s - @} =0 (i=1,...,n)

hold only in case

Vi = y(2).

We now return to equation (4.5). The geometrical meaning of this equation is
illustrated in Fig. 9. Instead of considering p as a function of the time ¢, we now
regard p as a function of the variables x,, x,, 4,, 4, and ¢ given by (4.5).

In fact p is a function of arctan (4,/4,) as easily follows by writing equation (4.5)
in the form

p = arctan (4,/4,) + arctan (V,/V).

In the following we are interested in continuous functions p(z, X1, X3, Ay, Ap).
Application of Theorem 2 to equation (4.5) yields the non-singularity condition

2
izl Ai Vipp 7{" 0: (49)

(A,,)

(le,Vzg

(VL.\,)

WAVE W

Fig. 9 In view of the Weierstrass or Legendre condition there is a unique choice for p. The course p
is measured as indicated.
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so that in view of the Legendre condition
2
Y AV, <O (4.10)
i=1

In addition V, V, and V,, must be continuous functions with respect to x,, x,, p
and ¢.

Combination of (4.5) and (4.9) gives
V2 +2V2—VV,, # 0. (4.11)

The geometrical interpretation of this result is elementary, as illustrated in Fig. 10
(see for instance Bolza (1909, p. 369)).

Writing 4,(0) = cos a and 4,(0) = sin a, Theorem 1 can be applied to equations
(4.1), (4.2), (4.3), (4.4) with (4.5) if we set 1, =0, s=a, y; = X;, ¥, = X3, ¥3 = Ay,

Va =12z, a,(@) = xy9, %3 (@) = X209, %3(a) = cos a, a, (@) =sin a, fSi=Vcosp+ S,
2 2

fL=Vsinp+ 8, fi=—-3 4V +S,)and f=-Y 4i(Vie, + Siy,) and if we
i=1 i=1

assume that the right-hand sides of (4.1), (4.2), (4.3) and (4.4) with (4.5) are continuous

()\',)\2)

Fig. 10 Condition (4.11) implies that the indicatrix must be convex, so that the tangents for p and b
perpendicular to the direction (11, Ag) cannot coincide, which would lead to a corner in
the corresponding solution.
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and bounded, and satisfy the Lipschitz condition so that condition (b) of Theorem 1
is fulfilled. In view of the homogeneity of equations (4.3), (4.4) and (4.5) it is clear
that all extremals starting from (x,,, x,,) are found by varying parameter . Sum-
marizing the foregoing, we have the following result.

RESULT 1.

Let the functions V, V,, V,,,, V,,, Vs,, Si> Six, and Six, (i =1, 2) be continuous for
0 <t < t, and let relation (4.10) be valid. Futher let the right-hand sides of equations
(4.1), (4.2), (4.3) and (4.4) with (4.5) be bounded and satisfy a Lipschitz condition
with respect to xy, x,, 4, and 4,. Then x,(t, a) and A4(t,a) (i=1,2;0<t < t,) as
solutions of equations (4.1), (4.2), (4.3) and (4.4) with x,(0) = x,o (i = 1, 2), where
p is given by (4.5), are continuously differentiable with respect to t and continuous in
their dependence on the parameter a defined by 4,(0) = cosa and 2,(0) =sina.

Result 1 enables us to introduce a numerical method for the computation of the
least-time track which appears to be very suitable in practical cases. The practical
aspects of this method are discussed in Section 6. Let us proceed with a geometrical
interpretation of the foregoing. Integrating the system of equations and varying para-
meter a, we find after a time 7 a set of points S(r) which can be reached ultimately.
For the sake of simplicity we first restrict ourselves to a field of extremals, which
means that the extremals starting from the point O at time t = 0 (see Fig. 11) do not
intersect. The set of points S(7) is called a time front. Let {x,(1,0), x5(t,a)} be a
point of S(r). We further assume that the tangent {x,,(z, @), x,,(7, a)} in this point
exists. Let us now consider {x, (, a), x,(z, @)} as a movable end point. Since x,(t, a)
(i=1, 2; 0 <t < 1) is a solution of our optimal problem with movable ends, the
differentials of the coordinates {x,(z, a), x,(t, a)} with respect to a must satisfy
relation (4.7), yielding

22: Ai(z, a) x,,(1,0) =0.
i=1

In view of this relation one can construct time fronts in a geometrical manner
by determining the direction of the normal to S(r) and applying the construction of
Fig. 11. According to equation (4.6), the angle between the normal to S(z) and
(V1 + Sy, V2 + S;) must be acute. The first time front which contains the fixed end
point obviously yields the least-time track.

Let us now consider the more realistic situation that usually occurs in practice

when a part of the one-parameter family of extremals has an envelope C, as sketched
for instance in Fig. 12.
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WAVE MOTION >

Fig. 11

Sit) c

0

Fig. 12 S(z), the set of ultimately attainable points at time ¢ = 7 for a ship starting at time # = 0
at O, is indicated by a heavy line.
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The curves C are called caustic curves. In particular they can degenerate into one
point. The tangent point of an extremal with an envelope is called a conjugate point
to O. As a consequence of the fourth necessary condition a non-singular extremal be-
tween two points cannot be a minimal curve if it contains a conjugate point between
those points. This condition is called the necessary condition of Jacobi. The necessary
conditions of Euler-Lagrange (I), Weierstrass (II), Legendre (III) and Jacobi (IV)
from the classical calculus of variations were in fact discovered in the sequence I,
III, IV, II. An arc satisfying these four conditions furnishes a relative minimum for
our problem. In order to find an absolute minimum we have to consider the time front
S(z) (Fig. 12), which is in fact the boundary of the set of points that could possibly
be reached at the time ¢ = 7. An extremal x,(f) (i = 1, 2) furnishes an absolute mini-
mum for our problem if x;(t) (i = 1, 2) belongs to the boundary S(z) for all ¢ with
0 < 7 < t,. This property has been proved by Halkin (1964, see p. 9).

CASE 2: Modifications in the case of prohibited courses

In the first part of this section we ignored the fact that some courses could be for-
bidden. We shall consider this case here. The prohibition of a course is due to heavy
rolling which occurs if the course is at a certain angle, depending on the ship’s velocity
and wave period, with respect to the wave direction. The polar velocity diagram is
changed for instance as indicated in Fig. 13.

The course p is here restricted to sector I or IT determined by the angles M,(t, x,, x,)
(I=1,2,3,4). For courses p which are interior courses of these sectors, the above
equations remain valid. If p would exceed one of the boundary courses, say M 2

it is equalized to this value. According to the theory of Section 3, equations (4.3) and
(4.4) change into

WAVE MOTION
-

SECTOR I

hadl PR

Fig. 13 The non-coinciding boundary courses M;(t, x:, x2) (/ = 1, 2, 3, 4) are measured in the
same way as the course p.
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3

A= - % 2i(Vig, + Six) = WM.\, 4.12)
i=1
2

d2 = = & WVie, + Sie) = 1M (4.13)

where p; is a Lagrange multiplier given by (4.15).

Let us now consider the variables p and u; in their dependence on x,, x,, 4,, 4,
and ¢. We start with the course p. If p is an interior course of sector I or II (we first
assume x;, x, and ¢ to be fixed) then p(t, x,, x,, 4,, A,) is a continuous function of
arctan (4,/4,). As soon as this angle equals or exceeds a boundary value, say

arctan {4,(M;)/A,(M,)}, p obtains the value M j(t x4, X3). So at the boundary the
following relation holds

M(t, x,, x,) if arctan (4,/4,) > arctan {A2(M))/A,(M )}
p= (4.14)
p(t, Xy, X3, 44, 4,) otherwise.

Of course the inequality sign may be changed in the opposite sense, depending on
the situation.

If we require M,(t, x;, x,) (/=1, 2, 3, 4) to be continuous functions of X1, X,
and ¢ and moreover if p is restricted to lie in one of sectors I or II, then p is continuous
in its dependence on x, x,, 4,, A, and t. With respect to u; we have

2
,;1 MVip withp=M; o ctan (A2/A) = arctan {A,(M)/A;(M,)}. (4.15)
otherwise.

B =

We now return to equations (4.1), (4.2), (4.12) and (4.13). Analogous to the previous
case we have the following result.

RESULT 2.

Let M,(t, x,, x,) and M;. (j=1,2,3,4;i=1,2) be continuous with respect to
X1, X, and t. Further let the conditions of Result 1 be fulfilled for courses in sectors
I and II, including the boundary courses for 0 < t < t;. Then x;(t, a) and A(t, a)
(i=1,2;0<1t<1t) as solutions of equations (4.1), (4.2), (4.12) and (4.13) with
%;(0) = x;0(i = 1, 2), where p and n; (=1, 2, 3, 4) are given by (4.14) and (4.15),
are continuously differentiable with respect to ¢ and continuous in their dependence
on the parameter a defined by 1,(0) = cos a and 2,(0) = sin a.
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Regions of limited and unlimited manoeuvrability are assumed to be separated
from each other by closed curves in the (x,, x.) plane changing continuously with
time and containing the limiting points where M, and M, as well as M 3 and M,
coincide. So that extremals along which the conditions of Result 1 and Result 2 are
satisfied still depend continuously on their initial values, we have to make additional
assumptions with respect to 4, and 4, along the boundary curves. The range of values
of 1, and A, along these curves must be such that the corresponding courses p in the
regions of limited and unlimited manoeuvrability pass into each other continuously.
When computing the least-time track afterwards we shall not use this concept of
limited manoeuvrability, because the least-time track will never go through such a
region of higher waves. To conclude this section we shall pay some attention to the
behaviour of extremals near a fixed boundary. In practical ship routing this boundary
may be formed by land or ice. Assuming that such a boundary can be described locally
by functions which are linear in the variables x, and x,, say €1x1 + ¢3x, < 0, the fol-
lowing equations hold

2
b= =% (=) (Vi + Sie),

2
Ay=— ‘Zl (4 = cv)) (Vix, + Six,)s
(j=1,...,n; where n is the number of inequalities needed to describe the whole

boundary) where v; is again a Lagrange multiplier analogous to (4.15). In connection
with the position of beginning and end points in practical cases it is assumed here that
extremals either touch these boundaries, so that v ;= 0, or will be cancelled.
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5 Minimum fuel consumption

For the sake of completeness, we shall now consider the problem of minimizing
costs during transit, apart from the costs determined by the time of arrival, which in
general are minimized by minimizing the transit time. It is supposed here that the
costs of a ship during an ocean crossing are mainly due to fuel consumption. As a
result, it is the minimization of this quantity which will be discussed. We therefore
first consider the speed V as a new control variable. Moreover, we assume that the
rate of decrease of fuel can be described by the equation

Xo =f0(t’ Xy, X, V, p)a (51)

where x,(f) denotes the fuel as a function of the time . According to the theory of
Section 3, we now seek to find functions p(t) and V(f) satisfying the equations

x;=Vcosp+ S,(1, xq, X,), 5.2
X, =Vsinp+ S,(, x4, x,) (5.3)
with
x1(0) = X0, X;(t;) = x;3 (i=1,2)

which minimize
ty
fO(t’ xl’ X2, V’ p) dt' (54)
0

Of course the speed V is restricted to a range of values given by
Vmin(ts X1, X2, p) < 14 < Vmu(t’ X1 X2, p)s
where V.., (1, X,, X5, p) denotes the maximum attainable speed depending on wave
height and wave direction and V,,;,(t, x,, x,, p) an acceptable minimum. Since we
assume that V' will not take these boundary values, the corresponding Lagrange

multipliers vanish. Moreover, we choose 1, = — 1. For the sake of simplicity we
neglect ocean current. Application of the theory of Section 3 yields

Ay = foxys (5.5)
Ay =foxp (5.6)
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—fov+ A cosp+A,sinp=0, (5.7)
—Jfop— Ay Vsinp+ 2, Vcosp=0. (5.8)

Since the H-function vanishes along an extremal we also have
—fo+ A Vcosp+ 4, Vsinp=0. (5.9

From (5.7) and (5.9) it follows that the speed ¥ along an extremal must be so
chosen that it maximizes the quotient

| 4
fO(t’ X1, X2, V’ p)

(5.10)

As a result we could prescribe in every point of the (x,, x,) plane an optimal speed
V(t, x;, x,, p) satisfying (5.10), leading to a more direct approach to our problem
analogous to the time-optimal case. As before we can derive conditions which must
be satisfied so that the solutions of equations (5.2), (5.3), (5.5), (5.6), (5,7), (5.8) and
(5.9) depend continuously on their initial values.

Let the initial values of the multipliers A, and A, be denoted by a and b. Then
because of the inhomogeneity of equations (5.5) through (5.9) we must consider
x;(t, a, b) and 4,(¢, a, b) (i = 1, 2) in the (a, b) plane. Although it is possible to proceed
in this way, it seems more sensible in view of the accuracy of the fuel functions
Jo(t, x15 x5, V, p), which are derived from empirical data, to apply suitable approxima-
tions in practical cases. For instance, if we assume that f,{t, x,, x,, V (1, x,, X5, p), p}
does not depend on x;, x, and p, we can apply the results of the preceding section.
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6 The computation of the least-time track

In this section we shall apply the results of Section 4 to the computation of the

least-time track. In this connection some remarks will be made on practical aspects
of the problem.

) When solving equations (4.1), (4.2), (4.3), (4.4) with (4.5) numerically, the
time step is determined by the fact that wave charts are available every 12 hours.
Depending on the ship’s speed one can introduce 6-hour or 12-hour time steps inter-
polating between two successive wave charts, so that the distance which can be
covered by the ship is of the order of magnitude of the mesh distance. As a consequen-
ce of practical experience, it is assumed that the wave height and direction between
grid points can be obtained by bilinear interpolation.

(03} A second point concerns the approximation of the derivatives with respect
to the coordinates x, and x, in the grid. If we denote the x, and x, coordinates of a
grid point by (i, j) and for instance the ship’s speed at this point by V(i, j) then
derivatives are approximated by

Vo D=HV(i+ L) - V(i-17}
V(b ) =HVGj+ D) - V(3i,j- 1D},

where distances are measured in mesh units. Moreover, it is assumed that derivatives
between grid points can be obtained by bilinear interpolation. The validity of this
approximation has been tested by means of a numerical construction of time fronts
in the geometrical way as described in Section 4. The actual geographical velocity
diagram showing the relation between ship’s velocity and wave direction (and wave
height) is assumed to be of elliptic form. It is constructed with the aid of the actual
geographical values of the ship’s speed in the case of following, beam and head waves
(see Fig. 14). These values, which must be multiplied by the map factor m(¢) when
applied in the (x;, x,) plane, are obtained from empirical data. It is supposed here
that the ‘speed exceeds the numerical value of the ocean current for all waveheights,

3 We shall now pay some attention to the occurrence of forbidden courses.
Consider a ship with zero velocity in a wave field composed of waves of a single period.
If the direction of the waves lies in a suitable sector and if their period corresponds to
the resonance period of the ship, then the ship will undergo violent movements.
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WAVE MOTION
-

h
Vf O Vh
Vb

Fig. 14 The velocity diagram. The ship is situated at O. s, v» and vr correspond with the ship’s
speed in the case of following, beam and head waves.

As a consequence, one has to change the position of the ship with respect to the wave
direction in order to avoid heavy rolling. If we now consider the more realistic situa-
tion of a moving ship in a seaway, some modifications will appear due to the fact that

(a) the wave period which causes resonance and also the corresponding sector
of relative wave direction are dependent on the velocity of the ship, and
(b) instead of waves of a single period, a spectrum of wave periods is present.

As a representative period, one could take in this case the period which is related to
the maximum energy in the spectrum.

As we saw in Section 4, the velocity diagram must be changed, as shown in Fig. 15,
where the sectors of forbidden courses are indicated. For simplicity it is assumed here
that these sectors depend merely on the significant wave height (which in fact deter-
mines the maximum ship’s speed). Owing to the danger of heavy rolling, a ship will
in general not follow a strategy as mentioned by De Wit (1968), (see also Zoppoli
(1972)), where points in the forbidden sectors can be reached by steering a combina-
tion of boundary courses.

WAVE MOTION

-~

~————

Fig. 15 The forbidden sectors increasing with the significant wave height.
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C)) Let us now consider the continuous dependence on the initial values (Results
1 and 2 of Section 4) from a practical point of view. Consider two extremals {x(0,4(0}
and {x(t) + 4x(1), A(r) + 44} (i = 1, 2) satisfying equations (4.1), (4.2), (4.3) and
(4.4), starting from the point (x,,, x,,) with parameter values @ and a + 4a (see again
Results 1 and 2 of Section 4). Since these solutions depend continuously on the initial
values, it follows that Ax;(s), 42,() - 0(i=1,2;0 <t < ty)if da - 0.

As a consequence, we can start an extremal at time ¢t = 7 (0 < 7 < t,) with initial
values which can be obtained by linear interpolation between the corresponding values
of its neighbours if the distance JAx, (1)? + Ax,(7)? is small enough (see Fig. 16).
The above procedure can be applied in the case of forbidden courses, if the courses
p and p + Ap connected with the two extremals both belong to sector I or sector IT
(Result 2, Section 4), otherwise a gap occurs between the two extremals.

) Further we may remark on the behaviour of extremals near a boundary.
In some cases there are parts of the ocean region which cannot be reached along
extremals. To avoid this situation, points are chosen in a suitable way along which
extremals can penetrate these areas. These points can be considered as new points of
departure or arrival (see Fig. 16). The computation of an extremal is stopped if it
intersects the boundary. As a result near a boundary only those extremals will be

considered which coincide with it partly or wholly. We shall conclude with a remark
on the exclusion of extremals.

As we saw in Section 4, extremals can be excluded because of
(a) the presence of a conjugate point between beginning and end point (no rela-
tive minimum), and
(b) the fact that not every point of this extremal belongs to the boundary of the
corresponding set of reachable points (no absolute minimum).

In the practical situations treated here (with 6-hour or 12-hour time steps) the
second condition will not be satisfied in all cases. Although in general we consider all
extremals when computing the least-time track, there are situations where the exclusion
of extremals on account of condition (a) saves a lot of computing time. These situa-
tions can be handled very simply. After these introductory remarks, we shall give a
survey of the method for the computation of the least-time track in the form of a flow
diagram. This flow diagram gives a description of the computation of the route which
is presented in Section 7. The corresponding computer program is found in Section 8.
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Flow diagram

START

read ship’s data, time of
departure and points of
arrival and departure.

read wave
data and ocean
current in grid
points.

compute points
attainable in optimal
directions after the first
time step.

compute aiso points
attainable along

great circle (gc) and

rhumb line (rl).
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compute points
attainable along

extremals, gc and 1l
after the j*™ 12-hour
time step.

no
end point hed

Cape Race

along extremal.

determine indices
of points of optimal
route and compute
distance covered and
crassing time.

reached along gc.

take gc route from
Cape Race to end
point.

stop the
computation of an
extremal if it intersects the
boundary of the
navigation area.

print ship’s data, and
distance covered and
crossing time along
optimal route.

between points
©on consecutive
extremals too large,

insert new extremals.

ves

Cape Race
reached along
appropriate extremal.

start extremals
from Cape Race.




end point yes

computedistance
d and i

reached along gc.

time along gc.

Cape Race
reached along gc.

take gc route from
Cape Race to end

point.

<
l

compute the
position of the ship
along gc after the
jth 12-hour time
step.

print distance covered and
crossing time along gc.

print distance covered and
crossing time along rl.

print the 12-hour postions
of the ship along optimal
route, gcandrl.

sSTOP

compute distance yes end point
d and i > had
time along rl. along rl.

compute the
postion of the ship
along 1l after the jih

12-hour time

step.
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At this point we shall touch lightly on other methods applied in ship routing for
solving equations (4.1), (4.2), (4.3), (4.4) with (4.5). We can distinguish two types of
iterative methods: a steepest-ascent method or method of gradients, Kelley (1962),
Bryson and Denham (1962), and a method which uses variational relations between
initial values and end conditions, Marks (1968), Bleick and Faulkner (1965), see also
Faulkner (1963, 1964). Of course a third method can be found by using the geometrical
relations between time fronts and extremals as mentioned in Section 4 (see De Wit
(1968)). The disadvantages with respect to the application of the iterative computing
methods are first of all, that the solution depends on the choice of the initial course,
which is unacceptable for operational use, and secondly, that there may be convergence
problems, especially in view of the use of empirical data. The geometrical time front
method is more suited for manual use than for numerical application because of the
introduction of random errors when computing the normal direction, which in fact
is assumed to exist. In conclusion we consider the possibilities of a practical application
of the numerical method. At the Routing Office of the KNMI, transit times along
least-time track and standard routes are provided afterwards, using analyzed wave
charts in order to check the value of the recommended route.

Since the number of ships had increased to 711 by 1973, as we saw in Section 1,
computerization of only this evaluation would be time-saving.
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7 Results

In this section an example is presented of an ocean crossing between Greenock
(Tory Island) and Charleston (Frying Pan) (see also Fig. 3). The service speed of the
chosen general cargo-ship was 21 knots. This ship departed from Tory Island on the
25th October 1973 at 03.00 GMT. The recommended route manually constructed
with the aid of the 72-hour weather forecasts is indicated in Fig. 17. The transit time
was 8 days and 2.5 hours. Before being used for computations with respect to the
least-time track, great circle and rhumb line the ship’s performance data were corrected
by recomputing this route with analyzed wave charts. The crossing times along the
least-time route, great circle and rhumb line (see Fig. 17) were respectively 7 d 20.7 h,
8d19hand8d7.3h.

The detours of the least-time route and recommended route with respect to the
great circle were 296 and 253 miles.

This section concludes with a series of wave charts showing the 12-hour ship’s
positions along the least-time track and great circle. These wave charts contain
significant wave height contours in meters and wave motion arrows. Sea is indicated
by solid lines, swell by dashed lines.

~——— Least - time route
seees== Great circle :.4‘.
~. === Recommended route
. ‘' e RiUmb line
[~}
L]




Wave chart 26 October 1973 00.00 GMT
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.
a

Wave chart 26 October 1973 12.00 GMT

Wave chart 27 October 1973 00.00 GMT



.
a

Wave chart 27 October 1973 12.00 GMT

.
a

Wave chart 28 October 1973 00.00 GMT
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12.00 GMT

Wave chart 28 October 1973

Wave chart 29 October 1973 00.00 GMT



Wave chart 30 October 1973 00.00 GMT
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.
a

Wave chart 30 October 1973 12.00 GMT

Wave chart 31 October 1973 00.00 GMT



i a

Wave chart 31 October 1973 12.00 GMT

. g . -
i n % ndl Ll hd

Wave chart 1 November 1973 00.00 GMT
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Wave chart 2 November 1973 00.00 GMT
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An example of a computer program, written in ALGOL-60

comment This computer program has been used for the computation of the
least-time track from Greenock to Charleston » & route vhich is presented in
Section 7. It is & simplified version of the progrenm applied at the XKNMI,
mm/ommmmdmrMndbyﬂnmoomeBmur;
integer ant,at,atl,at3,cta,d1,42,7,h,h1,hh,hk, bk, k2, 1,10,11, 12,100,101, 102,
111,1001,10001,11,1n, in1,1p,J,30, 42, §00, J0O1 PREPRA ,Jg,.ﬂ.,di’,k,k] »11,md,pis,
pt,8rt, b1, tot, te, tr,x,y;3

real a0,as,aal safstl afet2,afst3,alpha,am,bb,bbl scc,cel copgr,copi,d,ax,8x1,
dy,day1,e1 +102,¢3,1t,g,grd, gur,1,12,13,14,101 +102,111,1111,14m, 11m1 tP'pe.:Patﬂ‘n
po1 .pOE,pi.pﬂ.m“,pﬁ,pi%piﬂ.yp.w.pﬂ sP1,pu2,pu3, q,r,r0,r1,r2,s,s1 ,sipgr
+81p1,t,th, tp2,tp3, tph, tt, tt1 itﬂ;“r;”h:x%upﬂ‘u x1,X8,%V,XX,XX1 ,X0X,Ye, Y8, YK
SYL,Y8,y80,YV,Yy,y7Y3

integer array AF[1:3],%1,YY[1:12],1,PTAl1 :50],RS[1:100],PA,PB[1:150],
GH,GR,X08,Y68[0:27,0:19]3

array AH[1:3),AFX,AFY[1 :k],Lh:12],mc,mc,nx,m,xm,m[ozso],
A,LA,MU,P,PX,PY[0:300],AA[1:3,01151,X,¥(0:300,0:2 ]

boolean joke,joket 3

real procedure ER(x,y); value x,y; resl x,y;
BR:m-arctan(sqrt((x-7.5))\2+(y+8. 5))\2)xa0)x2+p12;

real procedure LE(x,y); value x,y; resl x,y3
LE:warctan((x~7.5)/(y+8.5))+p16;

procedure P1(u); value uj reel u;
begln  integer d; resl ru;

d:=entier(u/2l); ruzsu-d@l;

SPACE(19); ABSFIXT(2,0,d); ABSFIXT(14,1,ru); NLCR; NLCR
end P13

Erocedure P2(A,B,g,tkt); value g integer &3 armay A,B; string tit;

begin  integer i;
NEWPAGE; CARRIAGE(S);

PRINTTEXT(fpoints $); PRINTTEXT(tit);

FRINTTEXT(K route: x1 x2 1Y Lop);

GARRIAGE(2)3

for 11=0,141 vhile i<g do

begin NLCR; SPACE(29);
ABSFIXT(2,2,A[1])3 Anﬁ_"m(!‘,z,ﬁ[ﬂ.])t
ABSFIXT(4,2,BR(A[1],B[1])/grd);
KesFDeT(h,2,1E(A[11,B(1])/gre)

i
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Procedure IS;
begln imteger 313
JNimi-1;
vhe=1-APST(XGC[ 31 ], YGC([ 37 ],xK,¥7K)/
Arsr(xechyn 1, vacl 1 1,xacl4],y0cls]);
1f D then goto RIK slae
begin  jokel:=false;
ast=aal; bbimbbi; ccimecel;
JOoO1:=§3
111 :=mvidAl113 1111:=111X1113
xx1 so( (yk-bb )xsqrt (coxh-111)xtk+an-xk)x111/(coR) s
XGC[ § ] smxgsmxk+xx? 3
YGC[J ] 1myg:myk-( (xi-an)ocx>3@+1111) /( (yk-bb)x2)

RIK:
=d 15;

procedure CB(x,y)s yalue x,y; real x,y;
begin real prdx,prdy,s;
prax:=prdy:=0;
COBY:  szm(((prdx/2ex~T.5))2+(pray/2+y+8.5)h2)xa0xa0+1)xa1 3
12 praxp0 V prdyp0 then goto KIM;
prdx:=sxax; prdy:=exdy;
goto COBY;
XIM: dx:msXdx; dy:waXdy
end CB3

real procedure AFST(x1,y1,x2,y2); value x1,y1,x2,y2; real xi,y!,x2,y23
AFST:msqrt( (x1-x2)h2+(y1-y2)2)X636,5/
({((x14x2)/2-7.5)h2+( (1 4y2)/248.5)\2)xa0xa0+1 ) /13

procedure AM(x,¥); yalue x,y; resl x,v3
begin integer 1;
amin2yl 53 tris0;
Tor 1:el1,141 vhile 1<in do
begin  a:=APOR(X[1,01,¥[1,0),x,7);
1f 4<um then begin amni=d; tri=i end

end AM3

resl procedure ARCAN(x,y)3 yalue x,y; resl x,ys
ARCTAN:= 1f x=O then sign(y)xpi2 else
1f x<0 then arctan(y/x)+sign(y)xpt+(1f y=0 then pi else 0) else arctan(y/x);

resl procedure IM(x,y); value x,y; resl x,¥;

begin real cd,csc,sc;
cd:marcten(cos(LE(x,y)-12)xtp2) ;
escimcos(p2)xcos (pi2-Br(x,y)-cd)/con(cd); scimsqrt(1—cscxese)s
IM:=arctan(sc/csc)x6376178/1852/aA[1,2]
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procedure MAXAF(x,y,a); value x,y,a; resl x,y,a;
begin  real coegr,cog,cogar,cogr,dxl,dy!,gh,er,er0,ar ,gro0,gr01 ,ar10,gr11,

11,111 ,siagr,sig, siggr,sigr,x1;
integer h,h1,31,k,k1,spr;

real procedure IP(A); integer array A;
IP:=(ax(Alh, k]+p)A[h1, %)) 4rx (@A lh, k1 Jepxan1,k11)) /105

spriw0; Jl:mj-13

1f =20 A J<jO+2 then

m 1mm7(dr‘mnﬂx6mya'ﬂ)3
inarrey(drum, J1%600+30000,GR) ; hold(GR)

end;

h:wentier(x); hi:sh+1; kimentier(y); ki:mk+l;

pi=x-hj qiwl-p; riwy-k; s:=l.r;

&x:=IP(XGS); dy:=IP(YOS)s

gh:=IP(GH); .

if J=1 then begin dx:=dxXgur; dy:=dyXgur end;

1f gh>14.9 then gh=1k.9;

&r00:=GR[h,k]3 gr01:=GR[h,k1]; gr10:«GR[h1,k]; gr11:=GR[h1,ki];

1f groo-gr10>180 then gr10:=gr10+360;

1L &r10-r00>180 then gr00:=gr00+360;

1f grol-gri1>180 then gr11:=gr114360;

1f gr11-gro1>180 then gr01:=gr014360;

&r0:mqXgro0+pXari0; gri :mqXgrol+pXgril;

1f gro-gr1>180 then gr1:=gr14360; 1f gr1-gr0>180 then gr0:=gro+360;

gr:=(sXgro+rXgr! )xgrd;

if er<0 then grimgrepim?;

if gropin2 then grimgr-pim2;

cogr:wcos(gr); sigri=sin(gr);

h:mentier(gh); hi:=h+is

Pi=gh-h; q:=1-p;

for k:=1,2,3 do AH[k]:=AA[Kk,h(q+AA X, N1 Ixp;

1f =1 then for k:=1,2,3 do AH[k]:=AH[k IXgur;

el:=(AH[1J+AHI3])/2; e2:mAH[1]-e1; e3:=e1xAH[2])/aqrt(AN[1 XAH[3]);

if a=10 V a=20 V a=30 then

Begin 1 #=30 then goto PL;
if a=10 then g:=ARCTAN(tk, (as-x)/(y-bb)xtk) else
8:=ARCTAN(tk, ((y+8.5)/alpha~x+7.5)/((x~7.5)/alpha+y+8.5)xtk) 3

PL: ‘cogimcos(g); sig:=sin(g);

primdxicog+ayxsig;

coggrimcos(g-gr); siggr:=sin(g-gr);

piwe3Xe3Xcoggr; qimelXelXsiggr;

r:-ezﬁiw; riwrXr;

8:=pXcoggr+gXsiggr;

1:=(sqrt(s—r)xeixe3—e2xp)/s;

prl :-1+pr3

if =30 then goto MAC;

ax:=prixXcogs @:-pi"l)(sig

e

2
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Li:

begin  coagr:=cos(a—gr); sisgr:=sin(s-gr);
DimelXcongr; qieeIXaiagry rimsqrt(pip+gdq);
simelXp/re2; tiwedxq/r;
tt1 smaXcogr-tXsigr; tt2:maXsigr+tXcogr;
dxsmdx+ttl 3 dy:sdy+tt2
end;
CB(x,¥)3
1f a=10 V e=20 then
begln  1f spr=0 then begin &xt:=dx; dyli=dy end else
begin ax:=(dx+dx1)/2; Ay:=(dy+dyl)/2 nd;
11 :=sqrt(doxdx+dyXdy); 111:=11A13
if a=10 then
begin  x1:=(111x(ea-XGC[J1])+
HRXUIX(YEC[J1 J-bb)xsqrt(bXeo-111))/(2xce);
x:=XGC[§1 Jx13
y:=YGCJ1 J-((XGC[ 1 J-aa)xx1x24111)/((YGCL 31 Lbb)x2) ;
1£ #pri0 then
begin XGC[) J:mxgimx; YGC[]:=yg:wy; goto MAC end
8 else
begin  11:s11/sqrt(1/(alphaxalpha)+1);
tt:=1n(ti<11/(rOxalpha)+
exp((LE(XIX[311,Y1X[41 1)=th)/alpha))xalphasths
r2:mexp((tt~th)/alpha)xro;
ttimtt-pi63
x:imsin(tt)Xr2+7.5; yimcos(tt)xr2-8.5;
12 spr}0 then
begin XIX{J):exlimx; YIX[J]:mylimy; Eoto MAC end
end;
inarray(drum, $X600,GH) ;
inarray(drum,30000+J%600,GR) 3 hold(GR);
sprimi
goto MIRT
end;
MAC:
end MAXAF;

1f 7 comparetile(tape(2),frieb-ortnp) then goto AFL;

tot:mJ)1 :mpiauPIA[1 ]:n0;

xk:=13.316; yk:=5,248;

arstl itmafst2:mafst3:=0;

pirwarcten(1)xhs pim@:wpix@; pidi=pi/2; pib:wpi/h; pi6iept/6; p19:=p1 /93
grd:=pi/180; ft:mcos(pi6)+1;

at:wS3; JOO:=l5; JO:w100; t1:m1;

80:231,8/(637.1229x¢t) 5 81:=1852/(a0x12742458);

Joke:=jokel t=true;

k:=RESYM; 1f kp120 then goto Li;

k:=RESYM; 1f kw120 then goto L3;

RS[t1]:mk; t1:mtisn; goto 123

for 1:=0,141 yhile 1<16 go for J:=1,2,3 do AA[J,1]:«READXI.2;
Jri=READ; mnd:=READ; d1:=READ; ur:sREAD;
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x8:=XOR[0):=READ; ys:«YOR[0):=READ;

xe:wREAD; ye:«READ;

tt:dﬁ:-ﬂ:-m(u,ys);

13:=1E(xe,ye); lh:=LE(xk,yk);

1f xa>xe then begin tk:=-1; hki1:=195; hk2:=240; in:=T5; at:=g0 end else
begin tk:=1; hki:«35; hk2:=10; in:=75; at:=33 end;
p2:=-_BR(xs,ys)+pi2; p3:=-BR(xe,ye)+pi2; ph:m.BR(xk,yk)+pi2;
tp2:=sin(p2)/cos(p2); tp3:msin(p3)/cos(p3); tpl:msin(ph)/coa(ph);
r0:=8in(p2/2)/cos(p2/2)/a0; r1 t=s1n(p3/2)/cos(p3/2)/a0;
alpha:=(13-12)/In(r1/r0);

101 :-arcun((cos(lz)/tph-cos(lh)/tpz)/(uin(lh)/tp?—ein(&)/tpk));
1oez-arctm((cou(lh)/tp3-coa(13)/tph)/(sin(13)/tph_sm(1h)/tp3));

P01 :marctan(—cos(p2)/ (sin(p2)xcos(12-101)));
p02:=arctan(—cos(pl)/(sin(ph)xcos (14-102)));

cc:=1/a0/cos(p01); cel:m1/a0/cos(p02);

aa:=8in(p01 )xsin(101-p16)xce+7.5; anl smsin(p02)xsin( 102-p16)Xcel+7.53
bb:=sin(p01 )chs(lou-pis)xco.s.s; bb1:esin(p02)xcos(102-pt6)Xeccl1-B.5;
ecimecXee; celimeciXeel;

for 1mjrt step 1 mtll T3 go

if 1:lodi=i then tot:=tot+366 glse tot:wtot+365;

for 1:=1 step 1 until md-1 do

begin 1if feh V 1a6 Vv 129 v f=1 then 11:=30 else 11:231;
if 1=2 then begin 1f Jrilxh=jr then 11:=29 else 11:28 end;
tot:=tot+ll

end;

if w12 Eﬂ begin d2:=3; urisur-12 end else d2:=2;

gurisiar/12;

sr.t:-(tob&dl-a’rh))@i-@;

inarray(tape(2),1,XGS); inarray(tape(2),2,Y68); hold(YGS);

ant:=srt+30;

for jimsrt,j+1 while j<ant do
begin  inarray(tape(2),Jx2-1,GH); inarray(tape(2),3x2,0R); hold(GR);
outarray(drum, §J1X600,GH) ; outarrey(drum, }J1X600+30000,GR); hold(GR);
33 =ina
end;
closerile(tape(2));
11:m0; Jemi;
1im:=IM(xe,ye); 1im) :=IM(xk,yk);
inarray(drum,0,GH); inarray(drum,30000,GR); hold/GR);
for 1:=0,141 while i<in do
begin  A[1]:=(hk1-1)xgrd;
IA[1):mcos(Al1]); MU[1]:=sin(A{1]);
MAXAF(xs,ys,A[1]);
X[1,1):mxs+dx; Y[1,1]):mys+dy;
ax:=ttl; dy:«tt2;
CB(xs,y8)3
PX[1]tmwax; PY[1]:nay
od;
XGC[0]:mXIX[0]: mxg:mxl:mxs; YGC[0]:=YIX[0):wyg:ayl:mys;
MAXAF(xg,yg,10); MAXAF(x1,y1,20);
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for 1:=0,141 while idn do

begin

nds

MAXAF(X[1,1],Y[1,1),A[1]);
X[1,0]:=X[1,2}:=(X[1,1 J+xa+ax)/23
Y[1,0]:e¥(1,2]:(¥(1,1 J+ys+ay)/2;
dxiwttl; dy:ett2;
CB(X[1,11,¥[1,1]);
P[1]):=ARCTAN(PX[1 ]+ax,PY([1 J+dy)

outarray(drum,100000,X); outarray(drum,100002,Y)s hold(Y)s
for h:=1,h+1 while h<i51 do PB[h):=PA[n]:=1000;
outarray(drum, 60000,PB) ; outarray(drum,60250,PA); hold(PA);

: Jimjer;

for 1:=0,141 yhile i<in do

begin

1f Y[1,0]m-99 then goto Us;
sipi:wsin(P[1]); copi:mcos(P[11);
himentier(X[1,0]); k:=entier(¥[1,0]);
R H
for JJ:=h-1,b-1,h,h,h,h,041 ,he1 he1, hil a2, he2 do
begin XX[J2]):=)y; J2:wj24 end;
J2:m;
Tor J3mk k) =1,k k41, k2, k-1, K, ka1 ke2, K, k1 dQ
begin YY[j2]:=3y; J2:wj241 end;
for JJ:=1,33+1 while JJ<I3 do
begin  x:=XX[3§); yi=v¥(33];
hh:=entier(GH[x,r1/10);
p:=GH[x,y]/10+hh; q:=1-p;
for ri=1,2,3 do AH[r):=AA[r,hhIXq+AA[r,hh+1 Ixp;
et:=(AH(1]+AH(3])/2;
e2:=e1XAH[2]/sqrt(AH{1 IAH[3]); e3:wAH[1)-e1;
copgri=cos(P[1]-GR[x,ylxgrd); sipgr:=sin(P[1]-GR[x,yXard);
Pime2XeXcopgry q:=elXelXsipgr;
rime3Xsipgr; ri=rXr;
8 :=pXcopgr+gXsipgr;
1:={Zpxe3+elReBxaqrt(s—r))/sx(1A[1 Keopt+MI[1 IXsipt )+
(1A[1 bxxaS(x,y J+Mu[1 Ixves([x,y])/10;
dx:=1Xcopl; dy:=ixsipi;
CB(x:y)i
L[J3]:=sqrt (dexax+ayxdy)
end;
AFX[1]:=L[8)-L[1]; AFY[) |:=L[5)-L[3]);
AFX[2):=L[9}-L[2]; AFY[2]:=L{6)-L[L];
AFX[3]:=L[11 }-L[4]; AFY[3]:=L[9)-L[T];
AFX[4]:=L[12}-L(5]; AFY[4]:=L[10)-L[8]);
p:=X[1,0)-h; qi=1—p;
r:wY[1,0]-k; stmwi-r;
LA[L JewIAL1 b (pX(oxAFX[4 J+oXARX[3]) 4 q( mAFX [2 JomAPX[1 1) )/2;
MITLJ:oMO 03 (P (rAFY [k J+aXAFY (3 ])+ ax(reaFY [2 lemaFy (1 1)) /25
A[4]):=ARCTAN(IA[1],MU[1]};
MAXAF(X(1,0],Y[1,0],A[1]);
X[1,1):mX[1,0)4dxs Y[1,11:e¥[1,0)+ay;
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L5:

NEG1?:

LT:

gk

de:wttl; dysett2;
CB(x[1,0],¥{1,0]);
PX{1]):max; PY[1]:wdy;

end;

MAXAF (xg,¥g,10) 3

111 :msqrt ( dboxdx+dyxdy) 3

MAXAF(x1,y1,20);

for 1:=0,1+1 vhile i<in do

begin  if Y[1,0]=-99 then begin Y[1,2]:99; goto LS end;
MAXAR(X(1,1],Y[1,1],A[1]);
X[1,2]:m(X[1,114x[1,0 0ax)/2; Y[1,2]:=((1,1)+¥[1,0)+y)/2;
dx:=ttl; dy:=ti2;
cB(X[1,11,Y[1,1]);
P[1):=ARCTAN(PX[1 J+dx,PY[1 ]+dy);

end;
if Jeentier(1im) then
begin  AM(xe,ye);
10:=tr;
1f smn>AFST(X[10,2),¥(10,2],X[10,0],Y(10,0]) then goto NEG else
begin  pp:=AFST(xe,ye,X[10,0],Y[10,0])/
AFST(X[10,2],Y[10,2],X[10,0],Y[10.0])—ur/123
goto EIND
end;
od;
1f 3>entier(lim1) A joke then
begin  AM(xk,yk);
100:=tr;
vhi=1-am/AFST(X[100,2],¥(100,2],X[100,0],¥[100,0])3
if vh< then goto NEGt else begin Joke:=false; JOO:=3; 101:=100 end;
end;

1f >entier(lim) A jokel then IS;
for 1:=0,141 vhile 1<in do
begin  1f Y[1,0]=-99 then goto LT;
ir vl1,210 v ¥[1,2)0.35 v x[i,2)a.5 v (x[1,2113 A Y[1,2)<h.5)
then goto 163
if X[1,21213 A X[1,21<93.58 A ¥{1,2)<5.18 then goto L6;
£ x[1,2]>13.58 A X[1,2]<13.906 A ¥[1,2)<4.86 then goto L6;
1f x[1,0)<xk A X[1,2]>xk then
begin ysn:-((Y[1,2]-Y[1,0])/(X[1,2]-3([1,0]))X(M[i,2])+Y[1,2]x
1f yenyk then goto 16
end;
goto LT;
Y{1,2):=099;

od;
1f ¥[11,2]=-99 then begin 11:=1141; goto 18 end;
1f£.Y[in,2]=99 then begin in:win-1; goto L9 end;
PIA[J]:=pia:=il;



62

Lio:

L

La:

for 1:=11,1+1 yhile 1<in do
begin  X[1,1):=X[1,0]; Y[1,1):=¥{1,0];
ipi=i-pia;
1f ¥{1,0]=99 then goto Lio;
X[1,0):=x(1,2); Y[1,0]:=¥[1,2];
X[1ip,0]:=X[1,01; Y[1p,0]:=¥[1,0];
X[1p,11:=X[1,1]; Y[1p,1 :a¥[1,1];
X{1p,21:=X[1,2]; Y[ip,22:w¥[1,2];
LA{1p):=IA[1]; MUl tp):=Mul1]; P[ip)e=p[1]
end;
11:=1:20; inl:=in:win.pia; 100:=100-pia;
ip:=i+pia;
1f ¥[1,0]=99 V ¥[1+1,0]=-99 then goto L12;
xvi=X(1,0}X[1+1,0]; yvi=¥[1,0]-¥[1+1,0];
1f xvXxv+yvxyv>0,02 then
begin  for himin,h-1 vhile h>1 do
begin hi:sh+1;
X[h1,0):=X[h,0]; ¥[h1,0):=¥(h,0];
LA(h? J:=IA[h]; MU[h1]:=MI[h]; P[h1]:eP[n]
end;
111 =141 12:142;
1f J=JOO A 1100 then 100:=100+1;
X[111,0]:=X[1,0)xv/2; Y[111,0):aY([1,0)yv/2;
1A[111 ):=(1A[1141A[12])/2; MU[111 ):=(MO(1 )eMU(12])/2;
if P[1]-P[12]>p1 then P[12]:«P[12]+pim2;
1f P[12]-P[1]>pt then Pl1]:=P[1lepim2;
Pl111 1:=(Pl1]1+P[12])/2;
in:=in+t;
goto L1
end else
begin 1:=141; 1f 1<in then goto L11 end;
1f 7 Joke A J=jOO then
begin  102:=101;
if 101>inl+ple then begin 100:=100-101+int1+pia; 101:einl+pia end;
10001 :=100;
for hi=in,h-1 vhile B>100 do
b_egi_n h1:=h+at;
X[h1,0):=X[h,0); ¥[h1,0):=¥{n,0];
IA[h ):=LA[h]); MO[ht }:eMULR]); Plh1]:eP{n)
end;
inarrey(drum, ( §-1)X600,GH) ;
inarray(drum, (J~1)x600+30000,GR); hold(GR);
at3:=at-3;
for 1:=0,141 yhile 1<at3} do
'_b_gg_ig hi=100+2+1;
Alh):=(hk21)Xg=d;
1A[h]:=cos(A[h]); MI[h]:=sin(Alh]);
MAXAF(xk,yk,Alh]);
X[h,1 ) :mxkevhixde; Yh,1 ):=ykevhixdy

B
2
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13:

Lk

L15:

L6:

7

inarray(drum, JX600,GH); inarray(drum,JX600+30000,GR); hold(GR);
for i:=0,1+1 while i<at3 do
begin  h:wi00+2+41;
MAXAF(X([h,1],Y[h,1],AlN]);
X[h,0]:=(vhxax+X[h,1 J+xk)/2; Y[h,0]:=(vhxdy+¥Y[h,1 Jeyk)/2;
P[h]:=ARCTAN(X[h,0)-xk,Y[h,0}-yk)
end;
1001 :=100+at 3
Y[100+1,0):=Y[1001~1,0):=-99;
X[1001,0]:=X[100,0]; ¥Y[1001,0]:=Y[100,0];
1A[1001 ):=1A[100]; MU[1001 ):=MU[100];
P[1001 ):=P[100];
for 1:=inl+pia step -1 until 10141 do Y(-platatsi,2]):=Y[-pia+i,2];
for 1:#1,141 vhile 1t do Y[101-pia+i,2]:=¥[10041,0];
in:=in+at; atl:=at

ods
for 1:#0,1+1 yhile 1<in do Y[1,1):=¥[1,0];
1:=0;

if Y[1,0]=99 A Y[1+1,0]=-99 then
begin  for kiwi,k+1 yhile k<in do
Eﬂ’l k1 :mk+13
X[k,0):=X[x1,0]; Y[k,0]:=¥[x1,0];
IA[k]:=IA[K1 15 MUK ]:=MOK1 13
Plx):=p(k1]

end;
i=in-1}
goto L13
end;
1:=i41;

if 141<in then goto Li3;
outarray(drum, kx(J-1)x451+100000,X) ;
outarray (drum, 2¢(2¢J~1 )x4514+100000,Y); hold(Y);
kiwiiuf:=0;
if Y[1,2]=Y[k,1} then
b_eﬁr_\ Kemks1; 1:mist;

L£73$300 then atl:=0;

1f iini+at) then goto L1k
end
else begin fisf+l; PBIf]i=k; kimk+1; goto L1b end;
for h:i=f+1,h+1 while h<i51 do PB[h]:=1000;
kiwitmfim0;
1f Y([k,1]=¥(1,0] then
l_:le_gi_n kemk+1: 1:misl;

if 1i<in then goto L16
end
else begin fi=f+1; PA[£]:mi; kimk+1; goto 116 end;
for hi=f+1,h41 while h<151 do PA[h]:=1000;
outarray(drum,2x( 3~1 }X250+60000,PB) ;
outarrey(drum, (2¢J—1)X250+60000,PA); hold(PA)s
goto NEXTR;
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EIND:

L18:

119:

L20:

121

J0:=3z=3-13 PIA[J+1]:=0; I[3]:=10; goto 1213
inarrey(drum,2x X250+60000,PB) 3
inarray(drum, (2<3+1 )xX250+60000,PA); hold(PA);
£:=150;

if I[I1>PALL] then I[3]:=I[j]+s alse

begin f:«f-1; 1f £>0 then goto L19 end;
£:=150;

if I[I1PBIL] then begin 1f I[J]=PBf] then I[§):=I[31+1; I[3]:=I[5)-f end

Slse begln f:=f-15 1f £0 then goto 120 end;
if 3=JO then begin 0t:=XOR[J+1]:mxe; yyy:»YOR[J+1]:=ye end
else begin oumxx; yyyi=yy end;
inarray(drum, bx(J-1)xb51+100000,%) 3
inarray(drum,2x(2x3-1)x451+100000,¥) 3 hold(Y);
I[3):=Ily 4PIAL 41 13
wox:=X[1[31,0]; yy:=¥[I[31,0];
1f 3=300-1 A (((yyy-yy)/ (3000-0c) 1 (xk=a00c ) +¥yy) <y
then afstl:=afsti+AFST(xx,yy,xk,yk)+AFST(x0x, yyy,xk,yk)
else afstl:=afsti+AFST(xx,yy,%0x,yyy)s
1f J=1 then afsti:=(afst1+APST(xx,yy,xs,ys))/1852003
XOR[J]:mxx; YOR[J]:myy;
Ji=j-t3
if $0 then
begtn if J=j00-1 A I[J00]>10001 A I[J00]<10001+at~1 then
begin  PIA[J+1]:=0; I[3]:=102; goto 121 end else
begin  1if J=300-1 A I[J00]>10001+at~2 then I[J]:=I[J+1 J-at
else I[3]:=I[3+11]
end;
goto 118
end;
pul :=(JO+pp)x12;
CARRIAGE(5) §
for 1:=1,141 vhile i<t1 do PRSYM(RS[11);
CARRIAGE(8); PRINTTEXT(kerossing time:p); SPACE(18);
PRINTTEXT( kdays hours}); CARRIAGE(3);
PRINTTEXT( koptimal routed);
P1(put);
J:m=J0+1;
1f (xgxe A tio0) V (xgoxe A tk<D) then
Begin
1f joket then 1S3
Jimj+r;
MAXAF(xg,¥g,10);
111 :wsqrt( docdx+ayxdy) 3
it (xg>xe A t1>0) V (xggxe A tk<D) then goto L2b;
goto 122
4 else
hegin
1f (XGC[J-1 >xe A tk>0) v (XGC[~1]<xe A tk<D)
then begin j:=i-1; goto 123 end
ends
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125:

126

125

pulim(3-1+(xe-XaC(3-11)/ (xoC[§ 1XGCL §~1 1) )x12-ur;
for 1:=J,1-1 yhile 1>J001 do begin XGC[1):uXGC{1-1]; YGC[1]):=YOC[1-1] end;
XGC[J001 J:mxk; YGC[JOO1 Jsmyk;
Jgimyimgers
for 1:=1,141 vhile 1<) do afst2:=afst2+AFST(XGC[1],Y0C(1],XaC(1-1 ], YGC[1-11);3
afst2:m(arst2+AFST(xe,ye XGC[ -1 1,Y6C[ 3~11))/185200;
Xac[y J:=xe; YGC[J]:mye;
PRINTTEXT(kgreat circle $);
P1(pu2);
Ji=jo+1;
1f (xl<xe A t50) V (x1>xe A tk<D) then
begin
Jimj41;
MAXAF(x1,y1,20);
1f (xl>xe A th>0) V (xlgxe A th<D) then goto L27;
goto 125
o4 else
begtn
1f (XIX[3-1 Dxe A tk50) V (XIX[§-1 l<xe A tk<D)
then begin J:=J-1; goto 126 end
end;
Jli=g3
pu3sm(3-1+(xe-XLX[3-1 1)/ (XX § 1XTX[ 31 1) Ix1 2w
for 1:=1,141 vhile 1<j do afst3:safst3+AFST(XIX[1],YIX[1],XIX[1-1],YIX[1-1]);
atst3:=(afst3+AFST(xe, yo, XIX[J-1],YIX[3~1]))/185200;
XIX[4):mxe; YIX[3):mye;
PRINTTEXT({riumb 1ine  $);
P1(pu3);
CARRIAGE(3); PRINTTEXT(K&istance covered: miles});
CARRIAGE(3); PRINTTEXT(foptimel routeb); SPACE(17)3 ABSFIXT(5,0,afst1);
NLCR; NLCR; PRINTTEXT({greet circleb); SPACE(18)} ABSFIXT(5,0,afst2);
FLCR; NLCR; PRINTTEXT({rtmmb lined); SPACE(20); ABSFIXT(5,0,afst3);
F2(XOR,YOR,JO+1,k  optim1});
P2(XGC,YGC, J8, kereat circlep); P2(XIX,YIX,J1,Kk rhumb line});
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