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PREFACE

The recordings of earthquakes by differing types of seismographs differ in appear-
ance. Each seismograph has its specific characteristic magnification curve, indicating
the wavelength interval that will be most pronounced in the seismographic record.

At the Royal Netherlands Meteorological Institute the traditional seismographs,
recording a broad central region of the earthquake wave spectrum, have been supple-
mented in later years by seismographs with favourable characteristics for recording
either the short waves or the long waves.

One may ask whether it is possible to design a seismograph having a certain prescribed
magnification curve. This general problem is theoretically treated and solved in the
present publication. In addition the author describes a practical method for determin-
ing the magnification curve of an existing seismograph from the record of an electric
pulse supplied to the system.

This study has been accepted by the Faculty of Natural Sciences of the University
of Utrecht as a thesis for the degree of Doctor.

The Director in Chief of the

Royal Netherlands Meteorological Institute

M. W. F. SCHREGARDUS







VOORWOORD

Aardbevingen worden door seismografen van verschillend type op verschillende
wijze geregistreerd, waarbij het van de z.g. vergrotingskarakteristick van een seis-
mograaf afhangt welk golflengtegebied in het aardbevingsspectrum het duidelijkst op
de registrering verschijnt.

Op het K.N.M.I. zijn naast de traditionele seismografen van het gebruikelijke type,
die een breed midden-spectrum van aardbevingsgolven registreren, in latere jaren ook
seismografen in gebruik genomen die hetzij de korte golven, hetzij de lange golven
speciaal tot hun recht laten komen.

De vraag is in hoeverre het mogelijk is een seismograaf te ontwerpen die een bepaalde
gewenste vergrotingskarakteristick heeft. Dit algemene probleem wordt in de voor-
liggende publikatie theoretisch behandeld en opgelost. Tevens heeft de auteur een
praktische methode uitgewerkt om de vergrotingskarakteristick van een bestaande
seismograaf te bepalen uit de registratie van een elektrische puls die aan het systeem
wordt toegevoerd. '

Deze studie werd door de Faculteit der Wiskunde en Natuurwetenschappen van de
Rijksuniversiteit te Utrecht aanvaard als dissertatie.

De Hoofddirecteur van het

Koninklijk Nederlands Meteorologisch Instituut

M. W. F. SCHREGARDUS
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CHAPTER 1. THEORY OF THE ELECTROMAGNETIC SEISMOGRAPH

The electromagnetic seismograph is a combination of two instruments, viz. a seismo-
meter and a galvanometer. The seismometer generates an electromotoric force by
a displacement of the ground. If the seismometer is electrically connected to a sensitive
galvanometer, the movement of the ground can be recorded. In this chapter the theory
of the seismometer-galvanometer system, the seismograph, is explained.

1 TFree oscillation of the seismometer
The seismometer is an instrument consisting of a mass which is kept in a position of
equilibrium by means of an elastic or quasi-elastic force. We will first study the free

movement of the mass along a fixed axis (figure 1).

In this case the motion follows from the equation

Kyfi = Mg+ M), | (1.1)
K is the moment of inertia of the mass with respect to the axis of rotation, 6 is the
angle of deviation and M. and M, are the movements of the elastic force and of the
dissipative force, resp. The dissipative force causes loss of energy and damping of the

movement .of the seismometer.
The moment of the elastic or quasi-elastic force can, for small values of 8, be written as

Mc=—C0 (1.2)

'The moment of the dissipative force is a function of the angular velocity of the mass.
For small values of § the moment is

Mp=—B0 (1.3)

Substitution of (1.2) and (1.3) into eq. (1.1) gives the equation of the free motion of
the seismometer

0+ 26,0 +n20 =0 (1.4)
where
2¢,, K and n; = K,
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Fig. 1

The solution of eq. (1.4) is
0 = aleaﬁ + aze‘ZZt
where o, and «, are roots of the equation

a? + 28,0+ n2=0

PR R . /T
oy = —8g + l\/ns — g, and o, = —gg, — l\/ns2 -

&

2
S0
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The constants «; and a, can be found by means of the initial conditions, viz.:

fort=0,0=0ya0d 0 =46,

a. weak damping

For ny > ¢, the solution is

6o + &.,0, .
0=—"5— 02 e %" sin \/n? — 62 t + Ope "' cos /n? — &, t
By — &

or

6 = ae™* sin (v,t + ) (1.5
where

0 e.,0,\ 2 v.0
a = \/ M +03’ ¢=arctg_s—0and
Vg Oy + &80

and

vo=1/n; — e, (1.6)

For n, > g, the free motion of the seismometer is a damped harmonic oscillation with
period

, 2n 2r T

v 2 - 2
s ng \/1_<sso> \/1_<£so>
nS nS
where T is the natural period of the seismometer if ¢, = 0, i.e. if no damping occurs.
AsO<eg,<n, T'>T.

If the ratio of two amplitudes of the free oscillation, separated by 1 17, is determined
one gets from (1.5.)

’

ay (1 )
= CXp &, — T
P & 9

D =

Opyq

From (1.7) and (1.6) we can calculate the parameters ¢, and n,, which determine the
free motion of the seismometer.
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b. strong damping

If g, > ny, then vy = i\/ 2 — n? = iv, and the general solution of (1.4.) is

8 = e~ (a, shigt + a, chit)

where

By + &5,0
- [0 0
7, = /82 — n? a; = ———— and a, =0,

Vs

In this case the free motion of the seismometer is aperiodic.

c. critical damping
If &, = n,, then the general solution of (1.4) is

0 = (al + azt)e_’,St
where

a, =0, and a, = 0,4 + n,0,

This motion is the transition between the periodic and the aperiodic movement.

2 Forced motion of the seismometer

We will now derive the differential equation of the seismometer standing on a moving
support, the support being fixed to the earth. The motion of the earth is determined
with respect to a coordinate system (X, Y, Z) which is in rest. The motion of the seis-
mometer is measured in a coordinate system (x, y, z) which is connected with the
support. The z-axis is the axis of rotation of the seismometer and the coordinate axes
(x, y, z) are parallel with the axes (X, Y, Z). If the seismometer is in rest, the centre
of gravity will be on the y-axis (see figure 2).

According to the laws of mechanics the equation of motion in a moving coordinate
system is found by adding the moment of the inertial force to the equation for the
fixed coordinate system. If we suppose that the movement of the earth takes place
in the (X, Y) plane, we get for the equation of motion
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Fig. 2
KO+B0+Ch=—-M, .1

where M, is the movement of the inertial force with respect to the axis of rotation.
As the inertial force acts in the centre of gravity of the system, we can write

Mz = M(X.Vo - Yxo)
Furthermore

Xo = R, sin § and y, = R, cos 0
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For small values of 6, eq. (2.1) is transformed into

M

0+ 2,0 +n20 = — 150 X - Y0 2.2)

From figure 3 we see that in the free motion of the seismometer, the gravity causes
the moment

M,= —MR,gsin 0

According to eq. (1.4) and (1.2)

oM,
c 900 J8=0  MRog g

ns= = =

K, K, K, ]

T, = 27:\/L
g

or

Fig. 3



17

The quantity

K
MR,

is called the reduced pendulum length of the seismometer. For small # one may
neglect Y0 in (2.2), and one gets the following equation for the forced motion of the
seismometer :

(7+28509'+n520=—ll(

3 Seismograph with galvanometric recording

In this case a coil is attached to the mass of the seismometer, which moves in a
magnetic field. The coil is connected to a sensitive galvanometer.
When the mass is moving, the electromotoric force which is induced in the coil is

d
e, = N, % (3.1)

where ¢, is the magnetic flux and N,; the number of turns of the coil. We suppose
that only ohmic resistances are present in the seismometer-galvanometer network.
R, and R, are the resistances of seismometer and galvanometer resp.; R; and R, are
variable resistors; R, is the resistance of a shunt or of a shunt galvanometer. By the
movement of the seismometer an e.m.f. is generated in the coil and a current flows
in the galvanometer. The deflection of the galvanometer causes an e.m.f. ¢, which
counteracts the motion of the seismometer. Therefore the motion of the seismometer-
galvanometer system must be described by coupled differential equations.

We will now derive the equations of motion for a seismometer-galvanometer system,
in which two galvanometers (indicated by the indices f and g) are connected in parallel
coupling to the seismometer (see figure 4).

Let the angles of deviation of the seismometer and hte galvanometers be 6, ¢ and &
resp.; K, K,, K, are the moments of inertia of the seismometer and the galvano-
meters with respect to their axes of rotation. The equations of motions are

Kf=—-Bb—ChH— MR,X + M,

K,¢p=—-B,p—Cop+ M, (3.2)
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Rs Rf
i1

e, e

Fig. 4

Here By, B, and B, are the coefficients of the damping forces; C,, C, and C, are the
coefficients of the (quasi-)elastic forces, and MR X is the moment of the driving in-
ertial force. This force does not appear in the equations for the galvanometers, as
the axis of rotation goes through the centre of gravity of the galvanometer coil.
M; is the moment working on the seismometer which is caused by the current i in
the magnetic field of the seismometer. M, and M, are moments of forces deflecting
the galvanometers, by the action of the currents in the coils of the galvanometers.

The force working on the coil of the seismometer, in which a current i, is flowing, is
Fs=Ny,Hai,

N, is the number of turns, H, is the strength of the magnetic field in the coil, a is the

length of the coil. '

Because M, counteracts the motion of the seismometer

My= —F,.L = —N,HaLi, = —G,i, (3.3)
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L is the radius of the coil. The quantity G, = N H,aL is the electrodynamic constant
of the seismometer,

A current i, flowing in the coil of a galvanometer g will react with a force whose
moment M, is:

M,=G,i, (3.4)

G, is the electrodynamic constant of galvanometer g.
For the moment working on the galvanometer f, we get

M;=Gp(i; — i) (3.5)
The currents i, and i, follow from Kirchhoff’s law (see figure 4)
if(Ry+R) + (i — )Ry =e,+ e
(i —ipR; +i,(R, + R) =¢; + ¢, (3.6)

e, is the e.m.f. induced in the seismometer, e, and e, are the counteracting e.m.f.’s
induced in the galvanometers

e, =GH 3.7
whereas

e, = —G,p and e; = —G,df (3.8) and (3.9)
From (3.7), (3.8) and (3.9) we get

_R AR R Ry __Rg+R2+2Rfo¢

i, = G
! a a e a
R, . R,+R,+R R, + R; + 2R, _
i, =-LGo G - = ! ! Gb (3.10)
a a
By substituting
a=(Rs+ Ry +R)R,+ R, +R;)— R} (3.102)

and
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R, + R R, + R R
A =9 2 B=_3171 =1 (3.10b)
a a

€q. (3.10) can be written as

i;=(A+C)GH — CG,p — (4 +2C)G;d

i, =CGf — (B + C)G,¢ — (B +2C) G,

By substituting the values of the currents i; and i, in (3.3), (3.4) and (3.5), we can ex-
press the moments M in the angular velocities 0, ¢ and &.

M,= —(4 + O)G0 + CG,G,¢p + (4 + 2C)G,G,d
M, = CG,G,6 — (B + C)G.p — (B + 20)G,G,d

M, = AGG/0 + BG,G;p — (S — B)G7 &

Introducing these moments in the equation of motion (3.2) we get for the equations
of the seismometer and the galvanometers resp.:

2

6+ |2, +U+C)—— |0+ B—C * p— (4 +20) fscb_
n,
o0 K K K

s

1,

. GZ . 2 qu fGy
o+ Zay,,+(B+C)K ¢ +nig—C X 9+(B+2C)K =0

g g g

G: 7, GG, . G,G
+[2e,,,+(A—B)?f]cp+n§¢—A Kf 0—B—2Lg

¢=0
s s K,
By using the following abbreviations
G? G,G, GG,
283=2830+(A+C)K as=CT ysr = (4 + 20)
~ G; GG, GG,
289=28g,,+(B+C)K Ug:C—K— v = (B +2C) —~*
g g g
G GG G,G,
2, =28, +(A—B)— y,=4—2 y, =B 2L (@311
7o K, K, ‘ K

f
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the equations of motion finally become:

0+2e0+n20 — 0, — 9,6 = — —Z—X (3.12)
¢+ 28,0 + njqo - 0'99 +79,8=0 (3.13)
b+ 26,0+ ni®—y 0 —y,0=0 (3.14)

We see that the motion of the seismometer is determined not only by the displace-
ment of the ground (X), but also by the motions of the galvanometers (¢ and &).
Likewise the deviation of one of the galvanometers is controlled by the motion of
the seismometer and by the deflection of the other galvanometer.

If we suppose the movement X = X (¢) of the ground as known, we can calculate the
reactions 0(¢), ¢(f) and &(¢) from the eq. (3.12), (3.13) and (3.14). The bést way for
solving the differential equations of a coupled elastic system is by making use of the
Laplace transformation.

4 Laplace transformation

If F(¢) is a function which has not an infinite number of maxima, minima and dis-
continuities, it can be expressed by the integral

ctiowm
1 g(p)e”
F(@) = e dp (4.1)
where
gp)=p £ e P F(1) dt (4.2)

The eq. (4.1) and (4.2) are the Fourier-Mellin equations.
Eq. (4.2) can be written as

g(p) = LF(¥) (4.3)

and eq. (4.1) as-
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F() = L™*g(p) | (44)

g(p) is the direct Laplace transform of F (), and F(t) is the inverse Laplace transform
of g(p).

Below some formulas are given, which are needed for the solution of a second order
differential equations with constant coefficients.

LEkF(t) = kLF(¢r) where k = constant (4.5)

L4FO pLF(t) — pF(0) (4.6)
a’F(H) ) dF(1)

= "pLF(t)_pF(O)_p< dt >t=0 %)
. op

L sin ot = o 4.8)

5 The solution of the equations of motion
After having mentioned these formulas, we can start with solving the equations of
the seismometer-galvanometer system (eq. 3.12, 3.13 and 3.14).
We suppose that the motion of the ground is a simple harmonic oscillation

X = A sin ot (5.1)
The initial conditions are

0=0=p=¢p=0=d=0ift=0 (5.2)
Furthermore we put

Lf=z;Lp=y,and L® =y, (5.3)
If we substitute the harmonic ground movement into the equations of motions

(3.12), (3.13) and (3.14), and if we write down the Laplace transforms of these equa-
tions, we get
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. . ’ |
L + 26,L6 + n?LO — oL — y,,Ld = —I—szLsin ot
L$+2e,Lep +n2Lo — o, L0+ y,,Ld =0 (5.4)

Ld + 2e,Ld + njL® — y; L0 — y,,Lp =0

Now applying the formulas (4.6), (4.7) and (4.8), the equations of motion can be
written in the following form:

7Aa)3p
(p*+26,p + 1n5)z — OsDY1 —  YyDY2 =T ot
—o,0z 4+ (P4 260 + )yt VP2 =0
—Ypz - V7abV1 +(P*+2p+ 0Dy, =0  (5.5)

As we want to know the reactions of the two galvanometers, we have to solve y; and
¥, from eq. (5.5).

Putting
(p* + 26p + 1) —ap — 94D
_o-gp (p2 + 2891’ + n:) ygfp =a (56)
—9YysD ~ VgD @+ 2e,p + n;)
we find
o, 0(P* + 28,0 + 17 — Vp¥gp” 1, 5
y, = 2 S I fslaf — Aw®p 5.7
1 2 2
a(p” + o) l
VsP(D> + 26,0+ n)) + 09,0 1, 5
Vs = — Aw®p (5.8)

a(p® + 0?) 1

According to (5.3) y; and y, are the direct Laplace transforms of ¢ and & resp.,
and therefore

p=L1'y,and d=L""y, 5.9
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Therefore we can write the deflections of the galvanometers as follows:

ctiom

A 3 ] 2 2 LAY 2
po A o,0(p” + i) + "fz TrsterP oot g, (5.10)

I 2mi ] a(p” + o) '

5 ctico 2 2 2
( 2

oA 0 VrsP(P* + 8g127+ng2)+%?fal’ e? dp (5.11)

Io2mi ) a(p” + o)

The solutions (5.10 and (5.11) are the general solutions for the motions of two galva-
nometers connected to the seismometer. The integrals in (5.10) and (5.11) can be
calculated by means of Cauchy’s theorem:

Py = L J g(p)e” dp— ¥ Res g(p)e”
2mi o D 4
g(p)e” _ F»
If » = w(p) = @- then
Resw(p) = C% where G'(p) = del;p)

and p, is a single root of the equation G(p) = 0.

First we will calculate the integral in (5.10); in this case

F(p) = [o,0(0% + 26,0 + 13) = 1y33,,0°] (5.12)
and

G(p) = a(p® + 0?) (5.13)
The determinant | a | can be written as

a = by + byp* + byp* + p® + e1p + ¢3p° + ¢s5p°

where



2.2 2
by = nsn;n;

by = 4eent + degpn? + de& nl + Y ygVaME — P ye¥s N — 00 15 +
+ nszn§ + nfni + njn;
by = 4, + 468, + de,8r + Vrg¥yr — Vys¥sy — OO, + 12 + 17 + 15 (5.14)
¢y = 28sn§n; + ZSQnSan + 28fn§n;
c3 = ZBS(H; + n;) + 285(71_? + n}) + 2.s'f(ns2 + nj) + 8e6,8, +
+ 265V g¥ar — 2857 sVsr — 2670505 — OgY Vs + OV sVr

cs = 2g,+ 28, + 2¢;
In order to calculate the residues, we have to put (5.13) equal to zero:

(0° + ¢sp° + bap* + c3p° + byp” + ¢ p + bo)(p® + 0?) =0 (5.15)
The roots of (5.15) are calculated from the equations

P° +csp® + bup* + csp® + byp* +cp+ by =0 (5.16)
and

P +or=0 (5.17)

Solving eq. (5.16) can give three combinations of roots, viz.

a. negative real numbers (—p;, —p,, .. ., — P¢);

b. complex conjugated numbers (—a; + ib;, —a; — iby, ...);

c. a combination of negative real and complex conjugated numbers.

The roots of eq. (5.16) correspond with damped harmonic oscillations or with damped
aperiodic deflections of the galvanometers. However, as the movement of the ground
is supposed to be harmonic, we are interested in undamped solutions: these are given
by eq. (5.17)

Pi,2 = tio
Now

R ! 0,(ny — ) + io(28/95 = V) o
es w(p;) = — 2 4_ 6 : 3 5 ¢
2 (by—by0” + b —0") + i(c;0 — ;007 + ¢50°)

, o . .
aa(nf —0°) —io (zsfo-q _7fs79f) oot

1
Res w = —
(72) 2 (b — b0® + bo* — 0% — i(c;0 — c30° + ¢50°)
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Let be
dy =o,(n7— 0 fi =80, = VY00
b = by — b,0? + byo* — ° (5.18)

C=Ccw— c3w3 + c5w5

then the solution for the undamped motion of the first galvanometer (g) is

A d, + if;, , d, - if, _,
1 3 1 1 iat 1 1 it
=1 4
LA [ b+ic © b—ic € :I

or

A 3
o= b_zi—z [(bd, + of )cosowt — (bfy — edy)sin wt] (5.19)
4

6 Magnification of the harmonic ground motion

1t is not the angular deflection ¢(f) of the galvanometer which is recorded, but the
deviation x(¢) of a light spot (figure 5). If the distance between the galvanometer
mirror and the recorder is 4, the deviation x = 24¢ for small values of ¢.

o

x(t)

Fig. 5
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The deviation x can according to (5.19) be written as

214 i + % .
x(t) = ; w® \/ b; " c; sin (o, + «) 6.1

where

bd, + cf,
o = arctg W

The seismometer-galvanometer system is characterized by the magnification which
is defined as

X

max

X

V:

max

X max = amplitude of the harmonic motion of the ground
Xmax = amplitude of the deflection recorded by the galvanometer

According to (6.1) and (5.1) the magnification is

2), i + f2 _

Substituting (5.18) in (6.2) we get for the magnification of the galvanometer (2):

- 22 \/ o, (nF —~ 0% + (26,6, — 7 7,0) @ 6.3)
=— w .
| (bo — by0? + byo* — 0°%)* + (¢;0 — c;0° + cs0°)?
and for the magnification of the galvanometer (f):
v 22 3 \/ Pr(nl — 0 + (26,9 s+ 0 07 6.4)
T (bo — b0 + byo* — 0°)? + (¢, — c30° + cs0°)2

From (6.3) we see that the magnification V,(®) has a minimum value for frequencies
about @ = n;. Therefore if two galvanometers are used it is possible to suppress the
recording of ground motions for frequencies near the natural frequency of the shunt
galvanometer.

The seismograph system with two galvanometers will be dealt with in chapter IV.
We will first continue with the theory of the combination of a seismometer coupled
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to one galvanometer. Itis therefore supposed that the second galvanometer (f) is block-

ed.
In this case we can put G, = 0, and according to (3.11)

Vss = Vsy =Vor =V5g =0

By substituting (6.5) in eq. (5.14) the functions b and ¢ in (5.18) are now

b= [(nsz— a)z)(ng2 — 0 — (4,8, — 0,0, a)z](nfc - %) -

— 28,0°[28(n} — @) + 2e,(n? — o]

= w(nf — o?)[2e(nZ — ) + 2e,(n} — 0] +

+ 2g,0[(n? — 0?)(n? — 0?) — (4e8, — 7,6,)0%]

Furthermore d; and f; in (5.18) are

dy = og(n} - 0?) f1=2¢;0,0
If we put
x = [28(n2 — &) + 2¢,(n2 — )]

y = [(n? — o)} — 0%) — (4&8, — 0,6)0"]
the eq. (6.6) and (6.7) become

b= (n% — 0?)y — 2¢,0°x
c= co(n} — 0H)x + 2e;my
Now
(b? + &) = (0°%* + Y)[(n} — 0*)* + 4et0’]

a2 + f1 = o [(n} — ) + 4ef0’]

and the equation of the magnification curve (6.2) will be

2) di +f7 24 1
V=20 —s=—00 FT557
l B2+ 1 Jox®+y?

Substituting (6.8) and (6.9) in (6.10) we get

(6.5)

(6.6)

6.7

(6.8)

6.9

(6.10)
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24
V = —l—agw3{4w2[es(nf, — 0% +e(n? — 0 +

+ [(nZ — a)z)(n; - 0?) — (e, — 0,0,)0*]*} % '(6.11)

This is the well known equation of the magnification curve for a seismometer which
is coupled with one galvanometer.

The formula of the magnification curve was derived for a harmonic ground move-
ment. This is of course never realized, but any ground motion can be composed of
harmonic vibrations. Therefore eq. (6.11) gives in principle the reaction of a seismo-
meter-galvanometer system to an arbitrary ground displacement.
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CHAPTER II. THE DETERMINATION OF THE PARAMETERS OF
A SEISMOMETER-GALVANOMETER SYSTEM WITH A GIVEN
~ MAGNIFICATION CURVE

1 Development of an approximated magnification function

An important problem in seismology is the question, how to choose a seismometer-
galvanometer combination for obtaining a certain desired magnification of the ground
displacement.
Looking at eq. (I1.6.11) we see that the magnification ¥ as a function of the frequency
(w) or the period (T) of the ground motion, is determined by the following para-
meters:

nyand n, (own frequencies of seismometer and galvanometer)

g;and e,  (damping constants of seismometer and galvanometer)

00, (coupling constant of seismometer and galvanometer)

The question is now, how to choose these five parameters in order to approximate
an ideal magnification curve (figure 6) as well as possible.

To obtain this, we must write eq. (I.6.11) in an other form.
If we put

2
g

bo = n’n

2, .2
b, =4eg, — 0.0, +n; +n,
¢y = 2£sn§ + 23,gns2

¢y = 28,4 2¢, (1.1)

then eq. (I.6.11) becomes

24
V= T @b + (] — 2boby)0” + (b2 + 2by — 2¢ic5)00* +
+ (¢} — 2by)o°® + 0*} 7%
or
2

vV = T 0 {ag + a,0° + a,0* + ag0° + 0°}7F (1.2)
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\Y}
Vid
{ ' T
a b
Fig. 6
where
ap = b(z)
az = C12 -_ 2b0b2
a, =2b, + b3 — 2¢c,c4
ag = c5 —2b, (1.3)

By taking the reciprocal of (1.2) and by squaring, we get

22 -2
v 2 = <—l— ag) (@4007°% + a,0™* + a,07% + ag + 0?)

-2
<2—;1 a'g> =c 1.4)

V72 = a0c0™% + ayc0™ + auc0™? + age + co? (1.5)

and if

then
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If we would succeed in determining the coefficients (aq, a5, . - ., and ¢) in eq. (1.5) in
such a way that the difference between the ideal curve V;, and the curve which follows
from (1.5) is minimal, we would have reached our goal. From the coefficients a,, a,,
a,, ag we can find by, by, ¢y, ¢3 by means of (1.3), and then the parameters of the
seismograph can be determined from eq. (1.1).

Usually the magnification is presented as a function of the period T'; therefore we
write instead of (1.5)

e, a,e 4 Ao .6 1.6)

V™2 = (2n)%T 2 + agc + T + T +
(@) “* Qny 2n)* @ny’

Now it is required that

M = [ W% = VA DPAT (1.7)

a

is minimal; a and b are appropriate limits of the magnification curve (see figure 6).
We must, therefore, investigate for what values of o, a,, 44, a6 and ¢ the formula 1.7
is minimal. This is the case when .

oM oM oM
0 0 =

5 e s s

day * da,

However, when the conditions (1.8) are applied, it appears that we have to calculate
the coefficients of (1.6) from a set of non-linear equations, and this is an almost im-
possible task. '
In order to avoid this difficulty we introduce the following functions:

S_p=b_y T *+b_ 30

d, = +1

®, =by T +byo+ by, ,T?

@4 = b4’ _2T—2 + b4’0 + b4’2T2 + b4’4T4

Bg =bg ;T2 +bgo+be,T?+bg oT* +bg, ¢T° (1.9)

Instead of eq. (1.6) we write
V2= By ®_5(T) + Bo@o(T) + B28x(T) + B4Pu(T) + BsPs(T) (1.10)

by which v~2 is written as a linear combination of polynomials of powers of T.
Now it is clear that we can determine the coefficients f,, so that (1.10) is identical
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with (1.6). If we substitute the functions of (1.9) in (1.10) we find that the coefficients

of eq. (1.6) must be

1
c= ——5(B_zb_s, _2+ B2by, _5 + Babs, 5 + Bebe,- 2)
(2m)

agc = (B-2b_5, 0+ Bo+ Bsbs, o + Babs, o + Bsbs, o)

ase= (2m)* (B2ba,» + Baba, 2 + Bebs,2)

aye = (2n)* (B4ba, 4+ Bebs, 4)

age = (2m)® Bebe, s 1.11)

Now we require that &_,, @,, &,, $, and B, have to satisfy the following conditions
of normalized orthogonal functions

b

§92(T) ¢ﬁj(T) dT =0

4 . (17] = _1’ 0’ ]-, 2; 3) (112)
in(To)‘ =1

Where T, is an arbitrary value of the period T.

By means of the conditions (1.12) we can calculate the coefficients (1.9). According
to (1.12)incase of i = 0and j = —1

b b :
FOATYP_(TYAT = [(b_y, 2T > +b_5 0)dT =0
or
b b
[IT-zdt]b_Z, -2 + [j.dT]b_z’ 0= 0 (1.13)
and
1
b—z, -zt b—z,o =1

T3

Eq. (1.13) gives the two coefficients of the first polynomial ¢_, of (1.9). Likewise it
is required that incase i=1,j=—landi=1,j=0

b b
I¢2¢_2dT = 0 I¢2¢OdT = O aIld Qz(To) = 1

or
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b b
[bos of T™*dT +b_y o T 2dT]b,, _, +
b b
+[b_y 2§ T72dT +b_, o fdT]b,, o +
b b
+[b_s 2 fdT +b_5 of Tsz]bZ,z =0
b b b
[IT—ZdT]bz, 2+ [§dT]b, 0 + [ITsz]bZ,Z =0

1
—5by o+ by o+ Toby ;=1 (1.14)
Ty

Eq. (1.14) gives the three coefficients of the third polynomial &, of (1.9). Proceeding
along these lines, we get for the fourth polynomial four equations for the four un-
known coefficients, and for the fifth polynomial @, five equations for the five unknown
coefficients.

The condition for the best approximation of the ideal magnification curve was accord-
ing to (1.7) and (1.10)

b +3
M= .‘.[Vi_dz - Zlﬁzk‘ka]sz
and

M
9B 2«

b +3
= —ZI[Vi;2 - Z;,Bm@z,‘] qude =0

Taking into account the orthogonality relation (1.12) of the polynomials, we can write

b b
fViEZQdeT = ﬁzkf q)ide

b
§Vi? @y, dT
Bax =/a—b‘——“ (L.15)
: [ ®24dT :

Eq. (1.15) gives us the coefficients of the approximated magnification curve (1.10).
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2 Calculation of the coefficients of the approximated magnification function
We will calculate the coefficients of the orthogonal polynomials of eq. (1.9) as indicat-
ed in (1.13) and (1.14). We choose the following values for the limits of integration
a and b and for the period T,:
a=5sec b=100sec and T, =100 sec

The result of the calculation is:

b_y _p=—526-10° b, _,=+416-10"" b, _,= —347-10""

bogo =+105-10"2 b, , =—666-10"> b, , = +628-103
by, =+166:-10"° b, , = —454-107°
by s = +492-1071°
b,—, = +320-10"1
bs o = —645-1072
bs,, = +869-107°
bs = —234-10"°
be.s = +163-10713 | (2.1)

The orthogonal polynomials of (1.9) are shown in figure 7.

The integrals in the denominator of eq. (1.15) can be calculated by means of eq. (1.9).

100 100

§ &2 ,(T)dT = 633-10° § ®X(T)dT =108-107*

5 5

100 N 100

J @) (T)dT =950-10"1 [ ®XT)dT =1753-10"2

5 5

100

J @2 (T)dT =190-10"1 ‘ 2.2)
5

The integrals in the numerator of eq. (1.15) must be calculated numerically oz, if
possible, analytically. When the $’s have been calculated by means of (1.15), we can
find the coefficients of (1.6) from (1.11), and we can calculate the magnification as
a function of the period of the ground motion.
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Fig. 7 Polynomials to approximate the ideal magnification curve.
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Now that ¢, aq, a,, a4 and a, are known, we are able to determine, making use of
eq. (1.3) and (1.1), the constants of the seismometer and the galvanometer for a
chosen magnification curve. This goes as follows.
Starting from (1.3) we put

d4_ et 2b0 = a:‘_
As by = \/aT,, a, is known. Elimination of ¢; and ¢; in eq. (1.3) leads to

b — (2al, + 16by)b% — 8(ay + boag)b, + (a4> — 4a,as) =0 2.3
With the aid of (1.1), (1.3) and (2.3) we can calculate by, b,, ¢; and ¢;. Eq. (2.3)
has four roots for b,, but only the roots which are positive real numbers, are usable.
The reason is that b, must be positive, as

2 2
b, =4ee, — 6,0, + n; + ny

and after eq. (1.3.11)

G G*
2y = 26, + (A -+ C) —and 2¢, = 2¢,, + (B + C) —
K, K,
G,G, G,G,
g, =C 6, = C
K, K,

from which follows: 4¢e, > 0,0, so that b, > 0.

If R; = oo (see figure 4) it follows from (I.3.10) that A = B =0, and if we neglect the
mechanical damping (e, = g, = 0) we get from (1.3.11)

dege, = 0,0, 2.4

This is the condition for a seismometer-galvanometer system with maximal coupling.
If R, =0, i.e. if the shunt resistance can be neglected, C = 0, and it follows from
(1.3.11) that

6,0,=0 (2.5)

g9

We see that in all possible cases b, must be positive. Furthermore eq. (1.1) shows
that ¢, and ¢; must be positive.
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The conditions (2.4) and (2.5) represent the two limits between which a seismograph
system can operate. It is possible to determine from eq. (1.1), (2.4) and (2.5) the free
periods of the seismometer and the galvanometer for the two limits, between which
one has to choose the constants of seismometer and galvanometer in order to obtain
a prescribed magnification curve.

If 4¢¢, = 0,0,, than according to (1.1)

2_2 2 2
nsng = ns(bZ - ns) = bO
or.
n?—bzn:'i'bo:o

with the solution

2 _ b2 /(63 — 4by)
s 2

and

;=7 | (2.6)
Eq. (2.6) gives us the free periods of seismometer and galvanometer with maximal
coupling.

If 0,0, = 0, than according to (1.1)

b, =4eg, + ni+n} 2.7

From the first, second and third formula of (1.1) it follows that

616'3(”? + n;) - (C% + bo‘%)
dee, =

= 2.8
o (nF + )7 — b, @8

Taking

z=(n,—np)’ 29
then

ﬁf +n=z+ 2\/5 , (2.10)
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Substituting (2.8) in (2.7) we get

0163('15 + ”;) - (C% + bo¢§)
(ns2 + n;)2 — 4b,

+(n] +ng) =,

and substituting (2.10)

2% + (6y/bo — by)z* + (¢1¢5 + 8bo — 4b51/bo)z +
+ (2¢1654/bo — €2 — boc2) =0 (2.11)

Eq. (2.11) gives values for z = (n, — n,)*. These values, combined with by = n’n2

s'tg>
give the free period of seismometer and galvanometer for the case of minimal coupling.

3 Application of a given magnification curve

We will apply the theory to an ideal magnification curve, consisting ‘of rectilinear
segments (see figure 6). In this case the function ¥ can have the following forms

V=mT+b or V=c ' (3.1)

Now the integrals in the orthogonality relation (1.15) can be calculated analytically.
Taking into account the polynomials of (1.9), the following integrals appear:

T2
T 1 1 1 N 2m l v, .
— = e mf— — —- _— n —
(mT + b)*T*  b? Vi WV, b v,
T

T2

Ty

f T*dT B[/ 1 1 21 V2+ 1(V v
—_— e = —_—— —— —_—in — PR —_—
(mT+b)?  md\v, VW, b v, b2 ?* !

T

T2

T*dT B[/ 1 1 4 V, 6 ,
[
T
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1
(V2= V1) (V3 — 1]
T2
T%dT e[/ 1 1 61 V2+15(V v
_tet (LAY By
mT+b)?* wm'|\V, W, b v, b !
T
10 5 1
- —b—3(V§ -V +TF(V23— V- W(V‘z‘— V) +
5b6 (VZ V):I
orif V=c¢
T2 T
1 1 1
_2_—_ —z =_2(T2—T1)
1 2 c
Ty Ty
T T2
1 1 1
_zf T*dT = 2(Tz T; FJT4dT= gc—z(Tg—Tf)
T T

We will compose the ideal curve from four segments:

a. Ty = 5sec V=340
10 sec V, =475 V=27T+205 for 5<T<10sec

o3
[

b. T, =10 sec V, =475 , .
T, = 20 sec V, =565 V=9T + 385 for 10 << T <20 sec

c. T; =20sec ,

T, = 65 sec V =565 for 20 <CT <65 sec -
d. Ty = 65 sec

T, = 100 sec . = —31T 4 8360 for 65 < T < 100 sec

Using the above mentioned integrals we get
100 . ‘ : 100

§ Via?T dT=994-107° [ ViAT*dT =985-10"
5 5
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100 100

§ Va?dT  =372-107° § Vi?T®dT =1752-10°
5 5
100

§ V?T*dT=148-10"2
5

Now it is a simple procedure to calculate the integrals in (1.15) ; the coefficients of
eq. (1.10) appear to be: :

B_,= —207-10"°
Bo = +392-107°
B, = +204-10"8
B, = +117-1078

Bs = +121-107°

Eq. (1.11) gives the coefficients of (1.6)

c=+399-10"% g, = +306-10"1°
a,=+113-1077
a,=—837-107°
ag=+751-10"3

We know from (1.1) and (1.3) that

ao = bj whereas b, = n’n’ so that

bo =175-107° and ngn, = 132-10™* or T, T, = 2990
Eq. (2.3) becomes

by — 424107 °b2 — 114-10"%b, — 326-10""=0
The four roots are

by = +114-1073
by= —283-107*
by

—428-107% £ 91010~ %;
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We know from (1.1) that b, must be real and positive, so we can only use the first
root for further calculations.

For the first limiting case (d,0, = 4¢,¢,) we get from (2.6) for the free periods of the
seismometer and the galvanometer '

n,=335-10"% or T,=188sec

n, = 395-107* or T, =159 sec
From (1.3) it follows that

¢, =715-107°

c; =989-107°
So that eq. (2.11) becomes

2% —345-107%2% +245-107°2—351-107" =0
whose three roots are

z=+163-10"%* and z= +909-107° +455-107*%i

According to (2.9) only the positive real root is usable. Now we can calculate from
z = (n, — n,)? and b, = nZn? the free periods of seismometer and galvanometer for
the second limiting case, viz. o,0, = 0.

They are

ng=195-10"% or T,=322sec
n,=677-10"* or T, =928 sec

In all possible combinations of a seismometer and a galvanometer the periods must
satisfy the conditions:

T,- T, = 2990 18,8 sec < T, < 32,2 sec
92,8 sec < T, < 159 sec
Furthermore

by =175-107° ¢, =715-107°
b, =114-1073 c; =989-1073
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Fig. 8 Ideal magnification curve (broken line) and calculated curve (full line).
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If we have for instance a galvanometer with period T, = 100 sec, then the seismometer
must be adjusted to a period T, = 29,9 sec. The other parameters in (1.1) must have
the following values

= 0,454 g, = 0,040 o0, = 0,007

Supposing a favourable choice of seismometer and galvanometer, these parameters
can be attained by regulating the resistances in the seismometer-galvanometer chain.
Figure 8 shows the agreement between the ideal curve and the magnification curve
calculated from the chosen parameters of the seismometer-galvanometer system.
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CHAPTER II. THEORY OF THE GALITZIN AND BENIOFF
SEISMOGRAPHS

The Galitzin and Benioff seismographs belong to the widely used instruments; they
are based on some special relations between the parameters. In the Galitzin system
the seismometer and the galvanometer have the same periods and both are critically
damped. In the Benioff system the seismometer and the galvanometer are also criti-
cally damped, but the periods of galvanometer and seismometer differ greatly, so that
the magnification curve has a broad maximum.
1 The Galitzin seismograph
The conditions for the Galitzin seismograph can be formulated as follows:

bo=cg b, =06c c,=4c3 c5=14c, (1.1)

where ¢, is a positive constant.

The coefficients of the equation (I1.2.11) for the periods of seismometer and galvano-
meter in case of minimal coupling (s,0, = 0) now get the values

6\/E— b, =0;cic5 + 8by — 4b2\/E= 0;2¢;¢5+/bo — €2 — boc =0

and the equation (I1.2.11) is reduced to z3 = 0.
As z = (n, — n,)?, it follows that n, = n, and after (II.1.1) and (1.1)

Ry=h,=¢ =¢g,=¢, (1.2)

These are the well known Galitzin conditions (equal periods of galvanometer and
seismometer, both critically damped) for the limit of zero coupling (0,0,=0).

Now we consider the other limit, viz. maximal coupling (4ee, = 6,0,). From (I1.2.6)
and (I1.1.1) we get

ne=13+22 ¢ n,=+/3-2J2 ¢

L (i
Bs—<1 +T>CO Sg-—- (1 —T>CO (1.3)

We see that if the coupling is different from zero, the periods of seismometer and
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galvanometer are no longer the same, and the damping is no longer critical. Seismo-
graphs with these properties are called ‘false’ Galitzins.

2n ,
Taking for example ¢, = ——, then we get for the case 0,6, = 0 the values T, =12
12

sec and T, = 12 sec, and for the case 4, = 0,0, the values T, = 28,97 sec and T, =
= 4,97 sec.

If we choose the periods of the seismometer and the galvanometer between these
limits and if we calculate the other parameters from eq. (IL.1.1), taking into account
the Galitzin conditions (1.1), we will get identical magnification curves for all combina-

tions of seismometers and galvanometers which can be realised.

Taking for example T, = 16 sec, then T, = 9 sec according to eq. (IL.1.1) and condi-
tion (1.1). The other parameters appear to be

e, = 0,38 g, = 0,67 0,0,=0,73-10"2
so that the damping constants and the coupling are determined.
We see, that an infinite number of ‘false’ Galitzins are possible and that the theory
enables us to choose the limits between which we have to take the parameters in order
to construct instruments which have the same magnification function as the ‘true’
Galitzin. :
2 The Benioff seismograph

The conditions for the Benioff seismograph can be formulated as

2 2 2 2
by = ¢1,0¢3,0 by =4dcy o¢p,0+€1,0t €2,0

2 2
€1 = 2¢4,0¢3,0 + 262,061, 0 €3 =2¢1,0+ 2€3,0 2.1)
where ¢, , and ¢, o are arbitrary positive constants.

First we want to find the parameters for the case g,0, = 0. The coefficients of eq.
(I1.2.11) are now : ‘

6./bo — by = —(¢1,0 — €2, 0)° ¢y¢s + 8bg — 4by /by =0
26163\/5_ C% - bocg - 0



47
and the equation (I1.2.11) gets the form
z® - (c1,0 — €, 02> =0 (22)
Eq. (2.2) has two real solutions
z=(cy,0—C30)* and z=0 (2.3
Using eq. (I1.1.1) and (I1.2.9) we get from the first solution
Ny =8 ==Cy0; Ng=28,=0Cp; 00,=0 2.4)

These are the well known Benioff conditions for the case of zero coupling. The second
solution of eq. (2.3) is z = 0. In this case we get from eq (11.1.1)

€1,0 T C2,0,
2
2

ng = n, = \/01,002,0; g, =g, = 0,0, =0 (2.5)

The combination (2.5) is called ‘false’ Benioff in the literature (see: Willmore, 1960).
However, it can be shown that the combination (2.5) is indeed false, and cannot be
realised. For a real seismograph o,0, must be positive, whereas the coupling near the
second solution appears to be negative.

To show this, we write 6,0, as a function of z. It follows from (I1.1.1) and (I1.2.11)
that

3 2.2 2 =
2" ~(e1,0 = €3,0)°2> — 6,0,2° — 4cy oy, ¢0,0,2=0
or
2 2
z° —(c1,0 — €3,0)°2

00, = where z = (n, — n,)*
z + 461, OCZ, 0

It is obvious that the function 6,0, has a maximum for z = 0. As for this value 60, =
=0, it follows that near the point z =0, 0,6, must be negative and this means that
the parameter combination (2.5) cannot be realised.

For the case of maximal coupling (s,0, = 4¢,¢,) eq. (I1.1.1) gives the following values
for the periods of seismometer and galvanometer

S (c1,0 + €2,0) + \/[(01,0 + €,0)° + 4¢q,063,0)
, =
2

_ —(c1,0 + €3,0) + \/[(61,0 + cz,o)z + 4ey, 03, 0]
2

n

(2.6)

s
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The damping constants, belonging to these periods follow from.eq. (IL.1.1). Just as
in the case of the Galitzin seismograph, an infinite number of true ‘false’ Benioff
seismographs are possible, provided the parameters are ‘chosen between the limits
defined by the conditions g6, =0 and 6,0, = 4es,.

We will now calculate the parameters for a special case. Taking for example

2n
¢, =—— and ¢ o=2m

16

we find for the case of zero coupling

2n
n =ss=—16— n,=¢g,=2n or T, =16 sec and T, = 1 sec

In the case of maximal coupling we find

2n o
= n. =
"= 0894 T 179

or T,=179 sec and T, = 0,89 sec

The damping constants are

& = 0,318 g, = 6,35

0.0,

4€sE4

24 o.so-g

4E.E,

o 4 8 12 16 20 24 2'8 32 36 Ts [sec]

Fig. 9  Values of g5, and 4es¢q for a Galitzin seismograph. The arrows indicate the periods between
which the seismograph can operate.
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Fig. 10 Values of o504 and 4esgg for a Benioff seismograph. The arrows indicate the periods between
which the seismograph can operate.

Figures 9 and 10 show the values of o0, and 4z, as functions of T, taking into
account the conditions for the Galitzin and Benioff seismographs ((1.1) and (2.1)
resp.). The arrows mark the limits between which the instruments can be realised.
From figure 10 it is clear that solution (2.5) is ‘false’ indeed.

As all formulas for the periods of seismometer and galvanometer are symmetrical
with respect to n, and n,, we can substitute n, by n, and conversely.
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CHAPTERIV. THE MAGNIFICATION OF A SEISMOGRAFPH SYSTEM
WITH TWO GALVANOMETERS

Generally a seismograph system consists of a seismometer connected to one galvano-
meter. However, the connection with two galvanometers can be important, if it is
required to minimize the magnification in a part of the seismic spectrum. This can be
necessary if the seismograph is set up in a region with strong microseismic activity.
The second galvanometer can in this case be used as a filter which suppresses the mag-
nification of the microseisms.

Below the magnification of a system of a seismometer connected to two galvanometers
in series is discussed (figure 11).

1 The equation of the magnification curve

According to Kirchoff’s law we can write
iR+ (iy — )Ry = ¢
(i; —i)R + (R, + R) =e, t+ g
Hence
il = (A + C)es + Ceg + Cef
iy=Ce,+(B+ C)e,+(B+Ce,
where
R, + R R R
A= 9 B % Cc =1 (1.1
a a a v
a=(R,+ R)(R,+ R, + R;) — R}

According to eq. (1.3.7), (1.3.8) and (1.3.9)

e, =G e, = —G,0 e, = ~G P
and according to (1.3.3), (I.3.4) and (1.3.5)

M,=—Gj,  M,=Gj,  M,=Gji,
or

M, =—(4+ G2 +C G+ CGGH
M, = CG,G,0 — (B +,0)G2¢ — (B + C)G,G,&
+CG,G,0 ~ (B + C)G,G,¢ — (B + C)G2d

)

=
Il
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Substituting these moments into eq. (I.3.2) we get the equations of motion:

. , 1
0+ 2889 +n%0 — Yeg® — Vss®@ = —I—J'c'

¢+ 28,0 +n0— 7,0 +7,5=0 , (1.2
&+ 2, +nid—y, 0+ 9,0 =0

where
G? G,G, GG,
28s = 28“ 4 (A + C)E Vsg = C Ks VYsy = C Ks
2e, = 28, + (B + C)G; c 9% B+ 0 GG, (1.3)
&, = LE — = = — .
g g0 K_,, Vs Kg Yar Kg
G GG, GG,
28f=28fa+(B+C)K-—f Pps=C A Ve = (B + o)—L=
!

K, K,

Comparing eq. (1.2) and (1.3) with (I.3.11), (1.3.12), (1.3.13) and (1.3.14) and suppos-
ing that the mechanical damping of the filter galvanometer can be neglected (g, = 0)
we can write down the equation of the magnification of the galvanometer (g) with
the aid of (1.6.3)

22 Yo(n} — 0%)?

V=——a)3\/ 3 7 G 3 52
l (bg — ™ + by — 0°) +(c,0 — c300 7 + ¢507)

(1.4)

because 2e,0, — YyPgr = 285Vgs— VysVgr =0

For o = ng, V = 0; the system will prevent recording of that frequency of the ground
motion which is equal to the frequency of the filter galvanometer.
In analogy with eq. (1.5.14) we can write for the parameters in (1.4):

2.2 2
by = ngn n;

b2 = (48ssg - ysglygs)njz“ + (48s8f - ’},sf?fs)n: + (48981' - ygfyfg)n: +
+ ninl + nink + nind
b4 = (48s8g - ysg‘ygs) + (48s8f - ysf?fs) + (4896]‘ - 'Ygf‘}’fg) + ns2 + n; + n;

¢y = 2enlny + 2enint + 2enling
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¢y =262 +nF — 9,750 + 26 (nZ + nF — 7,0 +
+ 2’6f(ns2 + n; - ysg?gs) + Sasggaf + 2’)’sf’ygs7fg

s = 2¢, + 2g,+ 2¢; (1.5)

2 Development of an approximated magnification function
We are now in a position to apply the method developed in chapter II to the system
with two galvanometers.

1t follows from eq. (1.4) that

(nf — 0V 2 =ca,0 ® + ca,0”* + ca,o™? + cag + cazm i+

+ caso0* + co® 2.1

) 22 \72
a, =b0 c= l_’))gs

az = Ci - 2b0b2

where

(14 = 2b0b4 + b% - 26103
ag =2¢,cs + c3 —2by — 2b,b,
a8 = 2b2 + bi - 20365

a10=c:—2b, (2.2)

In order to determine the coefficients (ag, a5, . . ., 4, and ¢) of eq. (2.1) by the methods
of least. squares, we introduce the following functions

B_g=Db_g 0 S +b_g 40 *+b_g 072 +1

¢_4= b_4‘_4w_4+b_4, _2(0_2+1
¢_2 = b_Z,_za)_z +1
¢0 = 1

By, =by 0 C+by 40+ by 07+ 14b, 07
B, =by 0 ¢ +by 40+ by 07+ 1+4b, 0% + by 40t

Bg =bg, 0 ¢ +bg 40 "+ b, 2072 + 1 + bg ,0° + bg 40" +
+ by, ¢0° (2.3)
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for which we require that

NN, o
—(;;_a;")z do=0 ifisj (2.4)

o1 G, j=-3,..)-2,-1,0,1,2,3)
Instead of (2.1) we can write

(0 — 0®YV 72 = B_sP_o(0) + By P 4(®) + B_,B_ (@) + BoPo(w) +
+ B22,(0) + B1Pu() + BsPs(@) (2.5

It follows from (2.1), (2.3) and (2.5) that the coefficients (a,, a5, ..., a;, and ¢) in
eq. (2.1) and eq. (2.2) must satisfy the equations:

cag =(B_eb_g, -6+ B2bs, —6 + Babs, —6 + Bsbs, —6)
cdy =(B-cb-g —at+B_sb_y _4+P2by s+ Biby —4+ Bsbs, -4)

cay =(B_sb_¢, -2+ B- 4b 4,—2+ B_2b_5, 5+ Byb,, —z+ﬁ4b4 -2+
+ Bsbs, -2)

cag =P+ P-s+ B2+ Po+ B2+t Bs+tPo)

cag =(B2by, 2 + Bsbs, 2 + Bsbs, 1) -

a0 = (Baba, 4 + Bebs, 4)

¢ =Pebss (2.6)
Now the question is, how to choose the seven parameters (f_g, f_4, B2, Bo» B2, Ba
and f) of eq. (2.5) in order to approximate a given ideal magmﬁcatlon curve (figure

12) as well as possible.

It is required that

f[(nf CO) Vzd —(" a)) V- ]2 do X))

- w?)?

is minimal, so according to (2.5)

7= T[("ﬁ = wz)ZVm ZﬁszZI&]

("f w)

@y
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Vv
/ Vid
T T ¥ T
[P P T
Fig. 12
and
f [(nf 2)2 1d ZBZ]QZJJ — 0

aﬂZk "f @ )

According to (2.4) we get for the parameters of eq. (2.5)
§Va 2¢2kdw
BZk = (k = —33 —29 —15 05 13 2’ 3) (2'8)

2

®2, dow
(n} — 0*)?

w1

The coefficients of (2.3) can be calculated using the orthogonality condition (2.4)
in the same way as described in chapter II.

3 Calculation of the magnification

We choose for the limits of integration @, and w, and for n, the values
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and we obtain for the coefficients the following values

b_g,o =+1 b_4o =+1 b_zo =+1

b_g _,= —~112015-107¢ b_y, —p=—756026-10""7 b_, _, = —362774-10""

b_g —4=+160811-10"8 b_, _, = +424612-107°
b_s, ¢ = —517844-10" 11

bse = —279908-1073 (3.1)
bsa =+128013-10% b, , = +350739-107%

b, = —186915-10™* b, , = —115531-10"*% b, , = —499249-107"
bso =+1 bao =+1 byo =+1

bs, - = —190994-10"7 b, _, = —246093-10"7 b, _, = —348386-10""

be, _s = +132406-10™° b, _, = +193975-10"° b, _, = +318694-107°
bs -g = —290423-107'% b, _o = —457600-10*> b, _, = —813050-10712

Now the orthogonal polynomials of (2.3) are known, so we can calculate the integrals
in the denominator of (2.8),

s - [ @2, s
2 do = 825419-10 "% dw = 128686 10
d - o a - o»?
e T
(—1——45)—2dcu =338399-10"® u——i?zdw = 760531-107°
J - o J -
e T
a—zz)zdco =176752-1077 (1——62)—2 dw = 460378-107°
— o - o :
P .
o1

If the ideal magnification curve is composed of rectilinear segments, the integrals in the
numerator of (2.8) can be calculated analytically.
The following integrals are of importance.



. . a + cw
a. if vV =

s 6 17 & a\ o
§V20bde = | 2 — o L) 2
c 7 c 6
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(second and fourth segment in fig. 13), then

a\? o° a\?® ot
: c 5 c 4

a\* od a\’ o2 a\¢ a\’
+ 5|— ) — — 6{— +7N—)o—-8—) In(a + cw) —
c 3 c 2 c c

"< )(a+cco>]

1
fV 2o*do = 2|:

)2

o
-2 —+3
(o)
a\’ a
I 4y __4
n(a + cw) — <c>(a+cco):|
[ V02 1 [ o NE cu2+
w3do = 2
c2 3 c /) 2

WK 31 a\® a
-4(%) ”“’*“’”‘(ﬂm

)

(V2o = —| o = 2( 2 (@ + cwy — (L) 2
c? c ¢ J(a + cw)
1 1
[V 20 %do = —— ————
¢ (a+ cw)
T c 1 2¢ | (a + cw) 1 1
V20t o = - I -
! @ e 2(a+cw)+ P a® o
e 1 4 (a + co) 3¢ 1
V30 %o = —— - — +
! @ e a* (a+cw)+ PR a* o
c 1 1 1
T 2T 3 o (3:3)
b. if V =V, (third segment in fig. 13), then
7 5 a)3
(V208do = V5?2 %;jV'zw“dw —y;? i’s—;jV‘szdw - Vi?
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_ _ . o, 1 . 1
V7 %o = V5 2w;fV 20 2do = —Vy? —; [V 20 *do = - V;? 3
(] 3w
1
[V 20 %o = —V5*— (3.4)
5w
‘a
c. if V = — (first segment in fig. 13), than
@ :
_ 1 o _ 1 o
j.V 2(06da)= —az—' —9‘—; IV 2w4d(0 = az —-7——-;
1 o’
Vi w?do = —5 ——
| @ a> 5
1 3 1 1
V% do = — w—; V20 %o = —5-0; [V 0 do =—— —
a 3 a » a o
1 1
V20 %o = — — 3.5
V70 do PRl (3.5)

We will define the four segments as follows:

1 -2 — 1 (1)2
(0,38)*
syt @
G + Bo)
3. V2 =1
2
4, vV 2=

for dan T < 5n

for 5T << 8n

for 8n<T <20n

for 20n < T < 32x

Eq. (3.3), (3.4) and (3.5) give the following values for the integrals

. 1/2

[ V7 20%o = 155365-1078
1/16

1/2

{ V ?w*do = 829776107 %
1/16

1/2

{ V 2w*do = 516357-1077
1/16

1/2

f V°? do=>520388-10"°
1/16

1/2

§ V20 %dw =209030-10"*
1/16

1/2

[ V2w *do = 274906- 107>
1/16

1/2

{ V7 20 %dw = 507373-10°

1/16



59

These values, together with (2.3), (3.1),(3.2) and (2.8) give the coefficients of eq. (2.5)

Be =
Bs =
B2
Bo

—_2 =

-4 =

B-s=

— 14002-
-107°

+453906

—115800-
+954275-
—184884-
+141150-
~ 60069 -

108~

10~

107

107

107 |

10-¢ ‘ (3.6)

According to (2.1) and (2.6) we can make use of (3.6) and (3.1) for calculating the
magnification curve which forms the best approximation of the ideal curve (figure 13).

(1 - 0*)*V ™% = +201573-10" 2~ ¢

+126240- 107104

—410416-1078 =2

+117458-1073

—440417-107° »?

+141278-10~% *

+391929-107° ° 3.7

From these values we find by eq. (2.1)

c=+391929-10"°  a,,+ +360468-1075  a,

—104717-1078
ag = — 112372-107° a, = +322100-10~**

ag = +299691-107° g, = +514310-10~13

The set of equations (2.2) can now be solved; the solutions are:

bo =226784-10"° ¢, = 664053-10~®
b, =901202-1077 ¢, =745328-10"°
by =160930-10"° ¢, =261214-10"5 (3.8)
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According to (1.5), the values of (3.8) are connected with the parameters of the seismo-
meter-two galvanometers system, and the next step must be to calculate the parameters
from eq. (1.5).

For this purpose we write eq. (1.5) in a more conveniently arranged form. We see
in (1.5) that this set of equations enables to compute six unknown parameters only.
Now we suppose for example:

,=1 (3.9)

Furthermore we suppose that the mechanical dampings of the seismometer and the
galvanometers can be neglected :

. g e =0 (3.10)
S0 go fo

This last assumption is not essential; if we would like to make other estimates for
the damping, it would not influence the further calculations fundamentally.

Putting

G? G; G%
T oy Hog (3.11)
K, K, K,

we are able to calculate from (1.1) and (1.3) all parameters in (1.5), taking into account
(3.9), (3.10) and (3.11). As n; = 1, we find

b0=nszn3

b, = —(xy + n’xz) + nZn? 4+ n2 + n?
3R1+2 g g g

b =;(xy+xz)+n2+n2+1

*7 3R, + 2 s e

Rt R+ 1, Ry +1,,

1

= n,x ngy + ngn
3R, + 2 TR, 27T 3R, 207

Ry +2 ,
- LT S Dx
¢ 3R1+2("-" )

R, +1 , 2
— s +n
3R, + Z(n 0)

R +1
T Sy 4
3R, £ 2 Ty

Ry +2 R; +1 R; +1
x + —y + z
3R, + 2 3R, + 2 3R, + 2 (3.12)

C; =
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Fig. 13 1Ideal magnification curve (broken line) and calculated magnification curve (full line) for
a seismograph with a filter galvanometer.
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The parameters ng, n,, X, y, z and R, can now be solved from eq. (3.12). The values are

x=1,22 n? =681-10"* R, =372
y=0181 n? =333-107°
z =562

If we start with other values for the resistances of the seismometer and the galvano-
meters, for example:

R,=R, =R, = 500Q

the solutions are

n2=0681-10"* T, = 24,1 sec T, = 2m sec
n? =333-107° T, = 108,8 sec

G? G} G?

2 —-610 —2=90 —{=2812 R, =1861Q

K, K, K,

The magnification curve can be calculated using eq. (3.7) or eq. (1.4). The result is
shown in figure 13.
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CHAPTER Y. DETERMINATION OF THE PARAMETERS OF
AN ELECTROMAGNETIC SEISMOGRAPH BY APPLYING A FORCE

When dealing with problems, such as the determination of the magnification of a
seismograph, or the calculation of the energy of P- and S-waves, it is often necessary
to develop a seismic signal in a Fourier series. Generally this is a procedure which is
time consuming, as it requires much numerical integrating.

In this chaptef a fast method is developed which is based on approximating the
recorded signals by polynomials. The result can be used for solving the following
problem: how to determine the parameters of a seismograph from the galvanometric
recording of a push applied to the seismometer.

1 Approximating a seismic signal by Jacobi polynomials

A seismic signal f(f) has some marked characteristics. At ¢t = 0, f () = 0; furthermore
the first and the second derivative may be zero at ¢ = 0. Finally any seismic record f(¢)
becomes zero at large values of ¢, so f(f) =0 at t = 0

Therefore we can distinguish three cases:

a. f(1)=0,att=0 ;and f(f)=0,att =0

b.f(H=f')=0att=0 ;and f(1) =0,att = 0 (1.1)

c. fO=f'®O=f"()=0,att=0;and f({)=0,att= 0

If we approximate the recorded signal by polynomials which consist of functions
e” ™, the last condition will be fulfilled in all three cases. We will first consider case c.

as thlS can be applied to the galvanometric record of a seismic 51gnal
We develop f(¢) in the following series:

@ = copo®) + ¢10:() + ... + ¢, 0,1) (1.2)

where the functions ¢,(t) are:

g =e"(1—e > +a, e *+ @y 6 " + ...+ a, e (1.3)

All conditions in (1.1c) are satisfied; furthermore, if

O_F 08 ¢ ()dt =0for n# m 1.4)
0
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the functions ¢,(f) are orthogonal, which facilitates the calculation of the coefficients

Cos €15 + =45 Cy

Let e~ = x, then eq. (1.3) can be written as 1.5)
Pu(x) = /X(1 = %)°S,(x) (1.6)

where S,(x) = 1+ a,, 1 + @y, 23> + ... + a, X"

The orthogonality condition (1.4) becomes
1 .
[ (1 —x)°8,(x)S,(x)dx = 0 for n # m 1.7
]

This condition is satisfied by the Jacobi polynomials

@+ne+n+1)...(a4+n-+ k—l)xk(l.S)
v+ .p+k=-1)

Ty x) =1+ Y (=)
k=1

which fulfil the integral relations

jl'x"‘l(l — XTI (037 %) sy x)dx =0 for n#m (1.9)

0

Jl"xy_l(l — X)* (s y; x)dx =

0

_IMIe+1-9) @+1—pe+2—-9)...c+n—7) n!

- (o) e+ 1)...(@a+n—Dpy+1)...0+n—1) « + 2n
(1.10)

Now according to (1.7) and (1.9)
y—l=oanda—y=60ora=7andy=1
80 S,(x) = J,,(7; 1; x)

It follows from (1.8) that

T+n)@+n)...6+k+ n)x"

y (L.11)

S0 =1+ 3 (—1Q)
k=1



and therefore eq. (1.3) can be written as

) = (1 — &)’ {1+ (- B Em...6+k+m) e_m}

k!
(1.12)
where

}0 28 pu()dt = %} (1 = x)°S,(x)Sp(x)dx = 0 for n # m
0 0

E pX(Hdt = %2(1 - x)°S%(x)dx = (1.13)

14 + 4n

As in eq. (1.2) the functions ¢y(1), @,(), . . ., ,(f) satisfy the orthogonality conditions
(1.13), the coefficients c,, ¢y, . .., ¢, can be determined from the relation

¢, = (14 + 4n) }Of(t)go,,(t)dt (1.14)

where f(?) is the seismic signal and ¢,(f) the orthogonal functions which are deter-
mined by eq. (1.12).

2 Recurrence relations

The calculation of the polynomials is much facilitated if a recurrence relation can be
derived for eq. (1.11) or (1.12). Supposing that this relation has the form which holds
for orthogonal polynomials like the polynomials of Legendre Laguerre, Hermite or
Tchebycheff, we put

Su(x) = aS,_5(x) + bS,_1(x) + exS,_,(x) 2.1)

We must find three equations for the constants a, b and c. If we start from the first,
second and last terms of the nth polynomial, we get after (1.11) and (2.1)

a+b=1
m—2n+5a+m—-Dn+6)b—~c=nn+7)
(n+6nc=—C2n+502n+6) 2.2)

The constants can be computed from (2.2) and we get for S,(x) the recurrence relation:
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n(n + 6)(n + 2)S(x) = —(n — D(n + 3)(n + 5)S,_,(x) +

+ (2n® 4 1502 + 191 — 15)S,_,(x) — (n + 2)(2n + 5)(2n + 6)xS,_4(x) (2.3)
Making use of (2.3) and starting from Sy(x) and S,(x) we find the following series
of polynomials:

So(x) =1

Si(x)=1-~ 8

S,(x)=1—18x + 45x*

S3(x) =1 — 30x + 165x* — 220x3

S.(x) =1 — 44x + 396x® — 1144x> 4 1001x*

Ss(x) = 1 — 60x + 780x2 — 3640x> + 6825x* — 4368x°

Returning to eq. (1.1) we want also to calculate the series of polynomials for the cases
a. and b.

Casea. f(t)=0fort=0and f(f)=0fort =0
In this case the seismic signal can be approximated by

F(®) = copo(t) + c10:(1) + ... + c,0,(0) (2.4)
and the polynomials ¢y(t), ¢i(t), ..., ¢,(f) must be

0u(D) = /% (1 = X)S,(x) with x = ¢~ %

The first six functions S,(x) are

So(x) = 1
S,(x)=1— 4x

S,(x)=1—10x + 15x*
Si()=1—18x+ 63x2— 56x°



67

Ss(x) =1 — 28x + 168x% — 336x> + 210x*
Ss(x) =1 — 40x + 360x% — 1200x> + 1650x* — 792x°

with the recurrence relation

n*(n + 2)S,(x) = —(n — D(n + 1)*8,_,(x) +
+(2n® +3n% —n — 1)S,_(x) — 2n(n + 1)(2n + DxS,_((x)

and with the following formula for the coefficients of (2.4)
¢, =(6+4n)[ f(D o, ()t
0
The orthogonality condition for these polynomials is
=} 1
§ 2 @n(Ddt = 3[(1 = x)*Sy(x)S(x)dx = O for n # m
0 0

Case b. f()=f'(t1)=0for t =0, and f(#) =0 for t = ©
In this case the polynomials must be

(1) = /3(1 — x)2S,(x) with x = ™%
The first six functions S,(x) are

So(x) = 1

Si(x)=1— 6x

Sy(x)=1—14x + 28x?

S5(x) = 1 — 24x 4+ 108x* — 120x?

S,(x) =1—36x 4+ 270x* — 660x> + 495x*

Ss(x) =1 — 50x + 550x2 — 2200x> + 3575x* — 2002x>
The recurrence relation is for this case

nn + D(n + 4)S,(x)= —(n — D(» + 2(n+ 3)S,-(x) +
+(2n% 4+ 9n® + 51 — 6)S,_1(x) — (n + D(2n + 3)(2n + HxS,_1(x)
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The coefficients c, of the series by which the seismic signal is approximated are:
o : '
¢, =10+ 4n)J f()p(t)dt (2.5)
(4]
The orthogonality relation is for case b.:

}0 2D (D)t = %} (1 = %)*S,(x)S(x)dx = 0 for n # m

3 Application of the theory

We want to apply the above developed theory to the seismic signal which is shown
in figure (14). It is the deflection of the galvanometer of a Press-Ewing seismograph
caused by a force applied to the seismometer. The deflection was read every five
seconds and is indicated by crosses.

Whereas generally case c. fits the galvanometric record of a seismic signal, a good
approximation is already obtained by the initial conditions according to case b.

Moreover the amount of numerical calculations is considerably less than in case c.,
so that it is worth while to start with case b.

We must calculate the coefficients ¢, from
¢, =10 + 4n)  f(H)p(t)dt 3.1
0

For the numerical integration the method of Gauss is used (see e.g. Kosten, 1963).

We write the integral
(I) fO e Ddt = g e”'(1 — e ¥)2S,(f (dt

in the form (substituting e~ = x)

f(x)

0 _ Ll B 4 O
0.ff(t)(/)n(t)dt = 2£ (I = x)'Sy(x) NEEDE

1 n
dx = (f)w(x)g(x)dx = élcjg(xj)
(3.2)
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Fig. 14 Record of a push applied to the seismometer. The readings (mdlcated by crosses) are
approximated by a series of four polynomials.
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where w(x) = (1 — x)* and g(x) = 2\/_x](fl(ix)_x)ZS,,(x)
id X — X

C, = }w(x)l,.(x)dx and I(x) = [] (3.3)

k=1, #j X; — Xg
The values x; (x,, x5, . .., X,) are the zero values of S, in the interval (0.1).

We choose a 10 points integration. In this case we must use the polynomial S,
which is

Sio=+ 1 and the zero values of S, are: j X;
- 150x 1 0,90995892
+ 5400x2 2 0,81517755
—  81600x3 3 0,70217685
+  642600x* 4 057752731
— 2930256x° 5 0,44892658
+ 8139600x° 6  0,32440510
—13953600x” 7 0,21176419
+14389650x°8 8  0,11806934
— 8171900x° 9  0,04919931
+ 1961256x° 10 0,00946152

The values ¢; belonging to x; are shown in table 1, first column. Furthermore, this
table gives the values of the first 10 polynomials for these ;.

The factors C; in (3.2) can be computed by means of eq. (3.3), and now we can write
for the integral (3.2):

© 10 C
J(; f®O e (Ddt = 21 [W—J—Wsn(xj)]f () (3.4)

The values of the function between brackets are presented as C’;S,(x;) in table 2 for
the first 10 polynomials.
Now the numerical integration is reduced to an elementary operation. The factor
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C’;S,(x;) must be multiplied by the values f(t;) belonging to the ten values ¢, t,, .. .,
tio

The seismic signal y = f(¢) in figure (14) has been obtained by reading the deflection
of the galvanometer as a function of the time in seconds. In order to cover the record
of the signal by the values of ¢; beloning to the zero values of S;,, we have to change
the time scale; this is done by putting 1 unit = 60 seconds (see figure 14). The vertical
scale is chosen so that y,_, = 1.

From eq. (3.4) and (3.1) it follows that

co = +1,884
¢y = —1,649
¢, = —0,135
¢y = +0,133

It is not necessary to calculate the other coefficients, as the first four terms give already
a very good approximation.

We can therefore approximate the seismic signal in a fast converging series as follows:

f@®= Co Po(t) + ¢191(8) + c202() + c303(0)
Po(t) [coSo(t) + ¢181() + €,8,(1) + ¢3S;5(H)]

= +0,233¢™" + 8,125¢73 — 6,369¢5" — 28,519¢™ 7 + 42,481¢” % —
—15,950e 11t (3.5)

Figure (14) shows that this approximation (full line) is indeed very good.

Now we can proceed to the original problem, viz. how to carry out the Fourier anal-
ysis of the signal. The two Fourier integrals which must be calculated, are:

S(w) = ci;f(t) sin ot dt and C(w) = ?f(t) cos wt dt (3.6)
0 0

Substituting (3.5) into (3.6) we see that we have to calculate the following type of
integrals

o«
{ e ™ sin wt dt = ———
0 k* + o?
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tdt =
ge cos @ ER—
The result is:

S(@) = +0,233—— 4 8,125 _ 6,369——

w) = ) Y ’ ‘ — U ~ . 3 =

1 + o? 9+ 0? . 25 + w?
28,519— 2 4 42,481— 2 15,950 —— (3.7
R 81 + U121 + ? '

0.4 -

© 0,3 A

0,1 +

T [sec)

-0,1

-0.2 C (w)

Fig. 15. Fourier integrals of the seismic signal of fig. 14.
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and
C(w) = +0,233—— ! 5 + 8,125 -6 369; -
1+ 9 + w? 25 + 0
28 519L + 42 481—9— - 15 950L
49 + 0? 81 + o? U121 + 0P

The Fourier integrals of the seismic signal (see figure 14) are shown in figure (15) as
functions of the period T.

4 Determination of the magnification of a seismograph

Willmore (1959) has developed a method for calibrating a seismometer-galvanometer
combination by means of a balanced bridge circuit (see figure 16). The seismometer
is taken up in the bridge, and the galvanometer is connected to the points B and D.
The bridge is designed so that the resistance R, is much smaller than the resistance
of the seismometer R,. The ressitance R, is much greater than R,; in equilibrium
RJR, = R,/R;. The bridge is balanced when the seismometer is clamped, so that
no current flows in the galvanometer. A current passing through the bridge with the
seismometer in unclamped position will in that case only act on the seismometer.
The movement of the seismometer will cause a deflection of the galvanometer.

Willmore (1959) has applied this principle to a steady-state method. A harmonic
alternating current is sent through the seismometer; the seismometer behaves as
under the influence of a harmonic ground movement.

Espinosa, Sutton and Miller (1962) have used a transient method for determining
the magnification of the seismograph. They calculated magnification curves from sup-
posed values of the parameters of the seismograph. For each magnification function
they calculated the response of the galvanometer to a step function of the current.
Next they compared the observed response of the galvanometer with the theoretical
responses, and in that way they found the right magnification function.

However, this is an indirect method. It will be shown that it is possible to derive
the magnification function directly from the observed response of the galvanometer.
Let the current through the seismometer be i, then the moment acting on the coil
of the seismometer is G . This moment is proportional to an acceleration of the
ground

G,i

£ = (4.1)
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i — AN ——

Fig. 16 Willmore bridge for calibrating a seismograph.

where G is the electrodynamic constant, ! the reduced pendulum length and M is
the mass of the seismometer.

It follows from (4.1) that the seismometer-galvanometer system will behave as if the
ground movement x(¢) is:

G,i
(@) = %ﬁ £ = Le (4.2)
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A function f(¢) can be written as a Fourier integral:

f@ = % }O F(w) sin (wt — Y)dw 4.3)
0

where

F(w) = /C¥w) + S*w)

and C(w) and S(w) can be calculated by means of (3.6).
F(w) is the amplitude spectrum of f(¢) and ¥ (w) is the phase spectrum.

The values of C(w) and S(w) have already been calculated for the response of the
galvanometer (see eq. 3.7).

For calculating the magnification of the seismograph we have to derive the amplitude
spectrum of the ground motion. :

The function S(w) and C(w) are in the case of a motion according to eq. (4.2)

e o]
. ¢
Sw)y=%c [sinowtdt= —;
0 »

Clw)=4%4c [t*coswtdi =0
4]

The magnification of the seismograph is therefore
1 3 2 2
V = —0®/C¥w) + $*(w)
Cc

S(w) and C(w) are now the Fourier integrals of the reaction of the galvanometer,
as given by (3.7).

For small values of T the integrals S(w) and C(w) are very small; as o is very large,
the magnification V is inaccurate for these small values of T.

We can, therefore, improve the result by applying case c. (f(t) =f'(t) =f" () =0
for t = 0).

It might seem a more direct method to start with case c. from the beginning. How-
ever, a quicker method is to find an approximate function f(¢) by starting from the
initial conditions of case b., and then to calculate the magnification curve using the
analytical form (3.5) of f(¢).
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The coefficients c, in eq. (1.14) can easily be calculated, making use of the analytical
form of f (). The result is

co= +1,923
¢, = —2,209
c, = +0,581
c; = —0,089
c, = +0,041
cs = —0,021

Now the magnification function can be calculated in better approximation; the values
of V are shown in figure (17) (crosses). The values have been normalized by taking
Viax = 1.

v

] T ] [} ] ] T T [] T 1 I T
10 20. 30 40 50 60 70 8 90 100 110 120 [sec]

Fig. 17 Magnification curve calculated from Fourier analysis of a seismic signal.
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There are two possibilities to find the right scale for the magnification function. One
possibility is to calculate ¢ = G,if/l M from the electro-dynamical constant G,, the
reduced pendulum length ! and the mass M of the seismograph. Of course, the scale
of the functions C(w) and S(w) must be multiplied by the real value y,,,, of the galva-
nometer deflection. The other possibility is to send an alternating current of known

amplitude i, and period T in the seismometer coil. In this case the constant c in eq.
(4.2) is

G,i,T?
c=-—
nl M

The scale of the magnification function can be determined by calculating V for this
special period T (Willmore, 1959).

5 Determination of the parameters of a Press-Ewing seismograph

Now we can apply the theory described in chapter II, making use of the values of the
magnification shown in figure (17). It is possible to bring these values in an analytical
form by numerical integration according to eq. (IL.1.15).

The equation of the magnification curve appears to be:
V™2 =632T72 40,725 + 0,218-107%T2 4 0,656 - 10~ "T* + 0,206 101 T

The values of by, b,, cy,-and c; are for the Press-Ewing seismograph, which recorded
the signal of figure (14):

bo =nln} =282-10"°

b, =4es, - 0,0, + nZ + nf =164-1073

¢y = 2£sn; + 28_,,ns2 =125-10"*

¢y =2¢,+ 26, = 884-1073 (5.1)

The period of the galvanometer of this Press-Ewing seismograph could easily be
determined; it was T, = 87,3 sec with g, == 0,024. It follows from b, that T, = 27,0
SeC; &g, = 0.

The parameters &, ¢, and 0,6, can be calculated from the equation for b,, ¢; and c;.
The valies are: ¢ = 0,361, g, = 0,081 and o,0, = 0,012. Putting g,0,=0o0r o0, =
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= 4eg,, and solving n, and n, from eq. (5.1), we get the limits of the periods of the
seismometer and galvanometer:

15,6 sec < T, < 40,0 sec
58,8 sec < T, < 151  sec

We see that the periods of seismometer and galvanometer of the Press-Ewing seismo-
graph in question indeed satisfy these conditions.
Other parameters of this seismograph can be calculated from the resistances:

R,=R,=500Q; R,=300Q; R, =R,=0.

It follows from eq. (1.3.10a), (1.3.10b) and (I.3.11) that:

GZ
a=>550-10° 4=909-10"° fs=496,6

S

B =909-10"°

G
C=545-107% —Z= 80,54
K

g

The constants G2/K, and G2/K, are necessary if it would be required to change the
magnification curve into a desired form.
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TaBLE 1.

n t So S1 S S3

1 0,047 +1 — 4,459754 +11,445282 —21,828562
2 0,102 +1 — 3,891065 + 8,193919 —11,800372
3 0,176 +1 — 3,213061 -+ 4,974989 — 4,147785
4 0,274 +1 — 2,465164 -+ 2,253676 + 0,046164
5 0,400 +1 — 1,693559 + 0,358010 + 1,134616
[ 0,563 +1 — 0,946431 — 0,594989 + 0,483269
7 0,776 +1 — 0,270585 — 0,709065 — 0,378745
8 1,068 +1 + 0,291584 — 0,262640 — 0,525616
9 1,506 +1 + 0,704804 + 0,378986 + 0,066347
10 2,330 ) +1 + 0,943231 -+ 0,870045 4+ 0,782490
n S4 S5 Sﬁ S7

1 +33,903552 —44,633941 --50,508419 —48,736128
2 +12,134142 . — 8,014619 + 0,848363 + 5,869556
3 + 0,682004 + 2,752106 — 3,203382 -+ 0,514836
4 — 1,802228 -+ 0,873894 + 1,148922 — 1,246883
5 — 0,354914 — 0,946269 + 0,246076 + 0,852303
6 + 0,685696 — 0,046016 —- 0,613486 — 0,320041
7 + 0,212226 + 0,520748 -+ 0,344092 — 0,100341
8 — 0,476715 — 0,208502 -+ 0,119865 + 0,351478
9 — 0,193320 — 0,370281 — 0,449091 — 0,430371
10 + 0,683001 + 0,574325 ~+ 0,459439 + 0,341452
n Sk So S10 00

1 +38,360432 —20,864937 0,000000 + 0,007734
2 — 8,595096 -+ 6,016436 0,000000 + 0,030842
3 + 2,397564 — 2,550875 0,000000 + 0,074326
4 — 0,531602 + 1,326299 0,000000 + 0,135639
5 — 0,121969 — 0,785099 0,000000 + 0,203473
6 + 0,352444 + 0,507930 0,000000 + 0,259966
7 — 0,412313 — 0,349112 0,000000 -+ 0,285916
8 -+ 0,393626 -+ 0,248150 0,000000 + 0,267262
9 — 0,329875 — 0,175085 0,000000 + 0,200520
10 + 0,223513 + 0,108714 0,000000 + 0,095438
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TasLE II.
i SoC’y S$1C% 52C' S53C7;
1 +0,00035843 —0,00159851 +-0,00410233 —0,00782401
2 +0,00322777 —0,01255946 +0,02644808 —0,03808889
3 +0,00635453 —0,02041749 +0,03161372 —0,02635722
4 +0,01503077 —0,03705331 +0,03387448 +0,00069388
5 -+0,02898143 —0,04908178 +0,01037564 +0,03288279
6 +0,04802100 —0,04544854 —0,02857195 +0,02320656
7 +0,07037951 —0,01904365 —0,04990362 —0,02665589
8 —+0,09296700 +0,02710769 —0,02441689 —0,04886494
9 +0,11182214 +0,07881270 +0,04237899 +0,00741911
10 +0,12208253 +0,11515201 +0,10621733 +0,09552836
S4C’; S§5C5 S6C’s S§7C’5
1 +0,01215205 —0,01599814 —+0,01810373 —0,01746849
2 +0,03916622 —0,02586935 +0,00273832 +0,01894558
3 +0,00433382 +-0,01748834 —0,02035598 +0,00327154
4 —0,02708888 +0,01313530 +0,01726919 —0,01874161
5 —0,01028591 —0,02742424 +0,00713164 -+0,02470096
6 +0,03292779 —0,00220971 —0,02946020 —0,01536869
7 +0,01493635 +-0,03664999 +0,02421706 —0,00706196
8 —0,04431879 —0,01938384 +0,01114352 +0,03267586
9 —0,02161748 —0,04140556 —0,05021827 —0,04812506
10 +0,08338245 +0,07011508 +0,05608946 +0,04168530
j S§5C’; S9C’;
1 +-0,01374953 —0,00747862
2 —0,02774299 +0,01941967
3 +0,01523540 —0,01620961
4 —0,00799039 +0,01993530
5 —0,00353483 —0,02275330
6 +0,01692471 +0,02439129
7 —0,02901837 —0,02457036
8 +-0,03659424 +0,02306977
9 —0,03688736 —0,01957834
10 +0,02728706 +0,01327226
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‘SUMMARY

The basic question dealt with in this treatise, is how to choose the instrumental para-
meters of a seismometer-galvanometer system in order to get a desired magnification
of the earth’s movement. This ‘inverse problem’ is treated for the coupling of the seis-
mometer with one galvanometer as a recording element. The theory is also developed
for the combination of a seismometer with two galvanometers. In this case a filter
galvanometer is added to the system, in series with the recording galvanometer.

The method used is based on the conversion of the classical equation of the magnifica-
tion curve into a polynomial, which is possible after an elementary transformation.
Applying the method of least squares, the coefficients of the polynomial develop-
'ment are determined, so that the best approximation is obtained to a desired magnifi-
cation curve. As the coefficients of the polynomials are functionally related to the
instrumental parameters, it is possible to calculate the values of the parameters needed
for obtaining the desired magnification curve.

This method of developing the seismograph theory has some advantages. Firstly
the right choice of instruments is facilitated, starting from the desired magnification
characteristic. Furthermore the theory determines the limits between which the
instrumental parameters must be chosen in order to obtain instruments with the de-
sired magnification characteristic, which can physically be realized. The so called
‘false’ Galitzin and ‘false’ Benioff seismographs as known from the literature, are
studied to find out which solutions are suited to a physical realisation, and which
solutions are indeed false.

Secondly, a method is developed to calculate the magnification function of a seismo-
graph system from the response of the seismograph to a push. The seismic record
of the push is approximated by polynomials of Jacobi. In these polynomials certain
properties of the system are accounted for, such as the right conditions for ¢ =0,
and the limiting value for large t. The conditions ensure the right analytical form of
the response and furthermore a fast convergence of the approximation. Using Fourier
integrals the amplitude spectrum of the response can be calculated. As the magnifica-
tion characteristic is proportional to the amplitude content, the magnification charac-
teristic of the instrument can be calculated as well in a fast and simple way.
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