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VOORWOORD

In 1967 zijn op het K.N.M.I. de eerste activiteiten ontplooid die tot doel hadden het
stromingspatroon in de atmosfeer met numerieke methodes één tot anderhalf etmaal
vooruit te berekenen. Deze eerste pogingen waren nog uiterst primitief en gebaseerd
op de veronderstelling dat de atmosferische ontwikkelingen kunnen worden be-
schreven met behulp van processen die op één niveau, ongeveer ter halve hoogte van
de atmosfeer, plaatsvinden (barotroop model).

Geleidelijk is het model verbeterd en in zoverre realistischer gemaakt (baroklien
model) dat er rekening mee werd gehouden dat de stroming in de atmosfeer niet op
ieder niveau hetzelfde beeld vertoont en derhalve niet correct kan worden beschreven
met behulp van processen in een enkele luchtlaag. Bovendien bleek dat een adekwaat
inzicht in de ontwikkeling van de stroming in een gebied, dat vrijwel het gehele
Noordelijke Halfrond omvat, niet kan worden verkregen indien geen rekening wordt
gehouden met de vrijkomende condensatiewarmte die met name bij de verstoringen
van het stromingspatroon, die afmetingen bezitten van de orde van de depressies van
gematigde breedte, een belangrijke bijdrage tot de ontwikkeling geeft.

Drs. L. C. Heijboer heeft bij de uitbouw van het oorspronkelijke barotrope model
tot een drie-lagen baroklien model de hoofdrol vervuld. Hij heeft daarmee een zeer
waardevolle nederlandse bijdrage geleverd tot de toepassing van de dynamische
meteorologie op de weersvoorspelling.

De Hoofddirecteur van het
Koninklijk Nederlands Meteorologisch Instituut

H. C. BDVOET
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PREFACE

In 1967 the first attempts were initiated at the Royal Netherlands Meteorological
Institute to calculate the flow patterns of the atmosphere for penods up to thirty-six
hours ahead

These calculations were based on the assumption that atmosphertic dévelopments
could be described taking into account processes taking place on a level about halfway
up in the atmosphere (barotropic model). In the succeeding years the model was
improved upon and made to resemble reality in sofar that different layers in the at-
mosphere were taken into account.

It became evident that it was impossible to gain adequate knowledge of the nature
of the flow patterns over the Northern Hemisphere, without also taking into account
the latent heat released in extra-tropical frontal disturbances.

This latent heat has-a major influence on the development of these disturbances.

Drs. L. C. Heijboer was the leader in the transformation of the original barotropic
model into the present baroclinic model. With his work the Netherlands have made
an appreciable contribution in the field of the application of dynam1c meteorology
to numerlcal weather prediction.

The Director in Chief of the
Royal Netherlands Meteorological Institute

H. C. BIJVOET
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CHAPTER 1
INTRODUCTION

In this treatise a description is given of the design of a baroclinic model. This model
is suitable for short range weather predictions up to 36 hours ahead.

In numerical forecasting, the physical laws governing the atmospheric flow are
applied. These laws are expressed by the equation of motion, the continuity equation,
the equation of state and the first law of thermodynamics.

The time-dependent properties of the air particles, which can be predicted by these
equations, are the velocity V, the absolute temperature 7 and the pressure p. If the
differential equations are replaced by their difference forms, it is possible to carry out
the time integrations if the boundary conditions are formulated and the initial values
of ¥V, p and T are known. In doing so one has to reckon with several demands, the
most important of which are the computational speed and the memory capacity of
the available computer. For the EL-X8 computer of the Royal Netherlands Meteo-
rological Institute, which was in use from 1968 till September 1975, the general
unsimplified equations were too complicated for a baroclinic model suitable for
operational purposes, because the numerical forecasts had to be available to the
meteorological service within a limited period of time to be useful for weather predic-
tions.

To carry out the necessary simplifications of the equations it is important that the
resulting equations stiil enable a description of behaviour of the systems responsible
for the day-to-day weather fluctuations. These systems have length-scales varying
from ~ 1000 km to ~ 7000 km and consist of so-called short frontal waves as well
as long waves. With the aid of a scale analysis it is possible to simplify the equations
in a suitable manner, resulting in the quasi-geostrophic equations in S-plane approxi-
mation. A review is given in chapter II. The quasi-geostrophic equations are used for
the construction of the baroclinic model.

In this treatise special emphasis is given to the developing short frontal waves. In
doing so, a theoretical investigation is carried out in chapter III. It indicates that long
waves show an equivalent barotropic behaviour and that short frontal waves are
really baroclinic, showing a phase shift between height and thermal fields. The ex-
perience, that the equivalent barotropic vorticity equation applied at 500 mbar
gives relatively good predictions at least up to 36 hours ahead, agrees with the equiva-
lent barotropic behaviour of long waves. Moreover, these predictions also show that
the speeds of the short waves at 500 mbar can be predicted as can be seen by investi-
gating the areas of advection of relative vorticity at that level. These two results form
a guide for the theoretical investigations and for the construction of a baroclinic
model. For that purpose an equivalent barotropic reference atmosphere is designed
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in chapter III. Substitution of the equations of this model atmosphere into the in-
tegrated forms of the thermodynamic equations results in a relation between the
wavelengths of the waves and the static stability. This relation will be further in-
vestigated and it will be shown that it holds for both short and long waves. The values
of the static stability for the short waves are in accordance with those belonging to
saturated adiabatic lapse rates, and the values for the long waves agree with those
following from the lapse rate of the ICAO standard atmosphere.

Therefore, in a model suitable to describe the development of short frontal waves
one has to take the ‘saturated adiabatic’ values. However, for such values the inte-
grated forms of the thermodynamic equation are no longer consistent with the re-
quirements of the equivalent barotropic reference atmosphere because a long wave,
which is equivalent barotropic at ¢ = 2, will not remain so during the integration of
the equations.

In chapter III, correction terms are introduced in the integrated thermodynamic
equation from 300 to 500 mbar and from 500 to 850 mbar, which make it possible to
overcome that difficulty. These terms offer the possibility of using the required low
‘saturated adiabatic’ values of the static stability in the integrated thermodynamic
equations, which are consistent with the requirements of the equivalent barotropic
reference atmosphere. These correction terms are zero for the short waves, so for
these frontal waves the original form of the thermodynamic equation remains un-
changed.

For the baroclinic model, which is described in chapter IV, the thermodynamic
equation is integrated from 300 to 500 mbar and from 500 to 850 mbar. To carry out
these integrations knowledge of the profile in the vertical of the horizontal divergence
is necessary. For the reference atmosphere this profile is known. To hold the inte-
grations consistent with the properties of the reference atmosphere this profile is also
taken for the baroclinic model. For the long waves this divergence profile will be a
good approximation, but for the short frontal waves this is not necessarily true.
Therefore in chapter III an investigation is carried out with a simple two-parameter
model taking into account the release of latent heat. The calculations of this investiga-
tion give for the centre of the perturbation at sea level a divergence profile, which
consists of two parts, namely that of the reference atmosphere and a linear part due
to the incorporation of the release of latent heat. The horizontal divergence of this
simple model can be expressed as a function of the advection of relative vorticity at
500 mbar (RVA). The divergence- and w-computations have been compared with
three case studies and agreement has been confirmed.

The results of the two-parameter model show that for developing short frontal
waves the release of latent heat is very important and has to be incorporated in a
baroclinic model. .

For the integrations of the thermodynamic equations of a baroclinic model it is



possible to split D and w into a dry and’a moist part, due to the linearity of D and @
in the equations. Now it follows from the results of the two-parameter model that
the divergence profile of the reference atmosphere is a good approximation for the
dry part-of D and that a linear profile is suitable for the moist part of D.

To give the investigations a firmer theoretical basis, a stability analysis of the linear
quasi-geostrophic equations is carried out. From this analysis two kinds of wave
solutions can be found, namely unstable waves with a phase shift in the vertical and
stable waves with a structure like that of the reference atmosphere. Two special cases
are investigated, namely the most unstable wave and a stable wave, which has a level
of non-divergence at 500 mbar. The divergence D and w in the centre at sea level of
the most unstable wave are expressed as functions of the advection of relative vorticity
at 500 mbar and are compared with the results of the two-parameter model. There
appears to be agreement.

Experimental investigations by DoDDS (1971) show that most of the depressions at
sea level have wavelengths between 1600-2000 km. According to the stability analysis,
such waves can only be unstable if release of latent heat is taken into account.

The stability analysis also gives insight into the choice of the number of levels for
the baroclinic model, because it appears that the most unstable wave can be described
by three parameters, namely two parameters describing the baroclinic disturbance and
one describing the basic flow. So the number of parameters and also the number of
levels must be three at least.

Taking into account the results of the investigations in chapter III the following

will be required in designing the baroclinic model::

1. Three levels..

2. The values of the static stability in accordance with those of saturated adiabatic
lapse rates.

3. Inclusion of correction terms in the integrated forms of the thermodynamic equation
to preserve the equivalent barotropic character of long waves.

4. Inclusion of release of latent heat to make the short frontal waves unstable in the
model.

5. A profile of the dry part of the horizontal divergence in accordance with that of
the reference atmosphere and a linear profile for the moist part of the divergence.

The above-mentioned requirements are applied to the baroclinic BK3-model, which
is described in chapter IV.

In chapter V a survey is given of the performance of the dry and moist versions of
the model. It will appear that the experimental results confirm the results of the theo-
retical investigations.




Finally, it should be remarked that, in the author’s opinion, a theoretical investi-
gation like the one carried out in this treatise is absolutely necessary for the design of
numerical models. Otherwise it is not quite possible to understand the behaviour of
the model and to introduce changes, which may lead to significant improvements.



CHAPTER 11
BASIC EQUATIONS

It is supposed in the present treatise that in the atmosphere each physical quantity
is continuous and can be differentiated with respect to space and time. Though it
seems that discontinuities such as fronts occur in the atmosphere, these can be
considered to be continuous if both space and time scales are taken sufficiently
small. For the purpose of numerical weather prediction, the important properties of
an air particle are the velocity V, the pressure p, the density p, the absolute temperature
T and the specific humidity g.

The behaviour of these quantities can be described with the aid of the equation of
motion, the equation of state, the continuity equation, the first law of thermodynamics
and the equation describing the amount of water vapour as a function of space and
time.

Since the above-mentioned general equations have no general analytic solutions,
it is necessary to replace them by difference equations to be able to solve them by
numerical methods. For the computations one has to choose a suitable coordinate
system. After that it is possible to carry out the computations if the boundary con-
ditions are formulated and the initial values of ¥, p, T and g are known.

For the computations it is most convenient to choose a coordinate system in which
the atmosphere motions can be described in a suitable way. Because the atmosphere
moves on a spherical earth and the large-scale motions of the atmosphere are quasi-
horizontal with respect to the earth’s surface, spherical curvilinear coordinates are
most suitable.

With the aid of scale analysis it is possible to estimate the magnitudes of the
various terms in the equations, because these are defined by the length and time
scales of the atmospheric systems. These length and time scales can be deduced from
pressure and horizontal wind analyses. For mid-latitudes these scales are respectively
~ 1000 km to ~ 7000 km and one to about five days. Examples of scale analyses
are given by CHARNEY (1948) and BURGER (1958). The scale analysis proves to be a
useful tool to simplify the equations. For the theoretical considerations, which are
carried out in chapter III, the quasi-geostrophic equations in f-plane approximation
are used. These relatively simple equations have been formulated in a Cartesian
coordinate system with the x-axis along the latitude circle of 45°N from west to east
and the y-axis from south to north. The coordinates are formulated as

x=a-cos(@y) (A—4) and y=a-(p— o) (2.1)




with a as mean earth’s radius, ¢, = 45° and J, the longitude of the origin of the coor-
dinate system.
The pressure p has been used as independent variable for the vertical coordinate.
The relevant equations in f-plane approximation are given below.
Equations of motion:

ou od

b Uyt Vg — fy 0 = — —— 2.2
o Ty T Tl ox @2)
o0, oo, oo, Y Pr -

v U= — .
ot " ox ° dy o dy

where ¢ = g - z is the geopotential,

g is the absolute value of gravity g,

z is the geopotential height, : v

fo =28 sin 45° is the value of the horizontal component of the coriolis acceleration
at 45°N,

Q is the value of the angular velocity of the earth,

u, and v, are the components of the horizontal quasi-geostrophic wind components
with

— and v, = - —— 2.4)

Continuity equation:

ow 4 du N v B 0 @.5)
—_— U et .
ap ox oy f, °

d d
where § = —f is supposed to be constant, @ = 2P is the total time
dy/ o = 455 dt

derivative of the pressure p of an air particle.

First law of thermodynamics:

g od a [ 0P é [ od R-0Q
— |t — )+, —|— ] +0r00=— (2.6)
Jt dp dx \ dp dy \ dp ¢ D

where R is the gas constant for dry air,
¢, is the specific heat at constant pressure.
Q. is the rate of heat addition or sybtraction per unit time and mass,



o is the static stability parameter, which only depends on p and is defined by

0P c, 0D

o= 2.7
ap*> ¢, p 9p @7
with @ the geopotential of a standard atmosphere, which depends only on p.
Boundary conditions:
w=0 for p=0 and p= 1000 mbar (2.8)

The above-mentioned quasi-geostrophic equations in S-plane approximation have

been derived by PHILLIPS (1963).

This S-plane approximation can be achieved by reformulating the general equations
in spherical curvilinear coordinates into those for the Cartesian coordinate system
(2.1), making them dimensionless with the aid of scale analysis, expanding the hori-
zontal wind components, the vertical velocity and the coriolis parameter f as power
series in the Rossby number Ro, and substituting these series into the dimensionless
equations of motion, the continuity equation and the thermodynamic equation. After
omitting all terms of order Ro? and higher, the quasi-geostrophic equations in f-plane
approximation result. Instead of using the Cartesian coordinates (2.1), PHILLIPS used
the coordinates of a Mercator projection to derive the desired equations. He came
to the following conclusions:

1. For the free atmosphere the friction terms in the equations of motion are not
important. However, near the earth’s surface the friction terms are probably im-
portant if the surface synoptic systems have a pronounced vorticity.

2. The release of latent heat has to be taken into account if the precipitation intensity
is > 1 mm/hour. Such an intensity can be reached easily in extratropical frontal
cyclones.

3. For a flat horizontal earth the boundary condition w = 0 is valid. However, if
there are mountains, the induced vertical velocity w has to be taken into account
byw=—g-p-wwithw=u, % + v, a—i Application of a smoothing pro-
cedure on the height h of the earth’s surface is necessary, in order to prevent too
large values of w (> 1 cm/s).

After introducing the quasi-geostrophic streamfunction ¥ = &/[f,, the vorticity {
(the vertical component of the rotation of the wind V) and the divergence D of the
horizontal wind components are given in the f-plane approximation by:

v du, Vi d D Ju N ov I 2.9)
= an =—+ ———"— v .
ox ay 0x 3)’ fo °
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Differentiation of (2.3) with respect to x and of (2.2) with respect to y, with the
use of (2.9) gives the vorticity equation in f-plane approximation:

»(% (V20) + J, V2% + ) +f,- D =0 | (2.10)

with the Jacobian defined as

J(a.b) da db da 0b ' @.11)
a,b) = . — . .
dx  dy dy 9x

In B-plane approximation the coriolis parameter f equals

f=f+B-y with f,=2Qsin45° and B = (%) (2.12)
@0=45"°

The continuity equation (2.5) can be written with the aid of (2.9) as

ow
% ip=o (2.13)
dp

The thermodynamic equation (2.6) becomes with the quasi-geostrophic stream-
function :

o (o W\ o R-Q
aler) g ) o o

Equations (2.10), (2.13) and (2.14) together with the boundary conditions (2.8)
form the set of basic equations, which will be used for the theoretical considerations
given in chapter III. These equations are valid for the area situated roughly between
35°N and 55°N, as follows from the derivation of the equations by PHILLIPS.

However, the computational area used in the baroclinic model, which is described
in chapter 1V, also consists of regions south of 35°N and north of 55°N. Consequently,
a coordinate system of a stereographic projection will be used instead of the Cartesian
system (2.1). In the stereographic projection the earth’s surface is projected from the
south pole on a plane through the parallel of 60°N, If the centre of the coordinate
system coincides with the projected north pole, the spherical coordinates A and ¢ are
related to the stereographic coordinates x, and y, by

x;=m-a-cos@-cosd and y,=m-a-cos @ -sini (2.15)



1 + sin 60°

with m = —
1+sineg

Here m is the map scale factor, which equals the ratio between an infinitesimal
distance on the plane and the corresponding distance on the sphere. The general
equations in spherical curvilinear coordinates have to be formulated in the polar
stereographic coordinates. After that, the procedure of simplifying is similar to that
of obtaining the quasi-geostrophic equations in f-plane approximation. The simplified
equations are given below.

Vorticity equation:

L S +n+ ‘
—_— mq-u mq-v
ot v Ix, v ay,

C+f)+fi-D=0 (2.16)

This equation is valid for an area around the point where x, = x,; and y, = y,,
for every latitude ¢ = ¢, with ¢, > ~ 25°N. For this area the map scale factor is
m = m, withm, = (1 + sin 60°)/(1 + sin ¢,).

The coriolis parameter is approximated by

fﬂﬁ«w>-m—kw<“)-MwmmmEmm%

3xs ays
2.17)
The vorticity ¢ and the divergence D are approximated by
0
axs 3ys ’

Do m [3(u/m1) N o(v/my) ] - (fﬂ) — vy <3m> (2.19)
0x 0y 2 Xs1 9ys Ys1

The quasi-geostrophic wind components are given by

m, o 0P
U = — bt and vy = -+ e (220)
fi o 9y, fi 0x
The continuity equation reads:
o
+D=0 (2.21)

dp
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The thermodynamic equation is given by:

d [ o N o [0 + o (0P + R-0Q
el — my Uy ——{—— my v, —\— o= —
ot \ dp VT ax \ dp 1 h dys \ dp 7 ' D

(2.22)

(2.16) and (2.22) can be rewritten with the use of the quasi-geostrophic stream-
function ¥ = @/f, and become:

Vorticity equation:

2 2
o vy + T gt vy 4w + 2 D=0 @23
ot fi fo
Thermodynamic equation:
o(ap\ mif, [ W\, o RO
5(ap>+ f1 J<l//’ 3p>+fw__cp'fo'p @29

(2.21), (2.23), (2.24) and the boundary conditions given by (2.8) are the basic
equations in polar stereographic coordinates of the baroclinic model. They are used
in chapter IV.
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CHAPTER 1II
THEORETICAL INVESTIGATIONS WITH SPECIAL

EMPHASIS ON DEVELOPING SHORT FRONTAL
' WAVES

1 Definition of a reference atmosphere
It is supposed that the height z of each pressure level p satisfies

z=A'z5+ B , 3.1)
A and B being functions of p and 4 =0 at p=0 mbar and A =1 and B=0 at
p = 500 mbar. Further it is assumed that the quasi-geostrophic vorticity equation

12.10), the continuity equation (2.13) and the boundary conditions (2.8) are valid.
These:are given below for convenience.

, . d
o YA+ JW VY +f) +f,-D =0 with = gf ? and - = — (2
dw
—+D=0 (3.3)
dp
w=0 at p=0 and p=p;e P1o being 1000 mbar (3.4

The thermodynamic equation (2.14) is left out of consideration for the moment and
will be discussed in section 3.3. From (3.1) it follows that the quasi-geostrophic
streamfunction has to satisfy the equation

B
V=A4-ys+ gf—, where 5 refers to the 500 mbar level - (3.5)

(o]

After some compufational Work it follows from (3.2) to (3.5) that the horizontal
divergence D is given by

1
D= ——(4d-K— 4% -RVA S (3.6)
with
Pio Pio

x([a))(f 4

0 0
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and the advection of relative vorticity at the 500 mbar level
RVA = — J (s, V2rs) (3.8)

With the aid of the continuity equation (3.3) the ‘vertical velocity’ o can be com-
puted as

p p
1
w=—Jde=ff(A-K—A2)dp-RVA (3.9
0 ° 0
2 Specification of the reference atmosphere for 25-3-°71, 00 GMT
2.1 ' Divergence profiles and w-profiles

If A is a known function of p, the D-profile and the w-profile can be defined as
functions of p. The dependence of x, y and ¢ is given by the relative vorticity advection

Fd

Fig. 1 Grid on which the geopotential heights (gpdam) of the standard pressure levels 100, 200,
300, 500, 700 and 850 mbar and the thickness field of 500—1000 mbar are defined for 25
March 1971, 00 GMT.
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RVA. At each moment ¢ it is possible to define A and B of the relevant reference
atmosphere by correlating the heights z of each pressure level with the heights of the
500 mbar level at the same grid points. For the standard pressure levels of 100, 200,
300, 500, 700 and 850 mbar as well as for the thickness 500-1000 mbar, A and B
have been specified in this way for 25-3-"71, 00 GMT. For that purpose the analyses
of the standard pressure levels of the German Meteorological Service (Deutscher
Wetterdienst in Offenbach) were chosen. The area of these analyses extended from
the north pole to the Azores and from New Foundland to the Urals. A rectangular
grid containing 120 grid points as shown in fig. 1 was defined in this area. The analyses
of the standard pressure levels, the thickness 500-1000 mbar and the sea surface
weather map are given in figures 2a and 2b. For each grid point the heights of the
standard pressure levels were determined. For each pressure level these heights were
correlated with the corresponding heights of 500 mbar. The values of 4 and B are
defined by the straight lines given in figure 3. The relevant regression equations are
given in table 1.

level A(p) B(p) regression equation
mbar — dam z(dam)
100 0.85 +1140 z3 =0.85z5+1140
200 1.36 +419 z; = 1.36 z5+419
300 1.33 +173 z3 =133 z5+173
700 0.67 —72 z7 = 0.67 z5—72
850 0.43 —92 zg.5 = 0.43 z5—92
1000 0.20 —98 z10 = 0.20 z5—98

Table 1 The values of the functions 4 and B of the reference atmosphere for 25-3-71, 00 GMT.

The functions 4 and B are also given in figures 4 and 5.

The values of the function 4 of 25-3-71, 00 GMT, are used for the computations
of the coefficients of the baroclinic model in chapter IV 3.4. So these coefficients are
defined with the aid of A-values depending on only one date. However, it appeared
from comparison with other situations that these values were fairly representative for
polar jetstream conditions over the Atlantic and Western Europe. Moreover, com-
putations of the static stability at 500 mbar in 3.2 show that the areal mean value
of the static stability of the reference atmosphere as defined by (3.1) and based on
the values of 4 and B of 500 mbar at 25-3-"71, 00 GMT, agree with the value of the
static stability of the ICAO standard atmosphere. Concerning the values of B it can
be remarked that probably there is a systematic annual variation. This is not serious,
because knowledge of the function B is not required for the considerations of this
treatise.
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Fig. 2a Analyses of the topographies of 100, 200, 300 and 500 mbar according to the Deutscher
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Wetterdienst (Offenbach) for 25 March 1971, 00 GMT. Contours are labelled in gpdam.
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Fig. 2b Analyses of the topographies of 700 and 850 mbar, the thickness field of 500—1000 mbar
and sea level pressure according to the Deutscher Wetterdienst (Offenbach) for 25 March
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With the aid of (3.6) and (3.9), D and w can be expressed as

and

D

_ D rva (3.10)
; .

o

[s]

— 2 Rva (3.11)
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Fig. 5 The function B of the reference atmosphere for 25 March 1971, 00 GMT.

D'= —4-K+ A? (3.12)
and
P
o = —fD' dp (3.13)

0

To compute D' and w" as functions of p, the values of A are determined from figure 4
for intervals of 25 mbar from 0 to 250 mbar and for intervals of 50 mbar from 250
to 1000 mbar. First, the quantity K is computed according to (3.7).

K appears to equal 0.99. Then, with the aid of (3.12) and (3.13), D' and o' can be
defined. The integrals in (3.7) and (3.13) have been approx'mated with the use of the
trapezoidal rule given by (3.14) for an arbitrary function f.

Pn

v ff(p)dp 3P +fPD+. .. . Hf(Pa-) +E(PI)] 4P (B14)

Po

with Ap = p;, — p;—, fori=1,2,... . )
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The computed values of D' and o' are given in table 2.

p
P A A2 4K D'=—4-K+ 42 o =—[Ddp
(1]

mbar —_ — — — 10+4 kg m—1g—2
0 0 0 0 0 0
25 0.25 0.06 0.25 —0.19 +0.02
50 0.48 0.23 0.48 —0.25 +0.08
75 0.68 0.46 0.67 —021 +0.14
100 0.85 0.72 0.84 —0.12 +0.18
125 1.00 1.00 0.99 +0.01 +0.19
150 1.13 1.28 1.12 +0.16 +0.17
175 1.25 1.56 1.24 +0.32 +0.11
200 1.36 1.85 1.35 +0.50 +0.01
225 1.40 1.96 1.39 +0.57 —0.13
250 1.39 1.93 1.38 +0.55 —0.26
300 1.33 1.77 1.32 +0.45 —0.51
350 1.24 1.54 1.23 +0.31 —0.70
400 1.16 1.34 1.15 +0.19 —0.83
450 1.08 1.17 1.07 -+0.10 —0.90
500 1.00 1.00 0.99 +0.01 —0.93
550 0.92 0.85 0.91 —0.06 —0.92
600 0.84 0.71 0.83 —0.12 —0.87
650 0.76 0.58 0.75 —0.17 —0.80
700 0.67 0.45 0.66 —0.21 —0.71
750 0.59 0.35 0.58 —0.23 —0.60
800 0.51 0.26 0.51 —0.25 —0.48
850 0.43 0.19 0.43 —0.24 -—0.35
900 0.35 0.12 0.35 —0.23 —0.23
950 0.27 0.07 0.27 —0.20 —0.12
1000 0.20 0.04 0.20 —0.16 0.00

Table 2 Values of the functions 4, D' and o' of the reference atmosphere for 25-3-71, 00 GMT.

’ oD
The extreme values of D can be found at the pressure levels for which e 0.
P

dA4
From (3.6) it follows that in that case (K — 24) Fr = 0. This is true for A =1K or
D

dA ‘
a4 = 0. From figure 4 one can see that there are two levels for which 4 = 1K,
p

dA4
namely at 50 mbar and 810 mbar, and one level for which P = 0, namely at 230
14

dA
mbar. The level for which . = 0 is also the level of a maximum value of 4 and as
D .




22

follows from (3.5), of a maximum geostrophic wind. The extreme values of w are

0 ‘

found at the levels for which 3—w= 0 or, as follows from the continuity equation
p

(3.3), D =0. In that.case A equals 4 =0 or A =K = 0.99. The relevant levels are

found at 0 mbar and 510 mbar respectively, as can be seen from figure 4.

In figure 6, with the aid of table 2 and the results with respect to extreme values
of D and w, the graphs of D' and @' are drawn for the case of advection of positive
relative vorticity at 500 mbar.

i //\
50 D'=-(A.K-A2)

, .
100-] D=f°o—pRVA \.\ \.!
w'=-(p! \ /
1507 OSD * _ e \-\
200 w=2'rva ./' '\.
! — J

o
2504 = 2
RVA 3(¢5'v q)s) / /
3004 °

350+ . .

4 .
(m%ur:;:: /.w /
500-| -f /
\
\

550

S N4
700 * -/
N [
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800 .-\
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Fig. 6 The profiles of the ‘vertical velocity’ @ and the horizontal divergence D as functions of
pressure p in the case of advection of positive relative vorticity at 500 mbar (RVA > 0)
according to the reference atmosphere for 25 March 1971, 00 GMT.
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It will be evident that it is necessary to know the values of RVA at 500 mbar, in
order to be able to compute numerical values for D and w. This is done in the next
section.

2.2 Specification of the advection of relative vorticity at 500 mbar (RVA)

The computation of RVA = — J (5, Vr5) at 500 mbar is carried out with the
aid of the objective analysis of 500 mbar for 25-3-71, 00 GMT. This analysis is given
by the isolines in figure 7. The points of that figure are the points of the computational
grid of the baroclinic model. This grid, which covers Western Europe, the Atlantic
and North-America and differs from the one shown in figure 1, is described in detail
in IV 6.1. The grid distance at 60°N is 375 km.

At each grid point the advection of relative vorticity at 500 mbar was computed
with the aid of a finite difference approximation of the Jacobian. Due to the difference
scheme, it was only possible to compute values of RVA at the grid points at least two
grid distances away from the boundaries.

The computed mean value was 2.6 x 107 ''s~2 with a standard deviation equal to
1.7 x 107 °s72, This means that, compared with the real values of RVA, the mean
value of this quantity is negligible, and assuming a normal distribution of this para-
meter one can conclude that 959 of its value must lie between —3.42 x 10™°s™% and
+3.42 x 107972,

The positive RVA-areas have been analyzed with the aid of the computed values
at the grid points. These areas are shown in figure 7 by isolines, which are drawn
at values of 1.2, 2.4, 4.8 x 10~ °s™2, etc. The same analysis could be carried out with
the negative RVA-areas. However, in this treatise only the positive RVA-arcas are
investigated, because these areas are related with frontal waves. This relation is
outlined in section 3.4. In the rectangle of figure 7, 16 positive RVA-areas numbered
1 to 16 can be distinguished. These areas can be considered to consist of two wave
trains, namely the numbers 1 to 9 belonging to the polar jetstream and the numbers
10 to 16 belonging to the arctic jetstream.

Because the RVA-areas all show a more or less elliptic shape, a local system of
coordinates is fixed for every RVA-area, with the origin in the point of maximum
RVA, the x-coordinate along the short axis of the ellipse and the y-coordinate along
the long axis. The elliptic shape of the RVA-areas permits the approximation of the
quasi-geostrophic streamfunction for each local area by

-2

Ys=—Us y+yScos(u, y)sin(u.-x)+E (3.15)

with % the amplitude, E a constant, u, and y, the wave numbers in the local y- and
x-directions respectively, and U the geostrophic wind of the basic flow in the
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x-direction. The wave numbers u, and p, are defined by u, = 2n/L, and p, = 2n/L,,
with L, the wavelength in the x-direction and L, that in the y-direction. It follows
from (3.8) and (3.15) that RVA is given by

RVA = Ugtu(u3 + u3) cos (, - ) cos (i, * x) =
3

8n :
= Us 5 [1+ (/L)% cos (i, ) c0s (1, %) (3.16)

(3.16) shows that the maximum value of RVA is determined by the quantities
Us, y%, L, and the ratio L,/L,, which can be computed with the aid of figure 7.

The ratio L,/L, has been determined by measuring the lengths of the line segments
along the local x- and y-axes between the two intersections of some arbitrarily
chosen isoline. The values of L, could be determined by measuring the length of the
line segment along the x-axis between the two intersections of the zero isoline. As
follows immediately from figure 7, this determination of L, is very inaccurate, due
to the uncertainty in the choice of the coordinate system for each RVA-area. Therefore,
another, more accurate procedure has been carried out. After connecting the points
of maximum RVA-values of each wave train by straight lines, the length of each
line segment was measured. The value of L, for the RVA-area with the number n
has been’computed with

L{n) =(Ly + L,)2 (3.17)

with L; the length of the line segment between the numbers n — 1 and », and L, the
length of the line segment between the numbers n and n + 1. To compute U in the
centre of the RVA-area, (3.15) is differentiated to y, which gives

s
dy

= — Us— g, W% sin (g, - y) sin (i, - %) (3.18)

For the origin of the coordinate system, which coincides with the centre of the
RVA-area and where the RVA has a maximum value, (3.18) reduces to

=T 3.19
P 5 (3.19)

Fig. 7 Objective analysis of the topography of 500 mbar with areas of advection of positive relative
vorticity (RVA > 0) for 25 March 1971, 00 GMT.
Dots indicate the grid points used in the BK3- model
Isohypses of 500 mbar (gpdam) are drawn.
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For the centre of each RVA-area U has been approximated by

v, ~ 80 2% (3.20)

with g = 9.8 ms™2. m is the map scale factor belonging to the latitude of the origin

of the coordinate system. f is the value of the coriolis parameter belonging to the
same latitude. A height difference of 120 or 240 m has been taken for 4z along the
y-axis. The centre of the corresponding line segment Ay is approximately coincident
with the origin of the coordinate system. The values of Az have been chosen arbitrarily
and depend on the lengths of the line segments Ay, which have to lie completely in
the jetstream area.

Replacing the amplitude % of the quasi-geostrophic streamfunction 5 of (3.15)

by a height amplitude z* according to z¥ = % V% and using (3.16), z¥ can be ex-

pressed as
fL T
73 = 2
87E g . US[l + (Lx/Ly) ]

(3.21)

I is the maximum value of the RVA. This value has been approximated by the
highest isoline value for each RVA-area. As Us, L,, L,/L, and I are known, z¥ can
be estimated with the aid of (3.21).

The values of L, L,/L,, Us, I and z% are given in table 3.

number of latitude Ly/Ly Lx Us I z%
the RVA area km ms—1 10952 dam
1 56° 0.50 — 32 4.8 —
2 53° 0.31 1725 12 1.2 2.2
3 59° 0.40 1425 25 2.4 1.3
4 51° 0.52 1525 20 2.4 1.6
5 54° 0.41 1735 30 2.4 1.8
6 43° 0.35 1390 43 2.4 0.5
7 38° 0.67 1330 51 4.8 0.5
8 39° 0.64 1560 40 24 0.7
9 39° 0.53 — 25 2.4 —
10 83° 0.42 — 21 24 —
11 73° 0.48 1730 21 4.8 5.6
12 54° 0.58 2005 13 1.2 2.8
13 60° 0.85 1590 18 1.2 0.8
14 71° 0.56 1390 8 1.2 1.8
15 65° 0.37 1565 20 1.2 1.1
16 60° 0.57 — 20 1.2 —

Table 3 Quantities of the positive RVA-areas for 25-3-"71, 00 GMT.




27

With the aid of table 3 the mean values of the given quantities can be computed.
These values are given in table 4 for the polar and artic jetstream separately.

mean values latitude Ly Lx/Ly Us z5
km ms~1 dam
polar
jetstream 48 °N 1527 0.48 31 1.2
arctic
jetstream 67 °N 1656 0.55 17 24

Table 4 Mean values of several quantities belonging to the positive RVA-areas of the polar
jetstream and the arctic jetstream for 25-3-"71, 00 GMT.

These mean values have a certain inaccuracy. For instance the mean value of L,
is somewhat underestimated, because the distance between two successive RVA-areas
has been measured along straight lines, whereas the streamlines of the basic stream-
function are curved. Nevertheless the value of L, of about 1600 km reasonably
agrees with the results of DopDS (1971), who found that depressions at sea level with
wavelengths between 1600 and 2000 km occur most frequently. The mean values of
L,/L, and U depend on the determination of the directions of the coordinate axes
for each RVA-area. These directions are not well defined. However, in spite of that
uncertainty the value of about 0.5 for the mean value of L,/L, is fairly characteristic
for RVA-areas, as can be seen from maps of RVA-patterns, which are drawn at the
Royal Netherlands Meteorological Institute on a routine basis. The mean value of
Us is not characteristic, as is indicated by table 4, giving a difference of a factor 2
between the wind velocity in the polar jetstream and that in the arctic jetstream.
This fact is not serious for the computations given in the next sections, as Us is used
exclusively in the formulas for the relation between the wavelength of the waves and
the static stability in section 3.3 and, as is shown in this section, the computed wave-
lengths of the short and the long waves (< ~ 5000 km) are fairly insensitive to varia-
tions of Us,.

The low values of z¥ in table 4, only a few decameters, are striking. But inspection
of figure 7 shows indeed that the waves, which form the RVA-pattern, must be regarded
as small perturbations on the large-scale flow pattern.

2.3 Some numerical values of D and o

From the absolute values of RVA given in 2.2 the values of D and w at several levels
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can be computed with the aid of (3.10) and (3.11). The extreme values of D have been
found at the levels of 50, 230 and 810 mbar respectively, and the extreme value of
@ at 510 mbar. In section 2.2 it has been shown that 95% of the RVA-values are
between —3.42 x 107272 and +3.42 x 107 %s~ 2. These extreme values of RVA can
be used to compute the extreme values of D and w for the reference atmosphere,
which are given below for a value of f, = 10™*s~ 1. The value of D at 1000 mbar is
also included.

p= 230mbar: —1.96 x 107571 <D < +1.96 x 107 %s7*
p= 810 mbar: —0.84 x 107 %571 <D < +0.84 x 107 %71
p = 1000 mbar: —0.54 x 107371 <D < +0.54 x 10777
p= 510 mbar: —275 mbar/24 hrs <o < +275 mbar/24 hrs (3.22)

The vertical velocity w in the reference atmosphere can be estimated with the aid
of w~ —g- p-w. According to the ICAO standard atmosphere p = 0.69 kg m™>
at 500 mbar. With g = 9.8 ms~? the possible values of w become:

—47cms ' <w< +47cms™? (3.23)
3 The relation between the real atmosphere and the reference atmosphere
3.1 .Height and thermal fields of isobaric levels of the reference atmosphere

compared with those of the real atmosphere

From formula (3.1) one can easily see that the contour lines of the height fields of
each pressure level must always be parallel to those of the 500 mbar level. This
should also hold for the real atmosphere, if this atmosphere would be equivalent
barotropic. In general, the contour lines of isobaric levels of the real atmosphere are
not parallel to each other. Figures 2a and 2b show that the greatest deviation is found
at sea level and that in the troposphere above the 500 mbar level the contours are
fairly parallel. These figures also clearly show that the departures at sea level are
caused by the frontal waves.

PALMEN and NEWTON (1969) discussed the relation between the long waves and the
short waves in the upper troposphere and the disturbances at sea level. They found
that the short waves are related to the sea level disturbances. The isotherm patterns
of these short waves are not in phase with the streamlines. For such waves the real
atmosphere obviously differs from the constructed reference atmosphere. The long
waves, however, consist of cold troughs and warm ridges with isotherm patterns that
are nearly in phase with the streamlines. Therefore, the real atmosphere agrees fairly
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well with the reference atmosphere as far as only these long waves are considered.
The short waves generally act as small perturbations on the long waves in the upper
troposphere. That explains the fairly good agreement of the upper troposphere
with the reference atmosphere. In the lower troposphere, however, the short waves
do not form small perturbations on the long waves, as the long waves have their
most pronounced development in the upper troposphere. So, the behaviour of the
lower part of the troposphere differs from the behaviour of the reference atmosphere.
This difference is manifested by phase shifts between the patterns of the isotherms
and the streamlines. Therefore, a further investigation into the relation between the
height field of 500 mbar and the thickness pattern of 500-850 mbar must be considered
necessary.
For the construction of a baroclinic model it is also important to know that relation,
because a good prediction of the 500 mbar height and a wrong prediction of the
thickness pattern of 500-850 mbar will inevitably lead to a poor forecast of the 1000
mbar height. (It should be noted here that the thickness pattern of 500-1000 mbar
can be related in a relatively easy way to the thickness pattern of 500-850 mbar.
This is elucidated in V.1). Such a wrong prediction can be caused for instance by an
incorrect phase shift between the waves in the thickness pattern and those in the 500
mbar surface. It is a well-known fact that the 1000 mbar forecasts of baroclinic
models based on filtered equations are rather poor compared with those of the 500
mbar level. It is not very unrealistic to suppose that a possible cause of the relatively
unsuccessful prediction for sea level by some baroclinic models is due to a false
prediction of the phase shift of the thickness field. For one may assume that nearly
all models give good predictions of the movements of the waves at 500 mbar for at
least 24-36 hours ahead, as even the use of the simplest barotropic vorticity equation
at that level results into good forecasts for such periods.
It was possible to investigate the relation between the thickness patterns of 500-850
mbar and the heights of the 500 mbar level during the year 1971. This investigation
was carried out with the aid of the maps of the Royal Netherlands Meteorological
Institute, which were drawn for 00 and 12 GMT every day. The relationship thus
found for the real atmosphere can be summarized as follows:
1° The waves of the two patterns move with nearly the same speed.
2° The two patterns show the same development (decreasing or increasing ampli-
tudes, appearance of disappearance of cut-off systems).

3° The phase shift between the two patterns is nearly constant with respect to time
(little or no phase lag for the long waves and a phase lag between 0° and 90° for
the short waves).

These features are illustrated by an example given in figures 8a, 8b and 8c for the
dates 25-3-’71, 12 GMT, 26-3-’71, 12 GMT and 27-3-’71, 12 GMT. Dashed lines are
isolines of the 500-850 mbar thickness pattern, and continuous lines represent.the
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heights of the 500 mbar level. Of special interest here is the long wave with the top
of the 552 dam isopleth at 30°W, 56°N in figure 8a.

During the following 48 hours this wave moved to the east with an increasing
amplitude. The positions of the 552 dam top in figures 8b and 8c are 22°W, 61°N
and 7°W, 63°N respectively. These figures clearly show that the dashed lines of the
thickness field, marked by the circled numbers (mean temperatures), followed the
movement and the development of the long wave in the 500 mbar pattern. For this
wave the phase shift between the thickness pattern and the 500 mbar pattern was
small. The short waves, which are superposed on the long wave pattern, are most
easily recognized in the thickness pattern. See for instance figure 8a, where the
—15°C isotherm shows three tops at 48°W, 51°N, 38°W, 59°N and 13°W, 56°N
respectively.

The relation between the height of the 500 mbar surface and the thickness of
500-850 mbar of the reference atmosphere follows from (3.1), namely

zs — 255 =(1 — Ags) zs — By s (3.24)

This formula shows that for the reference atmosphere the two patterns must have
the same speeds, the same developments and no phase shifts. The behaviour of the
height of the 500 mbar surface is described by the barotropic vorticity equation,
because the level of non-divergence was found at about 500 mbar. See also figure 6.

The good results achieved with the barotropic vorticity equation, used at the 500
mbar level for forecast periods till about 36 hours ahead, which are especially obtained
for the long waves, indicate that the defined reference atmosphere of section 1 is a good
first order approximation for the behaviour of the long waves in the atmosphere. The
short waves, however, are baroclinic and therefore a further investigation of the agree-
ments and differences between the short waves and the reference atmosphere is
necessary. In the next sections more quantitative comparisons are given. The static
stability at 500 mbar, the horizontal divergence and the vertical velocity of the real
atmosphere are compared with the same parameters for the reference atmosphere.
Moreover, some considerations are held about the formulation of the thermodynamic
equation and the choice of the value of static stability occurring in that equation.

Fig. 8 Analyses of topographies of 500 mbar and thickness fields of 500—850 mbar.
— Isophypses of 500 mbar (gpdam).
--- Contours of mean temperature (°C) of the layer of 500—850 mbar.
a. Valid for 25 March 1971, 12 GMT.
b. Valid for 26 March 1971, 12 GMT.
¢. Valid for 27 March 1971, 12 GMT.
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3.2 Static stability computations for 500 mbar for 25-3-71, 00 GMT
The static stability is defined as

*d c, 0P
op> ¢, p p

o (3.25)

With the aid of (3.1) and the above formula the static stability o, , of the reference
atmosphere becomes

d?4 4 c, d4 N d’B LG dB (3.26)
= zZ — - .
Ora. g dp2 Cp p dp 5 dp2 Cp “p dp

So o, , is a linear function of the height of the 500 mbar level. The static stabilities
at 500 mbar of both the reference atmosphere and the real atmosphere will now be
compared for the date 25-3-"71, 00 GMT, as this is the time for which the reference
atmosphere has been specified in 2. For the computation a difference approximation
of (3.25) is used, namely: \

a=gz3+z7—225_c,,-g Z3 — Zq 327)
Ap)* ¢, ps 24p° '

where Ap = ps — ps = p; — ps and the indices 3, 5, 7 refer to respectively 300, 500
and 700 mbar. Using this difference approximation, the s-value of the real atmosphere
can be computed at the 120 grid points of figure 1. Noticing that the heights of the
reference atmosphere at 300 mbar and 700 mbar are given by zy = A4 - z5 + B; and
z; = A, z5 + B, the ¢, -values can also be computed with (3.27) for two arbitrary
values of zs5. Then o, , is known for every value of z5, because of the linear depend-
ency of ¢, , on zs. The computed values of ¢ (points) and o, , (straight line) are given
in figure 9. In this figure the g-values of the real atmosphere are plotted as a function
of the heights of 500 mbar for the corresponding grid points. Though the computed
o-values vary considerably there is no inconsistency between these values and the
straight line of the reference atmosphere.

For the 120 grid points the mean values of ¢ and o, , were computed and compared
with ¢ at 500 mbar of the ICAO standard atmosphere, which was also computed
with the aid of (3.27). The value of o, for the polar jetstream in figure 7 was obtained
by taking the mean of the heights z at all RVA-centres 1 to 9, which is 544 dam,
and by reading the corresponding value of o, in figure 9. The computed values are
given below and agree mutually.
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Fig. 9 Relation between the values of the static stability for 25 March 1971, 00 GMT, and the heights
of the topography of 500 mbar for each of the 120 grid points in figure 1.
The static stability of the reference atmosphere as a function of the height of the 500 mbar
level is given by the straight line.

Mean value of ¢ at 120 grid points : 38 x 1077 m*kg ™22
Mean value of ¢,, at 120 grid points 138 x 1077 m*kg~%s?
Value of ¢ for the ICAO standard atmosphere: 37 x 1077 m*kg™2s?
Mean value of o, , for the polar jetstream  : 37 x 1077 m*kg™2s?

It must be mentioned here that all computations carried out with (3.27) possess a
relatively large truncation error due to the use of differences. An estimation of the
truncation error is possible, because the static stability of the ICAO standard atmo-
sphere is exactly known at each pressure level. The static stability ¢ in (3.25) can also
be expressed as

R2.-T (g 4T
o=—— (£ 4 —) (3.28)
g ¢, dz

dT
According to the definition of the standard atmosphere,?— = —0.0065°C per stand-
VA

ard geopotential meter in the troposphere. Further, T'is specified for a chosen pressure
at sea level, so that according to the hydrostatic law T is known at every pressure
p, and consequently also ¢. At 500 mbar ¢ = 28 x 10~7 m*kg~2s2. So the truncation
error caused by the use of difference approximations is about 30%,. However, mutual
comparison is possible, because in all computations the same difference approxima-
tion has been used.
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The above computations suggest that the mean values of the static stabilities at
500 mbar of the real atmosphere and the reference atmosphere agree with each other
and can also be used as a mean value for the polar jetstream of the reference atmo-
sphere.

33 Some considerations with respect to the formulation of the thermodynamic
equation and the choice of the static stability

In section 1 the thermodynamic equation was not taken into consideration, for
the reference atmosphere could be completely defined with the relations (3.1), (3.2),
(3.3) and (3.4). It will be shown now that for the reference atmosphere defined in this
way the thermodynamic equation (2.14), without the heat term @, is valid at 500 mbar
for some specified wavelengths only. These wavelengths depend on the choice of the
static stability and the geostrophic wind of the basic flow.

Substituting (3.5) and (3.9) into (2.14) the following expression is found for the
thermodynamic equation at 500 mbar:

dA . a5 f ,
—— s + —» | (A-K— 4% dp-RVA=0 (3.29)
dp fo J

The quasi-geostrophic vorticity equation (3.2) at 500 mbar becomes

VA5 + J (s, Vs +f) =(As - K — AHDRVA = (1 — K) J (s, V2Y5) = O
(3.30)

because A5 = 1 and K = 0.99 ~ 1, which value was computed in 2.1. From section
2.2 it follows that the mean latitude of the positive RVA-areas 1-9 of the polar
jetstream is 48°N, while the latitudes of the individual areas vary between 38°N and
59°N. With reasonable accuracy one can assume, therefore, that the polar jetstream
is situated along 48°N, and the use of the S-plane approximation of the equations
for 45°N is reasonably justified in this case. Further, it is assumed that the stream-
function ¥ of the jetstream not only locally satisfies (3.15), but as well for the whole
jetstream region with the x-axis directed along the 45°N latitude circle and the y-axis
perpendicular to it. So for the considerations given here the jetstream is represented
by a simple sine-wave. Then using (3.15) and substituting the result of (3.16) into
(3.29) and (3.30), taking the Laplacian operator V> of (3.29) and eliminating the
tendency /5 from (3.29) and (3.30), one can derive a relation between the static
stability 65 at 500 mbar and the wavelength of the wave, resulting in



35

80| /,/'/.EM ~ ~
70 / ./.__.\. .\
I 60 | /'/ V25 \.\. \

™ 4;41;:—20-\.\ N N\

1107 kg 2 i §2) w0 4./'65:1'5\-\ -\\ \. \

)
0 T T T T T\ T T n\ T T |\ T T |\ T T T T
0 0 20 30 40 S0 60 70 80 90 100 110 120 130 140 150 160 170 180 190

L* (0% ) ——»

Fig. 10 Relation, valid for the reference atmosphere at 500 mbar for 25 March 1971, 00 GMT,
between the static stability o, the geostrophic windspeed Us(ms—1) of the basic zonal flow
and the ‘quadratic wavelength’ L*,

d4 - L*
(%), ()
Os dp /s Us

= & | (3.31)
J (4 — 4%dp

LZ

with K =1 and a ‘quadratic wavelength’ L* = 1/(u2 + p2) =
qu eng [ + 13) W+ L)

Taking the values of f, and § for 45°N and those of 4 from table 2 a relation results
between o5, Us and L¥, which is given in figure 10 for different values of these para-
meters. This figure clearly shows that for given values of o5 and Us one can find
two, one or no values of L*. From 3.2 it follows that o, , of the reference atmosphere
approximately equals that of the ICAO standard atmosphere. According to table 6
the value of the ICAO standard atmosphere is 28 x 10~ 7 m*kg~2s2. Assuming the
same value of the truncation error of o, , , it also becomes ¢, , ~ 28 x 10”7 m*kg~2%s2,
Taking for o5 the value of ¢,, one can read the values of L*, namely L% and L%,
from figure 10. In table 5 the possible values of L, given by (L,); and (L,), are given
as functions of Us and L,/L,. For the computations of table 5 three values of L,/L,
have been chosen, namely 0, 0.5 and 1, for these values are most common in the real
atmosphere. If # denotes the number of waves around the latitude circle 45°N, then
it follows from table 5 that two kinds of waves are possible, namely waves with
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Us

ms~1 10 15 20 25 31 10 15 20 25 31
Lx/Ly (Lx)i km (Lx)2 km

0 3400 2800 2700 2700 2600 3400 5400 6400 7400 8300
0.5 3800 3100 3100 3000 2900 3800 6000 7200 8200 9200
1 4900 4000 3900 3800 3700 4900 7600 9100 10400 11700

Table 5 The computed wavelengths (Lx)1 and (Lx) according to (3.31) for several values of Us
and ratios Lx/Ly.

varying from 6 to 11, and waves with » from 2 to 8. These kinds of waves roughly
agree with the long and ultra-long waves of the atmosphere. Table 5 also shows that
the wavelengths (L,), for a fixed value of L,/L, are fairly independent of U unlike
those of (L,),, which vary more than a factor two.

The computations show that two groups of waves with wavelengths from ~ 2500
km to ~ 4000 km and with wavelengths from ~ 3500 km to ~ 12000 km are possible.

In 2.2 a value of Us = 31 ms™* was computed for the polar jetstream at 25-3-’71,
00 GMT. It follows from table 5 that for this value of U the wavelengths of the long
waves of the reference atmosphere must be about 2500-4000 km. Figure 7 shows that
the long waves in the polar jetstream have those wavelengths. This result for that date
supports the conclusion drawn in section 3.1, that for the long waves the behaviour of
the real atmosphere shows resemblance with that of the reference atmosphere. So it
indicates that the long waves from 2500 to 4000 km can be reasonably well described
by a numerical model using the thermodynamic equation at 500 mbar with a value
of the static stability in accordance with the one valid for the ICAO standard atmo-
sphere. Such a model will show an equivalent barotropic behaviour for these waves.

However, in the real atmosphere also short frontal waves occur. These waves are
of great importance for day-to-day weather forecasting, because clouds and precipita-
tion are associated with them. Therefore it would be very favourable if these waves
could also be described by a numerical model. Because in general the air in these
waves is saturated, the values of the static stability to be used should be in accordance
with saturated adiabatic lapse rates. In table 6 several values of static stabilities are
given, which have been computed for various pressure levels and various temperatures
at 1000 mbar and are based on saturated adiabatic lapse rates. Besides, the values
according to the ICAO standard atmosphere have been computed. For that purpose
the static stability (3.25) has been rewritten with the help of the hydrostatic law as

R 1T
o= e (3.32)
¢p 9p
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Using this formula and the “Tables of precipitable water and other factors for a
saturated pseudo-adiabatic atmosphere of U.S. Weather Bureau (1951), the values

oT
of the static stabilities have been computed. F of (3.32) has been approximated by
b4

(Tps 4p — Tp— 4p)/(24p), where Ap denotes a pressure difference of 50 mbar. In the
case of the ICAO standard atmosphere formula (3.28) has been used.

Table 6 shows that for temperatures of 10°-14°C at 1000 mbar, which are not
unusual in warm sectors of frontal waves, the values of the static stabilities at 500
mbar of saturated adiabatic lapse rates are much lower than that of the ICAO
standard atmosphere at the same level. So these values do not agree with the value of
the reference atmosphere. Nevertheless it is important to know what wavelenghts
result from (3.31), if one takes values of o5 in accordance with those of the saturated
adiabatic lapse rates with temperatures of 10°C and 14°C at 1000 mbar. These values

are respectively 10 x 1077 and 15 x 10”7 m*kg~2s?. Figure 10 shows that for these -

values the solutions for the wavelengths of the short waves are nearly independent of
Us. The solutions for the wavelenghts of the ultra-long waves are not taken into
consideration, because ultra-long waves, which are fully saturated with water vapour,
have no real physical meaning. The computed short wavelengths are given in table 7
for a value of U5 =31 ms™!.

Table 7 shows that the wavelenghts are smaller than those of table 5. The wavelength

o of ICAO " o of an atmosphere with a saturated
standard adiabatic lapse rate
p atmosphere
mbar (10-7 m4 kg—2s2). (10-7 m4 kg—2s2)
300 69 <1 2 4 16
350 52 <1 3 7 23
400 41 <1 5 12 30
450 33 1 8 14 29
500 28 2 10 15 28
550 24 3 11 17 27
600 20 4 12 17 25
650 17 5 13 17 24
700 15 5 13 i6 22
750 13 6 12 16 21
800 12 7 12 15 19
850 11 7 11 14 17
temp. at
1000 mbar 14°C 0°C 10°C 14°C 20°C

Table 6 Values of the static stability of an atmosphere with a saturated adiabatic lapse rate and
of the ICAO standard atmosphere for various temperatures at 1000 mbar.
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o5 10 x 10~7m4kg—2s2 15 % 10—7m4‘kg—252
Ly/Ly 0 0.5 1 0 0.5 1
Lx (krﬁ) 1400 1600 2000 1900 2100 2700

Table 7 The wavelengths computed from (3.31) with Us = 31 ms—! and with the values of the
static stability at 500 mbar for saturated adiabatic lapse rates related to temperatures of
10 °C and 14 °C at 1000 mbar.

of 1600 km, which belongsto o5 = 10 x 10”7 m*kg~?s* and L,/L, = 0.5, agrees with
that of the mean wavelength of the RVA-pattern at 25-3-"71, 00 GMT, as can be seen
from table 4 in 2.2. As is shown in the next section, the wavelengths of table 7 also
agree with those of the frontal waves at sea level in the Atlantic region.

It can now be concluded that the relation (3.31) between the static stability at 500
mbar and L* holds for both short baroclinic frontal waves and long equivalent barotropic
waves.

Concerning the design of a baroclinic model aiming to describe developing short
frontal waves and which makes use of the thermodynamic equation at 500 mbar with
a constant value of the static stability in accordance with a saturated adiabatic lapse
rate and temperatures from ~ 10°C to ~ 14°C at 1000 mbar, it can be remarked
that the long waves, which are equivalent barotropic at the initial time ¢ = #,, will
not remain so during the integration of the equations. So the use of ‘saturated adiabatic’
values for the static stability in the thermodynamic equation at 500 mbar will violate
the equivalent barotropic behaviour of the long waves in the real atmosphere.

Up to now only the use of the thermodynamic equation (2.14) at 500 mbar has
been discussed. However, in the baroclinic model described in Chapter IV, the
thermodynamic equation is integrated from 300 to 500 mbar from 500 to 850 mbar.
Therefore, further discussions are necessary on the integrals given below.

p5 al/} a‘// - ) ps R- Q

pf Lot ) o] e N
and

pP8.s alp alp - ~ 8.5 R . Q

[ [+ (e 5) oo e 39

ps ps
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Equations (3.33) and (3.34) arc meant to describe the thickness patterns of the
short waves, which are related to the frontal waves at sea level. As the air in those
waves is generally saturated, one has to choose the values of the static stability o
belonging to saturated adiabatic lapse rates. Table 6 shows that for a given tempera-
ture at 1000 mbar the static stability is not strongly dependent on pressure p. Therefore,
it is permitted to take constant values of ¢ in (3.33) and (3.34). These are denoted by
055 for the layer from 300 to 500 mbar, and by o5_g 5 for the layer from 500 to
850 mbar. Taking for ¢;_5 and for o5_g4 5 the average values belonging to saturated
adiabatic lapse rates with temperatures of 10°C and 14°C at 1000 mbar, for the layers
300-500 and 500-850 mbar respectively, it can be shown that the long waves of the
reference atmosphere do not satisfy the integrated thermodynamic equations (3.33)
and (3.34). For that purpose (3.5) and (3.9) of the reference atmosphere are substituted
into (3.33) and (3.34). It is assumed therefore that Q = O for the reference atmosphere.
So one gets

. ors ps_ D ]
(As— 1) ¥s — I JU(A ‘K- 4 )dp]dp “RVA =0 (3.35)
? p3 O
and
. . P85 P )
(1 = As s = = JU(A ‘K- A )dp]dp ‘RVA =0 (3.36)
° ps O

It will be shown that for the long waves of the reference atmosphere, which satisfy
the sine-wave formula (3.15), (3.35) and (3.36) are not valid. Using (3.15), (3.16) and
the quasi-geostrophic vorticity equation (3.30) with K = 1, equations (3.35) and (3.36)
can be reduced, in a similar way as was done for (3.29), to the following relations
between the quadratic wavelength L* and the static stabilities o5_5 and 05_g 5.

O3-5 (1-4)0—-p-L*UsL*

f§ ps D
J[J 4 - Az)dp:|dp

p3

(3.37)

and

Os5-8.5 (Ag.s — (A — B - L*UsL*

f: Pg.s D
- e

ps O

(3.38)
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Taking again the values of f, and B at 45°N, Us = 31 ms™! and the values of 4
from the reference atmosphere at 25-3-"71, 00 GMT the values of L,, which correspond
to the chosen values of 655 and o5_g 5, can be computed for several ratios of L,/L,.
For that purpose the mean values of the static stabilities 65_5 and ¢5_g s have been
computed with the aid of table 6, and these are given in table 8. As was the case for
(3.31), for every value of ¢ in table 8, two values of L, can be computed for a given
ratio L,/L,, namely an ultra-long (planetary wave) and a short wave. The ultra-long
wavelengths are not taken into consideration here. The computed short wavelengths
are given in table 9.

temperature G3-5 05-8.5

at 1000 mbar (10-7m4kg—2s2) (10-7m4kg—2s2)
10 °C 5.6 11.8

14 °C 10.4 15.9

Table 8 Mean values of the static stability for the layers 300—500 and 500—850 mbar of an
atmosphere with a saturated adiabatic lapse rate.

4 03-5 05-8.5

temperature ‘
at 1000 mbar 10 °C 14 °C 10 °C 14 °C

Ly/Ly Ly (km) Lx(km) ILx(km) Lx(km)
0 1100 1400 1400 1700
0.5 1200 1600 1600 1900
1 1500 2000 2000 2400

Table 9 The computed short wavelengths from (3.37) and (3.38) with Us = 31 ms—1 and the
mean values of the static stability for saturated adiabatic lapse rates according to table 8.

This table clearly shows that for the values of the static stability in table 8 no solu-
tions exist corresponding to the wavelengths from 2500 to 4000 km (long waves).
The computed wavelengths agree with those of table 7, which have been obtained
by applying the thermodynamic equation at 500 mbar. It has to be remarked that the
computed wavelengths depend on the values of A(p) and Us for one date, namely
25-3-71, 00 GMT. However, the solution for the short wavelengths is very insensitive
to variations of U, because f - L*/U 5 < 1 holds. Since the values of A(p) for 25-3-"71,
00 GMT, are fairly representative for polar jetstream conditions over the North
Atlantic and Western Europe, the computed short wavelengths are representative.
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Moreover, computations with A-values for other dates did not lead to essentially
different solutions for the wavelengths. -

It is of interest to know what kind of values of the static stability one gets if a
wavelength of about 3000 km is introduced into (3.37) and (3.38). The relevant
computed values of the static stability are given in table 10 for the three chosen values
of L,/L,. Following this procedure much higher values result. These agree more with
those of the ICAO standard atmosphere around 500 mbar.

The results obtained for the integrated forms (3.33) and (3.34) of the thermodynamic
equation agree with those following from the application of that equation at 500
mbar. So the long waves of the reference atmosphere do not satisfy (3.33) and (3.34)
if one uses ‘saturated adiabatic’ values of the static stability.

Lx/Ly 03-5(10""m4kg2s2) 05-3.5(10~"m4kg=2s2)

0 38 41
0.5 32 34
1 .21 23

Table 10 The computed values of the static stability from (3,37) and (3.38) with Us =31 ms—1
and Lx = 3000 km.

The results obtained in this way indicate that the use of a constant value of the
static stability in the integrated forms (3.33) and (3.34) of the thermodynamic equation
is not permitted, because every atmospheric flow pattern consists of baroclinic short
waves and equivalent barotropic long waves, which are both important for short
range numerical weather prediction.

A possible way to overcome this diff iculty will be proposed now. It is based on modified
forms of the equations (3.33) and (3.34), which are given below. '

j [Z”” ( W w]dp ey = —J R—'Q”—_""dp (3.39)
P ¢ for P
pP3 P3
and
Ds.5 a ps.5 R Q -
v ad __ [ Re
f [ap (‘” ““) A “’}d” Fles = f ot G
pPs Ds

g5 and &g 5 being corrections added to the equations, and defined as
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=(A; — s — f— f [ J (4-K — Az)dp] dp-RVA (3.41
0 P340
and
egs = (1 — Ag 55— ”}‘;"i- f [ j (4-K - Az)dp] dp-RVA - (342)
° ps O

The tendency 15 at 500 mbar equals the one contained in the vorticity equation
. (3.30).

It can be shown that for Q =0, all waves, which satisfy the definition of the
reference atmosphere in 1, also satisfy equations (3.39) and (3.40). This follows from
the substitution of (3.5) and (3.9) valid for the reference atmosphere, and of (3.41)
and (3.42) into (3.39) and (3.40). So the long waves of the real atmosphere, which
are equivalent barotropic, will meet the requirements of the integrated forms of the
thermodynamic equation when the correction terms &5 and &g 5 are added.

e; and eg 5 generally not being equal to zero, equations (3.39) and (3.40) are not
identical with respectively (3.33) and (3.34). However, for the short baroclinic frontal
waves, of which the behaviour of the thickness fields is defined by (3.33) and (3.34),
g3 and gq 5 should have to equal zero. It can be shown that this is true if ¢5_5 and
05_g.5 equal the mean values of the static stability belonging to saturated adiabatic
lapse rates with temperatures from 10°C to 14°C at 1000 mbar. For that purpose
it is assumed that the streamfunction /5 at 500 mbar locally satisfies (3.15). As has
been shown in 2.2, this is a reasonable approximation because of the elliptic shape of
the RVA-areas. Using (3.30) with K =1, ¢; and &5 5 can be expressed, after some
computational work, as

e vate 4, —n(1 -2 Y
3 = — 5¢5ﬂx{(3“)< - U5>

ps p

+ ffi f[ f 4 - 4 )dp:ldp} cos (1, - y) cos (i - X) (3.43)

Pp3

vyt la—a(1-2F
88.5‘_—. sY 3, {( - s.s)( - U >

5

and

pPs.s P

+ f5 > IU(A A)dp} }cos<ﬂy-y>cos(ux~x) (3:44)

ps
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g5 and &g 5 are zero for all values of x and y if the terms between the braces of
(3.43) and (3.44) are zero. So (3.37) and (3.38) must hold. The wavelengths following
from these relations have already been computed and given in table 9. These do have
the required low values.

It can be concluded that equations (3.39) and (3.40) are consistent with the equivalent
barotropic long waves and the baroclinic short waves, having saturated adiabatic lapse
rates with temperatures from 10°C to 14°C at 1000 mbar. These equations are used
for the baroclinic model in Chapter IV. Since it has been shown that (3.37) and (3.38)
are fairly realistic relations between wavelengths and static stabilities, it is possible to
use these relations for the specification of the static stabilities in (3.39) and (3.40). For
those computations one has to make a choice of L*. This procedure offers the possibility
by varying the quantity L* or L, (after a choice of L /L) to change the values of the
static stability in the equations of the baroclinic model.

For the baroclinic model, the values for the polar jetstream in table 4 are taken to
compute the static stability. It follows from table 9 that for L, = 1600 km and for
L,/L,~ 0.5, 05_5and 05_g 5 agree with respectively saturated potential temperatures
of 10°C for the layer 500-850 mbar and of 14°C for the layer 300-500 mbar. This
choice of L, and L,/L, implies a stable thermal stratification of the troposphere
between 300 and 850 mbar. It is interesting to mention that the mean saturated poten-
tial temperature of the layer 300-500 mbar of the ICAO standard atmosphere is
14°C and that of the layer 500-850 mbar 12°C.

In the next section the relation between the RVA at 500 mbar and the frontal
waves at sea level is outlined. It will then be shown that the computed ‘wavelengths
of table 9, belonging to the saturated adiabatic lapse rates and which agree with the
mean wavelength of the RVA on 25-3-71, 00 GMT also agree with the mean wave-
length of the most frequently occuring frontal waves at sea level.

For the baroclinic model the integrals in (3.39) and (3.40) must be evaluated
Therefore knowledge of @ as a function of pressure p is necessary. Because w is
evaluated with the aid of the continuity equation (3.3) knowledge of the horizontal
divergence D is also necessary. For the equivalent barotropic long waves the profile
in the vertical of D is known and is given by (3.6). However, for the baroclinic short
frontal waves the profile of D has to be further investigated. This investigation is
carried out in 3.5 with the aid of a simple two-parameter model.

34 Relation between the advection of relative vorticity at 500 mbar and the
Jfrontal waves at sea level

Frontal waves at sea level are connected with cyclonic development near the fronts.
Development at sea level was investigated by SUTCLIFFE (1939, 1947) and SUTCLIFFE and
FORSDYKE (1950). They found a relationship between the isobaric divergence at 1000
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mbar and the advection of thermal vorticity connected with the thermal wind between
1000 and 500 mbar. PETTERSSEN (1955) reviewed and extended SUTCLIFFE’s theory of
development with particular reference to cyclonic development. It was suggested
that cyclogenesis resulted from the release of some kind of instability by finite per-
turbations, which could be identified with the wave-shaped motion patterns in the
middle and upper troposphere. PETTERSSEN, DUNN and MEANS (1955) tested the follow-
ing working hypothesis: ‘Cyclonic development at sea level occurs when and where
an area of positive vorticity advection in the upper troposphere becomes super-
imposed upon a frontal zone at sea level’. They found this hypothesis to be useful
for prediction purposes.

Recently, DusHAN (1973) investigated the SUTCLIFFE-PETTERSSEN development theory
for two cases over the Eastern United States. He found that advection of vorticity
at the level of non-divergence exerts the dominant influence for initial cyclonic
development and that the thermal terms (advection of thickness, stability and diabatic
influence) become only important after the development has begun.

The studies mentioned show the importance of the advection of positive vorticity
in the higher levels of the troposphere for the development (production of positive
vorticity) at sea level. Investigations of charts of advection of relative vorticity at
500 mbar and of pressure charts at sea level with analyzed fronts clearly show that
the following relationships exist: centres of young frontal waves (wave tops) tend to
coincide with the centres of positive RVA-areas during the early stages of development.
During the development the RV A-value increases. After the start of the occlusion process
the RVA-centre tends to coincide with the occlusion point at sea level and the RVA-
value reaches a maximum. At the decaying stage of the cyclone the value decreases.
A picture of the characteristic relationship between the positive RVA at 500 mbar
and the developing frontal wave at sea level is given in figure 11.

A practical method to define the fronts at sea level with the aid of the RVA-charts
computed from the numerical forecasts of the 500 mbar heights was developed by
BIYVOET at the Royal Netherlands Meteorological Institute. Since 1968, these charts,
based on the numerical 500 mbar prognoses of NMC-Washington D.C., have been
used by the medium-range forecast section for the forecasts up to three days ahead.

An example of the above-mentioned relations is given in the figures 12a-12e,
which show a series of surface pressure analyses with fronts and isolines of computed
RVA. The subsequent analyses are given with intervals of one day. Especially interest-
ing is the wave centred at 45°N and 43°W at 16-3-’71, 00 GMT (fig. 12a). The follow-
ing positions of this system are 47°N and 23°W (fig. 12b), 49°N and 9°W (fig. 12¢),
52°N and 5°W (fig. 12d) and 50°N and 2°W (fig. 12¢). First one sees the developing
RVA in relation with the developing wave (fig. 12a, b, ¢) and then the fast decrease in
relation with the decay at sea level of the wave (fig. 12d, e). The relation described
above does not seem to be fully satisfied in this case. The fact that the surface analyses
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Units of the RVA: 0.6-1.2x10%2 8581 2 - 2 4x10% 2 B > 2.4x10%2

Fig. 11 Sea level pressure analysis and the advection of positive relative vorticity (RVA > 0) at
500 mbar, valid for 19 July 1974, 12 GMT. :
Isobars are labelled in mbar.

were handmade and the RVA-values were computed from objective 500 mbar analyses
with the aid of sparsely available upper-air observations over the Atlantic can be the
cause of a certain inconsistency between the RVA-pattern and the development at
sea level. ‘

The relatively close relation between the RVA-pattern at 500 mbar and the frontal
waves clearly shows that the mean wavelength of the RVA-areas and the wavelengths
of the developing disturbances at sea level must be of the same order. popDs (1971)
investigated the behaviour of depressions at sea level and in doing so, he selected
those for the years 1965, 1966 and 1967. These depressions had reached their minimum
central pressure in an area bounded by the latitudes 40°N and 65°N and the ldngitudes
40°W and 40°E. The total number of depressions was 288 for these three years.
Table 11 shows the frequency of depressions as a function of the diameter at the time
of minimum central pressure. The diameter of each depression was defined by DODDS
in measuring the length of the linesegment (through the centre in west-east direction)
between the two intersection points with the outermost closed isobar. The wa?v‘_elength
of each system can be regarded as roughly twice its diameter. -
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20
12-2.4x10%
4-4.8x10°2
48x107%2

Intervals of RVA-values:

Fig. 12 Analysis of sea level pressure and advection of positive relative vorticity (RVA > 0) at
500 mbar for a period of S days.

Valid for 16 March 1971, 00 GMT

Valid for 17 March 1971, 00 GMT

Valid for 18 March 1971, 00 GMT

Valid for 19 March 1971, 00 GMT

Valid for 20 March 1971, 00 GMT.

ppoow
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diameter frequency diameter 'frequency diameter frequency

km % km % km %
300 <1 . 1500 9 2700 3
500 5 1700 9 2900 2
700 10 1900 6 3100 <1
9200 18 2100 4 3300 1
1100 13 . 2300 3 3500 1
1300 12 2500 3 3700 1
Table 11 Frequency of depressions at sea level as a function of the mean diameter measured at

the time of minimum central pressure after DopDS (1971).

As the depressions DODDS investigated were short waves as well as long waves, the
mean wavelength being ~ 2800 km was not a good measure to compare with the
dimensions of the RVA-areas. Table 11 shows that the frequency of the long waves
is small compared with that of the short waves. Therefore the wavelengths of the
depressions with the greatest frequency are a better estimate. These wavelengths vary
from 1600 to 2000 km. The mean wavelength of RVA-areas, which appeared to be
about 1600 km at 25-3-’71, 00 GMT (see table 4in 2.2), and the wavelengths of table 9
agree fairly well with those of the greatest frequency at sea level. However, to avoid
difficulties in defining shallow depressions and in specifying depressions within
systems having more than one centre, poDDs ignored depressions with fewer than
three closed isobars drawn at 4 mbar intervals at the times the systems had reached
their minimum central pressures. Therefore, an underestimate of the frequency of the
short waves seems to be possible.

3.5 Divérgence D and of young developing frontal waves and a comparison
with those of the reference atmosphere

In this section the divergence D and the vertical velocity w of young developing frontal
waves are examined, with the aid of a simple two-parameter model. The two chosen
parameters are the heights of the 500 mbar and the 1000 mbar levels, with the addition-
al assumption that the heights of all pressure levels in the troposphere satisfy

z=219+ C(p) " (25 — 2z10) + Ca(D) (3.45)

with Ci(ps) =1 and Cy(p1o) = Cy(ps) = Cz(Pw_) =0
zs and z,, are the heights of the 500 mbar and the 1000 mbar levels respectively.

These are in principle mutually independent, so that the above assumption is an
extension of (3.1) valid for the reference atmosphere. The functions C, and C, are
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defined by the assumption that the reference atmosphere has to be a special case of
(3.45). So, after the substitution of (3.1) into the'left and right hand sides of (3.45) the
following two relations result.

Ci=A—-A4,0)/(L —A;y) and C, =B+ (C; — 1By, (3.46)

with A,, = A4 at 1000 mbar and B;, = B at 1000 mbar.
Z4¢ 18 split up into one part based on the reference atmosphere and another on the
departure z* from it.

Substituting this formula into (3.45) and making use of the results of (3.46) then
gives

z=A zs+C* z* +B with C*=(1— A)J1 — Ayq) (3.48)

or, using the definition of the quasi-geostrophic streamfunction

*

‘B 4
87 with yr=¢

=AY + C*-y*
b=drgs £ Oyt 1,

(3.49)

For the considerations given in this section it is again assumed that the values of
A for 25-3-"71, 00 GMT are sufficiently representative to be used for the calculations.

It can be seen from figure 6 that w = 0 at p = p, and p = p,, for the reference
atmosphere. Therefore, the boundary condition w = 0 is applied at the levels p, and
DPio- »

Below 300 mbar the A-profile is to a high degree linear as follows from figure 4.
In order to simplify the following computations it is assumed that A is exactly linear
between p, and p,,. This assumption introduces an error between p, and p,, but
this has no great influence on the computed values of the horizontal divergence D
and the vertical velocity w, as will be shown later on. Using the value of 4,4, = 0.2
from table 2, 4 can be expressed as

A= —16p/p,+18 (3.50)

After some computational work it follows that

pPio pio

fAdpzj A%dp (3.51)

P2 2
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This result is not surprising, because it can easily be shown for each atmosphere
satisfying (3.1), (3.2) and (3.3) with the conditions @ = 0 at 200 mbar and 1000 mbar
and D = 0 at 500 mbar, that (3.51) is exactly valid.

To get the equations of the two-parameter model, the vorticity equation, the con-
tinuity equation and the thermodynamic equation are used. The first equation is
obtained by integrating the vorticity equation (3.2) over the whole troposphere from
D2 to pi, and using the continuity equation (3.3) together with the boundary conditions
o =0 at p, and p;,. This results in

pio

j VA + T, V3 +1)]dp =0 (3.52)

p2

The second equation is given by the integrated continuity equation (3.3). Using
the condition that w = 0 at p,,, it becomes

o = Jde | (3.53)

The third equation is the vorticity equation (3.2) itself. A fourth equation is needed,
because there are four unknown quantities, namely V5, ¥*, D and o. Because the
short waves are of interest here and as for these waves the thermodynamic equation
has to be used for the description of the dynamics of the thermal fields, one of the
integrated forms of this equation can be used.

Developing young frontal waves at sea level are in many cases accompanied by
precipitation at intensities of Imm/hour or more, so the release of latent heat has to
be taken into account, as was shown by the scale analysis of PHILLIPS (1963). The very
important role of the release of latent heat for development at sea level was also
confirmed by the investigations of DANARD (1964, 1966).

Much of the release of latent heat takes place in the lower troposphere, i.e. below
500 mbar, but above the boundary layer, so that the integrated form (3.34) can be
applied. The heat term Q serves to include the release of latent heat.

Now 4 constants are defined as follows:

pio p1o P10 Pio

Ki=1—- A4, K;Ef C*dp/f Adp, K; = f (C*?2dp /f Adp
P2 P2 p2

P2

and K,=1— A4g; (3.54)

With the aid of (3.49), (3.51) and (3.54), equation (3.52) become
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Vs + T (s, Vs +f) = —K,[VA* + J(*, )] — K3 - J(@*, V3§*) (3.55)

Substituting (3.49) into the vorticity equation (3.2) and using (3.55), (3.2) can be
written as

foD = (A~ A I (Y5, V2Ys) + (4 K, — CHIVH* + T@*, )] +
+[A4 K3 = (CHZTWH, V) — A CHLI (s, V) +
+J(*, VAs)] (3.56)

With the aid of (3.49), (3.54) and after applying the Laplacian operator, the equa-
tion (3.34) becomes

e Keao o Tee RQ
KyVs + 2= VI + T (s 4] + V f(,r +cl,-f(,'p>dp_0
: (3.57)

Of special interest are the divergence D and o in the centre of the perturbation yr*
ap* oap*

= 0 and
x dy

where = 0. For that point it is assumed that the relative vorticity

d 0
of * is maximum, so that a—(Vzl//*) = (VA*) = 0. So for the centre of the
X y

perturbation the equations (3.55) and (3.56) become fairly simple, namely

VA5 + J (s, Vs +) = _KZVZ‘/;* (3.58)
and

foD = (4 =A%) J(Ys, Vis) + (4 - K, — CHVHY* (3.59)

For a further simplification of (3.57) it is assumed that V[ J(¥/s, ¥*)] =~ 0 in the
centre of the perturbation. In general this is a reasonable assumption. It is exactly
true, if {5 satisfies (3.15) in the vicinity of the disturbance and y* is assumed to equal

Y* = Yo cos (i, - y) sin (uy * X + @) (3.60)

Equation (3.57) reduces to

rs.s

. K,_,. oo R-Q
—K, V¥ +—4V2¢*+V2f ( +—é>dp=0 (3.61)
¢ ° Kl fo cp'fo'P

Ps

In young developing frontal disturbances, which are not yet occluded, release of
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latent heat generally takes place. For such disturbances it may be assumed that this
release of latent heat occurs in the whole column of air between 500 and 850 mbar in
the vicinity of the disturbance at sea level, and that the lapse rate equals the saturated
adiabatic one. It can be shown that for such conditions the following relation holds
(see for instance HALTINER (1971))
a-a)=—R < (3.62)
c, " P

With this relation, (3.61) becomes
2 r_,.
—VYs + — V* =0 (3.63)
K,

(3.58), (3.59) and (3.63) are the set of equations for the centre of the young devel-
oping wave. (3.63) combined with (3.58) results in

2 0% Ky 2
Vay* = 7K K J(Ws, VY5 +1) (3.64)
1 2

so that the development of the perturbation at sea level is proportional to the advection
of absolute vorticity at 500 mbar.
The combination of (3.64) and (3.59) gives for the horizontal divergence D

e
1o = (A4 = 42 T (s, VAYs) + (C* = 4 Kg) et T s, Vs + )
1 2
(3.65)

so that the divergence is composed of two parts. The first term on the right hand side
of (3.65) refers to the reference atmosphere, as one can see by comparing it with (3.6).
The second part is the departure from the divergence of the reference atmosphere.
It is shown below that this departure is caused by the release of latent heat. For that
purpose it is investigated what the expression for D would. become if Q = 0. It is
supposed that ¢ = 65_g 5 and that relation (3.38) holds. After the substitution of
(3.59) into (3.53) and of (3.53) into (3.61), equations (3.58) and (3.61) contain two
unknown quantities, namely VX5 and V2j*. Assuming that 5 satisfies (3.15) and
using relation (3.38), it follows that V2j* = 0 for the waves having the wavelengths
oftable 9. As one can see from (3.59) only the part of D which is related to the reference
atmosphere is maintained. This proves that the second term on the right hand side of
(3.65) is connected with the release of latent heat.

For waves having wavelengths of about 1000-3000 km it can easily be shown with
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the aid of (3.15) that J(ys,f) € J(¥s, V2Y5), so that the influence of the coriolis
parameter f can be neglected in (3.65). Using now the definition of RVA as given by
(3.8), equation (3.65) becomes

qu = — |:(A. — A2) + (C* —_ A * KZ) 1_}--11271.1(] ‘ RVA (366)

It follows from the integrated continuity equation (3.53) that e is given by

prio Pio

- — 42 L % __ 4. .
foo= [J (4 - A%dp + 11K, K, f (C A Kz)dp:l RVA (3.67)

Because A(p) is taken to be a linear function of p, it follows from (3.48) that C
is a linear function of p as well. Using the value 4,, = 0.2, the constants K, and K,
can easily be computed from (3.54) and are found to be K; = 0.8 and K, = 0.2/0.84.
With these values (3.66) and (3.67) can be calculated further, resulting in

foD = —[(4 — 4% + (0.672C* — 0.1604)] - RVA (3.68)
and
P10 P1o
fio=— I:J 4 — 4Hdp + f (0.672C* — 0.160A)dp:| -RVA (3.69)
p p

D and w both consist of ‘dry’ parts and ‘moist’ parts. The dry parts of D and w, which
are those according to the reference atmosphere, are given by

foDag=Di-RVA and f, wy=wi RVA with

Pio
Dij=—(4—A4% and ;= f Didp (3.70)

p

The moist parts, which are caused by the release of latent heat, are defined as

forDn=Dg-RVA and f,r o, =0, RVA with
P10
D, = —(0.672C* — 0.1604) and o, = j D, dp (3.71)

P
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Fig. 13 The profiles of the horizontal divergences D} and Dy, anid the vertical velocities o) and o
for the centre at sea level of a young developing short frontal wave according to the two-
parameter model developed in I1T 3.5. The subscripts d and m refer to the ‘dry’ and to the
‘moist’ parts, respectively.

Numerical values for several pressure levels are given in table 12 and the profiles as a
function of the pressure are given in figure 13. This figure clearly shows that the profile
of D, is linear. This is a result of the fact that in the troposphere the function 4 was
supposed to be linear, so that according to (3.71) and (3.48) D,, is also linear. It can
be seen in table 12 and figure 13 that the level of non-divergence where D; + D, = 0
is found at about 550 mbar. This is somewhat lower than the level of non-divergence
in the reference atmosphere, which was found at about 500 mbar.

In view of the various assumptions made in the theory described above, a verifica-
tion is necessary by which the theoretical results are compared with real observations.
For that purpose D and w computed from (3.70) and (3.71) are compared with some
observed values. The way in which D is determined must be independent of the
theory, so that only D determined from real wind observations, and o determined
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p A Cc* Dy Dy g W D'= o =
Dy + Dy, wq + wgy
mbar 104m-1kgs—2 104m-1kgs—2
200 148 —0.60 +0.71 +40.64 0 0 +1.35 0
300 132 —040 +042 +0.48 —0.52 —0.56 +0.90 —1.08
400 1.16 —020 +0.19 4032 —0.82 —0.96 +0.51 —1.78
500 1 0 0 +0.16 —0.91 —1.20 +0.16 —2.11
600 0.84 4020 —0.13 0 —0.85 —1.28 —0.13 —2.13
700 0.68 +0.40 —0.22 —0.16 —0.67 —1.20 —0.38 —1.87
800 0.52 060 —0.25 —0.32 —044 —0.96 —0.57 —1.40
900 036 +0.80 —023 —0.48 —0.20 —0.56 —0.71 —0.76
1000 020 +1.00 —0.16 —0.64 0 0 —0.80 0

Table 12 Numerical values of the ‘dry’ and ‘moist’ parts of the divergence and o as a function
of the pressure for the perturbation w* at sea level.

from the integrated continuity equation are suitable. Case studies that can be used
for this purpose are rare however, due to the fact that the horizontal wind is nearly
non-divergent, so that relatively large errors in the computations of D can be expected.
Only cases with strong development show horizontal divergences large enough to be
computed with a certain accuracy from real wind observations. Three such case
studies could be selected, namely the one by PALMEN (1958), by PALMEN and HOLO-
PAINEN (1962) and by DANARD (1964). All three studies satisfied the necessary criteria,
namely that a non-occluded disturbance was present and that the development at
sea level was large enough to be certain that the centre of the perturbation z* of
(3.47) almost coincided with the centre of z,,. With the aid of the 500 mbar analyses,
RVA was computed by finite difference approximations in the point above the centre
at sea level. Then, from (3.70) and (3.71), D and w could be computed for specified
pressure levels and compared with the real values. The computed RVA values from
the studies by PALMEN, PALMEN and HOLGPAINEN and DANARD were 5.8 x 107 %572,
1.4 x 107%s7? and 3.2 x 10~ %s~2 respectively. The comparisons between the results
from the case studies and the present computations are given in the tables 13, 14 and
15. Table 15 also contains a comparison of the moist parts of w at 600 mbar, as
DANARD computed it for the layer between 500 and 700 mbar.

Tables 13, 14 and 15 clearly show that a good agreement exists between the values
of D and w, which were defined with the aid of real wind observations, and the com-
puted ones. The neglect of surface friction can possibly account for the fact that the
absolute value of the computed divergence at 1000 mbar is smaller than the observed
divergence. . ‘

Table 12 shows that in the troposphere the dry and moist parts of w are of the
same order of magnitude and that the largest value of w,, is found at 600 mbar.
These results are in excellent agreement with the conclusions of DANARD (1964).
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r D computed

D according to

o computed

w according to

with (3.68) PALMEN with (3.69) PALMEN
mbar 10551 10551 10-1m-1kg s—3 10-1m~1lkgs—3
300 +5.2 +4 —6.3 —1.1
400 +3.0 +4 —10.3 —35.3
500 +0.9 +3 —12.2 ~—9.3
600 —0.8 +1 —12.4 —11.5
700 —2.2 —1 —10.8 —11.7
800 —3.3 —3 —8.1 —9.2
900 —4.1 —5 —4.4 —6.5
1000 —4.6 —7 0 0
Table 13 Comparison of the computed D’s and ’s with those according to PALMEN (1958).

P D computed

D according to

o computed

o according to

with (3.68) PALMEN and with (3.69) PALMEN and
HOLOPAINEN HOLOPAINEN

mbar 10-3s-1 10-5s—1 10-Im-1kgs—3 10-tm-1kgs—3

200 +1.9 +1.8 0 —2.7

300 +1.3 +1.3 —1.5 —4.2

400 +0.7 4-0.2 —2.5 —5.1

500 +0.2 —0.8 —3.0 —4.8

600 —0.2 —1.1 —3.0 —3.8

700 —0.5 —0.2 —2.6 —3.2

800 —0.8 —1.0 —2.0 —2.7

900 —1.0 —1.1 —1.1 —1.7
1000 —1.1 —2.1 0 0
Table 14 Comparison of the computed D’s and ®’s with those according to PALMEN and HOLO-

PAINEN (1962).
r « computed w according to moist part of moist part of ®
with (3.69) DANARD © computed according to DANARD

mbar  10-1m—1lkgs—3 10-Im-1lkgs—3 10-1m~1kg s—3 10-1m~-1kg s—3
200 0 —3 0 —
400 —5.7 —6 —3.1 —
600 —6.8 —7 —4.1 —5
800 - —4.5 —4 —3.1 —
Table 15 Comparison of the computed o’s with those according to DANARD (1964).

The results of table 12 further indicate that the upward velocities in areas with
precipitation where = w, + w,, are in general more than twice as large as those in
areas without precipitation, where = w,. PALMEN (1958) and PALMEN and HOLOPAINEN
(1962) obtained the same results.
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Finally, one can conclude that in the centre at sea level of a young developing
frontal wave the vertical profiles of D and w consist of two parts, namely one part
which equals that of the reference atmosphere, and a second part caused by the
release of latent heat. These results are used to evaluate the integrals of w in (3.39)
and (3.40) and these evaluations are carried out in Chapter IV.

4 Stability analysis of the quasi-geostrophic equations
4.1 General theory

The basic equations used in the stability analysis are the quasi-geostrophic vorticity
equation (2.10), the continuity equation (2.13) and the thermodynamic equation (2.14).
The boundary conditions are o = 0 at p = p, and p,. p, is the pressure at the upper
boundary level and p, that at the lower boundary level. As will be shown in 4.2, the
release of latent heat is taken into account by replacing the static stability ¢ by a
new value, which is much lower that the original one. Therefore, in carrying out the
following computations, it can be assumed for simplicity’s sake that Q = 0. The
static stability ¢ is taken constant for the layer between p, and p,. Table 6 in 3.3 shows
that this is a sufficient approximation for an atmosphere with a saturated adiabatic
lapse rate.

To carry out the stability analysis a rectangular frame is chosen with the x-axis
along the west-to-east direction and the y-axis pointing from south to north. The
origin is taken at 45°N. The quasi-geostrophic streamfunction y is split up in the
following way:

V=0 | (3.72)

where 1 is the zonal mean of . It is assumed that the local time-dependency of i is
small compared with that of ¥, so that i < ",
For the sake of simplicity it is also assumed that i depends linearly on y and p,

o

so that the geostrophic wind U = — —— of the basic zonal flow is independent of y
y

av . .
and — is independent of p.
dp

With the aid of (3.72) and (2.13) the equations (2.10) and (2.14) with Q =0 can
be written as

. — ]
VTGV + TS T V) =, (3.73)

and
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The non-linear advection terms marked with the symbol * can be neglected if the
amplitude of the perturbation /' is small enough. This is generally true in the early

d
stage of development. The influence of the Rossby parameter f = —f can be neg-

lected for waves with wavelengths smaller than roughly 3000 km. So for waves with
small amplitudes and wavelengths < ~ 3000 km, equations (3.73) and (3.74) become

V3 + UL(VZIV) =foa—m (3.75)
0% op :
and
Wyl <a¢' )- w w __°, (3.76)
ap x op dp 0x fo

These linear equations are used to carry out the stability analysis. This is done in the
way EADY (1949) suggested. However, EADY used the primitive equations formulated
in the x, y, z coordinate system. To obtain solutions showing real features of synoptic
systems, he had to make assumptions which were in agreement with the geostrophic
approximations.

In 3.1 it was concluded that the height fields and the thermal fields of the long and
short waves move with nearly the same speeds, show the same developments and
have a phase shift between the two patterns, which is nearly constant with respect to
time. Therefore, possible wave solutions of (3.75) and (3.76) of the following form
are sought:

Y = y* cos (u, - y) e#=7) (3.77)
and

® = o* cos (i, - y)er T (3.78)

y* and w* depend only on p and may be real or complex. The wave velocity c is
independent of x, y, p and ¢ and may also be real or complex. Such wave solutions
satisfy the above-mentioned requirements with respect to the height and thermal
fields. As is shown later on, in the case of complex values, the waves are subject to
a phase shift in the vertical.

Substitutions of (3.77) and (3.78) into (3.75) and (3.76) lead to
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dw*

(% + 1) e — D)™ =, (3.79)

and

i,ux[(c ~ v di)* +—¢} jf o* (3.80)

2

Now (3.79) is multiplied with fi and (3.80) is differentiated with respect to p.
0

d2
Keeping in mind that >
dp

= 0, one gets the following ordinary second-order

differential equation

d2 %
dp‘i —M* =0 with A2 = % M2+ 1) (3.81)
0

The general solution of this equation reads
Yr=yte T Hyse (3.82)

The coefficients ¥ and Y% are specified by the use of the boundary condition w* =0
at p = p, and p = p;, which by substitution into (3.80) leads to

1 dU 1 dU
<c -~ U+ = "‘) oty — (c -~ U - = —) e Yi=0 (383

A d A d
and
1 AU\ ., tavy _, -
<c—Uu+Zd—p)e“"“lﬁ’f—(c—Uu——id—p)e”“l/fi=0 (3.84)
with ‘

U=U1atplahdU=Uuatpu.

This set of equations only has a non-trivial solution if the determinant is equal to zero.

Thus
ey . LU , 1 au "
pa— ——_— —_— — —_— — e —
T T )T T T e,

1 dUu 1 dU

with a = A(p, — p,).
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This is a quadratic equation in the velocity ¢, which can be rewritten as

) 1 dUN 1 4du
E—-U,+We+ VU, - — — ) =— — (U, —Upcoth(z) =0
A dp A dp
(3.86)
. 1 du )
As U depends linearly on p, T 1 can be written as
14
14U 1 U,-U, U, - U;
—_— = = — (3.87)
A dp A p— D x
The quadratic equation (3.86) then becomes
- (U, + U+ UU + U, - U)Y [—a~?+a ! coth(x)] =0 (3.88)
The solution of this equation is
U v, U,—-U
c=—" ;’ by 5 L) with f(o) =1+ 402 — 4a~" coth(x)
(3.89)

The wave will be stable for those values of « for which f(«) > 0 and unstable waves
occur for f () < 0.(3.89) shows that unstable waves move withthe velocity (U, + Uj)/2.
This means that for these unstable waves the ‘steering’ level is found at the middle
pressure level between the upper and the lower boundaries, because U is a linear
function of p.

(3.77) shows that in the case of f(a) < 0 the maximum instability is found for the
value of « for which the absolute value of the complex part of y,c is maximum. The
definitions of « and of A show that yu, satisfies

e = T2 [o{t + (L (390)
1~ Fu
Thus
e =y 2 Uy Ge 2 U poy g r s 00yt (391)
2 2(pl - pu)
with
g(a) = a?f (0) = «® + 4 — 4o coth(x) (3.92)

The maximum instability is found at the minimum value of g(a). In table 16, f(x)
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and g(x) are given for different values of a. The maximum instability is found at
o =~ 1.6, while neutral waves are found at o ~ 2.4.

a g(a) fl@) a g(@ Sl a g(a) flo)
0 0 —0.33 1.1 - —0.29 —0.24 2.2 —0.18 —0.04
0.1 —0.00 —0.33 1.2 —0.32 —0.22 2.3 —0.10 —0.01
0.2 —0.01 —0.33 1.3 —0.34 —0.20 2.4 +0.00 +0.00
03 —003 —0.33 1.4  —037 —o0.19 25 4011 40.02
0.4 —0.05 —0.32 1.5 —0.38 —0.17 3.0 +0.94 +0.10
0.5 —0.08 —0.31 1.6 —0.38 —0.15 4.0 +3.99 +0.25
0.6 —0.11 —0.30 1.7 —0.38 —0.13 5.0 +9.00 +0.26
0.7 —0.14 —0.29 1.8 —0.36 —0.11 10 +64 +0.64
0.8 —0.18 —0.28 1.9 —0.34 —0.09 100 49604 +0.96
09 —022 —027 20 —030 -—0.07 0o 00 1
1.0 —025 —025 21  —025 —0.06

Table 16 The values of f defined in (3.89) and g defined in (3.92) for sevéral values of a defined
in (3.85).

In the following section the case of a young developing frontal wave is investigated
with the aid of the theory given above.

4.2 The case of a young developing frontal wave

For developing waves the real atmosphere must have a preference for the system that
shows maximum instability. As shown in table 16 the corresponding value of « is
about 1.6. The relation between the static stability ¢ and the wavelength is given by
(3.90) for a given value of a. (3.90) can be rewritten as

- 2n(py —

L, P [o{1 + (LJLY)]* (3.93)
fut

The following values are chosen: p, = p, (200 mbar) and p, = p,; (1000 mbar);
L, =1600 km and L,/L, = 0.5 (approximately the mean values for the RVA-pattern
at 500 mbar as defined in section 2.2); o &~ 1.6 (the value of maximum instability).
With these values the static stability ¢ can be computed from (3.93), resulting in
2.1 x 1077 m*kg™2s%. As has been remarked in 3.3, for a developing frontal wave
with precipitation one expects a value of the static stability according to a saturated
adiabatic lapse rate leading to about 10 x 10~7 m*kg~2s? (see table 6). This value is
about five times as much than the one computed here. The difference can be explained
by taking into account the release of latent heat, which was ignored in the stability
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analysis in 4.1. This can be done in the following way. The thermodynamic equation
with release of latent heat is given by (2.14). In case Q > 0 (release of latent heat),

o R

fo cpfor P
3.5. It is possible to introduce an ‘effective’ static stability parameter & into the
thermodynamic equation, '

o W & ' |
Gty ) e o9

= 0. This relationship between Q and » was also used in section

withé =cfor Q=0 and 6=0forQ>0.

In the stability analysis a mean value of o for the whole layer of air between p, and
p; was used. Now a new mean value &, of & can be defined as follows. Suppose there
isrelease of latent heat between the two pressure levels p, and p;, with p, < p, < p; <
Dy, then ¢ =0 for p, <p < p,, 6 =0 for p, <p<p and & = ¢ for p, < p <p,. The
mean value 6, of & then becomes

5 = [(Fo — Po) + (71 — B0 ' . (3.95)
P1— Du

In the extreme case there is release of latent heat in the whole column between 200
and 1000 mbar. Then p, = p, and p, = p, and G,,, = 0. In general, however, there is no
release of latent heat above 300 mbar nor below 950 mbar, so that §, = 300 mbar and
P, = 950 mbar are more realistic. So for these values with ¢ ~ 10 x 10~7 m*kg™2s?,
& & 2 x 1077 m*kg~2s?, which is in accordance with the required value.

~ Without release of latent heat 6, = ¢ ~ 10 x 10”7 m*kg~?s* and using the values
L, =1600km, L,/L, = 0.5, p, = p, and p, = p;,, then according to the definition of
o in (3.85), @ ~ 3.5. For this value of « it follows from table 16 that f(«) > 0 and the
wave must be stable.

The important conclusion that can be drawn is that there is a strong evidence that the
short frontal waves with wavelengths of about 1000-2500 km, which are related with
the areas of advection of relative vorticity at 500 mbar, can only be unstable if latent
heat is released. This conclusion has been confirmed by the experiments. with the
BK3-model with inclusion of the release of latent heat by HEBOER and EXTER BLOK-
LAND, DEN (1974). :

The above conclusion also agrees with that of the simple two-parameter model in
section 3.5, namely that without release of latent heat no production of vorticity occurs
in the centre of a perturbation at sea level.
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In the following two sections the spatial structure of certain stable and unstable
waves are investigated and compared with the results in 3.

4.3 Spatial structure of stable waves

First the coefficients % and ¥ are specified. Using (3.87) and (3.89), the equation
(3.83) can be written after some computational work as

@—2+G) eyt —(@+2+G) e *Myi=0 ' (3.96)

with G = +af (@) = + g(x)*
The mean pressure p,, at the middle level is given by p,, = (p, + p)/2, so that p,
is found to be 600 mbar. It follows from (3.82) that at this level

e+l-pm ])biﬁ + e—l'Pm lp; — l//:: (397)

WX is the amplitude of the perturbation ' at the middle level and can be chosen
arbitrarily. Here it is supposed to be real. With the aid of the definition of «, p; and
p, can be expressed as

o o
_ d -y - 3.98
P =Pnt oy and p,=pq 7 (3.98)

Using the result of (3.98), /¥ and ¥/% can be solved from (3.96) and (3.97). Substitutions
of these results into (3.82) lead to

2 G ;-'(P_Pm)_i_ -2 + G @ o—4(p—Ppm)
*=F, ytwithF,= O T 2T Oe @ )¢ e (3.99)
@+2+G@+@—-2+G)e

The computations presented above are valid for stable as well as for unstable
waves. In the case of stable waves both f(«) and g(«) are > 0, so that F, is real. With
the aid of (3.77) the real part of ' is found to be

Y'=Fp Y = F, Y cos (i, * ) cos [p(x — ¢ - 1)] (3.100)

The velocity ¢ of (3.89) is written as

U, - U
+ 2 > —f(w)F with U, =¥U,+ Uy (3.101)
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The horizontal divergence D can be computed by substitution of (3.99) into (3.79)
ES

and differentiation of (3.78) with respect to p. Then, after elimination of and
D
taking the real part, f,D becomes
foD = (s + 13) (c = UYF , Y cos (uy * ) sin [po(x — ¢ - 1)] (3.102)
. . . o 0
The advection of the relative vorticity RVA at 500 mbar is given by — U p (V)
X
and can be expressed with the aid of (3.100) as
RVA = —Usp(u3 + 15) Fs ¥ cos (u, - ) sin [, (x — ¢ - )] (3.103)
where Us and F; represent the values of U and F, at 500 mbar respectively.
Using (3.103), (3.102) can be written as
(c — O)F,
fD = — —————RVA . (3.104)
UsF's

The level of non-divergence is found at that level where ¢ = U, so that according to
(3.89),U =U,, + LU, — Upf(x)?. Due to the fact that U,, is the velocity at 600 mbar
and U, — U, > 0 and f(«) > 0, the level of non-divergence is found above 600 mbar
in the case of the positive sign and below that for the negative sign. Thus probably
only the positive sign has a real meaning, because in the troposphere, if there exists
a level of non-divergence, it is nearly always found close to 500 mbar.

The formula for w is obtained by differentiation of (3.99) with respect to p, substitu-
tion of the result into (3.80). After the elimination of ¥% from (3.80) and (3.103) and
taking the real part of (3.78), the expression for w reads

dF, dU
(c—U) +——F,
2 dp  dp
f Ao = RVA (3.105)
UsFs

By differentiating this formula with respect to p it can be easily shown that the extreme
value of w is found at the level where ¢ = U.

The stable wave shows resemblance with the reference atmosphere, which was
defined in 1, because at all pressure levels the wave moves with the same velocity
and there is no phase shift in the vertical. The divergence D and the vertical velocity
o become functions of the RVA, which was also true for the reference atmosphere.

As the level of non-divergence was also found at 500 mbar for the reference atmo-
sphere, it may be of interest to compute the parameters describing the behaviour of
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the wave with the level of non-divergence at 500 mbar and compare them with those
for the reference atmosphere. For that purpose it is assumed that the basic zonal
wind U satisfies the relation U = 4 - U with A4 is a linear function of p as is the case
for the reference atmosphere in 3.5 in table 12. Using U, = A Us, U, = 4, ' U,
and U = A4,, - Us, it follows from (3.101) with the positive sign, that for the level
of non-divergence at 500 mbar where ¢ = U,

(3.106)

201 — 49 P
f(a)=[i—)]

AZ - AIO

The upper and lower boundaries are again p, at 200 mbar and p;, at 1000 mbar.
Taking A, =1.48, A¢ =0.84 and A, = 0.20 according to table 12, f(x) = 0.0625
and thus & ~ 2.75and G = a - f(2)* ~ 0.69. With the aid of (3.99), F, can be computed
and is given in table 17.

A new quantity F' is defined as
F'=F_|F; (3.107)
Duetoc=Usand U = A4 - U, (3.104) can be written as
fD=D"-RVA with D'=—(1- AF' (3.108)

The computed values of F' and D' are also given in table 17.
With the aid of (3.87), (3.107), c = Us and U = 4 - U, (3.105) can be expressed as
2 |
foo =o' RVA with o' E(pl—zp“ [(1 - A)di—A—“—éF':l
o dp p — b
(3.109)
o' is given in table 17.

Comparisons of F', D' and o' of table 17 with 4, Dj and w} of table 12 for the
reference atmosphere respectively, show that to a certain extent there is a quantitative
agreement especially in the middle troposphere around the 500 mbar level. Due to
the different approach in this section compared with the considerationsthat led to the
values given in table 12, an exact agreement could not be expected.

It follows from (3.103) that the maximum value of the RVA at the steering level
(denoted by | RVA,| ,.,) is given by

| RVAS [ max — US:ux(.u'?c + ,Lli) F5 ’10:'!:1 (3110)
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P F F' D' o
mbar 104m-1kg s—2
200 3.23 2.54 +1.22 0
300 2.33 1.83 +0.59 —0.97
400 1.70 1.34 +0.21 —1.40
500 1.27 1 0 —1.51
600 1 0.79 —0.13 —1.44
700 0.85 0.67 —0.21 —1.25
800 0.79 0.62 —0.30 —0.96
900 0.85 0.67 —0.43 —0.56
1000 0.97 0.76 —0.61 0

Table 17 Computed quantities for the stable wave with a level of non-divergence at 500 mbar.
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Fig. 14 Vertical cross-section of the divergence-field of a stable wave

@ = plf_ip“ oG + #5)]F = 2.75) with the level of non-divergence at 500 mbar.
o
Isolines of negative divergence are dashed.
Isolines of positive divergence are drawn.
Unit of divergence is 103 - | RVAs |maxs~1.
| RVAs |max is the maximum absolute value of the advection of relative vorticity at the
steering level (500 mbar).
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Fig. 15 Vertical cross-section of the w-field of a stable wave
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Isolines of positive w are dashed.

Isolines of negative w are drawn.

Unit of @ is 107 - | RVAs |maxm~1kg s~3.

| RVAs | max is the maximum absolute value of the advection of relative vorticity at the

steering level (500 mbar).

[o(u2 + #)1* = 2.75) with the level of non-divergence at 500 mbar.

Using this formula and (3.103), the expressions (3.108) and (3.109) can be written as

foD = lRVAslmax * D' - cos (ﬂy : y) sin [ﬂx (x —c t)] (3111)

and

fow = - ]RVAS [ max w' - cos (/“ly ' y) sin [:ux(x —c- t)] (3112)

Vertical cross-sections for D and o have been computed for the middle of the wave
where cos (i, - y) = 1 along the x-axis at ¢ = 0. These cross-sections are given in the
figures 14 and 15.

In the next section the spatial structure of the unstable wave is investigated in a
similar way.

4.4 Spatial structure of unstable waves

In the case of an unstable wave f(x) < 0, so that F in (3.99) and c in (3.101) are
complex. Therefore the velocity ¢ can also be written as
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c=c¢,+c;-i with ¢,=3U,+U) and ¢;=+ LU, - U)-[—f@]*
(3.113)
After considerable computational work, F, in (3.99) can be expressed as
Fp = Fl’ -+ Fi * i

with

X +A(p—Pm) —A(p— Pm)
F,.= _%_[ew-(p—pm)_l_ e—i.(p—pm)], F, = —4e*G'[e™ :2 — M :2]
[2+ 2+ (@—2)e > — (1 + e ’gw)
(3.114)

and

G'=£[-g@]*
For ¢; > 0 the wave will amplify, whereas for negative values of ¢; it damps. This
means that only the solution with the positive sign is of interest. With the aid of (3.77),
(3.99), (3.113) and (3.114) the real part of Y' can be written as

‘,V = e”xCit[Fr cos I'l'x(x - crt) - Fi sin ux(x - Crt)] cos (.u'y ' y) : l//n;k (3115)
with

e I = U [T
7 2(p1 - pu) [0{1 + (Lx/Ly)Z}]%

The steering level is found where ¢, = U. According to (3.113) and the linearity of
U this must be the 600 mbar level. For this level where p=p,, F,=1and F; =0
yield.

After differentiation of (3.78) with respect to p and using (3.79), (3.99) and (3.114),
the real part of f,D becomes

foD = :ux(”'i + ”’3) euxqt[{(cr - U)Fl + CiFr} cos ux(x - crt) 3 116
+ {(ey — UYF, — &4Fy} sin puy(x — c.t)] cos (i, - 3) - Ui (3.116)

o

With the aid of (3.78), (3.80), (3.99) and (3.114) the real part of fi ® can be com-

puted and reads

o B dF; dF, dU
""w=—ﬂxeuxi (cr_U) +ci' +—_.Fi Cosux(x_crt)

Jo dp dp dp
dF, dF, dU _
+ (cr - U) — ¢ — +—" Fr sin ”x(x - crt) COS(‘uy‘y)'lP;
dp dp  dp

(3.117)
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The sine and cosine components of (3.115) can be composed to a single cosine-wave,
which reads

F,
Y= e gk cos (i, ) - cos [ (x — ¢,8) + 7] (3.118)
cos?y

with tg(y) = F,/F,
. Jop Y ,
The formula for the thermal field T' = — R v of the perturbation can be de-
14
rived by differentiation of (3.115) to p and by composing the sine and cosine waves.
It reads

dF,
fop a
T'= — ———— ™"y cos (u, " y) cos [p(x — ¢,f) + 6] (3.119)
R - cosé
ith tg(d) ar; | dF,
1 =
W g dp dp

Unlike the stable wave in 4.3, the unstable wave shows a phase shift y in the vertical
for the streamfunction ¥' and a phase shift  for the thermal field T". These phase
shifts do not depend on x, y and ¢.

With the aid of (3.118) the advection of relative vorticity at each pressure level, which

is given by - U I (V2y"), can be computed and shows an exponential growth like
X
the fields of the streamfunction ¥' and temperature T".

RVA(x, y,p, ) =

d F, ) .
~U—— (VA = — =" p(u + uy) Uk - cos (u, " y) sin [p(x — 1) + 7]
o0x cosy
' (3.120)

This exponential development is in qualitative agreement with the behaviour of the
RVA at 500 mbar of developing frontal waves. See, for instance, the wave which is
described in 3.4 and is shown in figure 12.

For the purpose of a more quantitative comparison with the results of 3.5, the
spatial structure will be further investigated for the most unstable wave. For such a
wave o &~ 1.6 as was shown in table 16. So f(«) ~ —0.15, g(oe) % —0.38 and
G' = [—g(®)]* ~ 0.62. With the aid of (3.114), F, and F; have been computed. The
phase shifts y and & have been computed with the aid of (3.118) and (3.119) and are
given in table 18, which table also contains the amplitude F /cos y of the perturbation
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Y'. As in the previous section it is supposed that the zonal wind U satisfies the relation
U=A-Us=A4"-Ug, A'being A' = A/A4, (3.121)

It follows from (3.120) that the maximum value of the RVA at the steering level of
600 mbar is given by

| RVA, | jax = " p(u? + ) Ug Y, (3.122)
Using (3.113) and (3.122), (3.116) can be rewritten as

foD == | RVAS | max [Di Cos (luy : y) sin /'tx(x - crt)

+ Dj cos (u, - y) cos p, (x — ¢, t)] (3.123)
—[(1 = AYF, — H(A4; — A) {—f()}* F{]
—[(1 — AYF; + 3(4, — A) {—f(@)}* F.].

with D

and D,

In a similar way and using the definitions of 4 in (3.81) and of « in (3.85), (3.117)
becomes

Jow = —|RVA | s [01 c0s (1, * y) sin prx — ¢,t)
+ w3 cos (1, y) cos pu(x — c.1)] (3.124)
with
2 ' '
o= PP - ) s -y (-2
and

i

. (- p)* . dF; . . L dF, A, — 4
Wy = (1= A+ A - D@ —— -
o dp dp p — Do
D], D;, w; and w) are given in table 18.

The results of this section can be compared with the results of 3.5 in which the
divergence D' and the vertical velocity @' in a young developing frontal wave were
investigated with the aid of a simple two-parameter model. The divergence D' and
the vertical velocity @' were computed in the centre of the perturbation part y* of
the wave.
~ According to (3.118) this centre can be identified with the point at 1000 mbar of
the perturbation ' for which cos (i, - y) =1 and cos (u, - x + y) = —1. According
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P Frfcos y y d Di D; w1 w0}
mbar 104m-1kgs—2  104m-1lkgs~2
200 +1.90 +45° +68° +1.42 +0.63 0 0
300 +1.53 +39° +71° +0.96 +0.20 —1.20 —0.41
400 +1.24 +30° +76° —+0.59 —0.08 —1.97 —0.45
500 +1.07 +17° +83° +0.28 —0.24 —2.40 —0.28
600 +1 0° +90° 0 —0.30 —2.54 0
700 +1.07 —17° +98° —0.28 —0.24 —2.40 +0.28
800 +1.24 —30° +104° —0.59 —0.08 —1.97 +0.45
900 +1.53 —39° +110° —0.96 +0.20 —1.20 +0.41
1000 +1.90 —45° +114° —1.42 +0.63 0 0

Table 18 Computed quantities for the most unstable wave with a = 1.6.

to table 18, y = —45° at 1000 mbar, so that u,, - x = 225°. It follows from (3.120) and
(3.122) that the advection of relative vorticity at 500 mbar (RVA) is related to the
maximum value at the steering level 600 mbar for that point as

Fr(ps)
0s17°

RVA = — sin (i, - % + 17°) « [RVA, | 5 = 0.942|RVA, | .., (3.125)

Due to cos (u, - x) = sin (u, - x) = —sin 45°, (3.123) and (3.124) then become

f.D=D'-RVA with D'=0.751(D. + D}

and
fow=0o"-RVA with o' =0751(v] + ;) (3.120)
P D' of the D' according ' of the o' according
unstable wave  to table 12 unstable wave  to table 12

mbar — — 104m-1kgs—2  104m-lkgs—2

200 +1.52 +1.35 0 0

300 +0.87 +0.90 —1.21 —1.08

400 +0.45 +0.51 —1.82 —1.78

500 +0.03 +0.16 —2.01 —2.11

600 —0.23 —0.13 —1.91 —2.13

700 —0.39 —0.38 —1.59 —1.87

800 —0.44 —0.57 —1.14 —1.40

900 —0.57 —0.71 —0.59 —0.76
1000 —0.59 —0.80 0 0

Table 19 Comparison of the computed D' and o' of the most unstable wave and those from the
two-parameter model of 3.5 for the centre of the perturbation at 1000 mbar.
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Now, with the aid of table 18, D' and «' can be calculated and compared with
D'=Dy+ D, and o' = w; + o, of table 12 in section 3.5. The results are given in
table 19, which show a good agreement between both sets of values.

From these results it can be concluded that concerning the divergence- and w-values
the most unstable wave of the stability analysis agrees with the young developing frontal
waves of the real atmosphere.

Finally, a further insight in the structure of the unstable wave is given in figures
16 and 17, which give a vertical cross-section of D and  along the x-axis in the middle
of the wave for which cos (g, y) = 1. Unlike in the case of a stable wave, figure 16
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Fig. 16 Vertical cross-section of the divergence-field of the most unstable wave (a & 1.6).
Isolines of negative divergence are dashed.
Isolines of positive divergence are drawn.
--------- Through or ridge line of the streamfunction '.
~es-see-  Through or ridge line of the thermal field T'.
Unit of divergence is 103 | RVAs |maxs—1.

| RVAs |max is the maximum absolute value of the advection of relative vorticity at the
steering level (600 mbar).
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Fig. 17 Vertical cross-section of the w-field of the most unstable wave (¢ & 1.6).
Isolines of positive « are dashed.
Isolines of negative w are drawn.
Unit of @ is 107 | RVAs [maxm~1kg s~3.

| RVAs |mex is the maximum absolute value of the advection of relative vorticity at the
steering level (600 mbar).

clearly shows that there exists no constant pressure level of non-divergence for the
unstable wave investigated here. This result was also found by CRESSMAN (1961) in a
diagnostic study of mid-tropospheric development.

5 Conclusions with regard to the construction of a bareclinic model

The following four conclusions can be drawn from the foregoing considerations:

1. The importance of the release of latent heat

The stability analysis in section 4 indicates that the short frontal waves with wave-
lengths of about 1000-2500 km can only be unstable if latent heat is released. The
release of latent heat can give a plausible explanation for the low values of the static
stability, which are necessary to make the short waves unstable.

From the scale analysis given by PHILLIPS (1963) it also follows that the release of
latent heat has to be taken into account if one wants to describe the behaviour of
synoptic systems with the aid of the quasi-geostrophic equations.

In section 3.5 it has been shown that in the centre of the perturbation at sea level
of a young developing frontal wave, the w-values increase with about a factor two
through the influence of the release of latent heat. Therefore the release of latent heat
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has to be taken into account in a baroclinic model which one desires to be capable of
predicting the deepening of short frontal waves.

2. Profile of the horizontal divergence in the vertical

For the construction of the baroclinic BK3-model in Chapter IV the integrated
thermodynamic equations over the layers 300-500 and 500-850 mbar are used. To
carry out the integrations of w, knowledge of the profile of the horizontal divergence
D in the vertical is necessary. The results in section 3.5 indicate that D and  can be
split up into a ‘dry’ and a ‘moist’ part, each possessing a different profile and a
different level on non-divergence. See also table 12 and figure 13. The dry part of D
has the same profile as the reference atmosphere and a level of non-divergence at
~ 500 mbar. The moist part of D has a linear profile and a level of non-divergence at
~ 600 mbar.

Because the basic equations of the baroclinic model are linear with regard to D
and o, it is possible to split up these quantities into ‘dry’ and ‘moist’ parts. This
approach is followed in Chapter IV, where the dry part of D is profiled in accordance
with the reference atmosphere for the layers 300-500 and 500-1000 mbar, and the
moist part is taken linear for the layers 200-300, 300-500, 500-850 and 850-1000
mbar. ’

3. The choice of the static stability parameters

For a baroclinic model, which is able to describe the development of the short frontal
waves with precipitation, values of the static stability parameter in accordance with
those of saturated adiabatic lapse rates seem to be a logical choice. However, for the
upper troposphere these values are much lower than those of the ICAO standard
atmosphere. See also table 6 in section 3.3. In the dry parts of the atmosphere at
sufficient distance from the frontal areas one will find values of the static stability
more in accordance with those of the ICAO standard atmosphere. This problem of a
variable static stability in the real atmosphere can be solved to a certain extent by the
introduction of a so-called correction term into the integrated thermodynamic
equation, which is approximately zero if the static stability is that of a saturated
adiabatic lapse rate.

As has been argued in section 3.3, the use of such a correction term leads to a
correct description of the long waves, if they are equivalent barotropic and probably
also for the short waves, because in that case the equations are equal to the original
‘ones without correction.

- For short range prognoses up to 36 hours ahead the results of barotropic prognoses
at 500 mbar show that an equivalent barotropic description is a good first-order
‘approximation of the behaviour of long waves, although in some cases, notably in
the winter season, the baroclinicity of those waves may also be of importance for the
short range predictions.
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4, The number of levels

The stability analysis in section 4 gives some insight into the choice of the number of
levels for the baroclinic model. This analysis gives a fairly simple but not unrealistic
description of a developing baroclinic wave. The streamfunction y of this wave
consists of three parameters, namely one describing the basic streamfunction, which
is independent of time, and two more describing the perturbation y', which are
dependent on time. According to (3.72) and (3.115), ¥ can be written as

Y = A(p) . Po(y) + Fp) - P1(x, y, 1) — Fi(p) * Pa(x, y, 1) (3.127)
with

Po(y)=—Us"y,

Py(x, y, 1) = e~ cos (u, * y) cos [p(x — c)]¥;

and

Py(x, y, 1) = "= cos (u, * y) sin [p(x — e,

After the choice of two levels at pressures p; and p,, the parameters P, and P,
can be expressed as linear combinations of the streamfunctions ¥(x, y, p;, t),
Y(x, y, pa, t) and Py(y). Thus two parameters are equivalent with two levels if Py(y)
is a known function. The above results were based on the linearized quasi-geostrophic
equations with a prescribed basic zonal streamfunction. For these equations one needs
at least two parameters or two levels to describe the development of a baroclinic
disturbance. However, in these equations the basic streamfunction cannot change
with time. In reality, however, it will change by a non-linear interaction with the
perturbation. So in a model using only two parameters the basic streamfunction and
the perturbation will be completely time-dependent on each other.

Supposing now that the perturbation is a short baroclinic frontal wave superimposed
on a nearly equivalent barotropic long wave, which acts as the basic streamfunction
for the baroclinic perturbation, a third parameter is needed to describe at least the
equivalent barotropic behaviour of this long wave.

So the number of parameters or levels must be three at least.
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CHAPTER IV
DESIGN OF THE BAROCLINIC MODEL

1 Outline of the design

Starting from the quasi-geostrophic basic equations in Chapter II, several ways
present themselves for constructing a baroclinic model. However, one can distinguish
two main possibilities which in principle depend on the vertical resolution used in
the model.

First, with a high resolution in the vertical, the use of difference forms of the vortic-
ity equation and the thermodynamic equation is suitable. After eliminating e in the
difference equations, one gets a set of Helmholtz-equations for the geopotential
heights of each chosen pressure level. These equations are coupled and have to be
solved simultaneously.

It is also possible to derive the omega-equation by differentiating the vorticity
equation with respect to pressure p and applying the Laplacian operator to the
thermodynamic equation. After subtraction of the two resulting equations one gets
the omega-equation, which can be solved by a three-dimensional iterative technique
with the boundary conditions @ = 0 at the upper and lower boundaries of the atmo-
sphere, as well as at the lateral boundaries of the chosen computational grid. After
that, one can compute the horizontal divergence from the difference form of the
continuity equation and then compute the time derivatives of the geopotential heights
from the vorticity equation and the thermodynamic equation at the chosen pressure
levels. The above-described method has the advantage that it is easy to formulate the
prognostic equations and it is suitable if one wants to reckon with a high vertical re-
solution. '

If, in order to restrict computing time, a low vertical resolution is necessary, the
second main possibility with the integrated form of the basic equations can be used.
This method has the advantage that quasi-discontinuities such as temperature inversions
are smoothed out. The integrated form of the basic equations can be applied in several
ways. In the case of a model based on three pressure levels, one needs three prognostic
equations, which may be the intergrated vorticity equation for the whole atmosphere
between the lower and the upper level and the integrated thermodynamic equations
for the two layers bounded by the three levels of the model. This method was applied
in the operational threeparameter model of the Swedish Meteorological Service
described by BENGTSSON and MOEN (1969).

Another way leading to relatively simple equations for a three-parameter model is
the use of the vorticity equation at the three chosen pressure levels, the integrated
thermodynamic equation for the two layers bounded by the three chosen levels, and
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the integrated continuity equation for the whole column of the atmosphere. This set
of six equations contains six unknowns, namely three horizontal divergences and three
time derivatives of the geopotential heights. After eliminating the three divergences
one gets the three required prognostic equations. That method will be used for the
baroclinic model called BK3 in this treatise. This BK3-model was developed in
continuation of experiments with an earlier version of a three-parameter model
developed by GALEN, VAN (1969).

However, the application of the integrated equations involves a new difficulty. To
carry out the integrations one needs to know the vertical structure of the horizontal
divergence. This, in addition, implies a more detailed knowledge of those waves in
the atmosphere which are important for short-range weather prediction. For that
purpose the results obtained in Chapter III are suitable, because it was indicated that
the reference atmosphere gives a reasonable description of the behaviour of long
waves with wavelengths of ~ 2500 to ~ 4000 km. It was also shown that in the
centres of young developing frontal waves where release of latent heat takes place
the divergence can be split up into a dry part being the divergence of the reference
atmosphere and a linear moist part. If the integrated thermodynamic equations (3.39)
and (3.40) with the corrections &y and &g 5 are used, it will be possible to design a
model, which is fully consistent with the reference atmosphere, because each wave satis-
fying (3.1) of the reference atmosphere at t = t, will continue to satisfy (3.1) during the
time-integration of these equations. This will be further elaborated in the next sections,

2 Prognostic equations

For the description of the prognostic system the equations in the f-plane approxima-
tion described in Chapter II are used. In section 5 they are replaced by the equations
valid for stereographic projection.

For the choice of the pressure levels in the troposphere the reference atmosphere
described in Chapter III can give a good guidance. The graph of the divergence for
that model atmosphere is shown in figure 6, and it was shown in section ITI.2.1 that
the three characteristic levels, where D is maximum, D = 0 and D is minimum, were
230, 510 and 810 mbar respectively. Due to the fact that the aerological observations
of radiosondes are given at standard pressure levels, the most suitable choice is to
take those levels in the troposphere which are close to these characteristic levels, i.e.
300, 500 and 850 mbar. These pressures are denoted by ps, ps and pg 5 respectively.
It should be noted here that the standard pressure level at 250 mbar is closer to 230
mbar, but in order to ensure that the highest level of the model is mostly in the tropo-
sphere the choice of 300 mbar is more suitable.

To get the prognostic set of equations of the BK3-model, the quasi-geostrophic
vorticity equation (2.10) is applied to the levels 300, 500 and 850 mbar.
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V33 + I3, V3 +f) +fD3 =0, (4.1)

VA5 + J(Ws, Vs +f) +f.Ds =0, (4.2)
and

Vzl/'/s.s + J(WYs.s, Vz‘#s.s +f)+fDs5s =0, (4.3)

|
where the dot denotes n

The continuity equation (2.13) is integrated in the vertical over the whole atmo-
sphere from 0 to 1000 mbar, denoted by p,,. Using the boundary conditions (2.8),
namely @ = 0 at 0 and 1000 mbar, this integral becomes

Pio
Ddp=0 (4.4)
o
The thermodynamic equation is integrated from 300 to 500 mbar and from 500 to

850 mbar. These equations are given by (3.39) and (3.40), and are given again below,
for the sake of convenience.

ps ps

o < W ) O3-35 jI f R-0Q
——+J ¥, )+ o|dp+e=—|——dp 4.5)
J[ op op fo ? ¢ for P
p3 p3
and ‘
pr8.s alﬁ 3lp pP8.5 R Q
O05-8.5 )
—+J |//,——>+ w]dp+a_ =—f ————dp (4.6)
Hap ( op fo > ¢p o' P
ps Ps
o is defined by the continuity equation as
b Pio
=_fde=Jde X))

p

Equations (4.1)-(4.7) are the prognostic equations of the BK3-model. They contain the
unknown quantities v/, D and w, which can be computed at times when the stream-
function is known at 300, 500 and 850 mbar. In the moist version of the model the
release of latent heat is taken into account, so that in that case Q > 0. Because V,
D and w appear linear in the equations, it is possible to split up the equations into
a moist and a dry part. This is done in the following way as



lp:lﬁd-‘_l/'/m’ D=D4+ D, and o=04+ 0,

The subscripts d and m refer to the dry and moist part respectively.

The set of ‘dry’ equations can be defined as

Vzl[/d3 + J('wbsa V21ﬁ3 +f) +fo *Dy3 = 0,
Vz'ﬁds + J(w& Vz‘.bs +f) +fo *Dys = 0,
V485 + JWs.5, Vg5 +f) +fo  Dags =0,

prI‘O
D,dp=0,

0
oy o

d O35

+Jl Yy, — + dp+e;=0,
u[ap (‘” ap) s “"’} Prs
p3
Pl}‘.s 3lp 3l//

d ’ 0s5-3.5

+J Y, — . d =0,
[T

and

4 pio

Dy = — J‘Dddp = J Dydp
b

4
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(4.8)

(4.9)
(4.10)
(@.11)

(4.12)

(4.13)

4.14)

(4.15)

The set of ‘moist’ equations results after the subtraction of (4.9)-(4.15) from (4.1)-(4.7)

respectively.
Vzla&m:‘! +.fo : Dm3 = 0,
VzlpmS +fo : DmS = 0:

VZI/}mS.S +fo ) Dm8.5 = 0’
Pio
0

D,dp =0,

ps ps

Nw  O3s jl f R-Q
Tfm Ndp=—| —=Z=_dp,
f[ap LA R o fap ?

pP3 P3

(4.16)
(4.17)
(4.18)

(4.19)

(4.20)
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Ds.s p8.5
bl - R-
I [ﬁ + 258 cum:I dp = — J RQ @21
ap o ¢ for D
ps ps
and
p Pio
Dy = — J‘Dmdp = f D.dp 4.22)

p

Addition of the moist set of equations to the dry set immediately leads to the original
set of equations (4.1)-(4.7).

Experiments with the inclusion of the release of latent heat in the model using
(4.16)-(4.22) have been described by HEDBOER and EXTER BLOKLAND, DEN (1974). The
way in which latent heat is included is shown in section 4.

In the further description of the dry part of the model the subscripts d are omitted.
The correction terms g; and ¢g s and the static stability parameters 55 and 65_g 5
of the equations (4.13) and (4.14) were discussed in section III 3.3 and are gain given
below for convenience.

£y = (s — D% + %}U (4 K - Az)dp] dp - J(Ws, V2s) (4.23)
and

ta.s = (1 — As % + "f f“(A ‘K — A)dp ] dp - J(WYs, Vs) (4.29)
with o

VAjE = — Js, Vs +f) and K=1 (4.25)

In these formulas RVA is replaced by —J(is, V*¥5). The symbol * is used for the
barotropic tendency ¥ in (4.25) to mark the difference with the baroclinic tendency
/5 in (4.10). The static stability parameters are given by (3.37) and (3.38) and read

O3-5 (1—-A4y) (1 - B L*Us)L*
fg Tps 2 (4.26)

[[of (4 — A»dp ] dp

p
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and
Os5-8.5 _ (Ags—1) (1 —B-L*Us)L*
12 ps.s P 4.27)
[a-owe]e
ps 0
with
L* = Ly

4m*[1 + (L,/L,)*]

For the computation of the integrals in (4.12), (4.13), (4.14) and (4.15) knowledge
of the divergence D as a function of pressure p is necessary. The way in which D is
defined in the vertical is discussed in the next session.

3 The dry model
3.1 Vertical profile of the horizontal divergence D

After substitution of (4.15) into (4.13) and (4.14) six equations remain in which the
integrals of the divergence D have to be evaluated. After the choice of three characteris-
tic pressure levels for D one has to specify D as a function of p between those levels,
so that it is possible to carry out these integrations. Then the six equations contain
six unknown quantities, namely the three height tendencies at the levels of 300, 500
and 850 mbar and the three divergences at the three characteristic levels. It is not
necessary that the three characteristic pressure levels for the divergence D coincide
with those levels chosen for the geopotential heights. The three pressures are denoted
by pu, p; and p; with p, < p; < p; < py0, and the three divergences by Dy, D; and D;
respectively. It is now assumed that D can be profiled in the following way.

0<p<pa: D=Fup) Dy=Fyp): (D;+ Dy) (4.28)
where Dy; =Dy — Dy, Fy(0)=0 and Fi(p,) = 1.

m<P<pi: D=D;+Fip) Dy (4.29)
where Fi(p,) =1 and Fj(p;)=0.

PisSP<Ppio: D=D;+Fyp) Dy (4.30)

where Dj; = D; — Dy, Fiyp))=0 and Fj(p)=—1.
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Assuming that the D-profile of the reference atmosphere, given by (3.6), has to be a
special case of (4.28), (4.29) and (4.30), F;, F; and F; can be defined. For that purpose
(3.6) is substituted into (4.28), (4.29) and (4.30), giving the following results.

Fp=F(p)[F(p,) for 0<p<py (4.31)
F} = [F(p) — F(p)]/[F(ps) — F(p)] for py<p<p; (4.32)
F} = —[F(p) — F(p)l/[F(p;)) — F(pp)] for pi<p<pio (4.33)

The function F is given by F(p) = 4 - K — A with A the function defined in (3.1)
and K the constant defined in (3.7).

In section III 2.1 two characteristic pressure levels with respect to divergence were
found in the troposphere for the reference atmosphere, namely the level for which
A = K/2 (maximum value of D), and the level where A = K (D is equal to zero).
These levels were 810 and 510 mbar, respectively. Now D; is chosen at the level p;
for which A(p;) = K/2 and D; at the level p; with A(p;) = K. From this choice it
follows that F(p;) = 0 and F(p;) = K?/4. There remains the choice of Dy at the level
py in the troposphere. D, is chosen at the level for which F(p,) = —F(p;), so that
A%(py) — A(py) - K = K?/4. This quadratic equation in A4 has two roots of which
only the positive one has a real meaning, so that A(p,) = (1 + </2)K/2. This choice
of the level p, will lead to the relatively simple relation (4.34) as is shown.

Using F(p;) = 0 and F(p,) = —F(p;) = —K?/4, it follows after the substitution of
these results into (4.31), (4.32) and (4.33) that

F; = F} = F; = —4F/(K?) (4.34)
Thus the characteristic levels py, p; and p; for D can be computed, as 4 is a known

function of p. The equations which have to be solved for that purpose are summarized
below.

Alpy) = (1 + V2)K]/2, (4.35)

A(p) =K, (4.36)
and

Ap) = K[2 @37)

Taking the value of K = 0.99 for 25-3-"71, 00 GMT, it follows that 4(py) = 1.20, so
that according to table 2 in section III 2.1, py, is found at 375 mbar. This level in the
troposphere is relatively far remote from the level at 230 mbar, where the maximum
value of the divergence was found for the reference atmosphere. However, it follows
from table 18 in I1I 4.4 that according to the stability analysis for the most unstable wave



83

the divergence D consists of two parts Dy and D) of which each part possesses its
own characteristic levels. These levels for D; are 600 mbar (D] = 0), 200 and 1000
mbar (maximum absolute value). Those levels for D} are 600 mbar (minimum value),
200 and 1000 mbar (maximum value), and two levels where D) =0, namely one
between 300 and 400 mbar and one between 800 and 900 mbar.

So the choice of 375, 510 and 810 mbar in the troposphere for p,, p; and D;» Tespec-
tively, seems a reasonable compromise between the characteristic levels of the reference
- atmosphere for 25-3-"71, 00 GMT, the levels of the stable wave according to table 17
and those of the most unstable wave in table 18 in III 4.4.

After the specification of p,, p; and p; it is possible to compute the integrals of
D, and w4 in (4.12), (4.13) and (4.14) with the aid of (4.28), (4.29), (4.30) and (4.34).
This is carried out in the next section.

3.2 Integrations of the prognostic equations

To simplify the following computations it is assumed that K = 1. This implies that
the level of non-divergence of the reference atmosphere is exactly 500 mbar, as follows
from (3.6).

The integral (4.12) can be split up into

Pn pi Pio
Jde+fde+ f Ddp=0
0 Pa pi
Using (4.28)-(4.30) and (4.34) with K = 1 one obtains after some computations that
D; = a*(D;; — Dyy) (4.38)
P10 Pio p1o
with o* E[4J‘ de:l/[4f Fdp +f dp:l
pi Pn Pn
Further (4.15) can be expressed as
Pio P10
o(p) =f dp- D; — 4J Fdp-D;; for p;<p<pjos (4.39)
V4 P

Di Pi
o(p) = o(p;) + f dp- D, — 4[ Fdp-Dy; for p,<p<p; (4.40)
p P
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and

Ph
a(p) = (py) — 4f Fdp - (D; + Dy;) for 0<p<py (4.41)
p

Because p; = ps, due to K =1, and pg s < pqo, the integral of @ in (4.14) can be
computed with the aid of (4.38) and (4.39) as follows.

pa.s
wdp = —aeD;; — ayDy; (4.42)
s
with
Pe.s Plo
a; = oc*f dp )dp
pPs P
and
pP8.5 P10
ag = 4f (f de)dp—a'1
Ds 14
With the aid of (4.40) and (4.41) the similar integral in (4.13) can be computed as
ps Pn ps
j wdp = J wdp + Ja)dp = —byD;; — by Dy; (4.43)
pP3 p3 Pn
with
ps Plf) Ps Ps
bbE4J‘<I de)dp—ﬁ*, i E4J‘<Jv de)dp+/3*
pP3 s p3 p
and
pPs pP1o Pn P10 Ph Ph
= [[([ orore (] oo Jorma (] o) o)
Pn P P3 Pn p3 p

For the further computation of the integrals of (4.13) and (4.14) it is assumed that
the quasi-geostrophic streamfunction s satisfies for
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p3<p<ps: VY=ys5+Csp) Y3+ Es(p) (4.44)
with
Vi=yYs— Vs, Ci(ps) =1, Cs(ps) =0, Es(ps) = Ea(ps) =0,

and for
Ps<p<pgs: WY=Ys+Css(p):V¥ss+ Eszs(p) (4.45)
with

Vs =¥s—Vss Cgs(ps)=0, Cgs(pss)=—1, Eg 5(ps) = Eg 5(pg.s)=0

Y3, W5 and g 5 are the streamfunctions at respectively 300, 500 and 850 mbar. The
functions Cs, Cg s, E3 and Eg 5 need not further be specified for the computations of
the integrals of (4.13) and (4.14). Using (4.42), (4.43), (4.44) and (4.45) the integrals
in (4.13) and (4.14) are determined completely and the equations become

i+ T ¥3) + i‘}iwabij + biDy) — &3 =0 (4.46)

o

and

05-8.5

Vs + J(Ws, Ygs) +

(aoDy; + aiDy;) — g5 =0 (4.47)

o

with aj and a; given in (4.42) and by and b; in (4.43). It follows from (4.28), (4.34)
and (4.38) that

Dy — D5 =dgD;; + d;Dy; (4.48)
with

dy = —o*[1 + 4F(p;)] and d; = —4F(p;) —d,
In a similar way it can be deduced with the aid of (4.30) and (4.34) that
D5 — Dg s = coDj5 (4.49)

with ¢ = 4F(ps s)
Subtracting the vorticity equation (4.10) from (4.9), using (4.48) yields

V23 + JWrs, VA3) + T3, Vs + V5 +f) = —fdoDi; —fediDys (4.50)

In a similar way it can be shown that with the aid of (4.10), (4.11) and (4.49)
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Vg5 + JOs, VAg.s) + JWs5o Vs — Vs +1) = —fociDy (4.51)
Taking D; = D;, equation (4.10) can be written as

Vs + JWs, V2Ys +f) = —f.D; (4.52)

The basic set of prognostic equations of the dry BK3-model is now formed by (4.38),
(4.46), (4.47), (4.50), (4.51) and (4.52). These six equations contain the six unknown
quantities D;, Dy;, Dy, s, ¥y and /g 5. The correction terms &, and gg 5 are given
by (4.23) and (4.24). The barotropic tendency /¥ is given by (4.25). The formulas for
the static stability parameters o3_s and 65_g 5 are (4.26) and (4.27).

33 Equations of the dry BK3-model in B-plane approximation
To get the equations of the dry BK3-model, the three divergences Dy;, D;; and D; are

eliminated. For that purpose D;; and Dy; are solved from the set of equations (4.46)
and (4.47) with the following results.

- by ,
Dy = - fo—— [Ws.5s + J(Ws, ¥s.5) — €s.5]
Os-55 " 4 ,
forai .
+ =[5 + JWs, ¥3) — &3] (4.53)
Oi_5 - 4
and
- by ,
Dy =+ —fo— [Vs.5s + J(s, Yg.5) — £5.5]
Os5_g5 " 4
=LA g ) - e] (4.54)
03_5 " A4

with A =ag - by —a; - by

With the aid of (4.23), (4.24), (4.26), (4.27) and the definitions of ay, aj, by and b;
given by (4.42) and (4.43) it can be shown after some computational work that
b 1} b L} L} 1
et DL T S (4.55)

Os5-8.5 035

Substitution of the results of (4.53), (4.54) and (4.55) into (4.38) then yields
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*(by + bl) ., (a0 + a1)
P8 30D 1 b s s ]+ 2SI gy g )
(4.56)

D, = —
0s_g.5" 4

To obtain the equations of the BK3-model (4.53) and (4.54) are substituted into
(4.50) and (4.51), using (4.23) and (4.24). Further (4.56) is substituted into (4.52). The

resulting equations finally become
4.57)

VZ‘Vsk = - J(‘/’S: Vzl/’S +f)a
(V2 = agoWs.s + aofrs = —J(Ws, Vg5 — agolis.s + do1¥s — o VYs)
—JWs.5, Vs — Vg 5 +f) — agsPt, (4.58)

(V2= a3 + agis = —JQbs, V3 — aso¥is + ay g5 — a14V2Y5)
=I5, Vs + V23 + ) — ag 50, (4.59)

and
Vs = —J(Ws, Vs +f — aos.s + a;¥3) + aglrs. s — a3 (4.60)
with
2 * bl bl 2 EyPn '
a, = /s a*(by + 1), a, = fo  o¥(agp + 01)’ (4.61)
Os5_8.5 4 03" 5 4
2 v, bl 2 [ 1
agy = Jocothio o fo Gai (4.62)
Os5-8.5 4 03-5 |
f3 dirag—ds-ag fo di-by—dsy-by
a g = and ayy = (4.63)
G3-5 4 Os5-8.5 4

The coefficients resulting from the correction terms &; and g 5 are
(4.64)

Aoq = Cof4 = F(pg.5), aos = ago(l — Ags) — dg1(43 — 1)

a;,=(dg+di)/d=—F(p;) and a;5=a,0(45—1)—ay (1 - A4gs) (4.65)

pPio

p
Due to — J(A — A%dp = J
0

(4 — A%dp for K = 1, the two static stability para-
p
meters o;3_5 and o5_g 5, Which are given by (4.26) and (4.27), can also be expressed as
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and

34

O3-5 (43 - (A - B-L*Us)L*

fZ = ps_po
[\

[ -]

p3 p

Os5-8.5 _ (1—Ags)(1—p-L*/Us)L*

f2 ~ ps.s pio
0

(4~ A%dp ] dp

ps p

Computation of the coefficients

(4.66)

(4.67)

The coefficients of the equations are given by the formulas (4.61)-(4.65) of the previous
section. They depend on the A-values of the reference atmosphere, which have been
evaluated in Chapter III for the date 25-3-"71, 00 GMT, and also on the two static
stability parameters ¢5_ 5 and o'5_g 5. The relations for the coefficients contain double
integrals. When the function A4 is approximated by an analytical expression, these
double integrals can fairly easily be computed. Inspection of table 2 and of figure 4
shows that from 300 to 1000 mbar A is approximately a linear function of p. To define
this function it is assumed that the values of 4 at 500 and 850 mbar given in that table
are exactly fulfilled. Then the linearsfunction becomes 4 = —1.6286 p/p,, + 1.8143.
Using this formula, 4 has been computed for several values of p and compared with
the values in table 2. See table 20.

pressure linear approximation A according to
mbar of 4 table 2
300 1.3257 1.33
400 1.1629 1.16
500 1.0000 1.00
600 0.8371 0.84
700 0.6743 0.67
800 0.5114 0.51
850 0.4300 0.43
900 0.3486 0.35
1000 0.1857 0.20
Table 20 Comparison of a linear approximation of 4 with the values in table 2.

With the help of (4.35), (4.36) and (4.37) in 3.1 and the assumption that K = 1 the
three characteristic levels of D can be computed, which results in 4(p,) = 1.2071 and
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pp = 372.8 mbar, A(p;) =1 and p; = ps = 500 mbar, A(p;) =0.5 and p; = 807.0

mbar. These values of p,, p; and p; are nearly the same as those computed in 3.1.
Now it is possible to compute o*, ag, a;, b, and by from (4.38), (4.42) and (4.43).

¢y, dp and di can be computed from (4.49) and (4.48). The values are given below.

o* = 0.3962,

ay =5.193 x 108 m~%kg?s™ %, aj = 4.507 x 10® m~%kg?s~ %,

by = 2.667 x 103 m~2kg?s™ %, b; = 3.769 x 10® m~2kg?s™*,

A =alby — ajby =7.560 x 10'6 m~*kg*s™*,

¢y =0.9804, dj=0.2881, d; =1.4390 (4.68)

]

(4.61)-(4.63) show that the parts of the coefficients not depending on the static
stability parameters are

*(h! b!

at = @6 + b1) _ 43373  10-8 m’kg~%s*,
*(ab + a;

ar = T 0 6 5054 x 107 mlkg s,
|bl

ako = COAI — 04888 x 10~ m?kg 2%,

Cody
a¥, = "Al =0.5845 x 10~ 8 m*kg~%s*,

diay — dpa,
4

diby — dob;
4

=0.8168 x 1078 m%*kg~2s*,

=0.3638 x 10~ # m2kg ™~ 2s* (4.69)

5
il

The static stability parameters o5 _ s and o5 _g s can be computed with the aid of (4.66)
and (4.67) respectively. Each of them depends on two parts, namely one part defined
by the A-values of the reference atmosphere and the other part depending on the
wavelength L, the ratio L,/L, and the zonal wind U s of the basic flow. The numerical
values of L /L, and U, which were valid for the polar jetstream at 25-3-'71, 00 GMT,
have been taken from table 4. The values of A4 have been taken from table 20. For
L, the mean value of the lengths of the line segments between the points of maximum
RVA-values of the polar jetstream was chosen. This length was 1550 km. The results
of all computations together with the numerical values of Us, L,, L,/L, and f are
given below.
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Us=31ms™, L, =1550 x 10°m, L./L, =048,
f=1.619 x 1071 m~1s~! at 45°N,

A;—1
3 =0.2025 x 10™®m%kg ™ %s*,
pPs pio
J (4- Az)dp] dp

P3P

1—-4
N =2 = 0.2350 x 10”*m’kg~?s*,

J (4- Az)dpJ dp

ps P

BL*[Us = 0.0258, (1 — BL*/U5)L* = 4.818 x 10°m?,

2 2
0 0

T3-5 _ 97,57 m*kg 2%, % — 1132 m*kg~%s*,

a, =2.980x 1071'm~% g, =5211x 10" "m™2,

ago = 4.318 x 107 4m™2, a,, =5.991 x 107 m~?2,

a;0=28371 x 107" m™2%, a,, =3.214 x 107 m~?

s = 0.2451, o5 = 0.5100 x 107 1'm "2,

a,, = 04312, a5 = 0.8945 x 10~ 11m™~2 (4.70)

The numerical values of the coefficients are specifically related to the data of
25-3-71, 00 GMT. However, in principle it is possible to define the coefficients for
every moment according to the method described in this article. As has already been
outlined in III 2.1, the 4-values of table 2 are fairly realistic for polar jetstream condi-
tions over the Atlantic and Western Europe. Therefore these A-values have been used
for all experiments described in Chapter V.

Concerning the static stability parameters which have been computed with the aid
of (4.66) and (4.67), using a value of 1550 km for L, the use of a value between 1600
and 2000 km is perhaps more realistic as can be seen from table 11, where the fre-
quency of the diameters of depressions at sea level is given. These values are based on
288 cases for the years 1965, 1966 and 1967, whereas the wavelength of 1550 km is
based only on the situation of 25-3-71, 00 GMT. A value of 1800 km for L, results in
somewhat higher values of the static stabilities of the model, making the model more
stable. However, a dry version of the model, which is perhaps too unstable, is not so
serious for the experiments described in Chapter V, since it has been shown in these
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experiments that explosive development at sea level (deepening of 20 mbar or more
in 24 hours) is not possible with the dry version of the model, but only with the moist
one. ‘

4 The inclusion of the releasé of latent heat
4.1 Description of the method

The ‘moist’ set of equations is given by (4.16)-(4.22) with the boundary conditions
@, = 0for p = 0and p = 1000 mbar. The lateral boundary conditionis /1, = . s =
Yms.s = 0 at the boundary of the computational area.

Subtraction of (4.17) from (4.16) and (4.18) from (4.17) gives

Vms = —fo" Dma (4.71)
and '

Vzl&x;ls.s = —fo Dns.s (4.72)
with :

Vs = Vs = ¥mss Vg5 = Vins — Vims.s» Dp3 =Dy — Dys  and

Dyg.5s = Dips — D s

Equations (4.20) and (4.21) can also be written as

ps Ps
. R - 05—
N =f Q dp + =23 f w,dp 4.73)
cpfop fo L to-
Pa p3
and
. . b8.s pPs8.5
R R Os_ :
Vhs.s =f C ap 4 Do f ondp - @.74)
cpfop fo -
Ds Ps

For the computations of the integral of D,,-in (4.19) and those of w,, in (4.73) and
(4.74) the profile of D, as a function of p has to be known. It is assumed that in the

stratosphere with p <200 mbar D,, = 0, so that according to the continuity equation

dwg,

5, = 0 or w,, = 0. According to the conclusion 2 in section III 5 for the troposphere
p

below 200 mbar, a linear profile is chosen between the levels 200 300, 500, 850 and

1000 mbar. The formulas are given below.




92

0<p<200mbar: D, =0
200 < p <300 mbar: D, = P~ P2 D,; = e (Ds + D)
P3— D2 b3 — D2
300 < p <500 mbar: D, =D_ s + Ps P 3
DPs — D3
500 < p <850 mbar: D, =D,s5 — PP s
Pg.s—DPs

850 <. p <1000 mbar:D,, = D35 = Dyys — Dys s

(4.75)

(4.76)

4.77)

(4.78)

4.79)

Thus below 850 mbar D, is constant and equals D4 5. It appeared that the results of
the calculations with other linear profiles of D,, below 850 mbar were not significantly
different from those with a constant D,.

Now using (4.22) and (4.75)-(4.79), o,, and the integrals of w,, in (4.73) and (4.74)
can be computed for the chosen layers. The results are given below.

and

and

0 < p <200 mbar:

0,=0
200 < p < 300 mbar:
N2
om= -3 272 (p iy
(ps — p2)

Om3 = — 3(p3 — P2) (Duns + Dp3)

300 < p < 500 mbar:
(ps — p)*

On=—[p—ps+ 30— Pz)]Dms - [%(Ps — ) — %L_— D
(ps — Pq)

Ops = — 32ps — P2 — P3) Ds — 3(Ps — P2) D3

Applying (4.83) one gets

ps

ps—Pp ‘ ,
fwmdp == 6 - [3(ps — P2)Dps + (2Ps + P3 — 3P2)Dns])

p3

1
m3

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)
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500 < p < 850 mbar:

(rp—ps? _,

On = —[p = ¥p2 + P3)]Dms — 3(Ps — P2)Dms + %(p 9) ms.s (4.86)
8.5 — Ps

and

Omg.s = —3(2Ps.s — P3 — P2) Dms — 3(Ps — P2) D3 + 3(Ps.s — Ps) Dms.s

(4.87)
Applying (4.86) one gets
ps.s
Pg.s — Ps )
f w,dp = — 6 [3(ps.s + Ps — P2 — P3)Dps + 3(ps — p2)Dyys —
ps
‘ — (Ps.s — P5)Dpms.s] (4.88)

850 < p <1000 mbar:

Wy =—[p—¥p; + P3)] Duus — 3(ps — P2) D3z + [P — %(Psv.s + P5)]Dms.5
(4.89)

and

Opio = —32P1o — P2 — P3) Dms — 3(Ps — P2) Dm3s + 3(2P10 — Ps.s — P5)Das.s
(4.90)

Using the boundary condition w,,;, = 0, (4.90) can be expressed as
(2p10 — P2 — P3) Drus = (2P10 — Ps.s — Ps) Dns.s — (Ps — P2) D3 (4.91)

If the integrals of the heating terms in (4.73) and (4.74) are known, then after substitu-
tion of the results of (4.85) into (4.73) and of (4.88) into (4.74), equations (4.17),
(4.71), (4.72), (4.73), (4.74), and (4.91) contain six unknowns, namely Vs, Yms,
Yms s> Dms, Dags and D} 5. After elimination of the three moist divergences, one
Poisson-equation and two Helmholtz-equations result, which could be solved with
the use of the lateral boundary condition Y5 = ¥/ 5.5 = ¥ms = 0. However, a difficul-
ty presents itself, because the heating function Q is not completely known. It consists
of the sum of a so-called dry and a moist part (see (4.93)) of which only the dry part
is known. There is a possibility to overcome this difficulty, and as can be seen this
will also result in a simplification of the equations.

Substitution of (4.17), (4.71) and (4.72) into (4.91) results in the following Poisson-
equation.

V[(@2pio — P2 — PsWms — (2P10 — Ps.s — PsWms.s + (D5 — P Wm3] =0
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In accordance with the condition that /3 = Y5 = Yg.s = 0 at the boundary of
the computational area, the solution of this equation reads

(2P10 — P2 — PsWms — (2P10 — Ps.s — PsIWims.s + (Ps — P2z =0 (4.92)

If g denotes the specific-humidity and g its saturated value, then in the case of release

dg, 'd
of latent heat g = g, and dqt =—dz— < 0. Then the heating term Q equals

dg,
dt
some computational work (see for instance HALTINER (1971)) that

0=-1

with L the latent heat of condensation. It can be shown that after

R-Q R-L dg, ' o0
Cpfup cpfop dt fo

with o, ,4. the static stability with respect to a saturated adiabatic lapse rate. Since @
can be split up into a dry and a moist part as o = w4 + w,, the heating term Q can
also be divided as follows

R - Q _ Os.ad. Os.ad.

On
cpfop—_ﬁ fo a fo

(4.93)

Now the following assumptions are made:
1. If there is no release of latent heat in the layer between 500 and 850 mbar, also
no release is permitted in the layer between 300 and 500 mbar.

2. Only release of latent heat is taken into account if there is condensation in the
whole column of air between 500 and 850 mbar, so that with the use of (4.93),
(4.74) can be expressed as :

Pa.s ' ps.s ps.5

Gsag O5-8.5 ) Gs5-38.5
— (0, + w)dp + f o dp~ — Iw dp
fs fo fo !

ps ps . ps

W;ns.s =-

because of o5_5 5 & 0, ,4. due to the value of the static stability parameter o5 _¢ s,
which is approximately equal to o,,, for a saturated potential temperature of
10°C. See (4.70) in 3.4 and table 8 in 111 3.3.

3. If there is release of latent heat in the layer between 500 and 850 mbar, it is
assumed for the layer between 300 and 500 mbar that latent heat is partly released,
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namely between p, and ps with p; < p, < ps. Then using (4.93), (4.73) can be
expressed as

pPs ps

; Os.ad. G3-5 O3-5
Vms = — (w4 + w,)dp + fwmdp =
Jo fo fo
Dx D3
Dx Ps
(jwmdp - jwddp>
D3 DPx

dueto 0;_ 5 X 0,4.. Insection 11T 3.5 it has been shown that in the centre of a young
developing frontal wave in which release of latent heat is taking place, w4 and o,
have the same negative sign and are of the same order of magnitude between
300 and 500 mbar (see table 12), so that near 400 mbar a level §,. exists where

Px ps
wndp = J‘ wq4dp.
Px -4

Here it is assumed that p, = p,. Of course this assumption is in general not
exactly valid for developing frontal waves, although the assumption that latent
heat is partly released in the layer from 300 to 500 mbar is not unrealistic for
such waves, so that in many cases p, will be close to p,. To investigate the con-
sequences if p, # f,, other possibilities, namely p, = p5 and p, = p, are con-
sidered in 4.3.

Due to the three assumptions, (4.73) and (4.74) reduce to

Vis=0 (4.94)
and
p8.s

Yins.s = Hg.s with Hgs= — "5]:“ f wqdp (4.95)

)

ps

1t follows from (4.92), (4.94) and (4.95) that

: 2pio — Ps.s — Ds
l//mS =

2pio— P2~ D3
l/}m3 =043 Hg s and lﬁmg's = —0.57T Hg 5 (4.96)

Hs.s =0.43 H8.5>
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(4.94), (4,95) and (4.96) form the complete set of equations, which are used to correct
the computed tendencies of the ‘dry’ BK3-equations by adding the moist tendencies
to them. The heating term Hg 5 is determined with the computed precipitation from
the equations of the ‘dry’ model. These precipitation computations have been exten-
sively described by EXTER BLOKLAND, DEN (1972).

It has to be noted here that in the case that no release of latent heat is taking place
at all, Hgs=0 and 3 =Vmss=Vms=Dis=Dlss=D_s=0 is the exact
solution of the set of equations (4.17), (4.71), (4.72), (4.73), (4.74) and (4.91). With
release of latent heat, (4.94), (4.95) and (4.96) can be considered to be a first-order
approximation of the solution, which is exact for a specified value of p, close to
400 mbar.

4.2 Comparison of the method with the results of section III 3.5

The results obtained in the previous section will be further worked out and compared
with those of III 3.5, which are valid for the centres of young developing short fiontal
waves.

From (4.17) and (4.96) it follows that

2 —_ _ 0.43
P10 — Ps.s — Ps ViHg s = — V2Hg s 4.97)
(2p10 — P2 — P3)fs fo

mS5

Combination of (4.71) with (4.94) and of (4.72) with (4.95) gives

D.y=0 (4.98)

and

1
Dx;IS.S = - f_ V2H8.5 ‘ (4-99)

o

Substitutions of (4.97), (4.98) and (4.99) into (4.82), (4.84) and (4.87) give

0.22 x 104 5 )
Ony = = VHys (4.100)
1.08 x 10* 5
wms = —f—V H8.5’ (4.101)
and
0.85 x 10*
Wyg,s = ———F—— Vsz.s (4.102)

fo
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Fig. 18 The profiles of the ‘moist’ parts of the divergence D and the vertical velocity o as functions
of p used in the BK3-model.
Units: Dm in s~1 and @m in m~1kg s~3.

Formulas (4.75)-(4.79) and (4.97)-(4.99) show that the divergence D, is completely
determined as a function of pressure p and V*H, 5. Combination of (4.97)-(4.102)
with (4.80)—(4.90) determines the profile of w,, as a function of p and V?Hj s. Figure
18, which has been taken from the report of HEDBOER and EXTER BLOKLAND, DEN (1974),
shows the profiles of D, and w,,. A level of non-divergence clearly exists between
500 and 850 mbar, which can be found by setting D, = 0 in (4.78) and using the
results of (4.97) and (4.99). This level is found at 652 mbar. At this level w,, becomes

1.41 x 10* 2
Wne.52 = ‘fi V“Hg 5 (4.103)

In section III 3.5 the level of non-divergence of D,, was found at 600 mbar for the
two-parameter model.

To compare the numerical values of the moist D, and ®,, with those of table 12
in ITT 3.5, it is assumed that the dry parts of @, namely wy’s, are the same in both cases
and equal those of the reference atmosphere. Then according to (3.70), (4.67) and
(4.95), Hg 5 equals
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pPs.s Pi1o
Hgs= ﬁs—zﬁ J U (A — Az)dp:| dp-RVA
° Ps p
= (1 — A 5) (1 — BL*/US) L* - RVA (4.104)

Assuming that the streamfunction ¥ at 500 mbar has the form of the sine-wave
according to (3.15), then, using (3.16) and Ag s = 0.43 according to table 2, the
Laplacian of Hy 5 can be written as

V2Hg s = —0.57(1 — BL*/U5)RVA (4.105)
Taking SL*/U s = 0.0258 as in (4.70), V*Hg 5 becomes

V2Hg s = —0.56RVA (4.106)
This result can be used to express f,D,, and f,w,, as functions of the advection of
relative vorticity at 500 mbar. The computations have been carried out for pressure
levels with intervals of 100 mbar after the substitution of (4.106) into (4.97) and

(4.99), and using those results in the formulas for D, and w,, given by (4.75)-(4.90).
The results are given in table 21.

pressure Dm = foDm/RVA  foDum/RVA ©m = foom/RVA  forom/RVA
level according to used in the according to used in the
table 12 of BK3-model table 12 of BK3-model
(mbar) III3.5 111 3.5
(104m~1kg s—2) (104m~1kg s—2)

200 +0.64 0 0 0

300 +0.48 -+0.24 —0.56 —0.12

400 +0.32 +-0.24 —0.96 —0.36

500 +0.16 +-0.24 —1.20 —0.60

600 0 +0.08 —1.28 —0.76

700 —0.16 —0.08 —1.20 —0.77

800 —0.32 —0.24 —0.96 —0.61

900 —0.48 —0.31 —0.56 —0.31
1000 —0.64 —0.31 0 0

Table 21 Comparison of the ‘moist’ Dm and om according to the method in 4.1 with those in
11T 3.5 valid for the centres of young developing short frontal waves.

This table clearly shows that, assuming the RVA has the same value in both cases,
the absolute values of D, as well as of w,, computed according to the method followed
in this section are underestimated with respect to the values of IIT 3.5 except for the
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divergences at 500 and 600 mbar. However, for the computations in the BK3-model
not the moist D, ’s or @’s themselves are used, but the moist tendencies of the stream-
function at 300, 500 and 850 mbar. Therefore, they will be compared with the moist
tendencies of the two-parameter model in section III 3.5.

For that purpose the tendency of i as given in IIT 3.5 is split up into a dry and a moist
part as ¥ = Y4 + /.. Then, according to (3.49) it can be shown that

l.bms.s = AB.S‘[’mS + Cg.slpfv 'pmS = A3l/}m5 + C?‘.&rﬂ;,
lpu'ns.s =(- AS.S)lpmS - Cg.s‘p; and lprlnS =(4; — 1)‘/}1115 + C?‘p:ﬁ (4.107)

s and y* of the two-parameter model are defined by equations (3.55) and (3.57).
(3.57) was derived from (3.34) after the application of the Laplacian operator. Without
the Laplacian it reads

. K, .. ' /cw  R-Q
—Ks + —[Y* + JWs, v* ——Z )dp=0 (4.108
Y +K1[w+(r// t//)]+f <f° +cp'f°'p>p (4.108)

Ps

. Without release of latent heat (Q = 0), (3.55) and (4.108) read

Vias + JWs, Vs + ) = —K[VAE + J@*, V)]
—K3J(y*, V2y*) (4.109)

and
P8.s

. Koy e g g
—K4¥4s +K_1[Wd + JWs, ¥yH)] = f 7

ps

dp (4.110)

With release of latent heat and using (3.62) the equations (3.55) and (4.108) can be
expressed as

V3as + Vs + Js, Vs + ) = —~K,[VF + VAE + J@*, )]
— K3J(p*, V2|//*) “4.111)

and

. : K, .. .
—Ki(Was + ¥ms) + . W&+ vk +IWs, ¥H] =0 (4.112)

Subtraction of (4.109) from (4.111) and of (4.110) from (4.112) yields

Vi ns = —K, V2% (4.113)
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and

P8.5

Koms + 22y = | 2% (4.114)
4¥Y' mS5 K1 m — fo p . .

ps

In accordance with the condition that s = y* = 0 at the boundary of the computa-
tional area, it follows from (4.113) that

Vms = —K 0% (4.115)

Now it follows from (4.114) and (4.115) that

ps.5

. K1K2 [ (2 a)d
Yps=— dp and
K (KK, + 1) | fo
ps
ps.s5
. K f o w
gt = L *dp (4.116)
K (KK, + 1) fo

Substitution of these expressions for i/,,5 and ¥ into (4.107) using the definition of
C*in (3.48) and of K, and K, in (3.54) leads to

Ps.s Ds.s
v 7 P44p and ! A=l [ 00y 4.117)
m8.5 = — an m3 — — .
8.5 7. p 3 K, 1. p

Ps ps

In accordance with III 3.5 the following values are used: 4;=1.32, K; =0.8, K, =0.2/
0.84 and K, = 0.56. Then it follows from (4.117) that Yogs=Hgs, Wms =0.57THg s
and from (4.116) that Y5 = 0.29Hg 5. The tendencies Y55 and Y,; become
Vigs = Wms — Ymgs = —0.71Hg 5 and Y3 = Ypms + Y3 = 0.86Hg 5. These values
can be compared with those of (4.96) used in the BK3-model. So for the BK3-model
at 300 mbar there is a reduction of ~ 50% for ¥,5 and at 500 mbar an increase of
~ 50% for Y,s. At 850 mbar the absolute value of Y s has been decreased by
~ 20%. So the difference is smallest at the lowest level.

The computed values for the two-parameter model in I11.3.5 and those of (4.96) for
the BK3-model are given in table 22.
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4.3 Further discussion on the assumptions

In section 4.1 two assumptions were made, which led to a simplification of the equa-
tions. The first assumption implied a dry atmosphere above 500 mbar, provided it
was also dry below that level. It can happen, of course, in the atmosphere that con-
densation takes place above 500 mbar and not below that level. Such situations occur
in cases of occluding fronts, which are mostly connected with the mature or decaying
stages of cyclones, but not with the early development stage. The development stage,
which is of most interest for this treatise, is the one in which condensation almost
always takes place in the whole layer from 500 to 850 mbar and sometimes also in the
layer from 300 to 500 mbar. The formulas (4.94), (4.95) and (4.96) were derived under
the assumption of condensation in the layer from p,, which is close to 400 mbar, to
500 mbar. To investigate the consequence of this assumption, two other cases are
considered here, namely case 1 with release of latent heat in the whole layer from
300 to 500 mbar, and case 2 with no condensation at all in that layer.

Case 1

Equations (4.92) and (4.95) remain valid, but (4.94) becomes

ps

Uiy =H, with Hy=— ”}‘5 dedp (4.118)

o

p3

Now the same procedure as in the previous section is applied to express H; as a
function of the RVA at 500 mbar. Then according to (3.70) and (4.66)

Hy = 02 JU “4- Az)dp] dp RVA = (43 — 1) (1 - BL¥/U;)L* - RVA
Iy (4.119)

Combination of (4.119) with (4.104) gives

Ay — 1
H, = 1—3--A— Hys=057Hgs for A; =132 and dgs=044 (4.120)
T4g.5

So

Yms = 0.57Hg s . (4.121)
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The results of (4.95) and (4.120) are substituted into (4.92) leading to

Yims = 0.32Hy ‘ (4.122)
It follows from (4.95), (4.121) and (4.122) that

Wims =WUms + Vms = 0.89Hg 5 and Yops = Yms — Ymss = —0.68H, 5

(4.123)
A comparison with the previous results is given in table 22.
Case 2
Equations (4.92) and (4.95) remain unchanged, but (5.73) becomes
Ps
. O3-5
Vs = T Ja)md p (4.124)

b3

To express the tendency .5 as a function of Hy s is a little more complicated in
this case. For that purpose (4.85), (4.71) and (4.17) are used. After substitution of
these formulas into (4.124) one gets

O3-s5 DPs— D3
fi 6

Yms = [3(ps — P2)VWms + (2ps + 3 — 3P2)V2‘pr;13] (4.125)
To eliminate the Laplacian operators it is assumed that the tendencies /5 and 1.,
have the form of a sine-wave with the same wavelengths in the x- and y-direction of
the chosen coordinate system for the streamfunction at 500 mbar, so that V&), =
— (U3 + pWms and VA s = — (U2 + 120 ms- Now with the aid of (4.66) and using
the numerical values of (4.70), (4.125) becomes

P (As—1) (1-BL*/Us) ps—
lpmS ~ ps pio 6

oo o

pPs P

= —0.59 1,5 — 0.46 .., (4.126)

B L 35— Do ims — (@5 + Ps — 3p2is]

The results of (4.126) and (4.92) can be combined with (4.95), so that

Yms =047Hg s and )3 = —0.19Hgs . ©(4.127)
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Y3 = Vms + ¥ms =028Hg s and Ygs = Yms — Yms.s = —0.53Hg 5

(4.128)

The results obtained in this section are summarized in table 22.
1 11 111 v
moist results of condensation method in BK3- no condensation
tendencies II1 3.5 in whole layer model of 4.1 in layer
300—500 mbar 300—500 mbar

Wm3 +0.87H3.5 +0.89H3. 5 +0.43Hg.5 +0.28H3,5
Wms +0.29H3.5 +0.32H3 5 +0.43H3g. 5 +0.47H3y.5
W¥ms.s —0.71Hyg.5 —0.68H73.5 —0.57H3.5 —0.53H3.5

Table 22 Comparison of several methods for the incorporation of the release of latent heat.

I: Results of the two-parameter model of IIX 3.5. They are valid for the centre at sea level of a
young developing short frontal wave.

II: Condensation in the whole column 300—850 mbar. The dry part of @, wa equals that of the
reference atmosphere.

III: Method used in the BK3-model described in 4.1. No assumptions have been made about the
patterns of the streamfunctions or tendencies. The assumption of partial condensation in the
column 300—500 mbar has been made.

IV: Condensation only in the column 500—850 mbar. The moist tendencies ms and ym3 have the
form of a sine-wave.

The moist tendencies of methods I, I1, IIT and IV can be compared with one another
assuming that Hg 5 has the same value in each case. Table 22 shows that method II
agrees best with the results of 11T 3.5. (It is noted here that the divergence- and w-values
of the two-parameter model in that section have been compared with three case-studies).
The differences between the four methods are smallest at 850 mbar and greatest at
300 mbar. Comparing IT with ITT and 11T with IV, it can be seen that with a decreasing
amount of release of latent heat above 500 mbar the absolute values of the moist
tendencies at 300 and 850 mbar decrease also. However, at 500 mbar the values of
the tendencies increase.

5 Final prognostic equations for polar stereographic projection

5.1 The equations of the dry model

The basic equations used are those as discussed in Chapter II. They are summarized
below.
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Vorticity equation (2.23):

f VY + m2IW, f) + J}—ID 0

Continuity equation (2.21):

% L p=o
dp

Thermodynamic equation (2.24) without heating term:

o mi, [ o
PR J(‘”’ >+?J“’ 0

Boundary conditions (2.8):
w=0 for p=0 and p= 1000 mbar.

With the aid of the above equations the prognostic equations can be formulated
in a similar way as was done in 2. with the equations in f-plane approximation. They
are given below and are analogous to (4.9), (4.10), (4.11), (4.12), (4.13), (4.14), (4.15),
(4.23), (4.24) and (4.25). The subscripts d referring to the dry equations are omitted
here.

lfo fl

miVijs + T3, miVAR) + miJ(Ps, f) + f =0 (4.129)
2' 2.7 2f 272 fl

miVays + 7 J(Ws, miV3s) + miJ(Ws, f) + f =0 (4.130)
2v72.f Zfo 2 2 fl

miViyg s + 7. J(Ws.5, miV4gs) + miJ(Ygs, /) + f_ Dg =0 (4.131)
Ddp=0 (4.132)

f 31.& m%fo 2 035 _
ﬂ: 7 + 7 J(lﬁ, 3p>+ 7 co:| dp+e;=0 (4.133)

p3
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3'1” mifo oy O5-8.5 _

J [ o 7 J(x//, op ) + 7 co] dp+e55=0 4.134)
o= —Jde: J‘ Ddp (4.135)
gy = (43 — 1% - f > j (4K - AZ)dp] dp- s J(@Wrs, miV3ys)
nr (4.136)

€g.5 = 1- Aa.s)‘[’? - 0-5_28'5"

12

f U (4-K — AZ)dp] dp s (s, mIV2Ys) (4.137)
mIVAE = — ]if" s, V) — mIs, ) 4.138)

The integrations of the equations (4.132), (4.133) and (4.134), the elimination of the
divergences in (4.129), (4.130), (4.131) and the integrated equations (4.132), (4.133)
and (4.134) are carried out in the same way as was done in the sections 3.2 and 3.3.
So the equations of the dry BK3-model, valid for polar stereographic projection,
become

V3t = — fo N P (4.139)
1
2.1 fl T
Vgs — (aoo‘//s s — Ao¥3) = — Ja]
lfo
a ,
- f—l(aooj7 + agJg) —Jy + J4 — /i 0; v, (4.140)
fo ' ml o
A f fo
Vi, — ! (aml//a ‘111‘#8 5) == +aw)d, — Js]
lfo f
a .
+ j;—l(alon 4+ a;Jq) —Js + Ty — J;i Sy (4.141)
o 1/ o
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2
Vs = — ;0 Jy—J, — 5,—1(‘10-]7 + a;Jg) + "Tn];—lfz—(aol/'/é.s — ay3),
1 [} 1J o
(4.142)

with
Ji=J(Ws, mi‘Vzlﬁs), Jy=JdWs.f), J3=JI(Ws.s, mivz'ﬁs.s),

Ja=JIWss,f), Js=Js, mezlﬁg,), Je=JWs.f), J7=J(s, ¥gs5) and
Js =J(WYs, ¥3) (4.143)

The coefficients ag, @1, dog; Fo1> A105 11> Foas dos, d14 and a, 5 are given by (4.61)-
(4.65).

5.2 The corrections due to the inclusion of release of latent heat

The prognostic ‘moist” equations valid for stereographic projection can be formulated

in a similar way as (4.16)-(4.22). Equations (4.16)-(4.18) are given below, whereas
(4.19)~(4.22) remain unchanged.

2
m%Vzl/}mg, + §1—Dm3 =0 (4.144)
fZ
miVins + f—l D,s=0 (4.145)
fZ
miVies + f_les.s =0 (4.146)

For the derivation of the moist corrections from the above formulated equations
exactly the same procedure is followed as in 4.1, leading to the same formulas for the
corrections of the tendencies, which for convenience are given below.

‘/'/1;13 =0, lﬁrlnS.S = H8.5a l/./mS = 0’43H8.55 l/}mS = 0-43H8.5>
l/'/m8.5 = _0'57H8.5

with

 Hgg= — 8 f w,dp (4.147)
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6 Description of the computational procedures
6.1 Computational grid

A rectangular grid has been defined on a plane going through the parallel of 60°N,
With the aid of a stereographic projection the earth’s surface is projected from the
south pole on this plane. The x- and y-axis of the coordinate system are parallel to
the longitude circles of 30°W and 120°W, respectively. The grid point distance d is
equal to 375 km at 60°N. The discrete coordinates of the grid points in the x- and
y-direction are denoted by i and j with x = d(i — 1) and y = d(j — 1), so that according
to the stereographic projection formula (2.15) i and j are related to the latitude ¢
and the longitude A (positive in the east-direction) as

di—i'—1)=a-m-cosA and d(j—j' —1)=a-m-sin 4, (4.148)
with

x=x,+d-i" and y=y,+d-j.

xsand y, are the coordinates of the stereographic projection along 30°W and 120°W,
respectively. i' and j' are the number of grid point distances along the x- and y -axis
to the north pole with i' =4.5 and j' ' =16.5. The value of the earth’s radius a has
been taken as a = 6371229 m. The coordinates i and j vary from i = 1 to i = 25 and
from j=1 to j=32. The thus defined grid covers Europe, the North Atlantic Ocean
and North America. It is partly given in figure 7.

The coordinates i and j of the computational grid are related to the latitude ¢
according to

singp=(1—h/[l+h)

with
- - D>+ (G —Jj - D]
a*(1 + sin 60°)2

h= ' (4.149)

Using this formula it is possible to compute the Coriolis parameter f; and the map
scale factor m, for each grid point at latitude ¢ = ?y.
6.2 Finite difference approximations

The Laplacian of a quantity Q has been approximated with the wellknown second-
order scheme
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V20 = Qi+ Qicry + Qujer + Quy—1 — 40 /4% (4.150)
with @, ; the value of Q at the grid point with coordinates i and j.

For the time integrations the second-order leap-frog scheme has been applied,
namely '

(Q) =(Qi 041 — Qign—1)/(240), (4.151)

i n
with Q, ; . the value of Q at the grid point (i, j) and at the discrete time n. n is related
to the time t as n = t/At.

For the Jacobian three difference schemes have been applied, namely the one by
ARAKAWA (1966), a fourth-order scheme developed by OPSTEEGH at the Royal Nether-
lands Meteorological Institute, and the simple second-order scheme. These three
schemes are described below.

The Jacobian J of two quantities f and g can be expressed in three mathematically
identical ways as

_of og _9f 65 _ 2 (.og\_9 (. og\_9 [ 9
o8 =50 3 "oy ax ox <f3y> 8y <f3x>_8y <g8x>

_ (gﬁ> (4.152)
0x ady

The finite difference approximations of these three expressions for the Jacobian at
the grid point with coordinates i and j are denoted by JJ,, JJ, and JJ_ respectively.
See also figure 19 for the locations of the grid points.

-—x
-
.

X X X
ivl, J-1 iet, ] Pe1, §e1

v

Fig. 19 Locations of the grid points used for the finite difference approximations.




109

JJ, = [(fi+ 1,j _fi—l,j) (gi,j+1 - gi,j—l) - (fi,j+1 _fi,j—l) (gi+ 1.j gi—l,j)]/
(4d? (4.153)

JJ, = [fi+1,j(gi+1,j+1 - gi+1,j—1) _fi—l,j(gi—l,j+1 = gi—l,j—l)
_fi,j+1(gi+1,j+1 - gi—l,j+1) +fi,j—1(gi+1,j—1 - gi—l,j—l)]/(4d2) (4.154)

JJ. = [gi,j+1(fi+1,j+1 _fi—l,j+1) - gi,j—1(fi+1,j—1 _.fi—l,j—l)
- gi+1,j(fi+1,j+1 —fi+ 1,j—1) + gi—l,j(fi—l,j+1 _fi—l,j—l)]/(4d2) (4.155)

The finite difference scheme by ARAKAWA reads
JIy=UJ, +JJ, +JJ)3 (4.156)

This scheme had been applied to several experiments with the dry version of the BK3-
model and also to the operational version till the end of 1973.
The fourth-order scheme of the Jacobian is given by

JJi,j = {[%(fi+1,j _"fi—-l,j) - %(fi+2,j _fi—z,j)]
) [%(gi,j+1 - gi,j—l) - %(gi,j+2 - gi,j—2)]
- [%(fi,j+1 "‘fi,j—1) - %(fi,j+2 _fi,j—z)]

) [%(gi+1,j - gi—l,j) - %(gi+2,j - gi—z,j)]}/(4d2) (4.157)

The scheme cannot be applied to the grid points of the rows and columns next to
the boundary of the computational grid, so that at these points the simple second-
order approximation given by (4.153) is used. This fourth-order scheme has been used
in experimental dry and moist versions of the BK3-model and also in the operational
version from the beginning of 1974.

6.3 Lateral boundary conditions and smoothing procedures

Due to the finite area of the computational grid, lateral boundary conditions are
necessary to perform the calculations.

During the integrations the four tendencies /%, /3, Vg5 and ¥ occurring in
equations (4.139)-(4.142) are kept equal to zero at the outer two rows and columns
of grid points. After each time step a linear interpolation is made for 5, Y3 and ¥rg 5
at the rows and columns of grid points next to the boundaries, namely
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Uiy = Wigmy + Wiga)2 for i=3,... ...,23 and j=2,31,

Yoo =W + V332, Yauz=Was1 + ¥233)/2,

Uiy= Wiory+ Yisr )2 for i=224 and j=3,... ... 30,

Va1 = W1,52 + V3,302, Yasz1 = Pas,32 + V23,302 (4.158)

This interpolation proved to be an efficient way to suppress computational instability
near the boundaries of the grid. This instability is possible due to the fact that the
boundaries are partly located in meteorologically active areas, so that too strong
gradients in the patterns of the streamfunctions can be caused by keeping the values
constant. It is clear that the linear interpolation (4.158) acts as the most simple
smoothing operator.
. However, the use of (4.158) near the boundaries of the grid is not a sufficient
condition to prevent all kinds of instability. For instance, non-linear instability can
arise in the interior of the area during the integration process. To suppress this
unwanted phenomenon, the smoothing operator devised by SHUMAN (1957) is applied
to the streamfunctions. The way in which it is applied is outlined in the next section.
The sHUMAN-operator related to the streamfunction  in the x-direction of the
grid has the following form

‘;i,j =5 — AV + AaWivr; F¥io1y) — AoWiva; + Vicay)
+ Ag3(Yits; + Viozy)
with
Ay =027236, A, =022049, A,=011318 and A,, = 0.02886 (4.159)

The properties of this smoothing operator can be most easily clarified with the aid
of a simple sinusoidal wave. If ¥, ; = 4 cos (u,d - i) cos (u,d - j), after the use of
(4.159) in the x- and y-direction, i has been changed into

iy = RV | ‘ (4.160)
with

)

R=[1—- Ay, + 244 cos (u,d) — 24, cos (2u,d) + 24,5 cos (3u,d)]
“[1— Ay + 24 cos (u,d) — 24, cos (2u,d) + 245 cos (3u,d)]

where d is the distance between two grid points, u, = 27/L, and p, = 2x/L,.

- .The response function R is given in table 23 for several values of L,/d and ratios
L,/L,=0 and 1 and for one, three and thirty times of repeated application. The
table clearly shows the features of this operator. Waves with wavelengths larger than
four and smaller than eight grid distances are amplified with a maximum at L, ~ 6d.
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All other waves are damped with an absolute minimum at L, = 2d and a relative
minimum at L, &~ 12d. In table 23 these features are most pronounced for the case
when smoothing is repeated thirty times.

It is clear that the use of SHUMAN’s smoothing operator is an effective way to
suppress non-linear instability (discovered by Phillips (1959)), which results in an
unlimited accumulation of noise in the wavelengths equal to 2d, 3d and 4d.

L./d LJ/L,=0 LJL,=1
1x 3Ix 30% 1x 3x 30 %
2 0.003 0.000 0.000 0.000 0.000 0.000
3 0.678 0.312 0.000 0.460 0.097 0.000
4 0.954 0.868 0.243 0.910 0.754 0.059
5 1.000 1.001 1.010 1.001 1.002 1.020
6 1.004 1.011 1.113 1.007 1.022 1.239
7 1.001 1.003 1.029 1.002 1.006 1.059
8 0.999 0.996 0.960 0.997 0.992 0.992
9 0.997 0.992 0.922 0.995 0.984 0.850
10 0.997 0.990 0.903 0.993 0.980 0.816
11 0.996 0.989 0.897 0.992 0.978 0.804
12 0.996 0.989 0.897 0.992 0.978 0.804
13 0.997 0.990 0.900 0.993 0.979 0.810
14 0.997 0.990 0.905 0.993 0.980 0.819
15 0.997 0.991 0.911 0.994 0.981 0.829
20 0.998 0.994 0.937 0.996 0.987 0.879
1) 1 1 1 1 1 1

Table 23 Response function of SHUMAN’s smoothing operator for several repeated applications
on a sinusoidal wave in the x- and y-direction of the coordinate system.

6.4 Computational scheme

The computer program of the BK3-model starts with the objective analyses of the
geopotential heights of the 300, 500 and 850 mbar surfaces. The practical application
of this analysis program, which is based on the procedures developed by CRESSMAN
(1959), was developed by BOUMAN (1969).

The three height fields consist of 3 x 800 values of the geopotential. These fields
are transformed into streamfunctions according to

Va=g"z3/fe VUs=8 2s/fs Vss=28" Zsslfe W3=Vs—Vs,
Yas=VYs—Wss with f,=107%"" (4.161)

The subscripts 3, 5 and 8.5 refer to 300, 500 and 850 mbar respectively.
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With the aid of (4.149) and (2.15) the fields of the Coriolis-parameter f and the
quadratic map scale factor m? are computed for each grid point. The three vorticities
miV2iy,, m3V2js and miV3ij, s and the Jacobians J; — Jg defined in (4.143) are
computed using the difference approximations given in 6.2. The barotropic tendency
¥ can be solved now from (4.139) after the approximation of the Laplacian of /¥
according to (4.150). The approximate solution is obtained with the aid of an over-
relaxation method according to the extrapolation method of LIEBMANN, and using the
lateral boundary condition y/* = 0. Now the forcing functions of the set of Helmholtz-
equations (4.140) and (4.141) are completely known. After the approximation of the
Laplacians of /3 and ¥ s by finite differences according to (4.150), these tendencies
are simultaneously solved from this set of Helmholtz-equations, using the same tech-
nique as for the solution of (4.139). These tendencies are substituted into (4.142), so
that the forcing function of that equation is known and the tendency /5 can be solved.

Now the time integrations are performed for the streamfunctions 3, ¥5 and Y s,
using a forward time step of 34t at t = 0, a central time step of At at t = 4t and for
other values of ¢ central steps of 24¢, using (4.151). In most experiments, a time step
of At = 3600 s could be taken, but in some cases it was necessary to take steps of
1800 s, in order to prevent linear instability.

After each time step At the corrections due to the release of latent heat are applied
to the streamfunctions 3, ¥s and g s, if the moist version of the model is used.
According to (4.147), the streamfunctions 3, Vs and Y4 5 are corrected with 0,
0.43H4 sAt and Hg sAt, respectively. The quantity Hg sAt is directly related to the
release of latent heat derived from the precipitation computations with the aid of the
equations (4.139)-(4.142) of the dry model over the period ¢ to ¢ + 4.

To prevent non-linear instability, SHUMAN’s smoothing operator is used various
times, depending on the total number of scans needed to solve the Poisson-equation
(4.139) and the set of Helmholtz-equations (4.140) and (4.141). If the number of
scans, needed to solve the equations, is greater than the one needed at ¢ = 0 for either
the Poisson-equation or the Helmholiz-equations, then the streamfunctions 3, ¥/5
and 14 5 are smoothed by the Shuman-operator. This smoothing is performed three
times in the x- and y-direction of the computational grid.

After each time step the linear interpolations (4.158) are carried out near the bounda-
ries of the grid.
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CHAPTER V

A SURVEY OF THE PERFORMANCE OF
THE DRY AND MOIST VERSIONS OF THE
BK3-MODEL

1 Some remarks on the performance of the dry versions of the BK3-model
with and without the correction terms in the integrated forms of the thermo-
dynamic equation

Some experiments were carried out for the 25-3-°71, 00 GMT situation with the dry
version of the BK3-model. Two versions were used, namely the model with the correc-
tion terms &5 and &g 5, which have been defined by (4.136) and (4.137), and the model
without these terms. As can be seen in section IV 3.3, such a version with
&3 = 85 5 = 0 can be obtained by setting ay, = dys = @14 = d;5 = 0 in the equations
(4.140), (4.141) and (4.142) of the model.

The experiments were performed with five different values of the static stability
parameters ¢5_s and o5_g s by using five values of L* in (4.66) and (4.67). The
values varied from low ones, belonging to a saturated adiabatic lapse rate, to the
relatively high values of the upper part of the ICAO standard atmosphere. The results
of these experiments were described by Heijboer (1972). A short summary is given
here.

With respect ot the influence of static stability, the models with and without the
correction terms showed the same qualitative behaviour, i.e. with increasing values
of the static stability, less baroclinic development, decreasing values of the horizontal
divergence at 300, 500 and 850 mbar and also decreasing values for o at 500 mbar
resulted. The production of areal mean kinetic energy and areal mean squared vorticity
at 500 mbar also decreased.

These results are not surprising, as they are predicted by the stability theory of I1I 4.
As shown in (3.91), this theory predicts that for unstable waves the development of
the perturbation is inversely proportional to the root of the static stability.

More interesting are the differences caused by the inclusion of the correction terms
&3 and &g 5 in the equations of the model. Comparison of the two versions using the
same static stability showed that in general the inclusion of the correction terms in
the model had led to a smaller baroclinic development in the prognoses. A further
subjective inspection revealed that the long waves with wavelengths of about 4000 km
in the thickness fields z3 and zg s were damped compared with those predicted by the
model without the correction terms. Using the values o;_5 and o5_g 5 given in
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(4.70), the predicted sea level pressures in the centres of the highs proved to be more
realistic with the correction terms included. Without these terms the predicted pres-
sures were generally too high.

It should be noted here that the pressure at sea level is not directly forecast by the
model. This field is estimated with the aid of the predicted height field of 500 mbar and
the thickness field of 500-850 mbar according to

Peuctace = 1.25(z5 — 1.25z} 5 — 31) + 1000 (5.1)

where z, is the geopotential height of 500 mbar in gpdam, zg s = z5 — zg 5 the
thickness of the thermal field 500-850 mbar in gpdam, and pg, ... the pressure at
sea level in mbar. This formula can be derived with the aid of an empirical linear
relation, which exists between the thicknesses of 500-850 mbar and of 500-1000 mbar,
if the lapse rate is assumed to be saturated-adiabatic. This relation reads
Z10 = 1.25z4 5 + 31 with z;, and zg s in gpdam. Over sea, the approximation (5.1)
is fairly accurate, but over land, in cases of extreme deviations from the assumed
vertical temperature profile in the boundary layer below 850 mbar, the result may
be unacceptable.

Further experiments were carried out on 10 other cases with different weather
situations varying from west circulations to blocking circulations, using one version
of the model with and one without the correction terms, both with the low values of
the static stability belonging to a saturated adiabatic lapse rate. In all these cases the
model with the correction terms proved to be more stable for the long waves and to
give better pressure predictions for the highs at sea level. In one case the model without
correction terms had even become computationally unstable. This kind of instability
could not be removed by a reduction of the time steps used in the integrations.

The effect of the correction terms on the behaviour of the long as well as the short
waves is further elucidated in section 3. It should be noted here that stabilization of
the long waves can also be obtained by an increase of the static stability of the model
by using values higher than those of saturated adiabatic lapse rates and in accordance
with the mean value of the static stability of the ICAO standard atmosphere. However,
such values are not realistic for frontal systems as has been discussed in 111 3.3.

The dry version of the model including the correction terms and using the coefficients
computed in IV 3.4 was operational from 28-2-72, 12 GMT till 3-11-’75, 00 GMT. The
performance of this model with respect to forecasts of the geostrophic wind at 850
mbar for periods of 12 and 24 hours ahead has been described by HEUBOER (1973).
The verification was done for a peroid of one year, and it proved that the forecasts
of both windspeed and wind direction up to 24 hours ahead were as good as the
persistence forecasts up to 12 hours ahead.
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2 The performance of the moist version of the BK3-model

Experiments with the inclusion of latent heat have been described by HEUBOER and
EXTER BLOKLAND, DEN (1974). The used version of the model contained the correction
terms and the coefficients as calculated in IV 3.4. The results were compared with those
of the operational dry version of the model. A summary of these experiments is
given below.

A number of cases were selected during the winter season *72—"73. All cases showed
explosive development at sea level (deepening of 20 mbar or more in 24 hours).
During the summer and the autumn of 1973 the moist version was run parallel to
the operational dry version. The reason for selecting the summer season was to control
the performance of the moist version for the period when, due to the relatively high
air temperature, the amount of moisture is high, while on the other hand the circula-
tion is in general less intense. The experiments showed that the moist model was able
to predict explosive development of frontal depressions in contrast with the dry
version, which for all the selected cases could not properly predict the development
at sea level.

A model suitable for operational purposes, however, should not only predict
existing developments correctly, but should also predict no development if there is
none in reality. In general, this proved to be the case, and only in a few cases false
explosive development on the synoptic scale had been forecast. However, the moist
model showed an unwanted phenomenon, which prevented the model from becoming
operational. It proved that in general the forecast pressure pattern at sea level was
too noisy. The noise usually consisted of waves with wavelengths of three or four
grid distances (~ 1000 — ~ 1500 km). In cases of developing frontal waves it some-
times appeared that the model predicted such an unrealistic disturbance in the cold
front behind the original one.

This feature of the model can be reasonably explained as follows: If there is an
initially small disturbance with a wavelength equal to three or four grid distances,
which is equivalent barotropic like the reference atmosphere, then the dry version of
the model will hold this disturbance equivalent barotropic, due to the influence of
the correction terms (see also the next section), so that the wave shows no baroclinic
development. InsectionIII 2.1 it has been shown that in the reference atmosphere vertical
velocities occur, which are upward in areas with advection of positive relative vorticity
(RVA > 0) at 500 mbar. If in this area the humidity of the air is high enough, precipita-
tion with release of latent heat is possible. Accordingly, a baroclinic part due to the
release of latent heat will be added to the equivalent barotropic tendency of the
streamfunction g 5 of the thickness field (see for instance section IV 4.1, where this
moist part is given by (4.95)). Now the disturbance becomes baroclinic and obtains
a structure like that of a simple baroclinic wave, which is described in the next
section. It is shown in that section that for such waves the correction terms will
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favour a further amplification of the baroclinic part of the wave in the thickness field.
This enhanced baroclinicity will be accompanied with an increased upward vertical
velocity, increased release of latent heat etc. Thus the disturbance has become baro-
clinically unstable. If the small disturbance is already baroclinic in the initial stage,
one may expect that the moist version will always be more unstable than the dry
version of the model, due to the possibility of release of latent heat.

Small-scale noise can be present in the objective analyses, but can also be generated
by the ‘aliasing’ process caused by the use of finite difference equations in the model.
This noise could be suppressed by the application of SHUMAN’s smoothing operator,
but in practice it proved that this smoothing was only sufficient for the dry version of
the model and not for the moist version.

The considerations given above lead to the conclusion that a real dissipation mecha-
nism has to be included in the model. Recent experiments with the inclusion of hori-
zontal eddy diffusion terms together with the use of SHUMAN’S smooting operator
proved to yield the desired dissipation of the small waves.

The experiments with the moist version of the model support the conclusions from the
stability analysis of the quasi-geostrophic equations given in section 111.4, namely, that
short frontal waves can only be unstable if latent heat is released in the disturbance.
This is illustrated in figure 20, which has been taken from the report of HEIBOER and
EXTER BLOKLAND, DEN (1974). The predicted and observed pressure changes of the
surface low centres are given for the eight selected cases discussed in that report.
The figure clearly shows that the dry version of the model can hardly predict the
explosive deepening of the surface lows, this in contrast with the moist version.

Finally, one case has been chosen to illustrate the capability of the moist model to
predict explosive cyclogenesis at sea level. It is noted here that this case is one of the
best prognoses of the moist model. Figure 21a shows the initial surface pressure on
23-12->72, 00 GMT. The analysis of the situation 24 hours later is given in figure 21b.
Figure 21c shows the prognosis of the dry model without any production of vorticity
for the low centered at 50°N and 40°W. Figure 21d shows that the low had been
forecast very well by the moist model. The initial analysis of 500 mbar, the analysis
of 500 mbar 24 hours later, the prognosis of the dry model valid for the same time
and also that of the moist model are given in the figures 22a, 22b, 22¢ and 22d,
respectively. It can be seen that there is no great difference between the forecasts by
the dry and moist models of which the latter is slightly better for this case. This

Fig. 20 Comparison between the observed pressure tendencies (extracted from the handmade
analyses by the Weather Service of the Royal Netherlands Meteorological Institute) and
the forcast tendencies of the estimated surface pressure by (5.1) with the dry and the moist
version of the BK3-model.
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feature proved to be generally true for the prognoses of 500 mbar. The greatest

differences between the dry and moist versions of the models are found at sea level.
One of the cases in the above-mentioned report, namely the gale of 13-11-"72, has

also been investigated by EMMRICH (1975). He came to the conclusion that the 1elease
of latent heat had been very important for the development of that depression.

3 Some further theoretical considerations with respect to the correction terms
in the BK3-model
The character and the influence of the correction terms &5 and &g 5 on the behaviour

of the BK3-model will be investigated with the aid of simple streamfunctions. For
that purpose the streamfunction at 500 mbar is supposed to satisfy:

Ys=—Us-y+ Fscos(u, - y)sin [p(x — @s)] + E (5.2)

F5 and ¢5 both depend on time t. At t =t,, ¢5 =0. Us and E are constant.
The advection of relative vorticity (RVA) at 500 mbar then becomes

RVA = —J(fs, V2s) = UsFsp(ps + p3) cos (i, - ) cos [i(x — 95)]  (5.3)
When (5.2) is substituted into (4.25) the solution /¥ is
Y% = —wUsFs(1 — BL*/Us) cos (u, - ¥) cos [ix — @5)]

With this expression for Y%, &5 and g5 s become according to (5.3), (4.23) and (4.24):

&3 = — UsFs ﬁ— {(As — 1) (1 — BL*/U5)L*

—~ ”Ji;s f [ f (4 - A2>dp] dp} < cos (1, * y) cos [u(x — @5)]  (5.4)

and
Ly
&g.5 = — USFSF {(1 — Ag5) (1 — pL*[Us)L*

P8.5 Pio

- “f f U (4 - AZ)dp} dp} - cos (i, * ¥) cos [p(x — @5)]
ps P (5'5)
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If for the specifications of 63 _ 5 and 05 _g 5 in (4.66) and (4.67) the value of L* (denoted
by L¥) is taken according to the values of IV 3.4, namely (L,), = 1550 km and
(Ly)s/(Ly)s = 0.48, while in (5.4) and (5.5) L* may be varying, one gets after substitu-
tion of (4.66) and (4.67) into respectively (5.4) and (5.5):

g3 = —pUsFs(4; — 1) (1 — LY/L*) [1 = (L* + LB/ U 5]
+ 608 (i, ) €08 [p(x — 95)] (5.6)
and ‘
ta.s = —UsFs(l — Ay 5) (1 — L¥/L) [1 — (L* + LHBIUS]

* cos (py * y) cos [u(x — @5)] (5.7

Considering the integrated thermodynamic equations (4.13) and (4.14), it is clear that
the correction terms &, and &4 5 act as fictitious heat sources or sinks depending on the
sign of these terms. Calling this heat Q.. one can write the terms in accordance with
equation (2.14)

ps bs.5
R0, R0,
8y = j ROt 4y and = f eiet 4, (5.8)
¢ fop ¢pfoP
P3 ps

This introduction of an artificial heat source or sink has no physical meaning, but as
has been outlined in I1I 3.3, it is a possible way to account for the equivalent barotropic
character of the long waves, if one takes the low values of the static stability according
to saturated adiabatic lapse rates. Yet, it is interesting to investigate where the heat
thus introduced is positive (sources) or negative (sinks), and for what wavelengths
these sources or sinks are of importance. It follows from (5.6) and (5.7) that there are
two wavelengths, denoted by (L,), and (L,),, for which both ¢; and ¢; 5 are zero,
namely '

(Lx)l = (Lx)s and (Lx)Z = [47’[2{1 + (Lx)sz/(Ly)sz}US/ﬁ - (Lx)sz]% (59)

It follows from (5.9) that for (L), = 1550 km and for the ratio (L,),/(L,), = 0.48,
(Ly); = 1550 km and (L,), = 9520 km. This means that one can expect maximum
absolute values for &5 and ¢; s for the long waves with wavelengths somewhere between
1550 and 9520 km. Comparison of (5.2) with (5.6) and (5.7) shows that for waves with
wavelengths between 1550 and 9520 km and with the ratio L,/L, = 0.48, &; and & 5
are negative downstream of the ridge and positive upstream of it. For waves with
L,/L, = 0.48 and with wavelengths smaller than 1550 km or larger than 9520 km the
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results are opposite. It follows immediately from (5.8) that the results obtained for
g3 and &g 5 are also valid for Q..

The influence of the correction terms on the behaviour of the model at a certain
time ¢t =1, can be examined by the investigation of the differences between the
tendencies 3, Y5 and ¥4 5 of the model with and without the correction teris in the
forcing function assuming that both versions of the model use the same streamfunc-
tions Y3, s and Y 5 at t = 1, These differences are denoted as follows:

(l/}.;.)dif = (l[/é)inc - (l/./:;)not’ (':bs)dif = (Ipfx)inc - (II}S)not
and

(l/./:'s.s)dif = (l/}é.S)inc - (‘/}é.s)not (5.10)

The subscripts ‘inc’ and ‘not’ refer to the quantities with the correction terms included
and not included, respectively. The equations for the differences between the tenden-
cies are obtained by subtracting (4.58) with ag, = a5 = 0 from the original equation
(4.58), by subtracting (4.59) with a4 = a;5 =0 from the original (4.59) and by
subtracting (4.60) with (i 5) o from (4.60) with (5)ine- SO One gets at ¢ = £,

(V2 — dgo) (l/}é.S)dif + a1 (l/}il&)dif = agJ(Ys, Vz‘Ps) - aos‘p?, (5.11)

(V2 = ay0) (U ase + @11 (g 5)aic = a14I (s, Vis) — a; 5Pk (5.12)
and

Vz(ll}s)dif = ao('j/é.s)dif - al(lpé)dif (5.13)

With the aid of the definitions of &; and of &g 5 in (4.23) and (4.24) and using the
definitions of the coefficients in (4.62)—(4.65), one obtains after lengthy but straight-
forward calculations:

(V2 — dgo) ('ﬁé.s)dif + aOl('w&::))dif = +4a0183 — Agofs.5 (5.14)

and
(V2 = a10) F3)ais + ay1(¥8.5)aie = — 1083 + A118s.5 (5.15)

Using the results of (5.6) and (5.7), the equations (5.14) and (5.15) can also be expressed
as

(V% = ag0) (Wg.5)ait + Aoy (¥ air = aosG (5.16)

and
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(V% = a50) (3)aie + a11(¥s.5)aie = 215G (5.17)
with

G = UsFspu (1 — LYL*) [1 — (L* + LY)B/Us] cos (i, - y) cos [u,(x — ¢5)]
(5.18)

Equations (5.13), (5.16) and (5.17) possess the following solutions for (Y3 s)ais
(¥3)aie and (¥s)qir-

(l/./é.s)dif = —Sg.5UsFsu, cos (ﬂy - ) cos [ (x — @5)], (5.19)
(l/}:;:)dif = —S3UsF;sp, cos (ﬂy * y) cos [p(x — @5)] ‘ (5.20)
and
(‘[/s)dif = —S5UsF;sp, cos (#y *y) cos [p(x — ¢s)] (5.21)
with
S. .= (1 — L¥L»[1 — (L* + LHP/Us] [ao1a15 + aos(us + Iv‘i + a40)]
8.5 = —
agaqy — (U3 + #i + ago) (U2 + ﬂi + dg0)
(5.22)
s. = _ (1 — L¥L¥[1 — (L* + LHP/Us] [agsa;s + ays(ui + ﬂi + a40)]
’ Q1011 _(#:2c+,u§+ dgo) (:u'fc+l'li+ o)
‘ (5.23)
and
S; = — ZSes T 415 (5.24)

T

Up to now the results have been obtained with the assumption that v 5 satisfies
(5.2), but without any restriction to the streamfunctions 3 and Y4 5 of the thickness
fields 300-500 and 500-850 mbar. For the further investigations it is assumed that
3 and ¥4 5 also consist of sinusoidal waves. In agreement with the structure of the
reference atmosphere, which was specified in ITI 2.1 by correlating the heights z of each
pressure level with the heights of the 500 mbar level at the same grid points, the two
thickness fields will each consist of two parts, namely an equivalent barotropic part
like the reference atmosphere and a baroclinic departure, which is uncorrelated with
the wave at 500 mbar. Therefore, it is supposed that the two thickness fields have the
following forms:

g B;

Wé = (As - 1)‘P5 + fo

+ F3 cos (i, * y) cos [p,(x — 93)] (5.25)
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and

B8.5 ' t
+ Fg 508 (1, * y) cos [u(x — 9g5)]  (5.26)

[s]

Vas = (1 — Ag s — £

with Fj, Fg s, @3 and ¢4 5 dependent on ¢ and
p3=0@gs=0att=1,.

Differentiation of (5.2), (5.25) and (5.26) with respect to t at ¢t = t, yields:

(‘ps)tmo = (FS)t=to Cos (.uy * y) sin (p, * x)
= 1 Fs(@s)i— ¢ 008 (4y " ¥) €08 (i * X), (5.27)

(U=t = [(As = 1) (F)i=gy + 12F3(03)=(o] €08 (1t * y) sin (- %)
+ [(F3)mto — (A3 — DiteFs(Ps)i=eo] cos (i, - y) cos (- x)  (5.28)
and
(Vs.5h=to = [(1 = Ag.5) (Fs)i=to + HeF5.5(P5.5)=(0] €08 (1, * ¥) sin (p1, - %)

+ [(Fé.s)t=to — (1 — Ag 5)utsF 5(P5)i=,] COS (y * ) cos (uy * X)
(5.29)

The tendencies given by (5.27), (5.28) and (5.29) can be interpreted in terms of changes
of amplitudes and of phases at t =1, as follows:

Fs, (43 — 1)F5 and (1 — Ag 5)F5 are the changes of the amplitudes of the wave
at 500 mbar and of the equivalent barotropic parts of the streamfunctions 3
and Yz 5 of the two thickness fields 300-500 and 500-850 mbar.

@5 is the change of phase of the wave at 500 mbar and of the equivalent barotropic
parts of Y3 and V5 5 and can be considered as the wave velocity of the equivalent
barotropic part of the wave at t = ¢,

F} and Fy 5 are the changes of the amplitudes of the baroclinic parts of the waves
of Y3 and g s.

¢3 and ¢g 5 are the changes of the phases of the baroclinic parts of the waves of
Y3 and Yg s and can be considered as the wave velocities of those parts at ¢ = t,,.

The sinusoidal wave given by (5.2), (5.25) and (5.26) is used as initial condition for
the two versions of the BK3-model with and without the correction terms. Two cases
will be considered, namely the case of the reference atmosphere with F3 = Fg ; =0
at t = t, and the more general baroclinic case with F3 # 0 and Fg 5 # 0. The computed
tendencies at ¢ = ¢, following from the two versions of the BK3-model can be inter-
preted in terms of changes of amplitudes and of phases after comparison with formulas
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(5.27), (5.28) and (5.29). This interpretation leads to a better insight in the behaviour
of the model with regard to the development and the velocity of the wave at ¢t = #,.

The case of the reference atmosphere

In this case F3 =0 and Fg s =0 at t =1, in (5.25) and (5.26). After substitution of
(5.25) and (5.26) into equations (4.58), (4.59) and (4.60) of the BK3-model it follows
without any restriction to i 5 that .

‘/’é =(4;— 1)1/./5, l/./s';.s =(1- As.s)‘/'/s and ‘ps = ‘P? (5.30)

This result can be derived by substituting (5.30) into (4.58), (4.59) and (4.60). After
the substitution of (4.64) for ay5 and a,, into (4.58) and of (4.65) for a,s and a,,4 into
(4.59), these equations are transformed into (4.57). Using the definitions of a; and
of ay in (4.42), of b; and by in (4.43), the formulas for a, and for a, in (4.61) and
those for o5_5 and o5_g 5 in (4.66) and (4.67), it is found that

ag(l —A4g5) —a;(4;—1)=0 : (5.3D

Making use of this result (4.60) also becomes identical to (4.57). Due to the lateral
boundary condition 7} = 4 5 = 5 = /¥ = 0 (5.30) is the unique solution.

By differentiating (5.25) and (5.26) (with F3 = Fg 5 = 0) with respect to ¢ it follows
immediately that the tendencies contained in (5.30) equal those of the reference
atmosphere. This result is not surprising, because the model with the correction terms
&5 and &g 5 included has been designed in such a way that if the initial condition is the
reference atmosphere, it remains so once and for all.

Now it is again assumed that 5 satisfies (5.2) at t = ¢,. After substitution of this
sine-wave into (4.57) Y/ becomes

Y% = —UsFsRsp, cos (1, * y) €os (i, * X) (5.32)
with
Rs=1-f+L*/U, | (5.33)

and L* = 1)(u2 + ui) as mentioned in relaltion with (4.27). Then according to
(5.30) the tendencies for the reference atmosphere are

('7&5)inc = —UsFsRsu, cos (ﬂy * y) cos (u, * X), (5.34)

(l/./lli)inc = - U5F5R3”x Cos (:uy ) y) Cos (.u'x : x) (535)
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and

(l/-/é.s)inc = —UsFsRg 54, cos (.“y * ) cos (U, * x) (5.36)
with

Ry= (43 — DR;s (5.37)
and

Rgs=(1—A455)Rs (5.38)

The subscript ‘in¢’ refers to the correction terms included. Noting that F3 = Fg 5 =0,
it follows after the comparison of (5.34)—(5.36) with (5.27)—(5.29) that

(¢s)i=to=UsRs =Us — - L* 7 (5.39)
and
(FS)t=tg = (Fé)t=to = (Fé.S)t=to =0 (5-40)

(5.39) shows that the wave at 500 mbar and the equivalent barotropic parts of ¥/;
and ¥4 s move with the Rossby-Haurwitz speed at ¢ = ¢,. (5.40) shows that the baro-
clinic parts, which are not present at ¢ = ¢y, do not appear either. In exactly the same
manner it can be shown that (5.39) and (5.40) are valid for all times ¢. For several
values of L, with L,/L,=0.48 and U; = 31 ms~! the Rossby-Haurwitz speed
(relative with regard to Us) in (5.39) has been computed and is given in figure 23.

Now the tendencies at ¢ = t, for the BK3-model without the correction terms are

computed. For that purpose the results of (5.34), (5.35), (5.36), (5.19), (5.20) and
(5.21) are substituted into (5.10) so that

(l/‘/S)not = - USFS(RS - SS).ux Cos (:uy : y) Cos (:ux ) X), (541)

(J’é)not = —UsF5(R; — S3)u, €08 (Hy * ) cos (py * x) (5.42)

Fig. 23 Changes of phase (relative with respect to Us) and of amplitude at ¢ = 74 of an equivalent
barotropic sine-wave according to the reference atmosphere with Lx/Ly = 0.48 for the
BK3-model with the correction terms included and with these terms not included.

For the BK3-model with the correction terms:

[ Relative velocity (equal to the relative Rossby-Haurwitz speed) of the sine-wave of
500 mbar and of the thicknesses 300—500 and 500—850 mbar.

The amplitudes of the wave of 500 mbar and of the baroclinic parts of the waves of the

thickness fields 300—500 and 500—850 mbar (not present at z = #¢) do not change at

t = 1y.

For the BK3-model without the correction terms:
......... Relative velocity (relative with respect to Us) of the sine-wave of 500 mbar and of
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and

(lpé.s)not = —UsF5(Rg s — Sg.5)iy COS (.uy * ) cos (U * x) (5.43)

Comparison of (5.41)-(5.43) with (5.27)—«(5.29) yields

(¢5)t=to = (RS - SS)US and (FS)t=to =0, (5-44)

(F3)i=so = 1xF5Us[S3 — (45 — 1)S5] (5.45)
and

(Fé.s):=to = ﬂszUs[Ss.s -1 - As.s)Ss] (5.46)

(5.44) shows that for the BK3-model without the correction terms the velocity of
the wave at 500 mbar and of the equivalent barotropic parts of 3 and Y3 5 move
with a velocity which is in general not equal to the velocity obtained for the BK3-
model with the correction terms included, as can be seen by comparing (5.44) with
(5.39). The formulas (5.45) and (5.46) show that the changes of the amplitudes of
the baroclinic parts of W3 and g 5 are in general not equal to zero. The quantities
(@5)i=to/Uss (Fé)t=to/[U5F5(A3 — 1] and (Fg s)=r/[UsFs(1 — Ag.5)] have been
computed for several values of L,, using the chosen ratio L,/L, = 0.48, Us = 31
ms~! and the values of the coefficients in IV 3.4. The results are given in figure 23.
Consideration of (5.22), (5.23) and (5.24) in relation to (5.9) shows that for the wave-
lengths 1550 and 9520 km Sg s = S5 = S5 = 0. Consequently in that case (¢s);~,, in
(5.44) equals (¢s),—,, in (5.39) and (F}),—,, = (F§.5)¢=r, = 0. Figure 23 shows that for
the waves with wavelengths between 1550 and 9520 km the velocity of the waves at
500 mbar and of the equivalent barotropic parts of 3 and 4 s for the model without
the correction terms are somewhat smaller than the Rossby-Haurwitz speed obtained
for the model with ¢, and g4 5 included. It also appears that for the model without the
correction terms the tendencies of the amplitudes of the baroclinic departures from
the reference atmosphere at t = t,, 3 and Fg s are positive for the wavelengths between
1550 and 9520 km, with a maximum at about 3000 km. Outside this interval the
tendencies are negative.

Starting with the reference atmosphere as initial condition at ¢ = t,, it can be dis-
cussed with the aid of (5.39), (5.40), (5.44), (5.45) and (5.46) and figure 23 what
happens a short time later. With the correction terms included, the sine-waves of the
500 mbar level and of the two thickness fields 300-500 and 500-850 mbar remain to
move with the Rossby-Haurwitz speed and show no baroclinic development, due to
(F3);—iy=(F3.5)e=¢,=0. Without the correction terms, however, F3 and Fy 5 are posit-
ive for the waves with wavelengths between 1550 and 9520 km, so that the baroclinic
parts of the two thickness fields (lagging 90° with respect to the wave at 500 mbar)



131

begin to develop, and a short time after ¢, the wave gets a structure allowing further
baroclinic development. For the other wavelengths the effect is opposite, due to
F3<0and Fy 5 <0,

So for the long waves having wavelengths between 1550 and 9520 km the model without
the correction terms must be more baroclinically unstable than the version with the cor-
rection terms included and for the other waves the effects is opposite.

It will be shown that this conclusion is also valid for the more general case of a
baroclinic sine-wave with Fj # 0 and Fg 5 # 0 at t = ¢,.

The case of a baroclinic sinusoidal wave

(5.2), (5.25) and (5.26) with ¢5 =03 = g5 =0 and F; # 0 and Fg 5 # 0O are the
initial conditions of the wave at t = ¢4 and can be substituted into the BK3-equations
(4.57)—(4.60) with the correction terms included. Then the tendencies for ¢t = ¢, can
be computed and are denoted by (/5)ines (¥3)ine and (/g 5)ine- These tendencies are
rather complicated and are not furher specified. According to (5.27), (5.28) and (5.29)
these tendencies can be expressed in terms of changes of amplitudes and of phases
at ¢ = to. These changes are denoted bY (Fs)ines (F3)ines (F5.5)ines (95)ines (93)ine 20nd
(@35.5)inc- Similarly it is possible to compute the tendencies for ¢ = t, if the correction
terms are not included. These tendencies are denoted by (s) nors (3)no: 30d (g 5) ot
and they can also be expressed in terms of changes of amplitudes and of phases at
t = t, using (5.27), (5.28) and (5.29). These changes are denoted by (Fs)nor (F3)uots
(Fa.5)n0t> (D 5)not» (@3) ot a0d (@5 5)nor- The influence of the correction terms is revealed
by the difference between the tendencies (/);,, and (¥),, denoted by ()i So it
follows from the considerations given above that at ¢ = t,:

(l/}S)dif = (Fs)dif COs (ﬂy * ¥) sin (py - X) — U F5(@s)ais €OS (ﬂy * y) cos (y * X),
(5.47)

(W 3)aie = [(45 — 1) (Fs)ais + 1:F 3(¢3)aie] cos (py - ) sin (g = x)
+ [(F3)aie — (A3 — DpaFs(@5)aie] cos (- ¥) cos (1, * X), (5.48)
and
Ws.5)aic = [(1 — As.5) (Fs)ais + 1xFs.5(95.5)aic] cos (py * y) sin (uy - X)
+ [(Fa.5)aie — (1 — A s)iF s(@5)aie] c0s (1, + y) cos (py - x)  (5.49)
with
(Fs)air = (F $)ine — (F5)aors (Fé)dif = (F3)ine — (F3)ow
(Fg.5)aic = (F3.5)ine = (Fg.8)ors  (P5)ait = (@5)ine = (@5)nots
(93)ais = (P3)ine — (P3)nar  a0d  (P5.5)air = (P8.5)inc — (P8.5)n0t (5.50)
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For the sine-wave in (5.2) as initial condition at t = t, for the equations of the BK3-
model the three tendencies (¥ 5)air, (¥3)air and (V4 5)a;r have already been computed
and these are given in (5.21), (5.20) and (5.19), respectively. So after equating (\/s)a;s
in (5.21) with (f/5)q;; in (5.47) it follows that

(¢5)air = SsUs and (Fs)ge=0 (5.51)
Similarly one can deduce that

(0air=0 and (F3)gr = —pUsFs[S3 — (45 — DS;], (5.52)

(¢5.9)aie =0 and (Fys)aie = —uUsFs[Ss5 — (1 — 4g.5)S5] (5.53)

Formulas (5.51), (5.52) and (5.53) give the expressions for the differences between the
changes of the phases and of the amplitudes at ¢t = ¢, of the baroclinic sinusoidal
wave caused by the inclusion of the'correction terms in the BK3-model.

The quantities (¢5)air/Us, (F3aie/[UsFs(4s — 1] and (Fg.5)aie/[UsFs(1 — Ag.5)]
have been computed for several values of L,, using the chosen ratio L,/L, = 0.48,
Us=31ms™! and the values of the coefficients in IV 3.4.The results are given in figure
24. This figure shows that the tendencies (F3)4;; and (Fg_s)q;¢ of the amplitudes of the
baroclinic departures from the reference atmosphere are negative for waves having
wavelengths between 1550 and 9520 km and positive for the other wavelengths. The
minimum is found at ~ 3000 km. This means that for these wavelenghts, due to the
correction terms, the baroclinic parts of the two thickness fields 300-500 and 500-850
mbar are damped and the wave gets a structure which allows less baroclinic devel-
opment. So the following conclusions can be drawn:

For the waves with wavelengths between 1550 and 9520 km the model with the correc-
tion terms included is more stable with regard to baroclinic development than the model
without these terms. For the other wavelengths the effect is opposite. Thus for the short
baroclinic waves with wavelenghts < 1550 km the influence of the correction terms will
be an amplification of the amplitudes of the waves describing the baroclinic parts of the
thermal fields.

Fig. 24 Difference between the BK3-model with the correction terms included and with those terms
not included with respect to the behaviour at ¢ = £y of the simple baroclinic sine-wave
with Lx/Ly = 0.48 according to (5.2), (5.25) and (5.26).

Change of the amplitude (relative with respect to UsFs(43 — 1)) of the baroclinic

part of the thickness of 300—500 mbar as function of the wavelength L.

--------- Change of the amplitude (relative with respect to UsFs(1 — A3g.s)) of the baroclinic
part of the thickness of 500—850 mbar as function of the wavelength Lx.
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The amplitudes of the waves of 500 mbar and of the equivalent barotropic parts (according
to the reference atmosphere) of the thicknesses of 300—500 mbar and 500—850 mbar do
not change at ¢ = #¢.

---------- Phase changes at ¢ = #¢ of the wave of 500 mbar and the equivalent barotropic
parts (according to the reference atmosphere) of the thicknesses of 300—500 and
500—850 mbar as functions of the wavelength Lx.

-vememee= Phase changes (equal to zero) of the baroclinic parts of the thicknesses of 300—500
and 500—850 mbar as functions of the wavelength Lx.
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Figure 24 also shows that for the waves with wavelengths between 1550 and 9520
km the correction terms do cause a slight increase of the wave velocity at ¢ = ¢, for
the wave at 500 mbar and also for the equivalent barotropic parts of the thickness
fields. The maximum is found for L, = 4000-5000 km and amounts to ~ 10%, of Us.

The conclusions obtained for the simple baroclinic wave as initial condition agree
with the conclusions valid for the reference atmosphere.

Clearly, the conclusions drawn here for the reference atmosphere as well as for the
simple baroclinic wave as initial conditions for the equations of the BK3-model are
only valid for ¢ = t,. After that point of time, due to the non-linearity of the equations,
higher order components will arise in the tendencies of the model, and the wave gets
a structure which is more complicated than the simple sinusoidal wave given by (5.2),
(5.25) and (5.26). So a comparison of the tendencies obtained from the equations of
the model with those in (5.27), (5.28) and (5.29) is no longer possible. Despite this
limitation it appears that the conclusions valid for ¢ = ¢, do agree with the behaviour
of the model in practice. Compared with the model without the correction terms, the
model with these terms included tends to favour the short waves and has a tendency
to damp the long waves (wavelengths ~ 3000— ~ 4000 km), especially their thickness
fields. It appears that the model with the correction terms has a tendency to make the
long waves more and more equivalent barotropic during the prediction time. In the
daily routine this effect proved to be not serious for most cases, because the long
waves are already to a high degree equivalent barotropic at ¢ = t,. The development
of the short baroclinic waves with wavelengths < 1550 km is favoured by the model
with the correction terms included, compared with that of the version without these
terms. This could even lead to instability for these waves. However, in practice
SHUMAN’S smoothing operator is applied at specified times during the time-integrations
of the equations. See also IV 6.4, This smoothing has a strong damping influence on
the shortest waves with wavelengths of two to three grid distances (~ 750— ~ 1000
km) as can be seen from table 23. In most cases this smoothing proved to be sufficient
to keep the shortest waves stable in the dry version of the model. However, in some
cases it could be seen that the amplitudes of the waves with wavelenghts of three to
four grid distances (~ 1000— ~ 1500 km) became too large. Concerning the ultra-
long waves it can be remarked that the model is not suitable to describe them well,
since if they would have a structure like that of the reference atmosphere, they would
move with the Rossby-Haurwitz speed, which is a bad approximation for the velocity
of these waves. In general they can be considered stationary for prediction times up
to 36 hours ahead.
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LIST OF SYMBOLS

p-dependable parameter in the definition of the reference atmos-
phere as given in (3.1)

Values of A at 200, 300, 500, 600, 700, 850 and 1000 mbar
respectively (45 = 1 according to the definition of A)

AjAg

A' for p=p, and p = p,

Constants given in (4.159)

Radius of earth (= 6371229 m)

Coefficients in the equations of the BK3-model defined in (4.61),
(4.62) and 4.63)

Coefficients, defined in (4.64), in the dry version of the BK3-model
resulting from the correction terms &; and &g s

Coefficients, defined in (4.65), in the dry version of the BK3-model
resulting from the correction terms &; and &g s

Parts of the coefficients, defined in (4.69), in the dry version of the
BK3-model not dependent on the static stability parameters
Coefficients, defined in relation with (4.42), dependent on the
parameter A of the reference atmosphere

A(py — p,), dimensionless parameter used in the stability analysis of
the quasi-geostrophic equations indicating the stability of the flow
Quantity given in relation with (4.38)

p-dependable parameter in the definition of the reference atmos-
phere as given in (3.1)

Values of B at 300, 500, 700, 850 and 1000 mbar respectively
(Bs =0 according to the definition of the reference atmosphere)
Coefficients defined in relation with (4.43) dependent on the
parameter A of the reference atmosphere

daf
— , Rossby parameter
dy / @ =45°

Quantity defined in relation with (4.43)

Functions defined in (3.46) and dependent on A and B respectively
Functions given in relation with (4.44) and (4.45)

Function dependent on A defined in (3.48)

Values of C* at 300 and 850 mbar respectively

Phase velocity (may be real or complex)

Complex part of ¢

Real part of ¢

Specific heat of dry air at constant pressure




(CS)inw (ci;)inc,
1
(¢8.5)inc

(cs)not: (c’.’:)nots
(CSI.S)not

D
Dy, D;, D;
Dy;

D;;
Da: D5, D8.5
D,

D,

m

Dd35 Dd5> Dd8 5

m3s Dmﬁa Dm8 5
Dm3

1
D~m8.5

Specific heat of dry air at constant volume

Coefficient defined in relation with (4.49)

Phase velocities at ¢ = £, of the sinusoidal wave at 500 mbar defined
in (5.2) and the sinusoidal waves of the thickness fields 300-500
and 500-850 mbar for a wave satisfying the reference atmosphere
when the correction terms are included in the equations of the
BK3-model

Phase velocities at ¢ = £, of the sinusoidal wave at 500 mbar defined
in (5.2) and the sinusoidal waves of the thickness fields 300-500
and 500-850 mbar for a wave satisfying the reference atmosphere
when the correction terms are not included in the equations of the
BK3-model

Horizontal divergence of the wind vector

Divergences at the three pressure levels py, p; and p;, respectively
D, — D,

D; — D,

Values of D at 300, 500 and 850 mbar, respectively

Dry part of D

Moist part of D

Values of D; at 300, 500 and 850 mbar, respectlvely

Values of D,, at 300, 500 and 850 mbar, respectively

Dm3 - DmS
DmS - Dm8.5
fD/RVA

f+sDa/RVA, function of A, defined in (3.70)

S Du/RVA, function of 4 and C*, defined in (3.71)

Functions describing the D-profiel defined in relation with (3.123)
Grid point distance (375 km at 60°N)

Coefficients defined in relation with (4.48) dependent on the
parameter A

aob, — a by, quantity defined in (4. 68)

Increment of pressure

Increment of time

Increment along the y-axis

Height difference between two isohypses of a level of constant
pressure

Phase shift in the vertical of the perturbation T" of the thermal field
Constant given in relation with (3.15) and (5.2)

Functions dependent on p given in relation with (4.44) and (4.45)
Correction term, defined in (3.41), used in the thermodynamic
equation integrated from 300 to 500 mbar
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Correction term, defined in (3.42), used in the thermodynamic
equation integrated from 500 to 850 mbar

A-K— A%

Functions defining the profile of D in the dry version of the BK3-
model given in (4.31), (4.32) and (4.33)

Function, defined in (3.99), describing the structure of the perturba-
tion Y* in the vertical

Real part of F,

Complex part of F,

Value of F, at 500 mbar

Amplitude dependent on ¢ defined in relation with (5.2)

F,/Fs, given in (3.107)

Amplitudes dependent on ¢, defined in relation with (5.25) and (5.26)
Tendencies of Fs, F; and Fg 5

Tendencies Fs, F5 and Fg 5, obtained for the BK3-model with the
correction terms included

Tendencies F5, F; and Fg 5 obtained for the BK3-model with the
correction terms not included

(Es)inc - (ES)not
(E?ln)inc - (FEI:.)not
(FBI.S)inc - (FSI.S)not

20 sin ¢, Coriolis parameter

Value of f at 45°N

Value of f at latitude ¢ = ¢,

1 + 402 — 40~ *coth(x), function of the dimensionless parameter
used in the stability analysis of the quasi-geostrophic equations
+af ()%, defined in relation with (3.96)

Quantity defined in (5.18)

+[ —g()]?, defined in relation with (3.114)

Acceleration of gravity

o2f(a), defined in (3.92)

Phase shift in the vertical of the perturbation y/'

Heating function due to the release of latent heat in the layer
300-500 mbar, defined in (4.118)

Heating function due to the release of latent heat in the layer
500-850 mbar, defined in (4.95)

Quantity used in (4.149)

Maximum value of positive RVA given in relation with (3.21)
(—1)%, used in (3.77) and (3.78)

Discrete coordinate in the x-direction (parallel to 30°W) of the
computational grid defined in IV.6.1
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J

JI’JZ: J3’J4,
J55J6aJ7’J8
JJi;

JI,, Iy, JJ,
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(Ly)s
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L15 L2

L*

L
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Discrete coordinate in the x.-direction of polar stereographic
projection (parallel to 30°W)

Jacobian defined in (2.11)

Jacobians used in the forcing functions in the equations of the
dry version of the BK3-model, defined in (4.143)

Finite difference approximation of the Jacobian for the grid point
with coordinates i and j given in (4.157)

Finite difference approximations of the Jacobian defined in (4.153),
(4.154) and (4.155), respectively

Discrete coordinate in the y-direction (parallel to 120°W) of the
computational grid defined in 1V.6.1

Discrete coordinate in the y.-direction of polar stereographic pro-
jection (parallel to 120°W)

(5°A%dp)/(f5°A dp), constant of the reference atmosphere
Constants used in the two-parameter model, defined in (3.54)
Heat of condensation of water vapor

Wavelength in the x-direction (west to east)

Wavelength in the y-direction (south to north)

Chosen value of L, in V.3

Chosen value of L, in V.3

Values of L, for which ¢; and eg 5 are zero

Distances between the points of maximum RVA-values of the
RVA-areas of a wave train numbered withn — 1, nandn + 1

(s + 13)

Chosen value of L* in V.3

Values of L* for whicheo =0,

Longitude

[o(uZ + p2)1*/f,, parameter used in the stability analysis of the
quasi-geostrophic equations, defined in relation with (3.81)
Longitude of the origin of the coordinate system defined in (2.1)
(1 + sin 60°)/(1 + sin ¢), map scale factor of polar stereographic
projection

Map scale factor at latitude ¢ = @,

2n/L,, wavenumber in the x-direction (west to east)

2m/L,, wavenumber in the y-direction (south to north)

Total number of waves around the latitude circle 45°N

Functions dependent on x, y and ¢ given in relation with (3.127)
Pressure

Pressures of the chosen levels for Dy, D; and D;, respectively
Pressure of the upper level

Pressure of the lowest level
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L(p, + py), pressure of the middle level

Upper level of the layer in which latent heat is released

Lowest level of the layer in which latent heat is released

Pressure of a level between 300 and 500 mbar

Pressure of a specified level between 300 and 500 mbar

Pressures of 200, 300, 500, 700, 850 and 1000 mbar, respectively

Pressure at sea level

Amount of heat supply per unit time and mass

Fictitious Q as defined in (5.8)

Specific humidity

Saturation specific humidity

Gas constant for dry air

Response function given in relation with (4.160)

—J(s, V*r5), advection of relative vorticity at 500 mbar
Advection of relative vorticity at the steering level
Maximum absolute value of RVA,

Quantity defined in (5.37) '

Quantity defined in (5.33)

Quantity defined in (5.38)

Rossby number

Density of air

Quantity defined in (5.23)

Quantity defined in (5.24)

Quantity defined in (5.22)

Summation

Static stability dependent on p

Value of ¢ at 500 mbar

Mean value of the static stability for the layer 300-500 mbar
Mean value of the static stability for the layer 500-850 mbar
Static stability of the reference atmosphere

Static stability of a saturated adiabatic lapse rate
Effective static stability parameter used in (3.94)

Mean value of & for the layer bounded by p, and p,
Absolute temperature

Value of T at the pressure level p

Thermal field of the perturbation '

Time

Fixed moment of time

Geostrophic windspeed of the basic flow in the x-direction directed
from west to east
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Vo

Uy

215 Zpy 235 Z3,
Z7, Z8.55 Z10

1 1
Z3> Zg,55 Z10

Value of U at the upper boundary p,

Value of U at lowest boundary p,

Value of U at the middle level p,,

Values of U at 500 and 600 mbar

Component of the horizontal wind in the x-direction (west to east)
Component of the horizontal quasi-geostrophic wind in the
x-direction (from west to east) at 45°N

Component of the horizontal quasi-geostrophic wind in the
x,-direction at latitude ¢ = ¢,

Velocity of an air particle

Component of the horizontal wind in the y-direction (south to
north)

Component of the horizontal quasi-geostrophic wind in the
y-direction (from south to north) at 45°N

Component of the horizontal quasi-geostrophic wind in the
ye~direction at latitude ¢ = ¢,

dz . .
—, vertical velocity
dt

Coordinate along 45°N from west to east

Coordinate of polar stereographic projection, parallel to 30°W

x, at latitude ¢,

Coordinate perpendicular to the latitude of 45°N

Coordinate of polar stereographic projection parallel to 120°W

¥, at latitude ¢,

Geopotential height of a pressure level

Values of z of 100, 200, 300, 500, 700, 850 and 1000 mbar, respec-
tively

Thicknesses of the layers 300-500, 500-850 and 500-1000 mbar,
respectively

Height departure from the reference atmosphere

Height amplitude of the sinusoidal wave according to (3.15) given
by (3.21)

Relative vorticity defined in (2.9)

Geopotential

Latitude

45°N

Chosen value of ¢

Phase of the sinusoidal wave defined in (5.2)

Phase of the baroclinic part of the streamfunction of the thickness
field 300-500 mbar defined in (5.25)

Phase of the baroclinic part of the streamfunction of the thickness
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field 500-850 mbar defined in (5.26)

Tendenciés of ¢, @5 and @g 5

¢s, ¢3 and ¢y 5 derived from the BK3-model with the correction
terms included

¢s, @5 and ¢g 5 derived from the BK3-model with the correction
terms not included

(@5)ine — (P 5)not

(#3)ine — (@3)not

((pBI.S)inc - ((pé.S)not

g - z/f,, quasi-geostrophic streamfunction

Quasi-geostrophic streamfunctions at 300, 500 and 850 mbar,
respectively

Streamfunctions of the thickness fields 300-500 and 500-850 mbar
Value of i at the grid point with the coordinates i and j

Value of ¥, ; after the application of SHUMAN’S smoothing operator
in the x- or y-direction

Streamfunction of the perturbation

Value of /' at the middle level p,,

Amplitude of the perturbation ' at the middle level p_,
Coefficients dependent on ¢ defined in relation with (3.82)
Amplitude of the sinusoidal wave defined in (3.15)

Dry part of the tendency of ¥

Moist part of the tencency of

Values of i, at 300, 500 and 850 mbar, respectively

Values of y, at 300, 500 and 850 mbar, respectively

I/?m:*) - l/:/mS

Vs — Vms.s

Tendencies of Y5, W5 and Yy s for the BK3-model with the
correction terms included (used in V.3)

Tendencies of 5, 5 and g s for the BK3-model with the
correction terms not included (used in V.3)

(l/:js)inc - (%S)not

@ 3ine ~ Fno

(¥8.8)ine — (¥'5.5)not

Barotropic tendency of 5 defined in (4.25)

Streamfunction of the baroclinic departure from the reference
atmosphere used in the two-parameter model in I11.3.5
Amplitude of the wave defined in (3.77) dependent on p

Value of the baroclinic departure * at 1000 mbar

Moist tendency of y*

Dry tendency of y*
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Absolute value of the angular velocity of the earth

d N .
—p, vertical velocity in the pressure coordinate system

dt
Dry part of o
Moist part of @
,, at 300, 500, 850 and 1000 mbar, respectively

Amplitude of the wave of the w-field defined in (3.78)
f.o/RVA
{PD; dp, defined in (3.70)
{5 D,, dp, defined in (3.71)
Functions describing the w-profile defined in relation with (3.124)
&> d*
+

22 T Laplacian operator
x y

7 . o
= partial derivative with respect to ¢

Due to the vast amount of symbols some inconsistency, especially with regard to
the symbols marked with ' and *, was inevitable.
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SUMMARY

This treatise explains in detail the design of a three-level quasi-geostrophic model.
This model is suitable for short-range weather predictions up to 36 hours ahead.

In the model developing short frontal waves are especially emphasized. The
inclusion of the release of latent heat proved to be absolutely necessary to describe
the development of short frontal waves propetly.

The model includes a ‘dry’ and a ‘moist’ version, which differ with regard to the
incorporation of released latent heat. The dry version was operational from 28-2-72,
12 GMT till 3-11-"75, 00 GMT. The noise in the forecast streamfunction prevented
the moist version from becoming operational during that period.

The design of the baroclinic model named BK3 is based on the experience that
barotropic forecasts of the pattern of the streamfunction at 500 mbar with the aid of
the vorticity equation do lead to fairly good predictions at least up to 36 hours
ahead. With this empirical knowledge the dry version of the model has been designed
according to the following principle:

‘If the atmosphere is equivalent barotropic at a certain time ¢ = t,, the model must
keep the atmosphere exactly equivalent barotropic during the forecast period’.

In this treatise this has been achieved by the incorporation of so-called correction
terms in the integrated thermodynamic equations for 300-500 mbar and for 500-850
mbar. These correction terms are approximately zero for values of the static stability
computed from saturated adiabatic lapse rates with saturated potential temperatures
from 10° to 14°C. This means that for short frontal waves having such values of the
static stability, the original thermodynamic equations remain unaltered.

A general review of the investigations leading to the construction of the baroclinic
model is given in the introduction in Chapter 1.

After that the equations of motion, the continuity equation, the equation of state
and the first law of thermodynamics have been simplified with the aid of a scale-
analysis given by PHILLIPS (1963). The simplifications lead to so-called quasi-geo-
strophic equations in f-plane approximation, which are given in Chapter IIL.

The scale-analysis also shows that one has to account for the release of latent heat
if the precipitationis > 1 mm/hour. The vertical velocity at the surface of the earth
induced by smoothed mountains is also important. The influence of the surface
friction is of minor importance.

The basic equations for the BK3-model, which are valid for polar stereographic
projection, have been derived in a similar way with the aid of a scale-analysis as the
equations in B-plane approximation. In these equations the horizontal wind com-
ponents are approximated by the geostrophic wind, while the relative vorticity is also
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based on these wind components, with the neglect of the derivatives of the Coriolis-
parameter.

Chapter III deals with theoretical investigations with special emphasis on develop-
ing short frontal waves.

In this chapter an equivalent barotropic reference atmosphere is defined. It is
evident that the horizontal divergence D and the vertical velocity @ become functions
of pressure p and of the advection of the relative vorticity at 500 mbar (RVA). For
25-3-71, 00 GMT, the profiles of D and o are further specified as functions of P
just as the RVA. It is assumed that the numerical values for that date are fairly repre-
sentative of polar jetstream conditions over the Atlantic and Western Europe as is
also indicated by the computations of the static stability at 500 mbar, the mean value of
which agrees with that of the ICAO standard atmosphere.

It follows from a comparison of height and thermal fields of the reference atmo-
sphere with those of the real atmosphere that the behaviour of the long waves (wave-
lengths of about 4000 km) agrees best with that of the reference atmosphere, since
such waves are in general to a certain degree equivalent barotropic. The short frontal
waves (wavelenghts from 1000-2500 km), however, are baroclinic and therefore the
relation between these waves and the reference atmosphere is further investigated.

Concerning the integrated thermodynamic equations from 300 to 500 and from
500 to 850 mbar, it is evident that it is not possible to describe the behaviour of equiva-
lent barotropic long waves correctly if the low values of the static stability belonging
to saturated adiabatic lapse rates are used. This is only possible for values of the
static stability in accordance with the values of the ICAO standard atmosphere
around 500 mbar. This problem has been solved with the aid of correction terms,
which are zero for the ‘saturated adiabatic values’ of the static stability.

To evaluate the integrals of w in the integrated thermodynamic equations, a
knowledge of the vertical profile of the horizontal divergence is necessary. For the
long waves showing equivalent barotropic behaviour the divergence profile of the
reference atmosphere can be taken. However, with respect to the baroclinic short
waves the profiles of the divergence have to be further investigated. This is done with
the aid of a simple two-parameter model taking into account the release of latent
heat. It is clear that for the centre of a perturbation at sea level the profile of the diver-
gence must consist of two parts, namely the one of the reference atmosphere and in
addition a linear part due to the incorporation of the release of latent heat. The
values of o, computed from these two parts of the divergence, are of the same order
of magnitude. The divergence- and w-computations have been compared with three
case studies, and a fair agreement is shown.

Further theoretical investigations have been carried out with the aid of a stability
analysis of the linearized quasi-geostrophic equations. Two kind of wave solutions
are of interest, namely the most unstable wave and a stable wave with a structure like
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the one of the reference atmosphere with a level of non-divergence at 500 mbar.
The wavelenght of the most unstable wave only agrees with the wavelengths of the
short frontal waves if release of latent heat is taken into account. It also appears
that three parameters are sufficient to describe the spatial structure of the most
unstable wave completely, i.e. one parameter for the basic flow and two parameters
for the baroclinic perturbation.
Regarding the construction of a baroclinic model, the investigations of Chapter 111
lead to the following five conclusions:
1. At least three levels are necessary.
2. The values of the static stability have to be in accordance with those of saturated
adiabatic lapse rates.
3. Correction terms have to be included in the integrated thermodynamic equations
to preserve the equivalent barotropic character of the long waves.
4. Release of latent heat is necessary to make the short frontal waves unstable.
5. A profile of the dry part of the horizontal divergence has to be taken in accordance
with that of the equivalent barotropic reference atmosphere and likewise a linear
profile for the moist part of the divergence.

Chapter IV deals with the design of the baroclinic model. To develop the prognostic
equations the vorticity equation is applied to the levels 300, 500 and 850 mbar, the
continuity equation is integrated along the vertical over the whole atmospheric
column from 0 to 1000 mbar, and the thermodynamic equation is integrated from
300 to 500 mbar and from 500 to 850 mbar. It appears that the tendencies of the
streamfunctions, the horizontal divergence D and the vertical velocity w occur linearly
in the equations. Consequently, it is possible to split up the equations into a moist
and a dry part. According to the conclusions obtained in Chapter I1I, the divergence
profile of the reference atmosphere is used to perform the integrations of @ in the set
of ‘dry’ equations. For the integrals of w in the set of ‘moist’ equations a linear
profile of D is used. After the integrations of the equations for the dry part of the
model six equations remain with six unknown quantities, namely the tendencies of
the streamfunctions at 300, 500 and 850 mbar and three horizontal divergences,
which were chosen at three characteristic levels. The equations for the dry part of
the BK3-model are obtained after the elimination of these three divergences. A
similar procedure is followed for the set of moist equations, and after the integrations
six equations remain containing three moist tendencies and three moist divergences
at 300, 500 and 850 mbar, respectively. However, the heating function Q in these
equations (which represents the release of latent heat between 500 and 850 mbar)
consists of two parts of which the part depending on the moist component of w is
unknown. This difficulty can be solved with the aid of the assumption that an ascending
moist air parcel has to follow a saturated adiabatic lapse rate. Since it has been assumed
that the static stability parameters in the model also equal those computed from
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such lapse rates, this offers the possibility to eliminate the ‘moist’ part of the heating
function. After the introduction of an assumption concerning a partial release of
latent heat in the layer from 300 to 500 mbar, and release of latent heat in the whole
layer from 500 to 850 mbar, the elimination can be carried out and a set of three very
simple equations for the three moist tendencies at 300, 500 and 850 mbar results.

The final prognostic equations of the dry part and the moist part of the BK3-model
are formulated in the S-plane approximation, as well as for the polar stereographic
projection with the surface of the earth being projected from the south pole on a
plane going through the parallel of 60°N.

The values of the static stability parameters as well as those of the coefficients in
the equations of the operational dry version of the BK3-model are based on the values
determined for the reference atmosphere and on the values for the areas of advection
of positive vorticity at 500 mbar for 25-3-"71, 00 GMT. However, it is in principle
possible to extend the method for the computation of the coefficients by using the
values obtained from the objective analyses at ¢ = 0 for each individual case. Up to
now such an extension has not been elaborated.

For the computational model the equations valid for the polar stereographic
projection are used. The computational grid has been defined on the plane going
through 60°N on which a rectangular grid has been fixed with the x- and the y-axis
parallel to the longitudecircles of 30°W and 120°W, respectively. The grid consists
of 800 grid points and covers Europe, the North Atlantic and North America. The
equations of the computational model are replaced by finite difference equations.
The Laplacian of each quantity is approximated with a second-order scheme, while
for the Jacobians three schemes have been used, namely the most simple second-order
scheme, the scheme of ARAWAKA and a fourth-order scheme developed by OPSTEEGH
of the Royal Netherlands Meteorological Institute. For the time integrations the
leap-frog scheme is applied. As lateral boundary conditions, the tendencies of the
streamfunctions at 300, 500 and 850 mbar are kept equal to zero during the time
integrations.

To suppress computational instability near the boundaries of the grid, which is due
to the fact that the boundaries are partly located in meteorologically active areas, the
values of the streamfunctions of the rows and columns next to the boundary are found
by a linear interpolation between the values on the boundary (which are kept constant)
and those on the nearest inside rows and columns. This is done after each time step. -
The non-linear instability is prevented by the use of SHUMAN’s smoothing operator
applied to the streamfunctions at 300, 500 and 850 mbar. It appeared that smoothing
must be performed if the number of scans needed to solve either the Poisson- or
Helmholtz-equations at time ¢ is greater than the number needed at ¢ = 0.

Chapter V gives a survey of the performance of the dry and the moist versions of
the BK3-model.
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Experiments carried out with the dry version of the model showed that with in-
creasing values of the static stability there was less baroclinic development. These
results were valid for the version without the correction terms as well as for the version
with the correction terms included. ‘

Concerning the influence of the correction terms it appeared that the model with
those terms included showed less baroclinic development, especially in the thickness
fields of the long waves (wavelengths of about 4000 km). The predicted pressures in
the centres of the high pressure systems at sea level proved to be more realistic if the
correction terms were included, while without those terms the predicted pressure values
were in general too high.

The experiments carried out with the moist version of the model showed that
explosive developments at sea level of the frontal waves (deepening of 20 mbar or
more in 24 hours) could be predicted. These results support the conclusions drawn
from the stability analysis in Chapter III, namely that short frontal waves can only
be unstable if latent heat is released.

The influence of the correction terms on the behaviour of the dry version has been
further investigated with the aid of two kinds of sinusoidal waves, namely a wave
satisfying the reference atmosphere and a baroclinic wave. The results obtained for
these waves agree with the performance of the dry version of the model in use. It
appears that for the waves with wavelenghts between 1550 km and 9520 km the model
with the correction terms included is more baroclinically stable than the model
without these terms. For the other wavelengths the effect is opposite.
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