12 ¢

KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT
DE BILT (NEDERLAND)

No. 125

MEDEDELINGEN EN VERHANDELINGEN
SERIE B
DEEL II, No. 11

/ Dr P. GROEN \

CONTRIBUTION TO THE THEORY
OF INTERNAL WAVES

\ INDEX DECIMALIS 551.46 ’ /

TE VERKRIJGEN kBlj HET: TO BE PURCHASED FROM:

STAATSDRUKKERIJ- EN UITGEVERIJBEDRIJF

'S-GRAVENHAGE [ 1948

PR ” S F 2,50 Kon. Ned. Meteor. Inst. PRICE F 2,50

De Bilt

XL, %,







Summary

The problem of internal waves is dealt with theoretically for certain continuous density distributions of
the general type shown in fig. 1. The relative variation of density is supposed to be small. The fluid is supposed
to be incompressible and to be at rest in the non-perturbed state; the internal waves are treated as small
perturbations. 4

If we describe the simple harmonic, basic waves by means of a streamfunction

@ (%,2,t) = @ (z) expi (ur—1t),

it appears that ¢(z) may be found with, in general, sufficient accuracy as a solution of the equation

@ e g dS/dz ®
r(ﬁ)*( 5y —"2)%—0’

where S(z) = specific volume in the equilibrium state, S, = mean specific volume, ¢ = v/y = velocity of propagation.
Together with the boundary conditions, this equation gives an eigen-value problem, solution of which
gives relations between wave-length and period.
When using, as an analytical representation of the density distribution, the function

S(z) =8+ % A Stgh(22/b),

where b is a measure of the thickness of the transition layer (see fig. 1) and A § is the total variation of the

specific volume, we may solve the above differential equation analytically by means of hypergeometric series.

When the fluid is sufficiently deep on both sides of the transition layer, the relation between the wave length
= 2n/ and the period T = 2n7 is given by ’

1S (+1)( l>+(2n+1)(27f>+1

where ] is positive ; n has one of the values 0, 1, 2, 3, etc. (any integer) and represents the order of the mode
of oscillation, which is equal to the number of zeros of the corresponding solution ¢,(z).
When L—»0, the period approaches a minimum value, which is independent of =, viz:

bS 2n
Tin = 27'51/ 0 — — .
" IAS /(8 2d8d2) pus

The existence of this lower limit of the period of internal waves appears to be a general feature, not
restricted to the special type of density distribution assumed here.
The theory is extended so as to include the earth’s rotation. In this case the same relation as exists

between T and 4 in the previous (non-rotating) case, now exists between 7 and ﬂ.\/ 1 —(2w,7)?, w, being the
vertical component of the angular velocity of rotation.




Symbols
a = 1/b.
b = thickness of transition layer, as defmed by figure 1.
¢ = velocity of propagation.
F = hypergeometric series.
f = dlog 8,/dz.
g = acceleration of gravity.
b = f/leb=1+f).
L = wave lenght.
m = bu/2=bj2) = mb/L.
= order of mode of oscillation.
— unperturbed pressure.
= local pressure perturbation.
= 2/b, or A expressed in b/2 as unit of length.
= 7% A 8[bSy = (7/7,)*
= specific volume in the equilibrium state.
= value of § at the level z = 0.
= 8(z)—% A Stgh2az.
= perturbation of specific volume.
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= time.

= period of oscillation.

= velocity component in the z-direction.

= velocity component in the y-direction.

= velocity component in the z-direction.

= coordinate in the direction of propagation of the waves.
= horizontal coordinate perpendicular to x.

= vertical coordinate.

=2 z/b or z expressed in b/2 as unit of length.

—11 V; _|_g;
= @/V8

n
A = L[2n
u

N 83 2 2 g™ &

=1/
gAS

Fo = 2°8, ¢

= 2m /T
= (cosh Z)?
= density
A 8/8, = total relatlve variation of specific volume
= T/2xn
= stream function
= 7 {(cosh Z)®
w, = vertical component of angular velocity of rotation.
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1.  Introduction.

The behaviour of internal waves in vertically inhomogeneous fluids has been studied
theoretically by various authors, from the point of view of general hydrodynamics as well as
of meteorology and of physical oceanography (see the list of references, which, however, is
not meant to be complete).

For mathematical reasons most of them assumed discontinuities at certain levels, either
in the density o or in its first derivative with respect to the vertical coordinate, z. Any
transition layer was often assumed to be thin in comparison with the wave length. FsELDSTAD
[7], on the other hand, by using numerical integration, succeeded in giving an approximate
method of solving the problem for certain general density-distributions, such as may actually
occur in the sea, a method, however, which is only applicable for very long waves.

Besides this restriction to long waves only, FIJELDSTAD’S method has one other disadvan-
tage, viz. of not directly yielding general rules or relations between the properties of the
internal waves and certain parameters of the density-distribution.

Tt is therefore, that we have gone back to somewhat more special density distributions,
which are perfectly continuous with respect to ¢ and dp/dz (as are FJELDSTAD’S density-
distributions), but which appear to be capable of an analytical treatment; furthermore, the
results are also valid for small wavelengths. The density distribution is of the general type
shown in fig. I, where we have a graph of the specific volume against depth.

In the present paper we shall only deal with fluids extending to infinity both upwards
and downwards. At first sight this seems rather unrealistic. We know, however, that the wave-
motions are always confined to a certain layer, above and below which they are negligibly
small, so that, if only the boundaries of the fluid fall without this layer, they will not interfere
essentially with the solutions we shall find here. The thickness of this layer depends on the
wave length (see section 5).

For the rest, it is quite possible to introduce a free surface and a rigid bottom, if necessary.
This will make the computations much more complicated and laborious, however.

2. Derivation of the basic equations.

Let the fluid be at rest, in the equilibrium state, and let in the perturbed state the internal
~wave motion be propagated in the z-direction, all static, kinematic and dynamic properties
being assumed to be independent of the y-coordinate. The symbols » and w denote respec-
tively the - and the y-component of velocity (perturbation velocity).

As the earth’s rotation is neglected, at least for the time being (see section 6), the y-com-
ponent of the perturbation velocity vanishes, on account of the suppositions made.
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The pressure and density fields will then be described by the following scalars:
pressure = P (z) + p (%, 2 1t), ' (1)
specific volume = 8(z) + s (, 2, 1), | (2)

where p and s denote the local changes brought about respectively in the pressure and the
specific volume, by the wave perturbation. . ‘ .

As the fluid is supposed to be incompressible!), the wave motion is now governed by the

following equations: -
: oy op

%t S, =0 ()

W, (4)
%Z Z—Z) = 0 (continuity equation), (3)
Z_: + w%§ — 0 (incompressibility). (6)

These equations are obtained by the usual linearization with respect to the small quantities
u, w, p and s (see f.7. V. BJERKNES c.s. [8] page 300).
Now we introduce the stream function ¢ by writing

. R I
w=opfor, w= —opjow.  (obmupteni] (7)

As equation (5) is now automatically satisfied, we are left with

82(p op
a—w—z%—S%—O, (8)
62(p G, oP
—@—Fséz“i—sa—o; ‘ , 9
as  opas ;
E—%a—z—o : (10)

We may write the simple harmonic, basic solutions of this system of ‘equations, which
we are looking for, in the following form:

@ (@, 2,1) = @ (2) exp i (ux —21); p(x,2,8) = p(2) exp i (ux —vt); (2,2, t) = s (2) exp i (ux — vt);

so that we may write, symbolically: 2/ot = — iv, 3/ox = iu; the velocity of propagation is then
¢ = v/u. Finally we can substitute: aP/az = —g/8.
We obtain then (equations (8) and (10) are divided by iu):
—op' + 8p =0, (11)
— pPep + Sp' —gs/S = 0, (12)
os + @S = 0. (13)

Here a prime denotes a differentation with respect to z. Besides, the quantities ¢, p and s
will be considered as functions of z only (as § is), the common factor exp (tpx—14vt) being
left out, for the present. ‘ ,

From (11) and (13) we derive:

p=c¢'[S, s =— @8/ (14)

') If we should want to take the eompressibility into account we might use the potential density ppe: instead of the actual
density. For sea water we can write, with sufficient approximation, @pot = 1 + 1073 oy, where o; has the usual meaning.
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Substltutlng this into (12) and dividing by ¢, we get:

Sl gSI
4 —“P—+‘P<CZS—M>_O (15)
In order to get rid of the first derivative of ¢, we put
| p=nV8 (16)
Then # must satisfy the equation:
s 8 gS’ o .
n +n<—§—%§+ 2S—u> = 0. (17)

Now we shall suppose the fluid layer to be mflmtely high. Then the ,,boundary” condi-
tions -which should be satisfied by % are: n and #* must remain finite for z— + oo as well as
for z > — oo.

We wish to find solutions of the present problem for vertical density distributions of the
general type represented in fig. 1, which we shall ;
describe analytically by the function L, |

S =8, %A Stgh2az, (18) N AS

where A S denotes the total variation of the
specific volume and a! = b may roughly be taken
as the thickness of the transition layer.

Now it may easily be seen that, when we use
the function (18), the first two terms of the form
in brackets in eq. (17) may be neglected com-
pared with the third one, if

2 ac? 3act A S

The question as to the extent to which the
above conditions (19) will be actually satisfied
will be discussed later (page 12). It will appear
that the relation between wave length, period and
velocity of propagation, which we shall derive, is
accurate in most cases. It may still be noted here,
that, as in the atmosphere and in the ocean

A 8/§<<1, the second one of the inequalities (19) ; ‘ S
will automatically be satisfied if the first one is, , N So .

4 . . . Fig. 1. Distribution of specific volume § as a function
when we are dealing with atmospheric or oceanic of ¢, according to the formula S = S, + 4 AS tgh 2az.

internal waves.
Considering the fact that the relative variation of S is small in the density distributions

concerning us here, we may, finally, replace S’/S by §'/S, W113hout introducing any appre-
ciable error!) and we obtain:

1’ ga A 8 2 — ’
M (cZSO (cosh 2az)2 " > =0, - (29
or: 9
17 a /LLO
-+ — 2| =
KR ((cosh 2az)? # ) 0, (20)
where T~ _gAS 2m ‘ @1

Fo= 98,2 ~ Ly

1) We may avoid this error entirely, if we like, by just assuming: § = §, exp 2é5£ tgh 2az) instead of (18); as A S/S,

0
is supposed to be rather small (of the order of 0.01), the general picture of the density distribution remains the same.
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Ly being the wave length to which belongs a velocity of progagation ¢ of internal waves along
a surface of discontinuity between homogeneous fluids with specific volumes 8, + § A § and
»—1% A 8; or, in other words: u, is the value of u to which would belong a veloolty of
propagatlon ¢ tf the thickness of the transition layer were zero. -
Now by a final transformation
20z = 5_75 —z 22)

equation (20) may be written as follows:

dn Ho/2a A% .
dz? T [(cosh z? (%)} =0. (23)

If we assume the fluid to extend to infinity both upwards and downards, we have as
,,boundary”’-conditions that ¢, and consequently », must remain finite or become zero when
2z — -+ co as well as when z —» — oo.

If §(z) is given, we have as variable parameters in equation (23) the quantities 4 and p,,
or, in other words: the wave number and the velocity of propagation (c).

Now, equation (23) does possess solutions satlsfymg the above ,,boundary”-conditions
only for special combinations of values of ¢ and y; in other words: our problem is an ,,eigen-
value’ -problem.

This will yield the relations between wave-length and velocity of propagation, or between
wave length and period.

3.  Solving the eigen-value-problem.

Equation (23) is a differential equation of the general type

Y E(—1)  1@—1) .
A (cosh Z):  (sinh Z)®

which may be solved by the substitution
= (&) (cosh Z)* (sinh Z)h & = (cosh Z)2,

yielding: _ 4 2
P EE—D) " [(h+1+1) E —(k + DI+ K 3 )—(%H =0,
the latter equation being a hypergeometric differential equation:
Y EE—1) + ¢ [lat-p+1) E—y] + afy =0, (24)
with Y ] ‘
S p = =kt (> 0) 25)

a prime now stands for one differentiation with respect to Z.
In order to solve (23) we put
)= - “
b—1) =52 1=0, m=1-(m>0), (26)

the first of these relations yielding:

we take the negative root:

k:%—l/%—]—ggz——e(8>0). : (27)
Substituting this in (25) we get
— e e
&% = 82l m) ﬁ: 82 m; VZ——S‘I-%: (28)




where ¢ and m are defined by (27) and (26), respectively; for m = u/2a we may also write
nb/L, which means that m is times the ratio transition-layer thickness : wave-length (L).
The general solution of equation (23) is now

n = (cosh Z)~¢ (&), &= (coshZ)?,

where (&) should satisfy (24), «, § and y being given by (28). The solution of (24) for £¢>1 may
be expressed in terms of hypergeometric series of ascending powers of £72, which we shall
generally denote by

LA A4 +1)B(B+1)

+3 5—1+ R AES R

F(4,B,C; &) =

The general solution for £>1 reads:

P(§) = CL & F (a1 a—ftls £79) 4 O & P (B f—y+1, pat 1 & =

e—m e+m

— 0, ? T (‘8“””, EEEL s s—l> 408 % T (‘H”, AR §—1> —
2 2 2 2
e—m ) c+m
=08 2 F(ENFGE T Ry E.
Hence

1= (cosh Z) " p=E Py =0 g2 F, (574 C,¢m2 F, (677). (29)
As £ —> oo when Z-» + oo or Z — — oo, while F,(0) = 1, this solution is infinite for

2= - oo Or 2 = — oo unless C, = 0. So we are left with
= 0, E™2 F| (6-1) — C, (cosh Z)™™ F {— ¢ ; m 8+Z+1, m + 1; (cosh Z) 2| (30)

ForZ —=0,& > 1 4 0or &1 1 —0; the value of the series F, then converges!) towards

I (1+m)I'(})
<l—|—8+m>l’< s—}—2m+1>'

Now we must bear in mind that (30) represents only half of the solution we need, either
for the positive half of the Z-axis, or for the negative half. Indeed, as, in general, the deriva-
tive of (30) with respect to Z, for Z = 0, will not be equal to zero, taking (30) as a solution
for both halves of the Z-axis would mean that the solution would have a discontinuous
derivative at Z —= 0. According to equation (7), however, ¢ as well as 8p/ez must be everywhere
continuous; according to (16) the same is true for 4.

Hence, it follows, that, if (30) is the solution for, say, the positive half of the Z-axis, we
have, for the other half, to find the analytical continuation of this half of the solution. This
continuation will, in general, be of the type (29) with C,+ 0, so that it will have no finite
value for Z = — oo, unless either

F, (1) = (31)

70 =0, (I

or 7 (0) = 0. (1)
In case I (the prime denotes differentiation with respect to Z, here) our solution is simply
even and is described by (30) with the same value of €| for both halves of the Z-axis.

In case II the continuation for Z < 0 is obtained by taking for the cofactor O, the
opposite of the value used for Z> 0; the solution is then odd.

I'(C) I'(0—A—B)
T(0—A4) T (C—By

9
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Case 1.
7 = —mO (cosh Z)—™1ginh Z- F, [(cosh Z)—2} —2(, (cosh Z)™3ginh Z- F,’ [(cosh Z)~2].

The first term in the above form vanishes for Z = 0. As to the second term, we have,
generally:

F/ (X) = (;F(ABOX) ATBF(A—{—I B11,04+1;X),
where
A:—'S;_m, B:EJ“;”“, C=m+1.

For the latter hypergeometric series, the condition for convergence (see footnote on
page 9) is not satisfied, here. It can, however, be proved?!) that
A+B—C+1 'C+0H1I'A+B—0C+1)

Lim (1—X FA+1L,B+1,04+1;X
gim (1= X) @+L B+ L0+ LX) == @

2(4+B—C+1)

Now, in our case (l—X)AJrB_O+1 means (tgh Z) = tgh Z = sinh Z/cosh Z.

According to this we have .
gy (et m) (e+m+1) I (m+2) I'(§)

Li hZ.F h Z)—%] = .

Zmosm | 1 [(cos )l 4(m+1) F(—a2~|~m+l) I <s+7;+3>

Hence, n' (Z = 0) is finite; as both ¢ and m are positive, it will only vanish if either

— ¢ 4 m = 0, making
‘ m = &, (32)
or I (— ? 2+ ~

+ 1> = oo, the latter being the case if — 2" +1=0,—1,—2,—3,..... , OT

O<m=e—2,e—4,e—6,..... ete. (33)

By (32) and (33) a series of eigen-values of u = 2am is given, determining a series of
_possible wavelengths for any given value of the velocity of propagation ¢. Since, however,
m should be positive, while

—i+ ]/& +£2,

it follows, that (33) yields one or more eigen-values (but always only a finite set) only if
- po/2a> 6. The larger uy/2a is, the larger is the number of possible solutions. As, according
to (21), u, is inversely proportional to ¢?, the foregoing statement means only that, the smalier
¢ is, the larger is the number of solutions, if the other constants are fixed. The simplest
solution of type I is given by (32), making

—%+|/%+g‘—;,

bu = —144/1 + 2bp,. (34)

On account of the conditions expressed by (19) this result may not be applied for too
small values of b. Nevertheless equation (34) yields the correct limiting value of « when b
tends-towards zero: Lim u = u,. Power series development of the right hand menber of (34)

or:

b=0
would, however, yield: u = yy(1 —3$bug + . ..), whereas a correct approximation for small
transition layer thicknesses yields: u = Mo(l —buy+...). %)

1) See: Whittaker and Watson, A course of modern analysis, Cambridge 1935, Ch XIV, ex. §8,18.
-2)  This may f.i. be derived from an equation, obtained by Haurwitz [5] for the case of two infinite l.omogeneous layers
seperated by a thin transition layer, viz. equation (12a) of paragraph 9 of the paper referred to.
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Case 11.

‘ According to equations (30)and (31), 5
or:

O<)m=e—1,e—3,e—5,e—17,

(0) will be zero, if

—e+m-+1

o : O) _15_23_39

(36)

In order to make possible one or more solutions of this type, uy/2a should be larger than

2 (m being positive).

4. Relation between wave-length and period.

The relations found above between wavelength and velocity of propagation may be
transformed ‘into relations between wavelength and period (the latter being a more directly
measurable quantity). On account of equations (32), (33) and (36) we may write:

bu=2m=2(&—mn)=—

@n+1) +4/1 + 2bpy, =

—(2n +1) +4/1 -Fgobc2, n=0,1,2, 3,

where ¢ = AS/8, = the relative variation of the specific volume; o is a small number. As

¢ = »/u it follows, that
bu+2n +1 = /1 + gobu®r—2,
or: v
b2u? +2(2n + 1) bu 4 (2n 4+ 1)2—1 = gobu?y 2,
or:
gov?fb = dn (n + 1) (Ab)% +2 (2n + 1) (4/b) + 1, (37)

where 1 = Lj2x = y—* andt=v—1= T/2x, Land
T being the wavelength and the period,
respectively.
By writing
g = 2A/b, r = got?/b,
we get:

r=mn(n+1)¢ +2n +1)g + 1. (37)

Figure 2 shows a set of graphs, giving »

as a function of ¢, and thus, implicitly, <2 as

~a function of 2, for a set of values of n. The

corresponding formulas are written down
below:

(n=0) r=g+1

(n=1) r=(29+1)(g-+1)
(n=2) r=(3¢+1)(29+1)
(n=3) r=(49+1)(3¢g+1)

(n=4) r=(5¢-1) (49 1)

It may be noticed that both variables

g and r are pure numbers, which have a
simple meaning, ¢ being obtained when we
simply express 2 in terms of b/2, or half the

_ transition layer thickness, as a unit of length,
and 7 being equal to (v/7,)%, where v, =+/bjog

-—

XX

0
> ot
(o p]

’T

2

T
1.0
A

Fig. 2.

Relations between wave-length (271) and period (277)

of internal waves.

has been used as a unit of time. The quantities b/2 and z, are the two characteristics of the
fluid system we must know in order to be able to use fig. 2
Except for n = 0, which gives a straight line, all curves are parabolas, only part of which,
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however, must be used, viz. the points fo the right of and above the point ¢ = 0, r == 1. This
is a consequence of the fact that by agreement 1 should be positive, as m is positive,
according to (26)1). ' :

As may be seen from the formulas as well as from fig. 2, we have always (for 1 + 0) :

gov?/b > 1, or:
_1/88, 3,
TnE VgAS - Vg (dS/d2) max. - (38)

the latter value appearing to be the lower limit of the period of any internal wave in the given
density distribution. This lower limit, which the period approaches when the wave-length
tends to zero, is exactly equal to the ,,period of free oscillation™ of a fluid particle belonging
to the level of the greatest vertical density gradient. We shall see in the next section, that
the thickness of the layer within which, practically speaking, the wave motions are confined,
becomes small proportionally to the square root of the wave-length, when the latter becomes
very small, so that a free surface and a rigid bottom donot make themselves felt for the
shortest internal waves, which have the shortest periods.

Numerical example: For S, (dS/dz)max = 0.0001 m~ ! the limiting value of the period is
T, = 2w7, = 3.3 min. We shall return to the matter in the last section.

Another general result which follows from the above formulas is, that, when b and 4, or:
the thickness of the transition layer and the wave-length, are multiplied by the same faclor (the
total density variation remaining the same), the period is multiplied by the square root of
that factor. '

The velocity of propagation is given by ¢ = A/r; curves ¢ = constant in figure 1 are repre-
sented by 72 = 42/, or » = (bgo/4c?)q?. These are parabolas touching the g-axis in the origin.
Two of them are drawn, viz. ¢ = ;vbgo and ¢ = §Vbgo.

It should not be forgotten that the conditions (19) might impose a certain restriction
on the use of our solutions. From the first one of the inequalities (19) we get: 2¢?/gb<<l, or:
2(4/b)? q9*
G.E%:a.§;<< 1.
Now, for n = 1 or higher, the factor ¢2/2r of this inequality is always <0.25, so that
- here this condition is automatically satisfied, ¢ being a small number.

For n = 0, however, it might imply a real restriction by excluding too large values of 4/b.
Now it should not be forgotten that the left hand members of the inequalities (19) are
the maxima of the ratios of the terms which we neglected in equation (17) to the term
g’ [c28,, which we used, so that we cannot just say, that the value of o¢*/2r means the order
of magnitude of the error brought about in, say, the computed wave lenght (as a function
of the period) by the neglect of the term £ .5"'/S; nor can we say that this error must needs
be much larger than the one brought about by the neglect of the term —2(5'/8)?, although
the maximum of the latter term is only about A S/8, times the maximum of the former one.
As a matter of fact, it appears that for the larger wave-lenghts (the only ones for which
the errors need any consideration) both terms taken separately imply relative errors which

are of the same order of magnitude, namely about 0.1 - o%. |
Since ¢ is supposed to be small, those errors might become important only for the very
largest wave-lenghts; for ¢ = 0.01, for instance, 0.1 - o2¢ is still only 0.01 for ¢ = 1000, or L

as large as 3000b.

_But, as the errors have opposite signs, they compensate each other for large values of
L/b or small values of 6/L, for which the transition layer acts like a discontinuity; as we have
seen when discussing (34), our solution gives again the exact relation between wave length

1y Of course, this is an arbitrary agreement;, but we must stick to it, because, otherwise our solution (30) would become
infinite for z = 4 00 and z = — Q.
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and period for the limiting case, that b/L— 0. This result may also easily be obtained from
equation (37) by putting » = 0 and neglecting the term 1 with respect to 21/b.

That the term }.5”/S involves only such a small error, even when 24/b is as large as 1000,
is explained by the fact that §8”/S,, to which this term is nearly equal, is, as a function of
2, odd with respect to z, 8’'(—=) being equal to —8"(z).

The exact method of computing the effect of small terms in a differential equation upon
the eigen-value-problem, determined by this differential equation and certain boundary-
conditions, is called perturbation-calculus?t).

Let the differential equation without ,,perturbation” be written in the following sym-
bolical form: ‘

(Hpp— E)n =0,

where H,, is a so-called Hermiteian operator, which in the case of equation (20) is described by

0. — @ ga NS
7 dgz2 ' 628, (cosh 2az)¥

where as F is a parameter, the eigen-values of which are to be obtained; K corresponds to
$2 in equation (20).
Let the boundary conditions be

and let the eigen-values of E and the corresponding eigen-functions, which are supposed to
be real, be denoted by
By, By, By, ... ..
and
. 70(2), M2), Mal2)s v - -

respectively. Then the eigen-value problem defined by the differential equation
(Hop +f(2) — B)n = 0,

where f(z) is a small ,,perturbation”, and by the same boundary conditions as above, has
eigen-values
B, + 0B, B, +0E, By+0E, . .... ,
and eigen-functions
Wo(z) + 67]0(2): 771(2) + 67]1(2), Wz(z) + 51’]2(Z), """ ’

where, in first approximation,

Py S | (39).

In the case we are dealing with, namely equation (17), the function f(2) is
Sll Sl 2 '
51 (g) ) (40)

and the eigen-function we are concerned with (see section 5) is

fz) =

ol

1o = (cosh 2az)—m.

1) The term ,,perturbation’ is used here in the clagsical meaning in which it is used in celestial mechanics and quantum
wechanics.
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Since H.,,, as defined above, contains ¢ as a factor, formula, (39) gives the (small) variation
brought about in the eigen-value u2 = E, by the function f(z) when ¢ is kept constant.

Since 7§ is an even function of #, it follows from formula, (39) that any term of f(z), which
is odd with respect to z, gives no contribution to the integral occurring in the numerator
and, consequently, to the result of (39). Now we can write:

§Z S” S/I S”

_ —12 1 P
§ T 8,0 +lotghda)  *§, 0% b2

poj
(S0

the first term of which is by far the larger one, but odd with respect to z. This term gives a
contribution to é(u?) only in the second approximation and thus becomes, as far as the effect
upon x or A is concerned, of the same importance as the second one and as the term
— 1 (8'/8)%, which we still have in f(z) (40). \

We shall not-enter into further details of the perturbation-calculus which we used 1),
but confine ourselves to giving the result, as stated above2). ‘

5. Stream functions and velocity fields.

The stream functions corresponding to the solutions found, are given by (16) and (30),

where e =m +n, and m = b/24 =1 /q. For 5, which we may call the ,,reduced stream func-
tion”, we get, as the most general solution,

’ n=0,1,2,...
z | with
sj F —;,m+g—+%,m+1;(cosh2z/b)—2
N = (41)

(cosh 2z/b)ym

Here m is always positive.

For n = 0 the numerator in (41) is equal to unity,
so that

Mo = (cosh 2z/b)—m

For n =1 we have

F[—3%m+1,m+1; (cosh 22/b)~2] = V1 — (cosh 2z/b)—2 = tgh 2z/b,

so that
7, = (tgh 22/b) (cosh 2z/b)—m.

For n =2 we have

' m 4+ 1%
Fl[—1,m+ 1% m+1; (cosh 22/6)m] =1 — (cosh 22/b)™2,
m+1
, so that
. . 1 ‘
B emera torm o o = |1 =222 (cosh 22/8)2| (cosh 22/p)

'} For further details the reader is referred to any textbook on the matter. A very clear and concise explanation of
»perturbation-theory” may be found in H. A. Kramers, Die Grundlagen der Quantentheorie, Leipzig 1933, Chapter 5.
) As to the relative variation of A when 7 is fixed, instead of ¢, we have the relation
) A7 (0A)7 gopgt, = (L —2r/g) A1 (02)¢ oonst.’
which may easily be proved.
For n = 0 this relation yields: . -

A= (6A) = — (1 4+ b/4) A—1(d4)

2 const. c const.
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The figures 3, 4, 5 show graphs of the reduced stream functions for these three cases.
Here we have used Z = 2z/b as the vertical coordinate; this means simply that we have agam

used b/2 as the unit of length. The value of m =1/q was
chosen to be 1.

As regards the solutions belonging to higher values of
n we confine ourselves to stating, that the number of zeros
of the stream function is apparently n1); that for any even
value of n (n = 2N) the hypergeometric series in (41)
degenerates into a polynomial in (cosh 2z/b) 2; and that
m all solutions the argument of the hypergeometric func-
tion, viz. (cosh 2z/b)~2 tends to zero when z—» -4 oo, so that

then the numerator in (41) tends to unity, whereby all
solutions 7, tend to zero in the same way, when z > - oo,
viz. as (cosh 2z/b)™

From the last statement it may be easily derived that,
if b is small enough compared with L, the wave motion is,
practically speaking, confined between the limits z = L/2
and z = — L/2, the amplitudes being then reduced to about
e 4%, at z =+ L/2. We shall call the interval of z, with-
_in which the wave motion is, practically speaking, confined,
the ,,wave thickness”. Thus, if b is sufficiently small, the
wave thickness is 2- L/2 = L.

If bislarger than 1, the wave thickness will also depend
upon b, more or less. For b = L, for instance, the factor
(cosh 2z/b )™ referred to above will amount to about 0.26

-05

0.5

Fig. 4. Reduced stream function (7) as a
function of Z, for n = 1, 4 = b/2.

for z = L/2 and we must go to z = 0.85- L in order to find the value 0.04 again. The wave
thickness is here, consequently, 1.7 - L. Finally, it may be proved, that for large values of

b/ the wave thickness amounts to about 4/25L, the factor
(cosh 2z/b)™™ again being reduced to about 4% (~ e™) at
2= ‘_‘l: ’\/m.

From the above it follows that, in general, the solutions
“just found may also be applied to fluid systems which are
not infinitely deep on both sides of the transition layer, if
only the bottom and the free surface are not closer to the
middle of the transition layer than about half of the wave
thickness, which may vary between L/2 and 4/sL/2 according
as b is small or large relatively to 4

Inasmuch as the smallest periods belong to the smallest
wave lengths, the result of the preceding section concerning
the lower limit of the period of internal waves appears to be
independent of the assumption of infinitely deep fluid layers
on both sides of the transition layer.

Veloc@'ty field. The velocities u and w are now determined
by the stream function according to equation (7), yielding:

a(71\/5’

e — i) gy — — i/ S . et (pe—20), (42)

It appears from equations (42) that « and w differ in
phase by 90°, the velocity vectors describing ellipses; the

w-axis and the u-axis of these ellipses are in the ratio uny/8 :

Z

5ﬂ

y
.

oyl

Fig. 5. Reduced stream function (%) as
a function of Z, for n = 2, A = b/2.

a(m/8)/ez, or n\/ S : Aa(mn/'8) /o2,

1) This may be proved directly from the form of the differential equation, without calculating the solutions explicitly,
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or nearly as % : Aan/oz, or mn : an/aZ. The latter ratio can for any given value of m immediately
be derived from such curves as given in fig. 3, 4 or 5. Tt appears that near the points where
7 possesses a maximum or a minimum (as, for instance, in the middle of the transition layer
when n =0, 2, 4, ...) the fluid particles move simply up and down, while at the zeros of %
they oscillate horizontally. Besides, it may easily be derived, that, when z— -+ oo, the ellipses,
becoming smaller and smaller, change into circlets.

Fig. 6 and fig. 7 show the stream line patterns corresponding to the solutions for n =0
and n =1, for a certain moment; m = 1/¢ was the same as in fig. 3 and fig. 4, viz. 1.

Z= b/a

*«®=050

direction of, = propagation direction of = propagation

Fig. 6. Stream line pattern of internal wave; n = 0, 1 = b/2. Fig. 7. Stream line pattern of internal wave; n = 1, 1 = b/2.

" Finally, it can easily be shown that the amplitudes of the vertical and of the horizontal

dlsplacements are ¢ 1| | and 7| ¢’ |, respectively.

6. Influence of rotation.

If the whole fluid system rotates in such a way that we need only take into account the
vertical component of the rotation vector w, equation (3) must be replaced by

ou G
5 TS 200 =0, (3%)
while for the y-component of the motion the following equation must be added:
o+ 2mu=0. | (3+%)

The equations (4), (5) and (6) remain unaltered, a/oy being, here also, equal to zero.

16



By differentiating equation (3*) with respect to ¢ and substituting for sv/st what follows
from (3*%*), viz. ov/ot = — 2w,u, we obtain:

02 o%p
(5@ + 46()22> U + S@ =0.

Introducing again the stream function ¢ and substituting a/of = — v, 8/ox = iu, we find
the following equation:

4 2
—c<1—%> ¢ +8p =0. (11%)

The only difference with equation (11) is the appearance of the factor 1 — 4(w,/»)? =
= 1—(T/D)?, where T = 2zn/v is the period of the wave motion, while D = =n/w,={ pen-
dulum day. ‘

Solving (11*) for p and substituting the result in (12) we obtain now (after dividing by
¢, again):

7

S S’
¢’ {1 — (2wzr)2} —9'g {1 — (2wz'r)2} + q;("iz—s — /ﬂ) =0, (1%
' A 1 ‘
instead of (15). Dividing now by 1 — (2w.)? and substituting _ for ¢, 5 for u, we obtain:

=0.

PRy SR IR S o - A IS S
S T AN T = e S A= Capp

It appears that the only difference, brought about by the earth’s rotation, is such, that
in the basic differential equations, written down in terms of 4 and 7, 1 has been replaced by
A1 — (2w,7)2

This means that in the final result we have the same relations, here, between 14/1 — 2w,7)?
and 7 as we previously had between 1 and 7. In other words: if we write the relation between
v and 2, which is implicitly described by equations (37) and fig. 2, in the form

: A= F,(1), (without rotation),
we have now: '
F(7)

" VT — Qoap

From the last formula, it appears that when 7’ approaches to D, the wave length tends
to infinity, half a pendulum day apparently being the upper limit of the period of free
internal waves. For very small values of 7'/ D, on the other hand, the influence of the rotation
will be negligible.

If we again draw r, g-curves, all curves show a bending to the right for sufficiently large
values of g, now, approaching asymptotically to the straight line » = (D/2n7,)2.

As to the stream functions, it appears that, for the same value of 7, any ga(z) is the same
as was derived in the previous sections, m being now equal to 5/214/1 — (2w,7)? and having
(for any n) the same numerical value as before, if v is the same.

From (3**) follows, that the y-component of the motion, occurring here, is given by
the equation

A

(with rotation).

— v + 2w,m = 0,
or

v izwzu 'Tu
= — =—i_u.
D

4
This means that v is 90° behind %, in phase. Any velocity vector describes an ellipse in
a sloping plane, intersecting a horizontal plane along a line in the z-direction and making

Do) ith it

an angle of arc tg T 7 dglds
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The horizontal projections of the velocity vectors describe ellipses, the shorter axis (the
v-axis) and the longer axis (the u-axis) of which are to each other as 2w, to », or as T to D;
the rotation is cum sole (clock-wise on the northern hemisphere).

8. Somewhat more general type of density distribution.

A final generalization may still be given to our treatment by taking for § a function
of the type
8§ = 8,(z) +% A Stgh 2az, (44)
where ,
S1(z) = Sy efza2 8y (1 + fz) forzy, < z << 2,,

fz being small everywhere within the interval of z to which the use of this function is limited;
this interval is either the total depth of the fluid system or else may be taken to coincide
with the wave thickness; the total relative variation of § is again supposed to be small with-
‘in the interval of z we are concerned with; f is positive. ,

Then, writing down the term g8’/c2S of equation (17), getting

g5 9o AS
28 ' ¢28 (cosh 2a2)?

we may again replace § in the denominator of the second term by §,, whereas in the first
term we may write S,’/S; = f for S,’/S.

Introducing this into our derivations we obtain, instead of equation (20), the following
equation:
ga A S gf

8, (cosh 2az)2 ' o2 |7 0. (45)

nli _'_ 77
On further proceeding as before, the only difference-in the result will be that the eigen-

values of u, found above, will now be the eigen-values of \/u2—gf/c2, when the value of c is
the same in both cases, so that we obtain . ‘

bout = b/ —gfje* = e —n,
¢ being defined as before. Hence, '
but 4+ 2n +1 = '\/1 + gobu?/v?,

from which we may easily derive the following equation

: |
gotfo = dn (n -+ 1) (2) L2024 1) /T g 41— g (46)

e Rt 2}
h — n{—= ) 2 e |
(\/I—gfﬂ) b=t )<b\/1—gf12> el b'\/lfgferr

Writing, for the moment, v/4/1—gf2=1' and 4/y/1—gf2= A', we have the same relation
between ' and A as prev10usly found between 7 and 2 for the case where f was zero, so that,
in order to calculate the value of A corresponding to a given value of 7, we may proceed as
follows: first, find ' by dividing v by 4/1—gf+?; then enter into the diagram of fig. 2 with
the value got™/b for » and find the value of ¢ of the corresponding point of the appropriate
curve; then, putting ¢ = 247/b find 4f; finally find 4 by multiplying A" by 1/1— gf+*.

As A" = 1/ = ¢, the velocity of propagation of waves with period 2zv or wave length
2n% is the same as we find from fig. 2 for <" or A'. In other words: if we represent the period-
wave-length relation for any value of » in a g-r-diagram as before, each point [¢(4), 7(z)] of
the curve lies with the point [¢(4'), #(z")] of the corresponding curve for the case f = 0 (fig. 2)
on the same equal-velocity parabola.
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From the form (46) of our equation it may easily be seen that for any fixed value of 2
the corresponding value of = must be smaller here than in the previous case, where { was zero.
Furthermore the values of 7 larger than 1/y/4f are here ruled out; the corresponding limiting
value of 2 obtained from (46) turns out 3b+/s/n(n 1 1)8bf.

Meanwhile, it should be borne in mind, that just for large values of 1 or, more generally
speaking, for large values of A (on which the wave thickness depends, as we shall see), where
the deviation of the results of this section from those of section 2 (fig. 2) becomes important,
the increasing wave thickness may prevent us from applying them to the cases we are
concerned with, viz. cases of limited depth of the fluid on both sides of the transition layer
and of limited interval of validity of formula (44).

The minimum value of 7 is here:”

1

R ICE)

The quantity ¢/b 4 f occurring in the above formula is again the maximum of the rate
of relative variation of S, found at the middle of the transition layer.

For n =0 we can separate the variables (v and 1) and find an explicit formula for 1 as
a function of 7, m'_z. ‘

Tmin

glofb+He—1_ 2

V1—gfe b’

A graph of this relation is shown in fig. 8, where now r,= g(o/b - f) 2= (7/7mm)? has been
used as the ordinate; the abscis is ¢ = 24/b,
as before. In terms of r, and ¢ the equation re ‘ ’

of this curve reads as follows: " s

’I'f—]. _q
'\/1 —h?'f ’
where
f
)
o/b 4 f

is the ratio of the lapse rate of the
term §; in formula (44) at the level z=10
to the total lapse rate of S at the same
level, the latter being the maximum lapse
rate of S. The curve of fig. 9 has h=0.1. q
The maximum value?!) of r,is 1/A; the mini- Fir. 5 Relation bet 5 and 28
mum value of 7, is 1, as was the minimum 'g. 8. Relation between (7/7min)* and 22/b.
of r for f = zero. The straight line r =¢ 4 1 (38) found previously for that case has been
added in fig. 8 (dashed line). :

For all values of n the reduced stream function corresponding to a certain solution is,
here also, given by formula (41), where now, however,

_ b
m = }bu/1—gfr? = fbut = 377

this being exactly the inverse of the value of ¢ found on entering into the diagram of fig. 2
with the value got'?/b for r, as described above.

The wave thickness belonging to a solution (41), when & is small enough, was, in terms
of b and m, given by wb/m. This yields: wave thickness = L/y/1—gfs2 = L = 2a4f, 1’ being
the quantity most easily calculated when starting from 7, as described above.

If, however, b is large compared with A7, the wave thickness may be put equal to/25Lt .-

1) Cf., however, the remark made above as to the limited applicability of the formulas of this section for large values of 7.
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“Tf, in addition to the complication dealt with in this section, we wish to take into account
a rotation of the whole fluid system, we have to substitute 14/1 — (2w,7) for 1in all equations.
The upper limit of v will now be the lower one of the two values 1/4/¢f and 1/2w,.

8. Qeneral proof of the existence of the lower bound of periods of interval waves.

In this section we shall drop our special assumptions concerning the density distribution
and the absence of boundaries. ‘

The density distribution is only supposed to be stable and to have a finite density
gradient everywhere inside the fluid.

A lower rigid boundary may be present at a level z =z, so that, since the vertical
velocity must, at any time, be zero there, the stream function vanishes at this level, or:

@ (z) = 0, (47)

@ (2) being defined as before (section 2).

If the fluid is infinitely deep, we may put z, = —co.

When dealing with 4nternal gravitational waves we always have still at least one other
level, z =z, Where @ (2) vanishes:

@ (z) =0 (48)

(where, eventually, z; may have the ,,value” + o), for, either there is a rigid upper boundary

at z =2z, or there is a free surface at z=1z,, but in the latter case we know that internal

waves are supposed to have at least one ,,node”-level between the surface and the bottom.
The general, exact equation for ¢ (z) is: :

N g’
rr —_ ’ _ 2 2__ . -
¢ —¢ g+ o (r 3 1)—0, . (49)

which is identical with equation (15).

Now, if ¢(z) is to vanish at z =z, and at z = z;, it must needs, somewhere in between,
have at least one maximum, where it is positive, or a minimum, where it is negative, or both,
since ¢(z) is a continuous function of z and is not identically equal to zero. This means, since
¢’ and ¢’ exist everywhere between z, and z,;, that, at a certain level z = 2* (z, <2* <z,),

(p’ (Z*) =0,
(P” (z*) < 0. (50)
@ (#%)

From (50) and (49) follows, since 8’ is finite, that % (<2g8" /S —1) is positive at z = z*.
This means, that 7298’/S must become larger than unity somewhere inside the fluid; in
other words: 72¢ (S'/8S)max > 1, or: :

: o 1

2

"7 g e
or:
27

> — e ———
'\/9 (8'/8)max

This exact result, which is independent of any special assumptions with regard to the
density distribution (even if S’ = oo at a certain level, (51) is true, because it gives T; = 0,
" then) differs from what was arrived at in section 4 (38) only in so far as (38) has S'max/S,
instead of (S/S)msx, but in section 4 the difference between §'/S and §'/S, was discarded,
as we remember.

The period 7', is exactly equal to what is sometimes called the ,,period of free oscillation”
of a fluid partlcle belonging to the level of greatest stability.

20
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The ,,period of free oscillation’ of any fluid particle in a stable
stratification is understood to be the period of the oscillating
motion the said fluid particle is supposed to assume, under the
influence of the Archimedian force, when it is removed from the
level it belongs to, without, however, removing the surrounding
fluid particles from their equilibrium levels. Now this is a rather
hypothetical experiment. Perhaps we might best put it this way,
that (51) gives some sense to this ,,period of free oscillation”,
but only for the level of greatest stability, in so far as this
period, computed for the level of greatest stability, is the lower
limit of the periods of internal waves in the wole fluid layer con-
sidered.

In the table alongside we have given values of 7', for various
values of (8'/8)max, or (— 0'/0)max.

(8"/8)max T,

0 o0
1.10¢m—1 | 33.4 min.
4.10~%m—1 | 16.7 min.
1.1075m™? 10. 6 min.
4.1075m—1 5.3 min.
1.104m? 3.3 min.
4.104m—1 12 min.
1.103m—? 63 sec.
4.103m—1 32 sec.
1.10-2m—? 20 sec.

oo 0

21






10.

11.

. STORES, G. G.,

. Hermeorrz, H. v.,

. Erman, V. W.,

. ZEmon, N.,

. Haurwirtz, B.,

. Lams, H.,

. Fagrpsrap, J. E.,

. SoLBERG, H.,

SEKERA, Z.,

UrrorD, C. W.,

REFERENCES

On the theory of oscillatory waves, Trans. Cam-
bridge Phil. Soc. 8, 441, 1847.

Math. and phys. papers, I, Cambridge 1880, p. 215.

Die Energie der Wogen und des Windes, Sitz. Ber.
Preuss. Akad. 1890, p. 853.

On dead water, 1904, in: Nansen F., the Norwegian,
North Polar Expedition 1893—96, Scientific Results
V, London—Christiania — Leipzig (1906) p. 1—152.

On tidal boundary-waves and related hydrodyna-
mical problems, Kungl. Svenska Vet. Ak. Handl
N.F. XLVII., Nr. 4, Uppsala and Stockholm 1911/12.

Zur Theorie der Wellenbewegung in Luft und Wasser.
Spezialarb. d. Geophys. Inst. Leipzig 5, 1, 1931.

Hydrodynamics (6th ed.), London 1932, p. 370, 378.
Interne Wellen, Geofys. Publ. X, no. 6, 1933.

. ByErrNES, V.. J. BrErrnEs, H. SoLBERG and T. BERGERON,

Physikalische Hydrodynamik, Berlin 1933, Ch. VIIL

Schwingungen und Wellenbewegungen in einer At-
mosphire mit nach oben abnehmender Temperatur,
Astrophysica Norvegica II, Nr. 2, 1936.

Zur Wellenbewegungen in Fliissigkeiten mit vertikal
veranderlicher Geschwindigkeit, Astrophysica Nor-
vegica III, Nr. 1, 1938.

The theory of internal waves, Transactions American
Geophysical Union 28, 96, 1947.

23






