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ON THE FORMATION OF DRO :\S' IN CLOUDS AND FOG

by R. R. Vierhout
S’dmmawy ‘ | |

Applying the formula for the diffusion of vapourin agas and for the rate of evaporation
of water above a surface of water at a vapour-pressure differing from the one of saturated
vapour and a formula, deduced from theory, for a flow of gas, the evaporation-velocity is
determined for a drop of water in a cloud of drops. For an actual case the values of this ve-
locity and also the times required for the complete vanishing of the drops are collected in
a table (table 2). It appears from this table that among the drops those with a radius of
10~ cm occupy a special position. Further, the rate of accretion of drops is computed in the
case of a slight oversaturation; the results, also given in table 2, make it clear that drops
in a drizzle can hardly originate by this process even if the over-saturation is measurable.
Further the conclusion is drawn that ice-needles in a surrounding of undercooled waterdrops
have a fair chance of increasing their weight to that of raindrops. It appears once again that
in normal cases of very slight over-saturation the drops will increase till their radius is of
the order of magnitude of 10—* cm, from which it is concluded that drops of this size will be
present to a predominating extent in cu-clouds. Larger drops are shown to require a very
much longer time for developing. The coalescence effect is then computed and it is made
clear that drops of the order of 10~ ¢cm radius and larger have a reasonable probability of
vanishing from the fog, from which it is concluded that a radiational fog, at any rate in
its bottom layers, cannot contain drops of this size and that the relative humidity must be
less than 1009%. Tt is further shown that in its top-layers, on the contrary, drops of this criti-
cal size can always originate and that they, after falling down, evaporate, in this way set-
ting up a downward cold transport, until the relative humidity has attained 100 %> Where
upon the fog will become ,,wet”. Finally it is proved that very strong attractions and re-
pulsions between the drops result from evaporation or condensation from or at the drops.

§ 1. The rate of evaporation or condensation at the boundary surface in the liquid-
vapour system of water can be expressed in grammes per second per em? of that surface or
in moles per second per cm2. This rate is proportional to (E-e), £ denoting the pressure of
saturated vapour and e the actually prevailing vapour pressure. K—e is positive for evapo-
ration and negative for condensation. In order to determine the proportionality-factor by
which (H-e) must be multiplied, we introduce a rectangular system of co-ordinates with the
z—axis normal to the boundary surface. For the number da of molecules in 1 em? of the
vapour, with velocities between % and z -+ dx, we have:

—y My '
da:nV M enrgs, [4]Y)

2aRT

where z denotes the velocity of a molecule in the direction of the xz-axis, » the number of
molecules per cm3, M the molecular weight, R the gas-constant, I' the absolute temperature
and e the base of the natural logarithms. In order to compute the number of vapour-mole-
cules impingeing on 1 c¢m? of the boundary-surface in 1 second we shall first consider the
molecules having velocities between & and z + da. In 1 sec. they cover the distance &, so
that their number is
: </ M L ME
.g 2RT,gx.dx.

do .x=mn |/ —
2nRT

The total number, striking the boundary-surface pef cm? per second, is therefore obtained
by integrating the above expression over all possible velocities x in one direction, say all
positive values . This gives for the%total number

1) TReferences are indicated by [ IR
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According to M. Volmer and J. Estermann [5] these molecules are, all of them, absorbed
by the liquid. Part of them are reflected by the solid phase (ice). Writing "= T for e

(N =Loschmidt’s number), we obtain

BTV 2aM 2nMRT

In the case of thermodynamic equilibrium e is equal to E, so that the number of
molecules per cm? per sec. moving from the vapour into the water is then

4= eN 1/ BT eN V_j_ molecules per cm? per second. (1)

-
4= 2 | e @)

As equilibrium prevails the same number of molecules must per cm? per second pass
from the water into the vapour; (2) represents therefore also the number of molecules per
cm? per second, which at the temperature T and at the pressure K of saturated vapour is
shot by the water through the boundary-layer. If there is no equilibrium, we can for simpli-
city still suppose the temperature of the water and of the vapour to be the same and the
excess of molecules passing in one direction will then be

i :
A=  (E— 1 2 :
A4,—A=N V2 URT (E—e) molecules per ¢m? per second,

which therefore represents the velocity of evaporation or of condensation accordmg as F-e
is positive or negative.
Expressed in grammes this becomes:

M 2
7 (Ao— - NV2 w57 (B—¢) = V2 27 (E—¢) gr/cm?. sec.
For a boundary layer of which the radius of curvature is 7, we have Thomson’s formula:
oRT E 2y
S —E,—E+

Here ¢ denotes the density of water, y the surface-energy per cm2~ 75 erg/em?, K, and
E the pressure of saturated vapour belonging to the curved and to the flat water-surface
respectively. By expanding into a series, breaking off after the first term and neglecting:

B against 1, this can be written:

ET:E< +% Z) <1+325 10 5%) (3)

r

oRT

This expression is accurate to within 0.19, for drop-radii down to 10~° cm. 7
A drop of radius r produces or absorbs an amount of water vapour C, for which we have

. M
O‘: A7y V2 YL (E e,) @r/sec. o 4)

Here ¢, denotes the vapour-pressure at a distance A’ from the surface of the drop,
A’ representing the average distance from which the vapour-molecules arrive. We have there-
fore left room for the possibility that the value of the vapour-pressure at a certain point
depends on the distance of this point from the surface of the drop. In deriving (4) from (1)
and (2), one must take into account that the average distance 2, from which the molecules,
passing across the boundary-layer, arrive, is of the order of magnitude of the free path i of
a Vapour molecule In the conditions prevailing in the case of fog or clouds, 1 is of the order
of 107 ¢
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Drops in fog or clouds contain, apart from water, small quantities of other substances,
which by their presence cause a lowering of the pressure of saturated vapour. Now it may
happen that the rise in the saturation-pressure due to the curvature of the surface of the
drop is just compensated by the lowering, due to the pressnce of alien substances. In that
case such a drop is in thermodynamic equilibrium with an atmosphere of a relative humidity
of 100 %,. The radius of such drops produced by the actual processes in nature is of the order
of 10 em. If by condensation this radius becomes 10 times larger, the lowering of the
saturated vapour-pressure will become 1000 times smaller and the raising 10 times smaller,
so. that the resulting rise will be 99 9, of the one computed by means of Thomson’s formula.
The effect of the dissolved substances present in the drops can therefore be neglected for
radii > 10~* em. For smaller drops th= pressure of saturated vapour will be slightly less
than would follow from (3). : -

Let us suppose a drop to be at rest in an infinitely extended quiet atmosphere and let
C gram/sec or C/M moles/sec be its strength as a source.

This strength will depend on its own pressure of saturated vapour and on that of its sur-
roundings. This will cause a change of the radius; moreover latent heat will have to be
supplied or to be withdrawn for evaporation or condensation. We suppose now, provisionally,
that the radius of the drop is kept constant by some suitable device, for example, by supply-
ing or withdrawing water through a diminutive tube, introduced into the drop, and that by
a similar contrivance the regulation of the latent heat is properly seen to. Under these
conditions a steady flow of vapour will be sst up. The pressure of the vapour in this flow at
a distance 2’ from the surface of the drop will be called ¢,, at infinity e, and at a distance
a from the centre of the drop e. Owing to the existing radial symmetry the pressure-gradient
will be radially directed and through any imaginary spherical surface round the drop the
same amonunt of C gram/sec or C/M moles/sec of water-vapour will be transferred.

Denoting the concentration of the vapour in moles/cm?® by m and that of the air by
m', their sum m -+ m’ = G will be constant as the total atmospheric pressure p is constant.
A certain amount of water-vapour will diffuse through an imaginary sphere with radius a,
this amount being equal to |

. o
W — — 4ma?D 2"
oa

(D = constant of diffusion). As, however, there is also an air-concentration gradient
‘of which the direction is opposed to that of the vapour-density gradient, there will, at the

same time, also diffuse per second an amount of air in the opposite direction; this amount
is equal to

- om -
L:—4ym2D’ﬂ:-47m2D'

o(G—m)
jaaﬁ o oa B

4ra2D’ om
oa

(D' = constant of diffusion of air). At the surface of the drop the density of the air
remains constant; a radially directed atmospheric flow of air and of vapour must, therefore,
exist at the same time, neutralizing this diffusion-flow of air. [2]

Writing v for the velo¢ity of this radial flow, we have

0
dra? (D’ om -+ m’v) =0
oa
or
. D om

’

V= .
m' oa

- As this radial flow carries also vapour with it, the total vapour-flow will be

om om m D
2y —— a|__ ™t - 2 .
W + dmaPmv = dmva ( D ” -+ mv) 4ma?®D Y= <1 + pour D>.



a,nd thls Value is also equal to the source- strength of the drop, namely C/M, so that

2( Lat

c m D
W + dnadmy = = —47m2D — (1 +— D) (5)

R

D and D are of the same order of magmtude We shall presently compute in this
publication the diffusion-constant by means of a theoretically deduced formula. As such a
deduction can of course only give a more or less accurate approximation to reality, the
error introduced by applying such a formula is of the same order as that made by putting
D equal to D'. It is therefore consistent to introduce this simplification here. We can then
write for (5): :

C - om AN 9 om . G 4 : o V
Integration gives ) ‘ | , ,
c (G—m) Mm— Moo Mm—mMoo \2 1 L :
DM~ ey T _m%o—( _@gg)éﬁ+ """ | - @

(M, 18 the vapour- densﬂ;y at mﬁmty)
. In practice the last term in the right-hand member is 5o small, that we can safely omit
it. Introducmg mRT for e and GRT for p, we obtain

e;__eﬁg ___CORT . (8)
1_%° 4aDMa
T

“The formhla for the atmospherie radial flow » becomes:

L D om! Bln(G m) ¢ ,
, e () = g (V= — 2 rca
(((i) is the unit-vector directed radially outwards), while
dive = — divgrad o =0
1V ¥ = — d1V gra m =V,

.so that the radial flow is divergence-free. ‘
- The vapour-pressure ¢, at the distance 2’ from the surface of the drop, as determined
by (8) is: :

_ _ exo CRT
%= foo <1 7) 4D (r L)

c /2xRT )
4 772 M

but also by (4):
e,= B, —

g
Equalizing these two expressions for e, gives:

O /BT ¢oo CRT

T 4m? M T feo T 4z DM (r+ ')
from which C can be solved. The result is:

(E,—eco) 4mr?

kT RTr(1—2) (9)
M " DM (1+ 7)

C =

Tt follows from (9) that the source-strength of the drop is determined by the vapour-
pressure at infinity, the radius and the temperature of the drop and its surroundings. The

value of 17 for drops with a radius larger than 10~* ¢m is very much smaller than 1, so that
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for these drops this term can be omitted in (9). For smaller drops the effect of i};_is an appa-

rent increase of D, amounting to a few 9,. This apparent increase of D also takes place when:
a drop falls under the influence of gravity which causes some ventilation to occur, although
so long as the drops still obey Stokes’ law, this ventilation is slight [2] and the apparent
increase of I amounts to only a few 9%,. For drops with a radius smaller than 1.7 X 10" % cm
the falling-velocity is computed from Stokes’ law. o -

Tig. 1 shows the lines of flow of the vapour in the case of two drops at a certain distance
apart. : : S

Fig. 1

The vapour-pressure at A depends then on the properties of the drops and on the dis-
tances of 4 from these drops. If many drops are present, a; denoting the distance of the drop
i from A and O, its source-strength, it may be proved that the vapour-density in A4 is
given by

0;

M= G (G—tmeg) .6~ DMGaz, | (10)
or the vapour-pressure e in 4 by B
OiRgl_

e:p_(p_goo)_g— 4nDMpai’ ! (11)

while the atmospheric radial flow ©in A4 is determined by the vector-sum

, ¢ _ Z ¢ 19
v gradZ 4 M Cla andiGag (% (12)

The proof that the description of the flow by (10), (11) and (12) is correct, is as follows:
For the total transfer of vapour I across an arbitrary surface we have: (denoting by do an
element of superficial extent and by dr a volume-element inside this surface)

I= /][—Dgradm—[—mi]do://{—D(G—m}gradZm—mgradzmaw} do= -~ °

_ " C; - _r . Z C; o
= ]/grad Z imia, do= —//fdlv grad toila, dr.

The last integral is 0 if none of the drops is surrounded by the surface, as then div-

grad El_ = 0 . If however, the drop with suffix £ is surrounded, the integral can be

(3
transformed into

I—— radZ’ G cZo—— rad O ci:)—— ﬂ/‘div radZ’ ¢ dv —- / radlL ‘d+—(;;_
k= & dnMa, et ey, /v & dnMa; K ; g dnMay,’ 0=

C > ’ ‘
— f / grad yp ]l;a .do (Z means a summation over all drops except the one with suffix k)
%




The last integral is the sum  of two integrals, one over the surface o of a sphere with
radius @ enclosing the drop K and lying within the surface o and the other over the volume
7" between these two surfaces. The la’oter integral is 0. We have therefore,

, O _ / e G
Ik——d/grad‘l—zw—k do——//fdlvgrad — dr —/[grad4 o, da O.+ 4JzMa ‘a dw—ﬂ;

so that it appears that the flow of vapour I, is equéLl to C/M moles/sec. The conditions that
the total flow must be C/M moles/sec if the drop K is surrounded by the surface and 0. if
no drop is surrounded are thus satisfied, the representation by means of (10), (11) and (12)
is correct and div ¥ =0 as it should be. By expanding the exponential term in (11) and
omitting the terms after the second, this formula can be simplified and becomes

e_eoo+4DM< 600)20 | ' (13)

We shall make use of (13) to calculate the source-strength of a drop (without suffix) sur-
rounded by other drops (with suffix ¢). For simplicity we put the distance a; of a point on
the surface of a drop to the centre of an other drop equal to the distance between the two
centres of the drops. From (13) we have for e=e,:

ev—eoﬁﬂzm(l—?) vt 4nDM< )Z

Another expression for e, follows from (4), namely: ¢,=F, — O /R

47r?

From these two equations C' can be determined as follows:

1 1/2%RT . RT (1_%0)J+ RT <l_eoo> e

_W M T dnDM CEY I dnDM 'y

lfv?,‘——eoo = »

or, writing B, = E (1 1-3,25.10—5 iT>
tr

0_E(1—|—3,25.10— )—eoormDM —600)

“14 - (14)
27RT RT(I—@_T
" T Du (1 + %)

When there are » drops we compute the n C; ’s from n equations analogous to (14). These
quantltles are therefore known, if the mutual distances of the drops, their temperature and
size and the vapour-pressure at infinity are known.

For the computation of D, we use the following expression, which is based on theore-
tical considerations [4]: v

24v 2 3RT

>

3wt 3w’ M S -

where v denotes the mean velccity of a molecule of water. Now the diameter of such a mole-
cule does not differ much from those of the gas-molecules of the air, so that with sufficient
accuracy we can write for 4 :

v hVIRT
T dnrtn . dm?. Np




where # means the radius of a molecule (= 1,6 x 10—®8cm) and n the number of gas molecules
‘per cm3. Giving r, B, N and M their numerical values, we obtain for D:

2 3.83.10". T
2.1,.4/2.8,3.107. T_‘/u

18 T

D= — 23,57
/2

H

37.47.1,62.1016 6,03.10% .p
and by this (14) becomes:

L \ O,
[E (1 +3,25.10— iT) — eoo} VT —1,544 .10 (p_eoo)z -

r
1,544 . 10% (p—eoo) .7 + 429,07. T

Putting 7' = 280° K, p =800 mb = 8 x 10° dyn/cm?, we have £ =10 mb = 10* dyn/cm?.
By putting e, — B, which is equivalent to putting the mean relative humidity in the
cloud 100 9%,, we can write for (15):

0= 2 (15)

1,94 .10—5 .7 — 12,198 . 105 . 72 Gi

a.
- l : 16
¢ 12,198 .10° . r + 120,148 gram/sec (16)

1f we put the second term in the numerator of (16) equal to zero, C represents the source-
strength of an isolated drop. This strength is given in column 2 of table 1.

We proceed next to compute the influence of the other drops on the source-strength of the
drop K. Let us imagine a spherical cloud of drops, with a concentration of [ drops per cm?
and let us divide this cloud into thin spherical layers with radii a; and thickness da. The
drops present in such a layer have then a total source-strength of

A0 = 4na?l. C, . da,

where O, is the mean source-strength of a drop in the layer with radius a.
Owing to the radial symmetry in the cloud, we may assume C, to depend only on a.

The term Z% relative to a point K is analogous to the expression for the electric potential
in a point K, ‘due to charged particles, so that we can apply the results of the theoi‘y'of the
electric field directly to the present computation for Z% In a point K, outside the cloud
at a distance § from its centre, we can therefore write: ' »

Cs

o Yy A45.1.0
Lia, ’

5 (17)

A
o
=§/4m¢2.l.0a.da:
0

¢ denoting the mean source-strength of a drop, computed over the whole cloud. For
K inside the cloud at a distance § from its centre we have:

A4 S A ’ S
C; 4ma?.1C,.da - 1 1
Z a_i:-s/ —— +§@/ 470210, . da = S/ 0, d(2n0?) + EO/lOa.d(4/3 md) . (18)
TABLE 1

7 cm C gram/sec evaporation-time ¢
10— 1,6.10712 3.10% days
102 1,6.1012 31 days

B 10— 1,5.10712 45,7 minutes
104 | 14.107% 3,1 sec
10—5 0,8.10—12 0,7.102 sec




| Combining (13) and (17) we obtain:

B eco ZO ' RT (1 eoo| Yym43.1.C
¢= e°°+4 DM — + &nit P S

In this expression the whole spherical clo_ud acts, so to speak, as one large drop with
radius 4 and a source-strength

Op=4ym.431.0.

In order to estimate this strength we asume e, = 0 and ¢ = K = 10 mb, while for the
other quantities we use the values already previously assigned to them.
Then:
10t..§

__ 4 3 10 — _ —7 g
C,= /3yfA e 9.2 % 108 82 x10—7.8

For a cloud with radius 8 of the order of a few hundred meters this becomes:
C, = 106—2 gram/sec = 36 gr/hour.

The mean source-strength C is then of the order of magmtude 1071%/1, so that, if [ is
of the order of 10-10.000 drops per cm?, we have

O~ 1016 —10—19,

from which it appears that the source-strength of a drop in a cloud can be many ‘times
smaller than the strength of an isolated drop.

In an inward direction €' decreases, so that C is chiefly determined by the value in the
outer layer of the cloud.

An isolated drop will evaporate slowly; we obtain the time necessary for this process by
putting € in (16) equal to 4w r2 dr/dt and by then solving the resulting differential equation.
To this end we suppose the flow to be quasi-stationary, so that it will adjust itself instant-
aneously to the changing radius of the drop; then (16) is transformed into

1,94
1,222+ 1,2.1075.7

dr
27 1012 42,
4y 7 012 ¢
from which we obtain

11,2272 1-1,2.10-5 . ¢
1,94

t = 4 .1012 dr=04.108 .2 4 2,7.1012, #3sec.
0

Values of this evaporation-time are given in table 1, column 3. From these values one
gathers that drops with a radius > 102 cm., once formed, can exist for a fairly long time
in an atmosphere of 100 9%, relative humidity, while smaller drops will disappear quickly.
In a cloud it will take a still longer time before the drops are evaporated. These times may
differ by a factor 10? to 107, so that there even drops with a radius of 1075 cm. can exist
for hours, when all drops are of the same size. When drops of different size are mixed, the
smaller drops will disappear in the time of column 3, tab. 1.

In the above deductions three conditions have been introduced:

1. the atmosphere is at rest and the drop does not move;

2. the equilibrium of the flow of vapour adjusts itself instantaneously;

3. latent heat is locally supplied or withdrawn.

As regards 1: Tf the drop should move and its motion should obey Stokes’ law, the
above formulas would be influenced in such a way, that D would apparently increase a few
%. This would but slightly alter the results in table 1, as, moreover, D has not been com-
puted very accurately.

10



Asregards 2: We shall here prove that for the drops to which the data in Table 1 refer,
the time necessary for the flow of vapour to become stationary, is very much shorter than
the evaporation-time. '

If, namely, a drop of radius 7 is suddenly placed in an atmosphere, the concentration
of the vapour in moles per cm?, m, is determined by '

(o)

N 2(my —Mmeo)r [ iy
m=m — =/ e ¥.dx.
oo a\/n a—r

24/ Dt

which satisfies the conditions m = meo for ¢ =0 and a > r, and m = m, for a =17.
The drop is here supposed to create instantaneously the vapour-pressure ¢, at its surface.

The rate of evaporation % is determined by the _gradient of the vapour-concentration at the

surface of the drop (6). ~

c 2m, —meo)r —@=" 1

' : om ’
i ( 4ma® D 81‘)7 [475D(m moo)a}r—}—[ v e 24/ Di 47rDaL

72 r
= 45D (m;,— moo) 1+ 47D (my— M oo) oD 47D (m;— meo) r(l + m)
For ¢ = oo, this becomes

Co

T = 4nD (mg—moo)r,

in agreement with formulas, already deduced.

We have then:

OOy (1 + \/;_Dt)- (18a)

In our case |/ =D is equal to 0,67, so that even for large drops of 1 mm radius the
correction will be only 1%, already after 3 or 4 minutes, for drops of !/;y mm radius already
after 2,2 seconds. The evaporation-times given in Table 1 are very much longer than the
times, here deduced for the flow to become stationary, so that it was perfectly legitimate
in computing the former to consider the latter to be infinitely small. :

Asregards3: A temperature-gradient will be created, which will cause the required
latent heat to be supplied (or withdrawn). The necessary supply is 590 C cal through a
spherical surface of radius a, so that ’ : ‘

590 C cal = § AT e (19)
da ‘
Here j:denotes the heat conduction coefficient, for which we have:

ni 1/3RT
L MAY/OR o 456105,
f=5 | 3 C==456-10

Integration of (19) gives

g —59)C 1
far= —/d;\_

4otj
—590C1 —590C 1 C 1
PP — 2L Y D — 104,108, - =—1,56.10—6.—-
0TI T v 4. 456.107° 7 L4 10°. 2 ,56. 10722

In the last term the value 1,6 X 10712 has been used for C. It is clear from the above,
that the temperature-difference between the drop and points at infinite distance is very
‘small, so that it can be neglected in our formulas. '
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. “We shall now consider the question whether the drops, presentin a drizzle, can be formed
by the coalescence of smaller drops. We start from the extreme case of a few % over-
saturation, say, for example, e, —~ # = 0,28 mb = 280 dyn/cm?, :

Relative to this value, the difference between E, and E is very much smaller, so that
we can replace K, by . For an isolated drop we have then: (14), (15),

o — 280 . 4nr? , T _-980.1265
TR oo 2aRT ' 7.1,544.10°7 + 265 .429.07
DM P M

from which we compute the time of accretion by writing 4 7 2 drjdt = C, so that

dr . —280V/265 72
C=4dmqrt. — =2 = >
: dt 7.1,5644.10%.7 +- 265 . 429,07 2,37.10%.r 4 25
' 7y rt
dt = 4 dr (2,37 .108r + 25) .t = |1,48 . 10772 -1 314 7 , sec = |412572 1 0,088 2 hours -
s

The second column of Table 2 gives the times of accretion, computed in this way,
starting from a drop of 10~ c¢m radius. :

TABLE 2
7 cm ¢ 2,89, ¢ 0,19,
10— 41,3 hours 48 days
10—2 24.5 min 11,5 hours
10—3 15 sec 7 min
10— 0,18 sec 5 sec

It is clear from these values, that the formation of drizzle drops (radius 10~ ¢m) would
take an exceedingly long time under the circumstances prevailing in practice. To shorten
this time a much higher degree of oversaturation would have to be assumed, the former
being inversely p.oportional to the latter. Indeed, for the formation of a drizzle drop in
half an hour an over-saturation of a few hundred 9/ would be necessary, a case never noticed
in practice. On the other hand an ice crystal of the same weight as a raindrop can be formed
when an excess of vapour pressure of 0,28 mb exists, this being the difference between the
pressures of saturated vapour of ice and of under-cooled water at —12°C. The area of the
ice.crystal surface can, namely, be very much larger than that of the drop and this would
shorten the accretion-time very considerably as, instead of 4 a2, the area of the crystal
surface must be used in the formula. It is true that the vapour-molecules will partly rebound
from the ice-surface, by which the time of formation will be lengthened, but this effect will
be very small compared with the effect of the larger surface. If the ice-crystal is rod-shaped,
the times of formation can obtain plausible values. During the formation of clouds over-
saturations of several 0,1 %, do indeed occur in practice. , '

Table 2 gives in column 3 the accretion-times of drops for 0,1 %, over-saturation. As
appears from these data, drops of 10~ cm radius can be formed in about 10 minutes, while
larger drops require a very much longer time. For that reason, when cu-clouds are formed,
mainly drops with radii of the order of 10— ¢cm will be present, as smaller drops can quickly
attain that size and larger drops have not sufficient time to form, since this is a matter of
hours.

* Tt can be gathered from Table 1, that when the formation of cu-clouds is over and the
relative humidity of the clouds is 100 %> as could be the case for a cloud with drops of
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different sizes, the drops with a radius smaller than 10~ cm are bound to have disappeared
after a few minutes, while those with a radius of 10™® cm will still be present. It follows
from this that in cu-clouds with a formation-time of the order of 10 minutes drops with a
radius of about 10~ em or 10 x will largely predominate. Fog, however, as, for example,
radiational fog requires a longer time for formation and it is questionable whether the relative
humidity of the latter attains an amount of 100 %,. .

Advective fog will result from an over-saturation of, say, 0.1 %, maintaining itself during
a few hours. A great many drops with a radius of 4 50 # will be formed under these circum-
stances. ' '

Generally speaking, a layer of fog has a longer duration than cu-clouds and the question
arises, therefore, whether droplets with a radius of 10~ ¢m can hold their own in a fog. The
falling velocity of such drops is 50 meter per hour, so that a low-hanging fog, lasting for
4 hours cannot contain these drops unless violent turbulence carries them upwards or unless
they are continually formed anew. In the case of radiational fog, however, the turbulence
is mostly rather weak. There is, moreover, still another effect, namely, coalescence, which
causes these drops to vanish fairly quickly, as will be shown below. The question whether
two drops will coalesce when they contact has not yet been answered satisfactorily. As we
shall deduce below, very strong attractive forces can exist between drops and these may
influence the coalescence favourably. On the other hand the drops can be prevented from
coalescing by a layer of air clinging very closely to their surfaces, covering them, so to

speak, by a thin skin. For the time being, we shall suppose the droplets to coalesce on
contact. ' -

§ 2. The falling velocity of a drop is governed by Stokes’ law, so long as the Reynold
number, belonging to this motion is less than 50. For a Reynold number higher than 160.000
Newton’s law is valid and for intermediate values an empirically deduced law exists, so that
the resistivity is proportional to the velocity, raised to a power between 1 and 2. The Reynold
number in our case is pvr/y = R,, where o represents the density of the air and » the viscosity-
coefficient of the air. According to Stokes’ law we have: '

¢ mrd. g = 6anr. v,
or

3

290 s 0.7
<9Q 3
97’]2 n
go that
2 v -
. . Rezgiq/]ez7"3:0,98.107,7'3 <50,
from which we obtain

r Z<1,7.102cm.

Drops with a smaller radius will obey Stokes’ law, those with a larger radius will fall
slower than would follow from that law. The value R, < 50 has been taken from experiments
with spheres, which naturally, did not consist of water. As, however, the limiting values for
R, depend largely on the degree of turbulence in the boundary-layer, that is, on the degree
of roughness of the surface, it may very well be that also larger drops, than those mentioned

“above, still obey Stokes’ law, as, indeed, a drop of water is presumably ~’smoother” than a
wooden ball. Let us suppose Stokes’ law to remain valid for drops with a radius up to
10— ¢m; by this the computed coalescence-effect will be slightly raised, so that the real
effect will be smaller than our computed result. It will appear, from our computations that
the coalescence of droplets into one drop with a radius of 10~* cm demands the greater part
of the time while a further accretion to drops with a larger radius is a much quicker process.

For that reason it will suffice to restrict ourselves to Stokes’ law only in computing the
coalescence- effect.
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‘ The probability of selecting from among the drops in 1 ¢cm3 of an atmosphere a drop
with a radius between » and 7 + dr will depend, apart from 7, on x, the height in the cloud,
and on #, the age of the cloud, so that we shall write for it W (r, «, £) dr. The statistical dis-
tribution will change as to place and time, by a slow sedimentation and also by coalescence.
We suppose the atmosphere to be free from accelerations.. - o
Consider a droplet 4 with radius R. In the time d¢ it will encounter dB droplets with
radius R’, for which we have:

dB = W (R',z,0)dR’.1,3.105 (R*—R"?) m (R + R').dt . . ’ - (20)
Indeed, the number N, of droplets B in unit-volume is: :
| o Ng = W (Bt dR.
" The Velocity of A relative to these droplets is v—v’, where

Yox R¥.g 4,mRB.g
— v = — = .108 (R2— R'?),
v 6mn . R 67 R’ 1.3.10%(R )

The combined cross-section O of 4 and of the drops grazed by 4 is given by
- : O=wm(R+ R, : :
and these expressions together lead to (20). 2)

All drops with R’ << R are overtaken by A so that A coalesces in the time d¢ with an
amount of water, which is obtained by multiplying (20) by 4/3= R’ and integrating:

R R
/dB Aym. R® = dt/ W (R, 2,t)dR’ .4 mR"3.1,3.105 (R*— R u (R + R')?,
0 - 0

which will cause an increase of volume of A equal to 47 R2dR
We have then:

R =R N . . . .
dt [ W (R0 dR . 4yn R®.1,3.108(R*— R™) % (R + R')2 = duR? . dR,
R'=0
R =R 2 2
1,3.108 B R\* 4R 1
> ’ 14 '3 _ == ) - . .
db . == R’fZOW(R,x,t)dR./gnR ;1 <R>§(1+R) = d=

The integrand contains the product

RV R\
SIS )
with R’ << R. This product will have a maximum value for% = 14, so that this value becomes
. (L =1y Ca)® = LT
On substituting this maximum value in the integral, its computation will yield a too high

coalescence-effect. By substituting % = 0, the product becomes 1. Putting (1 -+ %)2 1—

— (%)22 = 1,6 in the average, we find:

' oo ‘ R=R : ,

15 [ W(R,a1) . 4fyn RPAR = 15m’,

- R =0 R ~ . - .

where m’ stands for the total amount of water in 1 cm3, contained in all drops for which
E’< R. The number of drops, however, overtaking other drops and not.being themselves

?) During corrections of the proof, the writer read the article of I. Laxemuir: The production of rain by a chain reaction
in cumulus clouds at temperatures above freezing ; J. of Met. 1948, 5, 5, 175——192. In this article coalescence is calculated in
quite a different way, considering a collection efficiency E < 1, which should be admitted as a factor at the right side of (20).
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overtaken by larger dropsisnot considerable, so that we assume that m/' is practically equal to the
water content of all drops. We call the water-content of the atmosphere m. 107 if m gram of
water is present in 1 m3 of air. By replacing m' by m. 107° the coalescence-effect will once
more come out too high. The final result is: '

1 1,3.10¢ 1157 213.15.m [ "¢
—d = dt. 15m.10-6 | ——| =220,
R 4 e { RL=RU 4 Ht=o

R, denoting the initial and R the final radius. The time, necessary for the coalescence, is

21 1)
~m\BR, R/

and we have also

—@ZV:1,3.106,R2, '
o : dt
from which it follows, that
4 1 4.108 2,67.108 '
— i 2 — 6 2 ) = _ R S -
de—=1,3.108. R®.dt 1,3.10.R.1’3.1’5-md< R> 1’5de, v|Ax1 — (R—R,) cm.,

where | A\ x| represents the vertical distance covered in the cloud. Expressed in hectometers,
this becomes: ' : S

267

A x| = (R — R,) hectometers, 7

m

and the expression for ¢ in minutes is

. 1 1 1 . __1___ _ﬂ s (s
t_3—0—7ﬁ<f0——1§>—30.m.1%0<1 » R)mmutes. | | (22)
From (21) and (22) we obtain '

_R 2
- 026an ‘ -11:—0 ( __°> Heo’oometgrs . minutes.

[Abx[.t‘z =

Table 3 gives the number of hectometers and minutes, neceséary to increase the radius
of a drop by coalescence from a value in the first column to a value in the first row.
Fig. 2 is a graphical representation of this table. o

TABLE 3 (m = 2)

| rem 10— 10—3 10—2 ’ 101
10~ |  Ohm/Omin 0,13 hm 2,7 hr 1,3 hmm/3 hr 132hm/3hr
'10—3 ‘ 0 hm/0 min 1,2 hm/15 min 13 hm/16!/, min
10—2 i 0 hm/0 min 12 hm//, min
10—1 , , - -0 hm/0 min
. 104
3t 0-2
10-3

1\ ]

hours f14-4 5 0 i3

-—
hectometers
Fig. 2 (m = 2)
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- Table 3 gives extreme values on the low side, as our computation has made the effect
come out too favourable. The result shows that the formation of a drop in a drizzle requires
the falling of the increasing drop through a fairly large distance. If stratus-layers are of this
thickness, small drops might fall out of them and reach the earth, provided they do not
evaporate completely on their way. A thickness of 13 hectometer is, however, enormous. If
this thickness is not available the drop will certainly have left the cloud in a quarter of an
hour, for, either the drop will have attained a high velocity by accretion, or the thickness
of the cloud is not sufficient, in which case the drop will already have traversed the cloud
before then. This refers to drops with a radius > 1073 ecm. For drops with smaller radii
conditions are more favourable. Such drops require hours for their radius to reach the value
1073 cm. If coalescence is sure to occur on contact of two drops, one must draw the conclusion
that in radiational fog of small height (<< 100 meter) drops with a radius of 103 cm cannot
be present if this fog is to last for a few hours. It is true that a turbulence may carry these
drops upwards in parcels of air, but relatively to these parcels they will continue to fall and
to coalesce with other drops and will have reached the earth in a quarter of an hour, as in
that time they will have grown to be drizzle-drops, if they have not reached the earth
already before then. The turbulence is then only effective in producing the drops the opport-
unity to fall over a sufficient number of hectometers.

If no drops of this size can exist in radiational fog but only smaller drops (R=10"* to
107* cm) the relative humidity in this fog can never be 100%,; indeed, a slight lowering of
the temperature causes already an oversaturation of say 0,1%, so that, according to table 2,
the critical drops of 103 ¢m radius would then be formed. Radiational fog will, therefore,
contain for the greater part drops with a radius smaller than 10~3 cm and its relative humi-
dity will be less then 100%,. These drops would thus be of the order of magnitude of the
nucleus of growth. It is also possible that the relative humidity is less than 100%, at the
bottom side of the radiational fog and 1009, at the top. In that case the following process
will take place. At the top-layer, drops with the critical radius of 1073 ¢cm are formed by
cooling; these drops come down (50 meter in an hour) and while doing so, coalesce, so that
their falling velocity increases and they would have fallen on the earth within a quarter of
an hour, but for the fact, that in falling they penetrate into regions with a relative humidity
of less than 100%,. That means, however, a rapid decrease of the critical drop (as is shown
in table 2 for 99,99, relative humidity) and at the bottom of the layer the drop would de-
crease still further. In this way cold is transported from the top downwards to the bottom.
. By this transport of water and by this evaporation the relative humidity at the bottom can,
at a certain moment, have reached 1009,. The critical drop will then not be dissolved so
quickly (table 1) and will rain out. This may explain how the radiational fog becomes wet
and the hanging of drops on the branches of trees. This suggests further the idea to dispel
radiational fog by spraying drops of the critical size on top of the layer. It must be borne
in mind that the whole of the above deductions is based on the supposition that two con-
tacting drops will invariably coalesce, a fact which has not yet been ascertained satisfactorily
by experiment. '

§ 3. Before proceeding to calculate the forces, which can arise from evaporation and
condensation, we shall first consider any possible influence of the Brownian movement on
the evaporation-equilibrium. The displacement Az of a droplet in ¢ seconds is given by
Einstein-Perrin’s formula :

RT .4 8,3.107.300 ¢ i
Ae= ]/t = : —5.10-¢ ]/ ~.
Aw VS:/W;.T.N 3.3,14.1,7.10%7.6,03.10% Vr-

If the final steady evaporation may differ from the actual one by an amount of 19
we must have: (18a)
r 1
0.67V¢ ~ 100
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(s’ee" above), so that
' 100

— —6
ANx=5.107%V7r X 587

=175 x 1074V,

where /\ « denotes the distance over which the particle has moved after a time ¢, during
which the flow of vapour has deviated less than 19, from the ideal one. It gives us an idea
of the extension of the region round the drop, inside which the vapour-pressure can differ
more than 1%, from the one computed from the steady flow. Table 4 gives these values in
the second row. As appears from this table this region is for the drops in question very much
smaller than the drops themselves, so that the Brownian movement does not have any in-
fluence on the flow and the vapour-pressure.

TABLE 4

rom 10—5 10+ | 103 } 102 10—1

Awem | 2,3.10-8 | 7,5.10—% 2,3.10*5}7,5.10—5 2.3 10—

§ 4. Throughout the whole region round the drop the pressure of the air is constant.
Where molecules of water are numerous, only a small numbér of molecules of air will be
present and the other way round. Let us write p for the total atmospheric pressure and p’
for the partlal one, then p’' + ¢ = p is the pressure at the surface of the drop. The pressure
of the air on a surface-element do of the drop is p’, that of the vapour-molecules is e, as
these molecules are absorbed by the liquid. If they were reflected a pressure of reaction
would be added so that their pressure would then be ¢,. From the liquid, however, molecules
pass into the vapour, thereby exerting a pressure of reaction % X, if K, represents the
pressure of saturated vapour of the liquid underneath its surface. The total inward pressure
on do is, in this way, p' + % (e, E,) =p" + ¢, + % (E,—e,) = p+ %+ (E,—¢,;). The pressures
p and E, are constant over the whole surface and the forces arising on this account, neutralize
each other. For the resulting force R,,aoting on the surface we find, therefore,

R=—1, f[eg |— 7| do = 1/.2 // e, % do,

7 denotes the unit vector drawn normally outwards.

The drop experienees also a force K exerted by the flow of convection.
ThlS Stokes force is given by:

K= 67nrd = — 6oy grad Z 4nMGa,
Acoordmg to (13) we have :

T 0,
egﬁe +4 DM 7 Ei’
: f Cl—)
// ffeso o ) S
RT . oo (" 'Oi+
1/247zDM< )[]ﬁ"d o /Z 5,

Here 2’ = 2 means a summation over all drops except the one, on which the aetmg force

so that

is bemg computed By imagining all functions to be mathematically continued into the interior
of the drop, the surface integral can be transformed into a volume-integral so far as the
second integral is concerned. We transform the first integral into an integral over the volume
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contained between the surface of the drop and that of the inscribed sphere and a surface-
integral over this sphere. The latter integral vanishes. Denoting an element of the volume
just mentioned by d+’ and the radius of the sphere by S, we have:

for the first integral:
— —//sdo //grad dr—0+/// |—d'd1:

Writing dx” for a volume-element inside the sphere, the second integral becomes

T e P [ o o [ e

The expression for the resulting force is then:

_1/24nDM< )[Z// 1 aJdr"—I—Z/// -a;\drw/j[[%—aw.

1, Z—I,;F—M (1— %O) to be uniformily distributed over the inte-

rior of the drop as if it were a space oharge and to be such as to experlence from other drops

an attractive force 15 1 15 D(l "ec;o) 2’

one calculated by us in the first and second mtegral The third 1ntegra1 represents the force
by which the bulging part of the drop is drawn towards the centre by the evaporatlon forces
of the drop itself.

If the drop is spherical, the resultant force exerted on it by the other drops- acts from
the centre outwards as can be easily proved. This expression for the attractive force is
analogous the one for electric forces; the resultant of the latter will also pass through the
centre in the case of spherical symmetry of the charges. For a spherlcal drop the third
integral vanishes and the total amount of the above “force experiencing quantlty becomes

RT RT e
1 4 3 A .3
ls g3t (1 ) fsm*="ls 53 ( » >T :

The total force on the drop is then

If we imagine the quantity

is equal to the

5> RT e O IO¢‘+ '
B K= an(“%) DN LWl

"2

and the force with which one drop of source-strength C acts on an other drop with radius 7

> > _RT [ ‘ 0 > . 7
R+ K= [m (1 ——?) 73—6nnrJ - |—a| dynes. o (23)

For T'=289° K, b = 10% dynes/cm?, € =+ 1,5.10712 and D = 23,57. %/—Zthis becomes

—12
100 3—6.3,14.1,7.10—4.7Jl’5'L=

6.23,57.V289.18 a?

. 8,3.107. 106(1——
RL1K=—

1
[2,87.10—37%—4,8.10715. 7] - |— al dynes.

Table 5 gives this force, multiplied by the square of the distance, in column 2. Column
4 shows the factor by which these quantities must be divided in order to obtain the Coulomb
force (also multiplied by the square of the distance) with which two singly charged ions act
on each other. As appears from this table the forces due to evaporation and condensation are
many times greater than any possible electric forces. Only for very small droplets (<< 1075 cm)
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attractive forces change into repulsive ones and vice versa. It appears that an evaporating
drop attracts and a condensing drop repulses an other drop. Two drops might therefore run
after each other if one is an evaporating and the other a condensing drop. The reaction-
force must then be ascribed to the vapour-flow, moving in the opposite direction.

TABLE 5
7 cm (R + K) x a®> |Coulomb force . a? ratio
101 2,9%x 106 2,2 %1019 1,3 1018
10—2 2,9 x10—9 ’ 1,3 x 1010
10—3 2,9 x 10—12 N 1,3x 107
10— 2,9x 10—15 - . 1,3 <10
10— | 29x10-8 Ny 13

The expression for the attractive or repulsive force contains C' in the numerator and D
in the denominator of the first term. For D we have here used the value of the molecular
diffusion constant. The diffusion can be intensified by turbulence; in that case the same
formula holds, provided we use for D the turbulence diffusion coefficient. With increasing D,
the quantlty C-will also increase, though less than D. ¢ is namely determined by the value
of D in the immediate neighbourhood of the attracting drop, and there the value of D is
only slightly higher than that of the molecular D. The D in the formula, on the other hand,
refers to the surroundings of the attracted drop, where the turbulent diffusion prevails to
its full extent. If the attracting force is caused by a large drop C/.D will change but little by
turbulence. If it is caused by a small drop ¢ will remain practically constant, while D may
increase suppose a 100 or 1000 times. Even then, however, the attractive and repulsive
forces are many times stronger than the Coulomb forces.

The first-mentioned forces may play a prominent part in the coalescence process. In (23)
we have used for C the value 1,56 xX1071% gr/sec. In the interior of a cloud extending over a
few hectometers C' will not have this value but a much smaller one. The attractive and re-
pulsive forces will then be also very much weaker. The cloud as a whole, however, can exert
a fairly strong force on a drop at its edge. Assigning to C the order of magnitude 102
gr/sec., (23) becomes

, 1
R+ K= (1,91.107.r°—3,2.10—5.7) ; dynos.

Here A denotes the radius of the spherical cloud and R+ K is the force, by which
the drop is drawn towards the evaporating cloud. Putting 4 in the order of magnitude of
1 hectometer, we have

R4+ K=0,19173—3,2.10—18 » dynes.
The force of gravity acting on the drop is
K'=*%,mr®.g=4,1.10%. 7 dynes.

The ratio ;K is, therefore:

R+K 0,191

—3 —5
© T <10 5.10—5.

The sharp boundary of the cu-cloud is explained by other considerations, and it is clear

from the low value of ;{—, that any attraction-effect will not have the least contributive
influence on the sharpness of this boundary.
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Experiments

Measurements have already been carried out concerning the size of dropb in clouds and
in fog [1], [3], but they were for the greater part selective as regards this size and mostly
restricted to drops with a radius >10"3 cm.

In a few cases, however, measurements have been made practically without any effect
of selection on the result, and it was then stated that the great majority of the drops in a
radiational fog have radii of less than 10~3cm and that a few coalesced drops with a radius
=107 3cm moved along the observing apparatus. [1]
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