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Introduetion and Survey

The present paper is the result of a study of certain standing wave motions on
surfaces of discontinuity between homogeneous imcompressible fluids, with a view of drawing
herefrom, if possible, some conclusions about air motions in the vicinity of atmospheric
frontal surfaces. These motions interest us in the first place as far as their vertical
components are concerned, in connection with the formation and dissolution of clouds
and the formation of precipitation. ‘

It is a well-known fact, that frontal systems, that are in dynamic equilibrium, are
rather “inactive” as to cloud formation and precipitation. It has generally been
understood, therefore, that for studying these frontal phenomena we have more especially
to consider systems, that are not in equilibrium, thereby causing the frontal surfaces to
alter their slopes or, more adequately speaking, causing the air-masses in question to
“flow out” or ‘“‘retreat’ relatively. We shall deal with the problem here in connection with
certain oscillations or standing wave motions of the whole system about its equilibrium
state. The same has been tried by N. Kotschin, 19321), but his results cannot be
applied to the earth’s atmosphere, for in one of the two air masses he neglects the true
boundary conditions on the ground.

The simplest waves of the type, here studied, have already been treated elsewhere
in hydrodynamic literature. When we consider them all the same in some detail (section 2)
it will be, primo, because they form the starting pomt for studying less simple
situations, secundo, because we want & somewhat more precise analysis of the fields of
.motion connected with these ‘“waves”

As to the less simple wave motlons viz. waves in plan parallel fluid layers in a
rotating system of reference (section 3) and waves in wedge-shaped fluid layers (section 4),
our problems resemble in some respect those studied, among others, by Solberg, 1928,
Bjerknes c.s., 1933, and Godske, 1935. The difference, however, is that these
authors considered in particular waves propagated horizontally along the discontinuity
surface, while our solutions are independent of the coordinate in this direction; moreover,
here again it is not so much our intention to study the wave as a whole 2) as to consider
the resulting motions in the two fluids.

It must be admitted, that as regards one part (sectlon 3) these problems are of a
somewhat academic character, because the true boundary conditions for the atmosphere
are not taken into account, and as regards the other part (section 4) were not solved
quantitatively; this is somewhat unsatisfactory. However, considering that anyhow the
real conditions in the atmosphere are still much more complicated by other factors, the
results obtained may nevertheless give a fair idea of the motions interesting us.

We confine ourselves to the treatment of homogeneous incompressible fluids. This
- has the important advantage, that the Eulerian method, applied to our hydrodynamical
problems, gives us rather simple differential equations, the solutions of which we may study
conveniently by means of stream functions and stream lines.

Real atmospheric “fluids” on both sides of frontal surfaces are not homogeneous and
incompressible, that is to say: they do not in general have an indifferent stratification,
but a stable one. These and other complications are considered very briefly at the end of
the paper (section 5).

1) - References are indicated by mentioning the year of publication, see list of literature at the end of the paper.

2) In the following pages we shall constantly use the term ,,wave’ in the sence of ,,standing wave”. For general use we have
preferred this term here to the term ,,0scillation” because the latter suggests more or less the motion of a single particle or that
of a material system considered as a whole.
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We start (section 1) with a somewhat general treatment of some special aspects of
our subject.

1. General remarks. If accelerations of the air are absent, we have for the incli-
nation of atmospheric surfaces of discontinuity the well-known formula of Margules:
m“:%&&K:QZ;

g e—e
where ¢ and V, resp. ¢’ and V', are the density and the horizontal velocity parallel to
the front of the cold resp. of the warm air, and o, is the vertical component of the
earth’s rotation (the horizontal component has been mneglected).

When this relation is not satisfied, we must conclude that accelerations are present
and that the frontal surface may alter its inclination. This is not necessary, however, as
witnessed by the case of stationary curvilinear currents, in which stationary frontal surfaces
can exist (the equilibrium inclination then depends upon the radius of curvature, cf.
Margules 1906). In the following we shall confine ourselves, however, to rectilinear
currents; in that case, when Mar g ules’ formula is not satisfied, a frontal surface is
not in equilibrium, at least when it is not unlimited in every direction (cf. Kosehmleder
1941, page 266).

Here two questions present themselves, viz:

1°. that of the motions in the two air masses on both sides of the surface, in so far
as these motions are the result of this non-equilibrium position;

2°. that of the effect of the state of things mentioned upon the pressure field and
the energy balance (cf. Margules 1905).

Of these two problems only the first one will be discussed here.

Neglecting the vertical accelerations in comparison with the acceleration of gravitation 1),
we find the following relation as to the horizontal accelerations in a direction perpendicular. -
to the front (the deduction of this relation 2) is based on the so-called dynamical boundary-
surface condition, i.e.: the continuity of pressure at the surface of discontinuity):

dU au’

2y th=g@—dﬂmw—w%- | (1)

Here o is the equilibrium angle, determined by Margules’ formula, and ¢ the
actually occurring angle of inclination of the frontal surface. In this as well as in all other
formulas the accented symbols refer to the lighter air (fluid), the corresponding unaccented
symbols to the heavier air (fluid). ‘
4 drt]> dU When both accelera-

tions are positive, this means, that also %> d‘U; when, on the other hand, both are negative,
d U' alU
it may be that —

-
it is not necessary.

When, for example, 4>«, it follows from (1), that o’

(the warmer air has a smaller acceleration towards the left), but

Vertical accelerations.

The so-called kinematical boundary-surface condition implies the continuity of the
velocity component normal to the surface of discontinuity. In order to deduce from this a
relation concerning the accelerations, we suppose that we have to deal with a state of

1)  We should bear in mind here, that in the deduction of formula (1) the gravitational acceleration figures with a reduction-
factor of the order of (o — ¢’)/p as compared to vertical accelerations. By making a reasonable estimate as to these vertical
accelerations (see e.g. Hess®lberg and Friedmann: ,Die Gréssenordnung der meteorologischen Elemente”’, ete., Versff.
Geophys. Inst. Leipzig, Spezialarb., 1, p. 147), it appears that this neglect is nevertheless permitted, considering the degree of inac-
curacy we must accept in calculations of this sort.

2) See for instance D. B r un t, Physical and Dynamical Meteorology, Cambndge 1939, par. 128 or H.Koschmieder,
Dynamische Meteorologie, Leipzig 1941, page 266, where also further literature is given.
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things differring not too much from an equilibrium state, so that we may treat the difference
as a small perturbation: , '

U=U,+u, V=V, 40, W=W,+w, U=U0+u,V=V+0W=W,/ 4w, tg® =199, + 6.
Here tg 9, is the inclination  determined by the formula of W
Margules when we substitute V, and V,” for V and V. The
perturbation velocities are denoted by small types, the unperturbed
(equilibrium) quantities are indicated by the suffix ,. In the un-
perturbed state no vertical velocity components occur and the
whole system performs a translation U, in the a-:direction !)

w,=w,=0;U0,=0U0,). - Figure 1

The kinematical boundary-surface condition is as follows:

W—W =(U—U)tg9,
or _
w—w = (u—u')igd, + (u—1u) o,

or, when, according to the method of small perturbations, we neglect the second term
in the second member, as being small of the second order: '
w—w = (u—u')tgd, o 2)

By giving to our system of reference a velocity in the a-direction ?), equal to that of
the unperturbed system, we make once for all the velocity U, zero. Now w, w', w and '
are functions of z, ¥, z and ¢; equation (2), however, applies to points of the surface of
* discontinuity. Consequently, for such points we have also:

ow aw’_<au au’>tﬁ
o @\t T a )Y

The vertical accelerations are given by:

dw  ow 6w+(V ‘ )Bw+ ow

@ = m Tt et TS
dw’ ow' dw' ow’ 2w’
wo__ 7Y T 7! ’ el
G = Y g T ) gy

In this study we only concern ourselves with solutions, which are independent of y,
so that we may put ?/oy = 0. By neglecting once more, according to the method of
small perturbations, the quantities that are small of the second order, we find the vertical
accelerations, i.e. the individual derivatives of w with respect to time, to be equal to the
local derivatives. The same is true for the horizontal velocity components, so that finally
we obtain the following relation between the vertical and the horizontal components of
the accelerations:

dw  dw' du  du
i =) ®
These relations can theréfore be made actually to hold to any arbitrary degree of
accuracy by simply taking the perturbance sufficiently small. :
Finally, if we like, we may replace the factor tg ¢, in (3) by tg #, the change in
the second member of (3), implied by this substitution, again being small of the second
order. '

1) In the atmosphere such a translation of the system will be kept up by the pressure field. As to the complication implied
by this, see section 5 (a).

%) The apparent force (Coriolis force), which is thereby induced in our system of reference, is conceived to be balanced by
the pressure field, see preceding note.
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Kquations (1) and (3) give us two relations between the horizontal and the vertical
accelerations of air-particles, bordering on the frontal surface and situated opposite each
other on either side of the surface; in (1) we may now replace U and U” by % and «’, while
we should bear in mind that in general « is not the same angle as 4,. : o

For calculating the various acceleration components with the aid of (1) and (3) we
need still two more independent relations between these quantities. Exner 1), 1924, for
his calculations of these accelerations, introduced the suppositions, that du/dé = —dw'[dt
and dw/dt = — dw’'/dt. The argumentation for this suppositions was purely qualitative, the
reasoning being about as follows: when the frontal surface changes its slope, warm air in
the lower parts of the system is replaced by cold air, or vice versa, whereas in the
upper parts cold air is replaced by warm air, or vice versa. It is clear, however, that
the matter is not so simple. This supposition cannot possibly be proved in a general
way, the motions in such a system still depending on the boundary conditions of the
whole. What we can state is only that, if two fluids together fill a limited and in-
variable region, their centres of gravity will perform motions in nearly opposite directions.

If the fluids are incompressible we can even prove exactly, that the integral of the
velocity vector » for one fluid over the region R, occupied by it, is the opposite of the
corresponding integral for the other fluid (denoted by accented symbols) over the region R':

f/f5(x,y,z)dxdydz:—l/]]‘i’.(x,q,z)dxdg/dz.\ 4)
R R

To prove this, we write (4) in the equivalent‘ form

/ﬂ v (x, y, 2) da dg/ dz =0, . ‘ (4%)

R—I—R, .

where now v (x, ¥, z) denotes the velocity field, defined in R by % (x, 9, 2), in R’ by
v (x, ¥, 2z). This field has the following two porperties:

first, that in all points of the boundary of R 4+ R’ the normal component of v
vanishes (for this boundary was agreed to be invariable); '

secondly, that the integral of the normal component of ¥ over the boundary of any
arbitrary part E,; of the region R 4 R’ vanishes (this is a consequence of the incompressibility
of the fluids). If now we understand by O (x) the intersection of a surface z — constant
and the region B 4 R’, it follows easily from the combination of the above statements, that

ff % (2,y,2) dy dz =0, (5a)
O(x) _ :
where u stands for the z-component of 9. Likewise the other eomponehts satisfy the equations
/f v(z,y,2)dede =0, f w (%, ¥, 2) dx dy = 0. - (6B, ¢)
O(y) 0(z) :

By multiplying the first members of equations (5) resp. by dz, dy and dz and integrating,
we find (4%*). _

If the region R + R’ is unlimited in the y-direction and bounded by a cylindrical
surface parallel to the y-axis, and if the velocities are independent of y, our problem
becomes an essentially two-dimensional one. Instead of equations (5) we obtain:

’ ‘/‘y(x,z)dz:o, ./g(x,z)clx=0, (6)"
L () L (z) o

1) For the horizontal accelerations E x n e r derived a formula, which is equivalent to (1); as to the vertical accelerations,
however, he set up an erroneous relation, for the deduction of which he used the static equation for pressure so far as it depends
upon z! ’
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where L (#) resp. L (z) are the intersections of lines # — const. resp. z — const. and the
(two-dimensional) region G -+ G' (see fig. 2). On integrating (6) we find, analogous to (4):

//u dx dz:—ﬂu' dx‘dvz, ﬂw dx dz':—/fw' dz dz. (7)
el G’ G &'

If, finally, the regions G' and G’ are equal, it follows from (7)
that the averages taken over the velocity fields in the two fluids
are opposite. '

By differentiating the equations (7) with respect to time and
equating the partial (local) derivatives of the velocities to the ac-
celerations (this is permitted within the limits of small perturbations),
we find equations, analogous to (7), for the accelerations instead
of the velocities. If again the regions G and & are equal, it follows, that the averages
taken over the acceleration fields in the two fluids are opposite (for small perturbations).

But this is still far from bemg equivalent to E xner’s supposition stating the
accelerations of the two fluids in a point of the frontal surface to be  .opposite.
Moreover, (7 )is only valid for fluids f1111ng an invariable region (and being incompressible —
but this is, for our problem, the less serious difference from real atmospheric conditions).

In order to learn more about the field of motion on both sides of a surface of dis-
continuity we shall have to combine the equations of motion with certain external boundary
conditions (the kinematical and dynamical conditions at surfaces of discontinuity might
be called internal boundary conditions).

Before passing on to these we shall first give a brief analys1s of the general nature of
the solutions of the equations of motion we wish to obtain. These considerations apply
not only to the more simple conditions of the following section but quite gemerally to all
fields of motion studied wn this paper.

It has already been said that we shall confine ourselves to small perturbations of
the equilibrium of a flow system. Let the perturbation field of motion be designed by
v (v, ¥, 2, t) and the perturbation pressure by p (%, y, 2, t). Then we can develop in a
Fourier-integral:

Figure 2

“+oo
v (Q’J, Y, %, t) :;o (x, Y, z) + / 5,‘} (.’.U, Y, Z) ewt d’l/,

—00

—+oo
P (x: Y, 2, t) =P, (.’E, Yy, z) -+ f pv (x, Y, Z) e Wi dy.

—00

Now, by small perturbations we shall understand perturbations during which not only
the perturbation velocities but also the displacements of the individual partwles from their
equilibrium posﬂslons remain small. This implies that the term 9, (x,y,2) in the above
development is zero, that is to say: a time-independent part is not permitted in the
perturbation velocity field *).

If we substitute the above developments into the linear d1fferent1a1 equations being
valid for small perturbations (see, for a general exposure of the hydrodynamical theory
of small pertrubations, e.g. Bjerknes c.s., Physikalische Hydrodynamik, 1933, Chapter
V1I, sections 75 and 83; as to our problems, see our equations (8) and (24)), it then appears,
that any one of the vector fields , (z,y,2)¢” and the corresponding p, (z,y, z) €7 has
separately to satisfy these differential equations, whereas p, can at most be a constant,

1) The reason for this restriction lies in the fact, that real atmospheric ,,fluids’ have a stable stratification; now, for a stable
stratification the above restriction lies in the nature of small perturbations (for a homogeneous and incompressible fluid it does not).
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which, besides, does not matter. In other words: the general perturbation may be
treated as a superposition of motions, all being harmonic with respect to time and each
separately satisfying the perturbation equations; these motions may therefore be considered
as the fundamental solutions of the problem. '

In any actual case the boundary conditions limit the number of fundamental solutions,
so that, as a rule, a set of discrete possible values », of the frequency is selected out
of the continuum of values from — oo to - oco; this causes the general solution to be
a series instead of an integral:

v (@, 9,2, 1) = z b’n (¥, 2) e’ivnt
n .

Finally we shall, on the basis of the foregoing, prove a vector field o (z, v, z, t),
representing a small perturbation of an equilibrium position for a system of one or
more homogeneous incompressible fluids, to be irrotational within each of them:

v rot D=0, or: 7 ,Ja{?;v_l)s_—_
c

O standing for any arbitrary circuit within one fluid.

~The proof follows from the well-known theorem of classical hydrodynamics stating
the constancy of circulation. Since, however, each of the components (fundamental solutions)
Dy of a field o satisfies the equations of motion, this theorem implies, that 1) -

>

ov, . > >
rot 7;‘ =0, or: 70t 1 v, v, =0, or: rot v, = 0,

whence the above statement follows immediately. :

-This implies, that, if the component of the field of motion in a plane surface can be
represented by means of stream lines, no closed stream lines can exist within one fluid. On
the other hand: if a closed stream line does ‘exist, it must pass through at least two
fluids. Evidently all closed stream lines inside this stream line must likewise pass
through both fluids. On the boundary surface, therefore, at least one point exists,
where the velocities on both sides are. directed opposite to each other; see e.g. fig. 12.

2. Rectangular basin. Since the atmospheric conditions are rather complicated, it is
useful first to consider a simpler case, e.g.: that of two fluids
in a rectangular basin or channel (see fig. 3), without rotation.

- The close analogy of this case to our atmospheric case appears

immediately from the fact, that here with respect to the hori-

-7 ' zontal accelerations- a relation may be deduced, arising from (1)
Lf:,/— - by putting tg « = 0 in this formula (the equilibrium position
T . of the surface of discontinuity is horizontal); tg ¢ is the slope

-7 . of the surface of discontinuity in the point considered (the inter-

section of the boundary surface and a surface y = const. is
supposed to be independent of y, see fig. 3). Here again, however,
we cannot give a general statement about the individual accelerations. To find these we
must in each separate case take into account the external boundary conditions.

Of the two forms in which the hydrodynamical equations of motion can be written,
the Lagrangian form and the Eulerian form, we prefer the latter, smce it gives the less
complicated forms here.

Figure 3

1) Here d/dt has again beep put equal to 9/0¢ as before.



If the unperturbed state of motion be that of rest or be a flow in the y-direction
with a velocity constant with respect to place and time, the equations for small
perturbations are 1):

op

. . . o . o ou ov ow

a—y_‘—a_oa

o
where w, v and w are the components of the perturbation velocity field in the medium
considered, which has a specific volume S = ¢ —1; p is the perturbation pressure.

_ In our case, these equations can still be simplified, since we are only concerned with

solutions independent of y (cf. fig. 3), so that the derivatives with respect to y vanish and
we are left with a two-dimensional problem. Now we can introduce the perturbation stream
function y by putting

oy oy
U —— w _—,
o2’ ox

thereby making the equation of continuity identically satisfied if only u be a continuous
function of x and z. We obtain: '

oy ap 2y /2 '

If the fluid in question is anywhere bounded by a rigid wall, parallel to the y-direction
we have the boundary condition: y (,z) = const. along the intersection of this wall and
the surface y = const., or, in other words: this intersection must be a stream line.

In the case of two fluids, of densities ¢ and o', one underneath the other, we have
to solve two sets of equations (8) and (8'), where (8') is obtained from (8) by replacing
S, v, p by 8, ', p’, respectively representing the specific volume, the stream function and
the perturbation pressure in the upper fluid. The dynamical and kinematical boundary-
surface conditions now require the permanent continuity of pressure and of the. stream
function, respectively, at the boundary-surface.

The former condition gives generally 2):

YD) LV p—p) 457 (P—P) =0, | ©)

which has to be satisfied at the unperturbed boundary-surface; here V, P are. the unperturbed
yelocity field and the unperturbed pressure field, respectively. If, as we have assumed,
V has a component in the y-direction only, whilst our solutions are independent of ¥, the ,
second term of the first member of (9) vanishes, so that

o (p—1p)

s+ (VP—VP) =0 (10)

in the present case A P and A P’ are both directed vertically and we obtain: ‘
= — 5 —Jwl(e—o) =0, (1)

which has to satisfied for z — 2;, z; being the level of the unperturbed discontinuity
surface. '

1) See eg. B jerknes. c.s., Physikalische Hydrodynamik, 1933, section 83.
®) See previous note. The equation, analogous to (9), with 7’ and %’ instead of V and & is equivalent to (9) as soon as the
kinematical boundary-surface condition is satisfied at the surface P = P”, ‘
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The kinematical boundary-surface condition gives an analogous equation for the stream
function, P, P/, p, p’ being replaced by ¥, ¥, v, ', with the only difference, that
the unperturbed stream functions ¥, ¥ are constants, so that A ¥ and A ¥ vanish.
Hence we find:

oot — oy'jot =0, or p—1y =0, (12)
which again applies to the unperturbed boundary-surface, here: z = z;.

Solutions of (8), having one horizontal straight stream line z = z,, are given by:

‘ v = A sinh u (2 — 2,) sin p % sin (vt + o), (13a)

© 8p = B cosh y (2 — z,) cos @ cos (vt + ), ' (13b)

where 4, B, p and » are constants; A, B are, in general, functions of 4 and », x and »
depending on internal and external boundary conditions. By substituting (13) in (8) we find:

B=vyA.

Vertical stream lines are found for x = k=n/u, k being an integer.
A more general solution, having one horizontal and at least one vertical straight
stream line, at 2 = 2, and z = 0 respectively, is obtained by superposition of solutions (13):

p =24, sinh ,un (2 —=2,) ST Uy, @ st (vt + 0,), (14a)
n
Sp = X, A, cosh u, (z — z,) cos p,  cos (vt -+ 0,,). (145)
" .

The line = 0 may coincide with a vertical rigid wall. In order to have a second one
at x = a, it is necessary that, for all »’s, '

S

Uy = Iy, =, k, being an integer.

If we have two fluids with densities ¢ = S —1, o' = 8 —1, we combine (14) with a
corresponding solution (14') of (8') for the upper fluid. Let the unperturbed boundary-
surface be found at z = 2;; z = z, coincides with the (rigid) bottom.

The kinematical boundary-surface condition (12) now requires:

M :lu’ns Yy = 'Vlm On = 0Opn s
and
) A, sinh Pn (7 — Zy) = Aln sinh P (2 — zlon)’ (15)
where the constants 2, are determined by the upper boundary of the upper fluid.

The dynamical boundary-surface condition (11) gives:
1,2 [0 A, cosh p; (2, — 29) — @' A’y cosh py, (2, — 2'0n)] =
=g (0= 0") ttu Ay si0h (2 — 2) =
| =g (0 — 0") pu A’y 510k iy (2, — 2'on),
or
tin, "t va® [ coth py (2, — 29) — @ 0ot phyy (21 — Z'0a)] =9 (@ — ©')- (16)
For small perturbations, independent of y, we have the following relation referring
to the vertical displacement (elevation) ¢:

8¢
w ==

=2 (17)
From this, it easily follows (by integration) that:
ii= ZA,,’;# sink phy, (2, — 2,) €08 iy, x €08 (vt -+ 0,), - (18)

where ¢, is the elevation of a point of the surface of discontinuity.
10



The constants 4, (4’,) and o, can now be determined by giving, at a certain initial
moment, the elevation ¢, (x) as well as the vertical velocity w; (x) at the boundary-surface
(the latter being the same for both fluids, according to the kinematical condition).

By differentiating (14a) and (14'a) with respect to z we find » and ' (see (20) ). By
differentiating these expressions with respect to time and putting z = 2, we easily deduce:

du, , duy 1

o —o g =—gl—e) T =—g90—2) ) (19)

where u,, w', stand for u (z = 2,), ' (2 = 2,); for our small perturbations d/d¢ has been put
equal to 2/ot, as before. The relation (19) is identical with the one we formulated in the
beginning of this section by putting tg « = 0-in (1).

As for the constants z’'y,: if the upper boundary is a horizontal rigid wall z =2/,
then 2y, = 2/, for all n’s. Since 2’y >> z; > z,, it follows from (15), that in this case A,
and A4’, have opposite signs, and therefore, the same is true for the terms

Uy, = Ay iy, COSH piy, (2 — 2y) IR @y, T ST (vl 1 0) (20)
w, = A’y py, cosh py, (2 — 2'g) Stn p, x Stn (vid + 0y)
by which the horizontal velocity components u = Zu,, w' = Xu', are built up.

Whether % and % themselves, resp. their values at the boundary-surface u, and

w'y, are directed oppositely, cannot generally be said. If, however, 2'q—2z =2, —2, (the

fluids have equal depths) it follows from (15), that A,= — A4’ and therefore;, that
w; = — u,. Then (19) yields: /

du; duy’ _ o—o' 3,

@ T a T Tovg .

If the fluids do not have equal depths, such a simple relation cannot be given.
Then we can only state that a simple wave (13) (all but one of the coeflicients A, in
(14) are zero) has horizontal velocity components u and w'; directed oppositely to each
other, for the same z; the same is true for the acceleration components du/d¢ and
dw'[dt, du/dt having the sign opposite to that of 2f;/ox (the inclination of the boundary-
surface at the point considered), du’/d¢ having the same one: the heavier fluid has a
tendency to “slide down”, the lighter one to “‘slide up”.

In the case of a nmon-simple wave the matter is much more complicated because of
the continually changing phase differences between the components. If either one of
these component simple waves predominates, or the difference between the depths of
the two fluids is small (making the difference -between A4, and — A’, small also), we
may state that the above conclusions, referring to simple waves, are to a large extent
valid here also. As to the restriction “to a large extent”: we have to leave out the
intervals of time, during which the horizontal velocity components resp. the horizontal
acceleration components, to which our conclusions refer, differ from zero only slightly;
during the remaining part of time, either the different component simple waves cooperate
sufficiently, with respect to the quantity considered, or one of them is predominating
(when accelerations are considered, the local inclination of the boundary-surface may
not be too small)..

If, on the other hand, the upper boundary is not a rigid wall, but a free surface,
represented, in the unperturbed state, by z = z, we have the following dynamical
boundary condition in this level 1):

’

op
o

—ygw o =0, (22)

or: 12 005ty (2 — 7' on) = Ghin S0 i, (2 — 2 on).

1) See e.g. Bjerknes c.s., 1933, 83 (9).
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Bjj substituting the expression for u,~1»2, following from this relation, in (16), we find:

coth py (2 — 2'gp) — coth i, (25— 2'y) 0 »
o — >, 23
coth iy (21 — 2p) — coth py, (25— 2'g) . (23)

On the basis of this relation it is easily seen, that either:

(19) 2, < 2'gp < 24,

or: (29) 2o << 2y, << 2.

In the first case we have to deal with an ““tnternal wave’ 1); as to the fluid
motions between z, and 2’y,, this case resembles completely the above case of a rigid upper
boundary at z = 2z’y,: the horizontal velocity components on either side of the boundary-
surface are at any moment directed opposite to each other; this is valid for a simple wave.
Also the relation to the local inclination of the boundary-surface is in that case the same
as above. Further, when ¢/o’ > 1, 2'g, > 2, See fig. 4a.

free surface ;
= e —————— oo Z; free surface

i i o~ c. P
o ' ‘

Z
z| 3.3
e oo z
0 z0 0 Z‘J

Figure 4a Figure 4b

A simple wave of the second type is a so-called “external wave” ). These solutions
show quite a different structure, see fig. 4b. Now, the horizontal velocity components on
either side of the boundary-surface are, at any moment, directed in the same sense; that of
the wpper (lighter) fluid has the larger absolute value in a point of ‘the boundary-surface :
seen from above, the stream lines are broken towards the normal (vertical), at this surface,
or, more generally speaking: they are broken in a direction opposite to their curvature in
the two media. These statements follow directly from (15) and (20). Quantitatively speaking,
this “‘refraction” is small, if o/o’ differs but slightly from unity, for, acoording to (23) the
level 2y, will in that case differ but slightly from z,.

If o/’ » 1, uyju;” » 1; in the limit % :%z — g% = —g¢g tg 9. As we see, the
accelerations are here by a factor of the order of magnitude & +Q, larger than in the

case of an internal wave, if the heights of the layers do not differ too much, cf. (21).

All this applies again to simple waves; in non-simple waves we have, as before,
continually changing phase differences between the component simple waves, so that the
above conclusions are no longer generally applicable. We may only assume them to be
so to a large extent, when either one of the components of the superposition pre-
dominates, or ¢fe’ differs but slightly from unity, so that according to (15) the
differences between A,and A',are also small. As to the restriction made (‘“to a large
extent”’) we may refer to what has already been said above.

1) Cf. Bjerknes c.s., Le. page 320.
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With repect to the accelerations we may formulate quite analogous conclusions (it
is important to note, that the streamline-pattern of the velocity field may also be used
to describe the acceleration field). '

3. Rotating system. We shall now pass on to the case of a system of reference,
rotating around the z-axis, o, being the angular velocity. If the two fluids in the un-
perturbed state have velocities V and V' in the y-direction, the perturbation equations,
analogous to (8 )1), become, after ehmmatmg y 2):

3y o%p

oeopp T 40 a—z 8 =
-y (24)
— i+ 82 =0,

and two corresponding equations, with accented symbols, referring to the lighter fluid: (24’).
Now it is possible to write down solutions of (24) and (24'), analogous to (13) and

the corresponding solution (13) of (8'), which can satisfy the kinematical and the dynamical

boundary-surface condition 3) at the surface of discontinuity u.r 4+ A2z = ¢;, namely:

v = A sinh (px, + A2 — ¢ ) sin (x + 412) sin (1 - 0), (25a)
8p = B cosh (u,x + Az — ¢ ) cos (umx + A2) cos (vt + o), (25b)
y' = A" sinh (usx + Az — ¢') sin (ux + A,2) sin (vt + o), (25'a)

8'p" = B’ cosh (ue + Az —¢') cos (ux + Ay2) cos (vt + o). (25'D)

(25)

(25)

On substitution in (24) it appears, that solutions of the form (25) resp. (25’) can only
exist when

_ Mot : . 4wz
Aol

unless 4 = B=0resp. 4' =B = O ForB and B'we find 4):
B=4 vl// 1—# B :A’vl/l—— 4:‘2’52. @7

Consequently, real solutions of the type (25) resp. (25') can only be found for |v| > 2w,
The value of » is determined by the ‘‘frequency-equation”, following from the dynamical
boundary-surface condition, to be discussed below.

Since the slope of the boundary-surface p.x 4 iz = ¢; (eqmlzbmum position) is given
by the formula of Margules, we have:

o 20,0V —0"V" f

200V —oV [ (28)
0 g e—e g .

fl=m B——tr—m, (26)

~

Denotmg by tg p the slope of the equldlstant stralght streamlines u,x 4+ 4,2 = k=
(k being an integer), we find

4 2
tgo tgf — ;" ——m, | (29)

according to (26) and (28). It follows; that, if u,x 4+ A,z = 0 lies in the lst and the 3rd
quadrant, then p,x + 1,z =0 in the 2nd and the 4th quadrant, and wice versa ; further,

) In the place of 2u/0t and dv/or we have 0u/dt — 2wy and 8v/0f + 2w,u respectively.

2) It appears, that the perturbation motions have a component in the y-direction also, Whlch however, does not concern us.

3) More generally we might write down a solution
v =1F exp (uox + Ag2) sin (ux + Az + 0) + G exp (— pot — Ay2) sin (@ + Az + e) { stn (vt -+ o) and for y’ a similar form
with o, X, ', 4/, F', G/, &', €, v/, ¢’; corresponding solutions for p and p’ can easily be formed on the basis of (24) and
(24'). The kinematical and the dynamical boundary-surface condition, however, can, for non-trivial solutions, only be satisfied,
when woltty = Voldo = ti'ltn = W)k = £ 1, 0=c+hba=8+k¥n=¢+ k" n (k k' and k" being integer numbers),
v = v, ¢/ = o + In (I being an integer). Thus we can easily arrive at (25) and (25’) (if necessary, we may still perform a trans-
lation of the origin of coordinates). :

%) For m we take the positive root; this does not imply a real limitation as to the possible solutions.
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that the equidistant straight streamlines w,x + 1,2 = k= are only then perpendicular to
the boundary-surface and to the straight streamlines p,x + 12 =r¢, uox + A2 = ¢, when
w, = 0 (in that case we should obtain once more the formulas of the ‘“‘rotationless’ case).

If w,+0, we may advantageously use a system of non-rectangular coordinates,

defined by B
v;uox + Az = n2%, %o :VM02 + A5

it + Az = ¥, % :]/Ml2 + A

Now we can write (25), (25") as follows:

p = A4 sinh x, (2% — 2,*) sin s,2* sin (vt + o),

Sp = B cosh x, (z* — 2,*) cos »,x* cos (vt + o); (25%)
Y = A’ sinh x, (% —2',¥) sin x,x* sin (vt + o),

S'p" = B’ cosh x, (z* — 2',*) cos %, x* cos (vt + o).

The velocity components u and w are derived from y by differentiating with respect
to z and x respectively. The result may be written in the form:
wu* = u; u + hw = C cosh x, (2¥ — 2,*) sin wyx* sin (vt + o),

. 30)
wW* = o u + Agw == — C sinh x, (2% — 2,*) cos u,0* sin (vt + o), (

where C = (pqdy — pody) 4. Corresponding
relations (30'), with C' = (u;dy — pohy) 4,
may be written down for «'* and w*.
Formulas (30), (30’) give us the velocity
components in the z*- and in the z*-direction.

If z* = 2/* be the position of the (un-
perturbed) boundary-surface, the kinematical
condition yields:.

A sinh x, (2% — 2,*) = A’ sinh », (,* —2';¥)  (31)

Figure 5

This is equivalent to: w* (z1 )= w'* (2,%).
The dynamical condition may in this case be written:

) 0
a—f—iJr(@—@ ) (fu—gw) =0, = zF=z*

or:

Working out this relation with the help of (26), (27), (28), (29) and (31), we obtain:

vim [— g coth , (2;* — 2,%) - o' coth x, (¥ — 2,*)] + (0 — (m 712 +mg?) =0,

l/f“rg

% (0 —0') o (32)

e coth ¥o (21* - 20*) - QI coth o (zl* - zol*) - (m_l —m) (mhl fz +m gZ)’
whilst, according to (26) and (28),

B Vo = w

If 2,* —2,* and z*—2',* be fixed (for instance by the presence of two rigid walls
parallel to the ethbrlum position of the surface of discontinuity, cf. fig. 5), the
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“frequency equation” (32) gives a relation between x, and » or, via (33), between x;
and ». When, for instance, #, is fixed by the half “wave-length” (in the x*-direction)
nl%y, the frequency » can be solved; it should, as to its absolute value, be larger than
- 2w,; we shall return to this subject later on. |

If we have to deal with an nternal wave, that is, if z* < z™ <2/, it follows
from (31), that 4 and 4’, and consequently from (30), that uw* (%) and w'* (2,*) have
opposite signs. Provided w* (2*) = w'™* (2,%) be small enough as compared with u* (2,%)
and w'* (z,*), the same will hold for the vertical velocity components; see fig. 6a.

Figure 6

This will certainly be true for points of the boundary-surface not too far from the
middle between the straight streamlines xa* =0, »@* = = (see fig. 5). On the contrary,
in points near these lines, the vertical components are directed in the same sense, see
" fig. 6b. Everywhere, however, the streamlines undergo a refraction at the surface of
~discontinuity, in the same sense as their curvature in the two media (away from the
nearest straight streamline), compare fig. 5. We shall call such a refraction an ‘“‘tnward”
one. Hence, if the motions be such to cause the boundary-surface to tilt downwards,
as indicated by the arrows in fig. 5, then in a point of the boundary-surface either (I)
‘the vertical component of motion of the heavier fluid will be negative, this fluid will
“glide down”’, whereas that of the lighter one is positive, this fluid will “slide up”’, or
(IT) both will “slide down”, but the lighter fluid less than the heavier one (on the
left-hand side of fig. 5), or (III) both will “slide up”, but the heavier fluid less than
the lighter one (on the right-hand side of fig. 5). See fig. 7. If, however, the motions
are such as to cause the boundary-surface to ‘“erect” itself, in all three of these cases
the opposite is true.

Corresponding conclusions may be formulated with regard to the accelerations; we
may refer to the remark at the end of the foregoing section.

The elevation ¢* of a point of the boundary-surface is defined here by its displacement
from the equilibrium position of this surface, measured in the normal direction, that is,
in the z*-direction. From considerations analogous to those held for the ‘‘rotationless” case
it follows, that in a point of the boundary-surface the acceleration component dw'*/d¢ of

- the lighter fluid has the same sign as the derivative of {* with respect to x*, with constant
2*, and consequently, also as the tangential derivative of {*; by tangential we understand:
in the direction of the line z* = z*, towards the right being taken as positive: this
derivative is positive if the angle of inclination ¢ > «, « being the equilibrium angle.
The acceleration component of the heavier fluid du*/dt has the opposite sign. Now, for
points not too close to a streamline w,x* = kx, a positive acceleration in the x*-direction
also means a positive vertical acceleration component, if we have to deal with an
equilibrium position as shown in fig. 5 (tg « positive); we call this an ‘“‘upsliding”
acceleration or a tendency to slide up. Likewise, a mnegative acceleration in the
a*-direction (again if tg« is positive) means a tendency to slide down for such points.
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In points near one of the lines »a* = kx a positive du*/dt or dw'*/dt may be attended
by a tendency to slide down, but implies at any rate a smaller one than the negative du'*/dt
resp. du*/dt in the other medium does, whilst a negative du*/dt or dw'*/dt implies at any
rate a smaller tendency to slide up than the positive du'*/dt resp. du*/dt in the other
medium does. Thus: if & > «, the heavier fluid exhibits along the boundary-surface a
tendency to slide down, c.q. a smaller tendency to slide up than the lighter fluid,
whereas the latter exhibits a tendency to slide up c.q. a smaller tendency to slide
down than the heavier fluid. If 9 < «, the opposite is true.

All this applies to internal simple waves. For external waves, i.e. waves having
Z,* < z;*, the above conclusions do not hold generally and certainly not in cases, where
2% < 2',* <z* The latter situation is analogous to the one we found in the “rotation-
less” case for external waves, when a free surface was present. In our rotating system
of reference, solutions of the type (25%) with a free surface are only possible, when the
velocities in the y-direction V and V' are the same for both fluids, and, consequently, -
the isobaric surfaces .in both fluids run parallel to the boundary-surface !) (in the
unperturbed state; the boundary-surface is in that case itself an’ isobaric surface). In a
manner analogous to that used in section 2, it may then be proved that here again
for an external wave z',* > z*. .

We can easily see, that for z’,* > z* the refraction of the streamlines is again
directed opposite to that in the case of an internal wave, viz. against their curvature
in the two media, or: it is not an inward refraction but an “outward” one. The effect
on the vertical velocity components and the vertical acceleration components on either
side of the boundary-surface is therefore also opposite, see fig. 8 (case of a boundary-
surface that is in the course of tilting downwards).

Figure 7 ' : Figure 8

If, however, in the case of an external wave, 2,* < z,* the matter lies in so far
differently, that, the motions everywhere being directed in the same sense on either side,
the z*-components in the lighter fluid have now the larger absolute values.

From the above formulas, relation (1) might easily be derived as an approximation,
if the slope .of the boundary-surface is small, in the same manner as (19) was derived.

As to the absolute values of the accelerations we confine ourselves to stating that
in the case of an external wave these accelerations in the middle of figures 7 and 8

are again by a factor of the order Qig, larger than in the case of an internal wave,

when the deviation of the discontinuity surface from its equilibrium position is the
same in both cases (and its slope is small). For the rest we may refer to the general
formulas of section 1. ‘

For complex waves the situation is again much more complicated. Statements with

Y) If V Z£ V7, the free surface P = 0 resp. P’ — 0 must out the boundary-surface, whilst it has a different slope in the
two media. This appears to be incompatible with the dynamical boundary conditions (22) and (35) for the free surface, applied -
to (25%). i ’ ‘
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respect ‘to the motions on. either side of a discontinuity surface cannot generally be
made for such a case unless all component simple waves are of the same type and then only
with restrictions analogous to those formulated in section 2 for the “rotationless™ case.

In the atmosphere, the air near frontal surfaces at some distance from the earth’s
- surface may sometimes be subJected to motions of the type (25*), for instance in the
form of an internal wave (fig. 5) in a planparallel layer extending on either side along
the frontal surface.

As an example we may consider the special case, that z',* —z* = 2* —2,* = d.
A simple discussion of the frequency equation (32) shows » to satisfy the condition
v > 2w, (making m real) if d =d, where d,, provided the slope f/g =h of the frontal
surface be small enough (h%* < << 1), may with sufficient accuracy be written

do? IPH? o + ¢’

d f—
’ ntg 0—p';

here L is half the Wavelength\ measured along the frontal surface, see fig. 9. Since the
slope of the frontal surface is small, Lh may be put equal to the difference in height
of the frontal surface. over the half wavelength, ,

denoted by b in fig. 9. Putting 2w, = 10—%sec
(which is the case for some middle latitude) we find
with sufficient accuracy:

d, — 1010522 T2

| e—e

if d, and b are expressed in meters. We see that

even for an unlikely large value of b, e.g. b= 10*m

‘and a large temperature jump, e.g. (¢ + o)

(e— o )= (T"+T)(1T'—1T)= 500°/5° = 100, such

a small value d, is found (our example gives

do =1 m), that we may safely confine ourselves
to the case d =d,, and consequently » > 2w,.

As an example we take a state of things in which (¢ 4 o')/(¢ — ¢’) = 200 and a
slope h = 1/200, further d = 2.103> m and L = #.10°> m, whilst 20w, = 10—* sec™! again.
Then from the frequency equation we obtain: m? =14, or » = 2wz\/ 2=1,41. 10~*sec'.

The angle g between the straight streamlines »x* = kx and the z-axis is now given
by (29): tg #=—100, or = 90,6° so that these lines are, practically speaking, vertical.

One might be tempted to try that solution, where g = 180°, since then the boundary
condition at the earth’s surface might be satisfied by making it coincide with the plane
z*¥ = 0. We see easily, however, that in that case m = 0 and » = 20,, and that all
particles would describe horizontal orbits, viz. circles of inertia — an uninteresting case.

The solutions developed in this section — although at some distance from the
earth’s surface such a solution may sometimes be realized to a certain extent as a
more or less isolated ‘““wave” — are not appropriate as a basic form for perturbational
motions along atmospheric frontal surfaces, as the boundary condition determined by the
earth’s surface cannot be fulfilled by the general type (25%) of these solutions.

Nevertheless, the rather ample discussion of these solutions is instructive, because it

gives still a qualitative picture of the different types of motion near atmospheric frontal
surfaces, when not in equilibrium. In passing from standing waves at boundary-surfaces
in a non-rotating system of reference to analogous motions in a rotating system we
" found the essential qualitative features to be saved; likewise, the conclusions drawn in
this section concerning sliding up and sliding down on either side of discontinuity
surfaces might be transferred as regards their essential features to flow-patterns adjusted
to atmospheric boundary conditions. In the following section we shall enter upon this
somewhat more precisely.

Figure 9
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When, in the preceding pages, we have described motions of a frontal surface as
oscillations, this must be understood as a working hypothesis only. In reality, surface
friction and eddy viscosity will cause such an oscillation to be damped to such a
measure that it often does not survive one period. Added to this, however, a quarter
of a period (the time taken to reach the equilibrium position) is, in general, small
enough' compared with the intervals of time in which substantial changes in the atmos-
pheric conditions arise (in the example computed above, the period is about 12 hours,
a quarter of a period, therefore, only 3 hours) to cause the situations to differ never so
strongly from equilibrium situations as to give rise to considerable oscillations.

4. Wedge-shaped layers. In order to satisfy the true boundary condition we shall have
to study the motions of fluids in and near wedge-shaped layers. Here also we may start from
a much simplified model; as such we take the case of one fluid in a non-rotating system
of reference, having a free surface (the latter being horizontal when in rest) and being
bounded on the lower side by a sloping bottom. 7

On account of the mathematical difficulty of this problem, one has resorted to an
approximation, where in the first instance vertical accelerations were neglected in the
equations of motion, considering, that in hydrographical and meteorological situations
vertical motions are generally an order of magnitude smaller than the horizontal motions.
Following Bjerknes c.s., 1933, we shall call this the quasistatic approximation.

The perturbation equations (8) then reéduce to

Py g%y, P_y, (34)
o0zot o oz
From (34) follows the well-known fact that in this approximation, for small perturb-
ations, p as well as w = dy[oz turn out to be independent of z.
If the sloping bottom be represented by z + z tg « = 0, the fundamental solution,
being harmonic with respect to ¢ and satisfying the boundary condition at this bottom
(viz. that z 4 x tg « =0 be a straight streamline), as well as the dynamic condition

d
L —guwp =0 | (35)
at the free surface z =0, is as follows 1): o
=A@+ wtgoc)w sin (vt -+ o), (36) .
Vive ,
Sp =BJ, 2 yx) cos (vt + o), (37)
where :
1}2
T

Jo and J; are Bessel’s functions?) in the usual notation; A and B are constants.
Substition in (34) yields:

) : _v4d Agie
__7 = T‘.

B

1) If we denote bij y, the value of y at the bottom, being independent of z and z, we easily find by integrating (34):
%Z—) + 2 0 gSp ) = % — fgx _8@ Applying this to the free surface z = 0, then differentiating with respect to z and applying (35)
z x
we obtain a differential equation for Sp, which is satisfied by (37), etc.
%) The following developments may be written down here:
TL@VYE) g e
vy 1.2 1.2.24

—_ 2
TV =110 U
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v Tt is seen that the straight line z + z tg « =0 is really a streamline (y = 0); whilst
the zeroes of J, also determine a set of straight streamlines: x = x;, Ty, ... .. , provided
v and thereby y be given; the latter streamlines are vertical. If a rigid wall be given at
x = a, the equation ,

Jy @21 ya) =0

determines reciprocally a set of values of y and consequently of the frequency ».

Figure 10

Fig. 10 gives an impression of the streamline pattern. If a rigid wall is present at
z — a, we are only concerned with the rectangular triangle to the left of this line; the
fundamental mode of oscillation of the system in that case is represented in the figure.
The elevation ¢ has been drawn in fig. 10 on a rather large scale (too large for a
small perturbation) as a dashed line. It is connected by a simple relation to the

perturbation pressure p given by (37), the latter according to the quasistatic supposition
being equal to eg¢, so that

¢ =Splg =vrAtgad, (2] yx)cos (ot + o).

" The vertical streamlines intersect the free surface at the extreme values of £.

When we now try to deal with the case of two fluids with a discontinuity surface,
the deficiencies of the quasistatic approximation make themselves felt. For we can generally
prove, that for the case of two homogeneous incompressible fluids separated by a dis-
continuity surface and bounded by a sloping plane bottom, the quasistatic approximation
can only give solutions, in which the two stream functions p and ' of the two media
are at any moment identical, but for an additive constant:

px, ) =9 (218 + C {t). (38)

This follows directly from the boundary conditions. Indeed, let the discontinuity
surface be denoted by z =z, — 0. Then along the two straight lines z -z tg « = 0 and
2 — 0 the function ¢ (,2,8) = v (%,2,¢)— ' (¥,2,¢) must have a value ¢,(t) independent
of z and z (because of the continuity of ¢ in the point =0, z = 0). Now let ¢ stand
for Sp — S'p’; then, on account of (34) and the corresponding equation (34’) for the
other medium, the following differential equations for ¢ and ¢ are valid:

02 0 0 )
-(p + —q = 0’ —q == 0.
ozot ox 02

Integrating the first equation we find, on account of the second one:
bp | % _
E“I‘Zé;—f(x:t),
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where f(z,1) is an unknown function independent of z. By applying this to the line z — 0,
we obtain ' : -

op og  dp, '
T 0= . (39)

By substitution of the coordinates of a point of the line 2z 4- x tg « = 0, (39) yields:

3%_ a_q __ %9,
R A i
or: . ‘
og v
P =0,
Substituted in (39),‘ this yields:
op _ g,
ot ot
or:

P =@+ y (%2). .

~

The presence of a time-independent term % (x,2) in ¢ would, however, imply -at
least one of the stream functions v, ¥, and consequently at least one of the perturb-
ation velocity fields v (, z, ¢), o' (z, 2, t) to have a time-independent part also, but
according to the statements at the end of section 1 such a part is not permitted in
small perturbations. We have, therefore:

P= @, =0 (1),

which is identical with (38). .

This implies, that at the boundary-surface z — 2, the streamlines are not broken:
not only the normal component, but also the tangential component  of the velocity is
continuous there: u (x,2) = u’ (z, ).’ .

For a system of two fluids, therefore, over a sloping, plane bottom, when the
upper one has a free surface, the field of motion would for botk fluids be given by (36);
the motions at the boundary-surface z = — d (—. —.__. in fig. 10) would be obtained
by substituting — d for z in (36). 7 N

Apart from that, (38) is generally valid, independent of further special conditions
(free surface or not, etc.) of the system considered, provided only the plane bottom
be really “‘sloping”, i.e. neither horizontal nor vertical: in those two cases our proof
does not hold; indeed, the internal waves of section 2 can be approximated quasi-
statically. '

‘ As to external waves the general result (38) may still be a certain approximation
of reality, as in the foregoing sections we have seen ‘that in the case of such waves
(fig. 4b) the refraction of the streamlines is inconsiderable, if the relative difference of
density is small. With respect to infernal waves, however, we meet with insuperable
difficulties in this way. ' ‘ o

We may characterize an internal wave by the occurrence of closed streamlines in
its flow pattern. These closed streamlines imply, however, that there are values of z,
where for the same x but different z the horizontal velocity components are directed
oppositely. Since, however, in the quasistatic approximation w is idependent of z —
owing to (38) there is now no need to distinguish % and %' — this method is obviously
incapable of giving such solutions.

In the exact solutions the tangential velocity component will not be continuous at
the surface of discontinuity. In order to analyze quantitatively the deviation of (38)
from reality, we start from the complete perturbation equations (8) and the corresponding
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equations (8') relating to the lighter fluid. Subtracting (8') from (8), integrating witl
respect to z, from z, to Z, and app].ying the result for Z = z;, we obtain instead of (39):

.z
( > deS/ PR )
ox o

Z1

where, as before, ¢ = v — »’ and ¢, is the value of this difference along the bottom
and along the discontinuity surface. Substituting herein the coordinates x and Z = —x tg «
of a point at the bottom, we find:

— x fga — riga
I a ~ a 7
s | Py —g [ P gz =0,
R o ox
24 2
or, according to (8) and (8'):
— Z fgo. — rilga
B o : ‘
/ Pty = / e - (40)
) at ot
%1 %

If now, as implied by the quasistatic approximation, the horizontal velocity com-
ponent were independent of z, it would follow from (40), that the two horizontal
acceleration 1) components are equal and the same would be true for the two horizontal
velocity components, since an additive stationary velocity field as part of the solution
of the perturbation equations is not permitted. In reality, as we see from (40), the
mean values of the horizontal acceleration components across the lower medium, taken
along a vertical line from the discontinuity surface to the bottom, are equal for the
two velocity fields (viz. that of the lower fluid and that of the upper one, extrapolated
into the region of the lower one — compare the dashed lines in fig. 4). ‘

For that reason the two horizontal acceleration components are, in general, not
‘equal in a point of the plane z = z,, neither are the horizontal velocities. The difference
will, however, be small if the integration interval from z; to —x tg « is small enough;
this will be the case mear the poini of the wedge. There the refraction of the streamlines
will be small, in all cases (even for an internal wave).

Now we pass on to the problem with which we are concerned, viz. that of two
fluids, separated by a discontinuity surface and streaming with velocities V, V' in the
y-direction of a rotating system of reference. Here the quasistatic approximation starts
from the simplified equations (cf. (24) )

at2 + ) Lis amat =9 . (4a)
op ‘ ’
? (41b)

From (41) it follows, that here again, for small perturbations, p and u are
independent of z. Assuming a horizontal bottom at z =0 (the surface of the earth) and
a discontinuity surface, the equilibrium position of which is represented by z =z tg «
(according to Margules > formula), we can again, in the same manner as above,
prove that in order to satisfy the kinematical boundary-surface conditions, the two
solutions  and ', obtained by this approximation, must be identical, so that in any
point of the boundary-surface the two velocity vectors would be equal.

1)y We have already seen, that in treating small perturbations, the accelerations may be equalized to the partial derivatives
of velocity with resect to time.
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For an external wave this may be an approximation, but not for an internal one.
Here, also, it is impossible to obtain solutions representing internal waves by the
quasistatic approximation. v

From the exact equations (24) it follows, in a manner analogous to that used in
- deriving (40), that:

x tgo . x fga )
p o ;) ’
s | La—s [ L=
N ox ot J oxdt
0 0
‘ or:
x tgo xtg

/ at2 —|— 4,2 > udz = ] 6t2 + 4w22> u'dz. (42)
0

Now for a basic solution of (41), i.e. for a simple wave, —= i», s0 that for such

G
2 at
solutions (42) is equivalent to stating the equality of the mean values of u and
across the lower fluid (along a vertical line)!). If we have to deal with a general
superposition of such solutions, each of its component simple waves will satisfy (42);
for that reason each of these simple waves has the same mean values of u, and w',
across the lower fluid and consequently the same is true for the superposition.

If the vertical distance x tg «, over which this mean value has to be taken, is
small enough, the values of u and u' at the discontinuity surface will not differ much
either; this will, therefore, be the case near the point of the wedge. For points, situated
elsewhere however, this conelusion does not generally hold.

Considering the situation at the surface of discontinuity somewhat more closely, we
see that according to the quasistatic approximation the two velocity vectors in a point
of this surface would be exactly equal, either both ascending or both descending; the
same is true for the accelerations. When, for example, a discontinuity surface is in the
course of assuming a smaller inclination, the heavier fluid will in general have a
descending motion; this will surely be true if, as well as by the discontinuity surface
and the horizontal bottom, it is bounded by a vertical rigid wall, see fig. 12. In
atmospheric conditions the surface of symmetry of a symmetric thermic anticyclone in
the cold air may serve as such a rigid wall; we might for instance have to deal with a
“drop” or tongue of cold polar air, that flows out (compare figures 16 and 17).
According to the quasistatic method the lighter fluid along the boundary-surface would
then also be in a descending motion, see fig. 1la. In reality, however, this is not
necessary, even if the difference between the two horizontal components is small, as is
the case close to the earth’s surface. This can be seen in fig. 11b. Here also the
heaviér fluid is descending; the vertical component is but small, however, owing to the
proximity of the earth’s surface. When the lighter fluid has a smaller tangential
component to the left than the heavier fluid, their normal components being the same,
it can have an upward component of its motion, in contrast to the heavier fluid.

%, e W
K 7 T K

-
—

o Figure 11 b
W denotes the motion of the lighter fluid, K that of the heavier one.

) Except for the case ¥ = 4w,; this would be the case, already mentioned in the foregoing section, where all particles describe
circles of inertia.
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“We assumed here a situation, with respect to the tangential components, which,
according to the conclusions obtained in sections 2 and 3 for simpler models, is typical
of an internal wave. Proceeding in this direction, we obtain for such a wave, in our
case (rotating earth) a streamline pattern as represented by fig. 12. This figure and the
fillowing ones are qualitative sketches; in planning them the analogous figures in the
foregoing sections have been used in combination with fig. 10. As a general basic rule
for the streamline patterns, we have the statements made at the end of section 1.

As to fig. 12, we have calculated ') the stream function fields in the two media by a
numerical approximation method after having assumed the value of y along the line of
discontinuity, making these values vary along this line in a manner analogous to the
variation of y with x in fig. 10. Along the rectangular frame we have a constant value
of v, which we may put equal to zero. The numerical calculation process follows a
well-known algorithm of successive approximation, which is based on the relation

Aty | Ay
or e oy

Ay  ((Ay\? ‘ _
1+ \Rs vy = (R, [py@+Azy) +tye—Aznp]+ v @y + Ay) +v@y—Ay),

which is obtained from the relation /2y =0 by taking finite instead of infinitely small
differences and which has to be applied to a lattice of points within the region, where
the latter relation holds.

From such calculations it appears, that only few streamlines enter into the region
to the left of the point A4 in fig. 12, even if the left vertical wall be placed at a
much larger or at an infinite distance.

The closed streamlines passing the boundary-surface are characteristic of the situation
in fig. 12. We see that in a certain point of the discontinuity surface the two velocities
are purely tangential and directed oppositely. As to the direction of the arrows, fig. 12
applies to the case we have constantly taken for our example, viz. that of a dis-
continuity surface in the course of diminishing its inclination. In the opposite case the
arrows in fig. 116 and 12 should be reversed.

Finally, these figures may also apply to accelerations instead of velocities; in that
case the direction of the arrows does not depend upon the momentary state of motion
of the boundary-surface but upon the momentary position of this surface with reference
to its equilibrium position; fig. 116 and 12 e.g. would then (viz. if the arrows would
design accelerations) be applicable to a boundary-surface being too steep, no matter
whether it is in the course of tilting downwards or is erecting itself still more.

0

Figure 12

In the- fdregoing exposition we have considered an internal wave motion (closed
streamlines exist, passing through the two fluids). An external wave will show quite a
different picture. (We confme ourselves here to waves showing the features of simple waves).

1) From such calculations we find momentary flow patterns, which are compatible with the fundamental equations, but
which in general do not represent fundamental solutions of these equations; or, in other words: we do not know the development
in time of these situations,.for they do not, in general, belong to simple harmonic solutions with respect to time.
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Here the streamlines coming from the lower medium and cutting the discontinuity
surface do not go round through the upper medium back to the lower one; for that
reason oppositely directed motions are nowhere found on the boundary-surface. Whereas

free surface

Figure 13

for an internal wave the refraction of the streamlines is “inward”, here, according to
the conclusions of sections 2 and 3 it may be “outward”, see fig. 13; this refraction is
small, however, provided the difference between the densities of the fluids be relatively
small. In this cse, the rules formulated for the internal waves concerning the motions
on either side of the boundary-surface do not hold and the whole presents an opposite
behaviour, which for the rest, is sufficiently illustrated by fig. 13; it should be borne
in mind here, that all the arrows in' this figure may again be reversed and that they
may represent accelerations as well as velocities.

Figures 14 and 15 present schematically the velocity (or acceleration) distributions,
corresponding to the situations of figures 12 and 13 and occurring when the discontinuity

surface tilts downwards (resp. when it is too steep).
/ﬂ
=

Figure 14 . ] Figure 15

Now we come to the ques’mon as to when such a system of two fluids will assume
an internal wave motion, and when an external wave motion.

To begin with, an mternal wave is necessary if the whole system is enclosed in an
invariable region, forcing the two fluids to perform, roughly speaking, oppositely
directed motions. :

If we have to deal with a system having a free surface, such a determining factor
is less easy to indicate. What we can do here is to give a characteristic of an internal
or of an external wave: If the free surface of the lighter medium undergoes defor-
mations and displacements of a much smaller amplitude than the discontinuity surface
in the interior of the system, we have to deal with an internal wave (the motion of
the free surface has then even opposite phase, compare fig. 4a). If, however, these
changes are larger than those taking place at the latter surface, we have an external
wave; in that case the system of the two fluids oscillates more or less as a whole.

Instead of the free surface we may also consider some intermediate layer, between
the surface of discontinuity and the free surface, and its deviation from equilibrium.
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As to more quantitative statements with respect to the accelerations we may refer
to sections 1, 2 and 3. :

In the foregoing, the fluids were supposed to have rigid lateral boundaries. The
réle of such boundaries is to decide about the occurrence of standing waves and to
determine a set of permitted wavelengths, the longest of which belongs to the fun-
damental mode of oscillation of the system. '

1f we now try to apply our considerations more or less qualitatively to the
atmosphere, we are faced with the difficulty, that here such rigid lateral boundaries
are absent. We have already seen that in' the cold air on one side of the frontal
surface a thermic high might take over the role of such a boundary, especially when
we are concerned with a more or less symmetric ridge of cold air; compare figures 16
“and 17, where in the plane of symmetry of the cold air a rigid wall may be conceived
to exist. As to a possible boundary towards the other side, in the warm air, one might
remark, that because of the finite circumference of the earth, the ‘“film” of air
surrounding it which we have to deal with may - also be treated as finite. However, if
this argument is to be valid, the wave motion should extend all around the earth,
whereas we have confined ourselves to motions on a relatively limited scale. We will
rather assume our wave-motion to be bounded towards the side of the warm air by
some stable circulation system; in this system a dynamic lateral stability acts as a
factor, which at a sufficient distance from the front counteracts the occurrence of
horizontal perturbation motions. We might call to mind here for instance a strong
anticyclone in the warm air, extending up to great heights. In the case of internal
waves, as we have seen above, the wall may also be conceived at an infinite distance

Figure 17.

Explanation to figures 16 and 17. Two homogeneous ,,air’masses W and K of different densities, streaming in directions

perpendicular to the plane of the figures, are separated by a discontinuity surface d; on the upper side W is bounded by a iree

surface f. The broken lines represent the equilibrium positions of d and (in fig. 17) of f; in fig. 16 the perturbation of the free

surface is unimportant. Both figures are purely qualitative and so are the wind arrows in fig. 16, which are drawn in the plane

of the figure but in reality should po:nt in directions normal to it, K streaming away and W towards the spectator; these wind
arrows apply to the equilibrium state of the system.
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without making many streamlines enter into the region to the left of the tongue of
heavier fluid. For reasons of simplicity we have drawn a vertical streamline on the left
hand side in figures 16 and 17. '

Now, coming to the identification of the different types of flow patterns in the

atmosphere, we may say, in accordance with the statements made above: if the higher
layers of the air above the frontal surface, or for example the tropopause, which presents
itself ‘a characteristic surface (like the free surface in our fluid models), show but
small deviations from equilibrium, as compared with that of the frontal surface, we
may conclude that an internal wave motion exists, with all the consequences connected
herewith. See fig. 16; the two air masses are represented here by homogeneous fluids
(K and W), the upper one of which (W) has a free surface.
- If, however, these upper layers (or the tropopause) show larger deviations from
equilibrium and consequently also larger vertical accelerations than the frontal surface
and the adjacent layers (a case, which a prior: is possible as well as the former case),
we have to deal with an external wave motion, with the consequences discussed above:
the motion of the cold air and that of the warm air, taken as a whole, are of about
.the same direction, especially also so far as the vertical components are concerned 1).
See fig. 17. .

The foregoing discussion may be called ‘‘symptomatical”’. A more “causal” point of
view is the following. If we trace the causes of the fact, that at a certain moment a
frontal system is not in equilibrium, we shall often find this cause not so much to lie
in a displacment of the frontal surface as in a displacement of its equilibrium position
by the change of atmospheric conditions. Now suppose the latter change to be confined
more or less to the lower layers, or especially to the cold air, then there will appear
no appreciable deviation of the upper layers of the warm air from equilibrium and
according to the foregoing explanations we may expect an internal wave motion.

A similar reasoning might be applied to other cases, but we shall not enter further
upon the matter here.

5. Complications. In the foregoing pages a rather ideal problem was considered. The
motions studied were treated as free, frictionless oscillations taking place along discontinuity
surfaces, which in the equilibrium position would be stationary. In the atmosphere the follo-
wing complicating effects arise:

a. Translations of the system in a direction perpendicular to the front. If this
translation were a mathematical one it would not exert any influence upon the motions.
However, a translation caused by the pressure field gives rise in general to a difference
of horizontal velocity (normal to the front) between the warm air and the cold air, for
instance because of the density difference causing the warm air to have a larger
geostrophic wind component normal to the front than the cold air (the tangential
components of the pressure gradient being the same on either side). Now this effect is
not very important as a rule; if non-geostrophic wind velocities occur, however, much
larger differences may arise, causing the air masses to assume vertical velocity components
relatively to each other. :

b. In our considerations, homogeneous incompressible fluids, i.e. fluids having an
indifferent stratification, were studied. Now, the stable stratification, which is mostly to
be found in the atmosphere, has a ‘“‘stabilizing” influence  upon internal wave motions in
general; that is to say: if a frontal surface is not in the equilibrium position but moves
towards it, the temperature changes caused by the air motions accompanying the
process cause the equilibrium position to advance, so to say, towards the actual position

%) 1In former discussions of this matter, attention has rather onesidedly been directed to fields of motion of the first type
(»»-internal wave’”). An instance of frontal perturbations, where the vertical air motions on either side of the frontal surface
have similar directions, is given by the cyclonic wave studied bij Bjerknes et al. 1933, page 520, fig. 78.
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of the frontal surface; if, however, the frontal surface moves away from the equilibrium
position, the latter w111, in addition, displace itself in the opposite direction. Here we
have supposed the frontal surface to be non-isentropic but to have potential temperatures
increasing with height.!) Cf. G. Stiive, 1925. Stiive, following Exner, assumed
a field of motion (near the frontal surfaoe),'which qualitatively corresponds to our internal
“ wave. For an external wave motion, everything depends upon whether the differences between
the tangential velocity components on either side of the frontal surface have the same
sign as for an internal wave or not.

¢. The vertical component of the Coriolis acceleration.
d. Friction at the earth’s surface.

e. Shearing stresses between the two air masses at the boundary-surface. In the
atmosphere a kinematical transition layer will be formed in the field of motion instead
of a sharp discontinuity. V. Bjerknes c.s., L. c. page 499, state that friction will
cause an upsliding motion of the warmer air and a downsliding motion of the colder
air within this transition layer. It can, however, be proved 2) that this is not necessary,
but that a general state of things is possible, where gradient force, Coriolis acceleration
and shearing stresses cancel each other so as to maintain an equilibrium velocity
distribution with respect to z without the wind veering with height (apart from surface
friction influences).

Even apart from these complications, however, atmospheric air motions near frontal
surfaces will often have a forced and quasistationary. character rather than an oscillatory
one. In this connection we may refer to the remark at the end of section 3.

However, the conclusions and flow patterns we arrived at in the foregoing section
are such, that they will retain their validity for the greater part even beyond the
narrow and academic scheme of the perturbation equations from which we started and
will therefore be applicable to a large extent to real atmospheric situations.

Coneluding remarks

The investigation which was the object of this paper may be continued and extended
in various directions. :

First, the problem of motions occurring in and near wedge-shaped fluid layers (section 4)
calls for a further exact treatment, where the quasistatic approximation has to be abandoned 3).
To begin with, the problem of one fluid layer over a sloping bottom (‘“rotationless” system)
may be tackled. When here the exact solution will have been found, it may serve as
starting point for the problems of two layers.

Secondly, it will be necessary to pursue the meteorological application of our
hydrodynamical investigation. In the preceding pages we have only superficial touched
upon this subject and such drawings as fig. 16 and fig. 17 do not yet tally with
atmospheric conditions (even apart from the complications a—e mentioned above)
especially as regards the upper boundaries. It will be necessary to acquaint ourselves
better with the character of the three-dimensional fields of motion near frontal surfaces
or frontal zones. This may be done in two, or perhaps three different ways:

first by means of a detailed and very complete analysis of aerological observations,
~specially as regards upper air winds;

" 1) If the air is wet, as it often is near frontal surfaces, we should consider the ,saturated-potential” temperature
instead. Now, in each air mass, the latter is, in general, fairly constant along the frontal surface, cspecially along the upper
boundary of the cold air (the lower boundary of the transition layer).
’ %) A study on this subject is soon to be published in this series (3roemn, 1946).
) In this connection one might for a moment consider the integration of atmospheric perturbation equations performed
by Solberg, 1928, but his special solutions are not applicable to our case.
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secondly one might attempt to pursue the development of concrete initial situations
by means of a numerical attack upon the problem of solving the fundamental differential
equations, on the basis of an approximative integration by finite steps — after the
manner of Richardson’s remarkable ‘“Weather prediction by numerical process
Fma]ly we might consider the possibility of experiments with fluid models.

Acknowledgement

The author wishes to express his thanks to Dr W. Bleeker for havmg suggested
the present problem.

Finished 1943.

References

M. Margules; Ueber die Energie der Stiirme, Anhang zum Jahrbuch 1903 der K.K. Zentralanstalt fiir Meteoro-
logie und Geodynamik in Wien, 1905.

—  Meteorol. Zeitschrift, Hann-Band, 243, 1906.

M. E xner; Wiener Sitz. Ber. 183, 101, 1924.

St v e; Meteorol. Zeitschrift 42, 98, 1925.

Solberg; Geofys. Publikasj. V, no. 9, Oslo, 1928.

Kotschin; Beitr. z. Ph. d. fr. Atm. 18, 129, 1932. .

Bjer k nes, J. Bjerknes, H. So 1 berg, T. Bergeron, Physikalische Hydrodynamik, Berlin 1933.
L. G odske; Astrophysica Norvegica 1, 169, 1935.

Koschmieder; Dynamische Meteorologie, Leipzig, 1941.

© H

Groen; On the kinematic structure of transition layers between air masses, Meded. en Verhand. Kon.
Ned. Met. Inst., Serie B, dl. 1, no. 6, 1946.

98



