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Introduetion and summary

Pressure distribution at the ground is still one of the most important data we can
find on the weather-map. The changes in the pressure distribution, therefore, are also of
great importance to the forecaster. So it is easy to understand that meteorologists always

have tried to find rules which might aid in foretelling these pressure changes. :
' As vertical accelerations are generally very small compared with the acceleration of

gravity and as they never lead to pressure variations of more than about 1 mb, we
" can consider pressure to be merely of static origin.

So changes of pressure must be a consequence of the motions and the structural
variations of the air above the place in which the pressure is measured. Examples of
such motions and structural variations of the air we find in the depressions of middle
latitudes, for instance. These depressions for their part are connected with the general
circulation and depend on energy supplied by radiation, by vertical and lateral or
isentropic mixing, on orographic disturbances, ete. It is not known what this connection
is, and so the exact physical cause of the pressure variations in the atmosphere is
generally also unknown. : S

However, if we are aware of the density variations in each level above the place at
the ground where we want to know the pressure variation it is possible to compute the
latter. Now these density variations can be deduced from the flow pattern in each level
as this is connected with the field of pressure according to the equations of motion.

Now it is not possible to solve the equations of motion exactly for a general case.
We can only do this according to the method developed by Richardson (33),
which will involve much work. . , .

Fortunately it is possible to find an approximate solution for the equations of
motion, which was indicated for the first time by Hesselberg (23) in 1915 and
which was worked out in somewhat more detail by Philipps (31). This approximate
solution enables us to compute the density variations which occur in the atmosphere
and to calculate pressure variations at the ground qualitatively or even quantitatively.
Some causes of pressure variations at the ground which were mentioned by other
authors are contained in the more general results we will achieve. R ‘

If we neglect motions of the air involving great variations of geographical latitude,
the local pressure variations at the ground may be a consequence of five processes in the
atmosphere: .

1. Friction generally alters the mass-content of a vertical column and so leads to
pressure variations at the ground. Although it is possible to introduce friction formally,
we neglect it as its exact influence is not yet known. There exist some estimates about
the air transport through the isobars as a consequence of friction, but these estimates
show rather different results. Owing to this neglect it is always possible that our results
may have to be modified. It will appear, however, that these results confirm empirical
outcome as far as this is known. The fact that the frictional layer only contains about
6 9, of the total mass of the atmosphere seems to justify the neglect. o

The four remaining processes which we are to consider in some detail are:

2. Isallobaric effects in the free atmosphere. They are usually due to temperature
variations near the surface and are responsible for the formation of thermal. cyclones
and anticyclones and the monsoon circulations connected with them. Wexler (52)
attempted to calculate the development of a polar’ anticyclone. It will appear to be
possible to extend and improve his considerations.

3. Divergent or convergent isobars or contourlines in the free atmosphere may also lead
to pressure variations at the ground. It will be seen that Scherhag’s general rule,
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stating that surface pressure falls where the high-level isobars show divergence, needs
an extension. This has already been shown by some other authors. It will also appear,
however, that Scherha g’s simple rule will usually satisfy in the neighbourhood of a
depression centre. The influence of variations in isobaric curvature on the surface
pressure, which was indicated by Boyden (5) also follows from our more general
- considerations. L '
Atmospheric steering can also be better understood when the exact course of the
isobars near the steered system is investigated. _ :
Finally, it is possible to prove Rodewald’s suggestion about the deepening of
. cyclones in the “delt a” of an upper air-current theoretically by calculating from a certain
isobaric pattern and comparing the result with a real case. » :

4. Vertical motions of the air may also lead to variations in surface pressure.
Durst and Sutcliffe (9) tried to explain the deepening of tropical cyclones in
this way. We shall see that their calculations are somewhat rough in some respects and
that it will be necessary to take account of the . exact distribution of the vertical
velocities. This makes exact knowledge of surface friction necessary.

5. Mass advection was always considered as the most effective of the processes
which can lead to surface pressure variations. Exner (19, 20, 21), for instance,
published a theory of surface pressure variations which was based on advection. It
appears, however, that advection of air belonging to one air-mass is usually not able to
cause pressure variations of importance. v

In a discontinuous density field mass advection may lead to notable pressure changes,
however. We have two possibilities to distinguish in that case: ' '

«. pure advection,
and
p. slope variations of frontal surfaces.

In the relevant chapter it will be shown, moreover, that the considerations of

Ertel and others on “singular advection” are wrong.
~ Generally speaking, we may say that it appears from the following work that the

_most important causes for the variations of surface pressure are to be sought in the
troposphere. This result is in accordance with statements of Ber geron (2) and
others. It is a simple consequence of the fact that the troposphere contains about 4/5 of
the whole mass of the atmosphere. _ ' ' '

Of course it is quite possible that some causes of pressure variations are not
contained in the approximated equations. For the moment it looks, however, as if this
is not so. '



PART 1

The general equation
1. Introduction

The attempts made to explain pressure variations at the ground with the aid of
the existing flow pattern are numerous. Modern theoretical considerations on the subject
start from the relation:

o0
o, _ [ %4 v
o g (L)
o
Substituting the- equation of continuity:
o (o d 2 |
| il a—gt(evx) 3 (evy) + 5 (ev2) (1.2)
into (1.1), we get:
. o oo
2P, R G 2 o G e
—:;— = —/ gga—w (0vs) + 'a_y (ovy) + o2 (gv2) gdz = —/ 935‘; (v2) “"@ (va)gdz— [gQ”z] . (1.3)
PR

0.

In these rélations the symbols have the following meaning:

Do the surface pressure,
0 the density,
g the acceleration of gravity,

z, Y, 2 the three Cartesian coordinates, R
e, Uy, v; the three Cartesian components of the velocity v,
¢ the time.

The introduction of [ggv,]ooo in (1.3) is allowed only when Q’; does not show any

discontinuity. As even the sharpest frontal surface is nothing else than a transition layer
we shall suppose that this condition is fulfilled. In the last chapter we will return to
the question of discontinuities in some detail. ‘

As [ggvz]oo is equal to zero and we are allowed to introduce some mean value of g,
0 ’

which will differ only slightly from the value it has at sea-level, (1.3) changes into the
fundamental relation, connecting the variations of surface pressure with the divergence
‘of the horizontal component of momentum:

‘ [o.0)

op, 0 0 '

—g:.:‘:'—'g'/ %%(va) + @(va) dz (14:)
[e]

The most recent attempt to solve the problem of pressure variations applying (1.4)
was made by Durst (8). He determined the deviation of the real wind from the
geostrophic wind with the aid of maps and computed ‘the divergence of this deviation.
It appeared that good results are to be expected, especially when pilot balloon observations
become more accurate and by application of radio methods more independent of meteorological
conditions. ‘

Older than this method in which the wind field is considered are those in which it

was tried to-calculate %"
of pressure. For at each moment the wind field is connected with the field of pressure
and usually the latter can be constructed easily from the aerological observations.

or at least to determine its sign by investigation of the field
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Some of the oldest weather rules are based on the appreciation of certain isobaric
configurations at the ground. In the last decades before -the war the mdthod has been
applied to high-level isobars. The several investigations find their height in the empirical
rule of Scherhag (44, 45, 46, 47, 48, 49):

Surface pressure falls below diverging high-level isobars (or
isohypses of an isobaric surface). :

This. important result was confirmed and extended by Rodewald (34, 35, 36,
37, 38, 39, 40, 41, 42). - 7
The many attempts to prove Scherhags divergence-theor y theoretically
failed however. We mention the publications of Sieber (51), Ertel (10, 18) and
Baur and Philipps (1). g

This failure must be ascribed partly to a wrong interpretation of Scherha g’s
problem. The essential difficulties which presented themselves lay, however, in proving
the equivalence of isobaric divergence and the divergence of momentum given by
oo (o) + o (e, |

It is the purpose of the following work to connect the course of the isobars or
level lines in the free atmosphere and its variations with a divergence of the momentum
and so with the aid of (1.4) with variations in surface pressure.

2. The approximate value of the wind velocity in the free atmosphere |

In order to find the general connection between wind velocity and field of pressure
we start from the simplified equations of motion:

d o /A ov, G o /49 d 1o
We Ly g g 2 (AN Ay lop 0 (AN de  dep o
92 \ p o dt ooy 0z \ o 2% dt 0 oz

In these equations the new symbol ! denotes 2w sin ¢, o being the angular velocity
of the earth’s rotation and ¢ the geographical latitude. 4 is the eddy convectivity. -
Henceforth we neglect the influence of friction, which is permitted as we shall mainly
consider the field of motion in the free atmosphere, that is above say 500 m. As
pressure is almost completely of static origin, we also neglect the vertical acceleration
Equations (2.1) then reduce to: ‘

dv,  laop

— + Iy,

dv, lop 1aop
dt o ox

The solution of the first two of these equations was given by Hesselber g (23)
and afterwards by Philipps (31):

oL _1d 1op\ 14 (lap
= giay i o) TraE (ga)

_,Yop 1d /1op 1 d2 7/1op 7
vy———f’"ﬁ%—l—z;ﬁ E@>—‘Z—SW ‘é‘% "l_"--' ..... (2.3)

so that the velocity is give by infinite series which are usually supposed to converge
- rapidly. Of course it is always possible, that in certain circumstances the series do not
converge rapidly enough for us to ignore them beyond the second or third term. As it

is generally impossible to compute % <$ v p) from the weather map for n > 2, whereas

afterwards we still have to take div (g;)) in order to compute pressure variations, we
ignore the series beyond the second term: , )

. Top 1d /1 op\ lop 1d /1 op '
—_ 1o 1drlop g lalop 2.4
Vs oloy  12dt \ o ox > Uy =+ 12dt \ o oy ( )
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It may be also clear, that in adopting (2.4) as a reasonable approxunamon we
have 1gn0red accidental parts of the velocity which are not connected with the field of
pressure. It is probable, however, that this neglect is permlssﬂole

Working out (2.4) we get:

_ lop 12 .2 e 1ap
%_—E@—ﬁﬁ+%%+%@+%_ﬂgm>
o, lep 1@ ? G 1op 9
%—+a@—paﬂ%ﬁw@+%;gw | (25)

In these equations v, and v, appear on both sides. This means, that these quantities
can be found as the quotient of two determinants. In further developing the calculations
these expressions give rise to great difficulties. It is for this reason that it forms a sufficient
approximation if we subst1tute for v, and v, on the right hand side of (2.5) the geostrophic
part of the real wind: :

‘ 1 ep 1 9p

— 7 a Uyg = —

Ql y and ol o2

} vmg

According to Ertel (16) this substitution is usually allowed. The errors due to it
are of the same order of magnitude as those we make neglectmg (2.3) beyond the
second terms.

So finally the equations from which we are to start our oons1derat1ons get the
following form:

_ Lop 1(0 lap‘a+1apa+ 1op
Y= T oloy  IP|ot gloy ow ' glowoy | foz\\ o ow
lop 1(s lopa 1apa 3)(1ap\ -
WF Gl B|a d@a+am@+%a o) (26)

These equations were also deduced by van Mie g hem (30) The isallobaric wind-
component according to Brunt and Douglas (7) is contained in them.

Finally we can formulate the problem we want to solve in the following way:
Is it possible to draw conclusions with respect to'surface
pressure variations from the form and the variations of the
field of pressure in the free atmosphere as far as these are
contained in the approximated equations (2.6)? Are the values

of %9 calculated in this way in accordance with the observed’

values?

3. The divergence of momentum

As we have seen already, the connection between the velocity components (2.6)
and the pressure variations at the ground are given by

oo

D, ) 8 :
B = faaten e 3.

o
In integrating from the ground to the upper limit of the atmosphere we neglect

friction in the planetary boundary layer. Substituting (2.6) into (3.1) we make an error
of 15 to 20 9, at most according to the estimation made by Lotz (26).



Taking ! independent of x and y the integrand of (3.1) becomes

10 o lopa  lopa - 19p))
I__[ﬁa_x (‘Qat layax+laxay+9za_z)(§%)5»+

1@ 2 lap o lop o 1op
+z—zay§(95 Toyoe Taway ¢ Zaz)(@;ay)

If I is known in each level, the pressure variations at the ground can be computed.
It appears from (3.2) that these pressure variations can be due to three different kinds
of process:

} . (3.2)

1. Isallobaric convergence or dlvergence in the free atmosphere.
2. Convergence or dlvergence owing to horizontal motions.
3. Convergence or divergence owing to vertical motions.

1op
3 8t(g 8y)ﬂ | (3:3)
I — I|e a_pa op o lap op ? apa lap 44
NN P —6?/5;6 6x6y)(gax) By _5?% 89061/)(9@) (3.4)

o lja( orslop G o flop
b= [a(@”ziz(za;) +@§9”Za—z(g5§)

It will be understood that these three effects will never occur separately, but
always in combination with each other, a fact which complicates the calculations
considerably.

Nevertheless in spite of all approximation and calculation difficulties it appears to
be possible to obtain some qualitative or even quantitative results.

The three corresponding parts of I are:

0 o f/1ap
QB_t(E 6x>

1
Ilz_l_ﬁla_x

} | (3.5)



PART II

Tsallobaric processes

4. Transformation of I

It can be seen from (3.3) that I, depends on local variations of density as well as
on pure isallobaric processes. Both effects cooperate in the case of the formation of an
anticyclone owing to cooling, and the deepening of a depression owing to radiative
heating or to heating due to conditional instability. :

In evaluating (3.3) we find:

[ I L — 1 |1 /opdpdp 00 dp 0p 1 /2% op o2 op 1{% @ ?i}_) .
=L =5 E(E_at_a @a_t@)_g dwdt ox | oydl oy REAC A

2 | axet ' oyt

1 [ op , P } | (4.1)

According to Hesselberg and Friedmanmn (24) the term containing -:—t o can

be neglected with respect to those containing %(»2%) and %(Z—p). This would mean that
I, is only small compared with I,". : vz

Although the results of Hesselberg and Friedmann are not correct in
every respect as they, in 1914, could not take into account the existence of dis-
continuities in the atmosphere, we will accept their view on the comparability of I;"
and I, and restrict ourselves to considering I;”. In his article on the formation of
radiative anticyclones Wexler (52) also found that terms depending on % had only
a slight influence on the final result. S

We shall ‘return to I, when we consider the influence of advection of air of
different density on surface pressure.

5. Thermal and monsoonal pressure variations

W e xler (52) was the first who connected the formation of an anticyclone with isallo-
baric effects due to radiative cooling. In doing so he started from a vertical temperature
distribution in which a thick isothermal layer caused by radiation represented the polar air.

Although he succeeded, at least qualitatively, in connecting the pressure rise at the
ground with isallobaric effects in the free atmosphere due;to ‘the shrinking of the cooled
air, there are, however, some shortcomings in his calculations. L

In the first place, Wexler did not mention the influence of the horizontal
dimensions of the region where the cooling takes place. It is evident, that these dimensions
must be of some importance as the isallobaric convergence will be greater when the
region is small than when it is large, provided that the rate of cooling is the same in
both cases. ' :

Secondly, Wexler was not able to calculate the exact pressure variation as he
only considered to a first approximation the fact that there exists a divergent motion
of air in the lower levels owing to the mass supply in the higher ones.

It appears to be possible to extend the dynamical part of his calculations into
both directions. In order to adapt our theoretical considerations to reality we accept
some bell-shaped distribution of the radiative temperature variation over the considered
area. Perhaps an error-curve would suit best. In order to facilitate the further calculations,
however, we shall represent the distribution of the temperature variations by means of
harmonic functions. The fact that these functions are periodic is a disadvantage; the

9



alternation of land and sea as found on the. earth may, however, form to some extent
a justification of their introduction.

Doing so, we introduce the following function for the temperature variation in a
point (z, ¥, 2):

oT ; k174 Yy -
Ml ! i il
o = T .+ {(cos 7 + 1) (cos % + l) } (6.1)
In this equation the symbols have the following meanings:
To is the temperature variation in unit time on the ground in the centre of the
considered region, that is in the point # = y =z = 0. It may be a function

~of time. S
kr measures the rate in which the radiative temperature variation diminishes with
growing height. This quantity may also be a function of time depending on
‘the stability of the atmosphere. ’ —
Az and 2, indicate half the dimensions in the - and j-directions of the region where the

radiative temperature variation takes place. We see that ig is zero at the
borders of this region. ' '
If no vertical displacement of the air should take place owing to the variation of
temperature, the local radiative density variation would be given by:

%% _ "QaT_ 0 _kz.iaT_doaT —kz — 1§ o—(k, +E\ Tz Ty
_at—_'_—?Tt_——T—oe_ a—t_r_oa—te =+ 0, e (k1 E) (cosz—}—l)(cosz—f—l) (5.2)

In this equation the factor ¢* originates from the fact that % decreases with

increasing height according to % = % ¢ where k depends on the mean temperature
and is about 10—* if z is expressed in meters. 6, = —- %"— 7, denotes

! the radiative density variation in the point z = y=2z=0. A
positive 7, corresponds with a negative 8, and vice versa.

- In reality (5.2) does not give the right local density variation as
the air is displaced vertically when it becomes denser or lighter.

o'}
0

This vertical displacement will be such, that / 5%’ dz = 0, %g repre-
. (2]

senting the local density variation during the displacement. For
it is obvious that density variations in a vertical column in
themselves cannot lead to pressure variations at the ground as
the total mass in the column is not effected by this process.

~ These pressure variations only occur then, when air leaves
‘the column or flows into by horizontal advection. If the air were
to be heated or cooled everywhere to the same degree, no pressure
variations at the surface of the earth would take place at all.

o

Figure 1. Tt is easy to see, that the condition f %g dz = 0 is fulfilled by

v _ 0 .
the following ‘expression for %i of which we suppose that it gives a rather good account

of the density Variationsbceurring in reality:

2 3oty [ (cos”—” + 1) (wﬂi’ + 1) } 0—(r+8)2 (5.3)
o C Ag Ay :
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The physical meaning of the factor [1 — (kr + k) z] is that radiation cooling

meters whereas above

leads to a local increase of density up to a height of z = p——
‘ - T

this level density decreases locally owing to the descent of the air. In fig. 1 this
behaviour of the air is represented in a density-height-diagram. Curve number 1 shows
the distribution of density before the cooling, number 2 after the cooling has taken
place for some time. In the same way radiation heating leads to density fall below and
1

_ kp+k°

We can now distinguish three successive approximations according to which we can
calculate the pressure variation due to the density variation. ‘

density increase above the level z =

a. Simple integration.

If we suppose that the surface pressure remains constant at first; which is not true
of course, and which is the same approximation as Wexler applied, we find for the
pressure variation in the level z the following: expression:

. ‘ :
%:g/ % dz =—9g /%Qt de=—1%g8,z e (bpth)? [(cosn{E + 1)<cosj—y+l)} (5.4)
o £ Yy

0

The isallobaric divergence in z is equal to

. 1| o, B®p, | 10s .k ame n?  ml e my wE  mx  mEwy
I, _—F{m%—ay%t —?ﬁégze (,_,7 ol — E+l—zf)cosz—xcos};—ﬁcosl—x—l—yécosl—y (5.5)

Now neglecting the fact that we started with taking surface pressure constant we
find from (5.5) the following value of the variation of surface pressure: :
OO' -
P rrmar— 1T (Y cs P ooy g T eos ™ 4 cos
0 g‘/ L,'" () dz = § B R Tom = 12 [ poc + 2 cos 7 cos ) + i cos i + e cos 7, (5.6)

0

As was said already this method of calculating %" is the same one as Wexler

applied. In starting from the expression for I,” of (4.1) we were able, however, to
introduce the horizontal dimensions 4, and 1, of the considered region, which means a
first improvement of Wexler’s results. '

Nevertheless, it just appears from the introduction of i, and i, how insufficient
9P, ’
3
decrease, the other quantities remaining constant. Even with a small temperature

this first approximation is. For it follows from (5.6) that increases when i, and 1,

“variation, %" would be very substantial if only the region in which the temperature

variation occurs is small enough. Small islands for instance would show very great daily
pressure variations according to (5.6). This result is very unsatisfying. It is a con-
sequence of the fact that we started our calculations from a constant surface pressure
and doing so ignored the isallobaric effects in the lower levels which are of opposite
sign than those in higher levels. A radiative anticyclone, for instance, is formed by
isallobaric convergence in the free atmosphere but it is partly annulled by the isallobaric
divergence in the lower parts of the atmosphere, a divergence which is caused by the
anticyclogenesis itself. '

We xler already pointed to this imperfection of the calculations, but he supposed
that the problem could not be solved exactly owing to the appearance of differential
equations, the solution of which was unknown.
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b. Different'ial equation.

Now the introduction of the harmonic functions enables us to calculate the problem
more exactly, taking also account of the isallobaric divergence in the lower levels.
Equation (5.4) gives only one part of the pressure variation in level z, namely the part
that depends on the radiative density variations only. Another part is due to isallobaric
effects in the levels above z. Taking also account of this effect we have to solve the
following equation:

. z oo
op, o0 g / ?  2%\ap,
at__gfﬁderl_z (@+@ a (6.7)
o 2
This equation can be transformed by differentiating it with respect to z into the
following partial differential equation of the second order for q. = 88—1:’7: '

og; _ o | (o T my g et @ .
a—z‘————'i‘géo[l—(kT—l—k)z]e (kT+k) l:(cosl—z-—}—l) (OOSE—y’{—l):'—ﬁ(a—x—z—*—@)qz (5.8) v

 In order to solve this equation we now substitute
¢; = Gy COS T os Y + g, cos iad + g, cos el + 4 (5.9)
7“7, 7 7,

where ., ¢z, g, and g, are merely functions of z. .
Introducing this expression for g, into (5.8) the last term of his equation becomes:

grer o\ g
—ﬁ(a}‘ﬁw) e
Introducing (5.9) and (5.10) into (5.8) and realising that this equation must be

satisfied for all values of z and y, we can reduce (6.8) to four linear differential
equations of the first order: :

9,

n?  m? nx  my n? Tz . 7r* Ty ’
Dy iE + E) COST,,COSZ_y + ¢z Txé GOSZ + g, 57— cos —= - (5.10)

e = 190 [1— by + k)2l e (bpth)? \ (5.11)
o, : 2 '
o=k by + ) e+ § g, (5.12)
G 2 4 '
o 390, [l — by + B2 ety 1 LT (5.13)
o2 122,
oy g6, [1— (kg + k2] e(iptiye 1+ L (7, : 4
o — 290, [1— (kg + k) 2] e (b, *E) + 5 Z_xz_l—l_yz)qw (5.14)
Taking account of the fact that 3%0 must be zero, we get the following expréssion
? ‘ ,
for ¢, = altz‘
([ oz, = ,
- 2 2 2 .
oPr _ 4 S e—(k, +E)z PN 2y — (b +-k) 2 cosn—xcosﬂ/—l-
o 590 ("2*) g(n*  a*\|* P n?  m? Ae 2y
{k:ﬂ‘f“k‘f"l‘z(l—wz—l—zg } er + -l—l—z- Z_f+l—,,2)
(5.15)
g n? | g m? :
1?22 (kg + %) 2 nx 22,2 (kg + k) 2 7y
+ g m? P T g w2 OST_’— ygnz 2 . g m? cosl——z
kp+k+ 5 kp +k+ 525 N kp+k + 5+~ kp +k + 5= Y
27, 27, . 17,7 7,



From this general relation we find the pressure variation at the ground by putting
z = 0. It appears that'aa—}:;’ =0 if 2, = 2, = oo as well as if 1, = 2, = 0, so that the
unsatisfying result we found in disregarding isallobaric divergence near the ground does
not come into existence any longer. There exists a maximum value of %" for some
finite dimensions of the considered region. If we suppose the region to be a square

one we find a?pt,, to be a maximum for A, = Ay, = Aw, An being determined by the
7'[2

% = 0834 (kr + k).

equation

¢c. Integral equation.

It can be easily understood that the differential equations (5.7) or (5.11) to (5.14)
do mnot yet describe the phenomena we are studying in an adequate way. For the

pressure variation a%(? which occurs in a level z does not only depend on the density

variation and the mass advection above that level, but also on the vertical motions of
the air in that level. ,

Rossby (43) may be considered the first who developed a consequent advection
theory. He based his considerations on some propositions, which are not valid in our
~case: Nevertheless it will appear possible to apply his theory to the problem treated here.

According to Rossby the local pressure variation ? is given by

2z

op(z) myg ¢, p(z) [ n(&)

T = —fgmf@df . (6.16)
0

In this equation = (z) signifies the total mass advection above z, that is / %ﬁ dz,

! 2
m signifies the molecular weight of air, ¢, signifies the.specific heat of air at constant
volume, ¢, at constant pressure. In an incompressible atmosphere we should find
op(2)
ot
compressibility of the atmosphere. In order to apply (5.16) to our problem we must
know the value of x (z) for each level. We suppose, therefore, for the moment that the
atmosphere is incompressible. Then = (z) is composed of two parts, namely first of the
o0

— x (2). The last term of the right hand side of (5.16) is a consequence of the

massincrease due to the divergence above the level considered, fl%(;iz +- _;2_2 G %&) dé
- - v . y
2

and secondly of the mass increase due to the divergence beneath the level considered.
This divergence leads to vertical motions in the level z, giving rise to mass changes

above z which owing to the supposed incompressibility of the atmosphere are equal to
2 4

o0v, . v g(eo* | 2\ ap(k) i
gov, = —g / ( o T 7)71!) de=| 55 T o —%—dE. We find, therefore, » to be a constant
’ o

in our special case, namely

(e e}
“rer 2%\ ap(g) .. .
n(z)=%/ (@Jr@ Z;(t)df - 5a)
o

This means, that returning to a compressible atmosphere = (¢) can be put before
the integral in (5.16) so that we get
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The expression between the brackets can be represented by a function of z, r(z), a

function which was introduced by Rossby for the case of so-called special advection.
This function can be approximated by the exponential expression e *»* where k, has a

when z is expressed in meters.

1
value of about 11006

Introducing the notation (5.9), for ¢ (z) = apa—iz) we find the following four equations'
to solve: ‘
02) = — 1 g yz (b + 1) ¢ | (5.19)
oo
. .
wle) =—1g8,2 (gt e S T [ ot g6y e INCE
(]
(e o] .
2 .
60 =—1g 8z byt B, — 55 | ehneq (@) ds BCE2Y
v, . »
[o'e) .
: ) 2 2 .
: qu(z)=—%yéoze—(’%+")z—% ln—ﬁ +/%2) / ekt g, (£) dE (6.22)
' 0

Applying the simple solution method, valid when the nucleus of an integral
equation can be written as a polynomial consisting of terms of the form s, (2) #, (¢) (see
Frank-v. Mises, Die Differential und Integralgleichungen der Mechanik und Physik,
Part I, 1930, page 485), we easily find the following expression for the pressure
variation due to radiation density variations:

Q(Z)Z—:}géoze_(kT+k)z 1—|—cosn—x—|—cos£/+eosﬂcos.”—y +
j . Ay Ay Aw 2y
1917 0,6 e s X s 7y
‘ 2 2 cos —— + — cos =% +
. ( 2 la:z kﬂ) ( 2 ﬂyz kn) .
7!2/)%2 + 7'[2/22/2 o wy
+ - e N 2\ T cos 7 cos 7; . (5.23)
AVE zyz) o '

We see, that according to this relation surface pressure does not change when the
area where the temperature variation takes place has infinite dimensions. On the other
side the pressure variation remains finite when the dimensions of the considered area
become zero. This does not mean an imperfection of the theory as 8, generally will be
zero when the area becomes smaller. Moreover a density variation will only be
perceptible to a small height when the horizontal dimensions of the area are small.
This means that krwill then be very large, another factor to reduce q(z = o) to a very
small value. '

We will now test the foregoing theories by comparing the numerical results to
which they lead with pressure variations such as are found in reality.
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In the first place we can compare the theoretical results with the monsoonal -
pressure -variations over the vast continents, Eurasia, North America and Australia.
Doing so, we suppose that these pressure variations are principally a consequence of
radiative cooling and heating.

Then 6, indicates the yearly density range of the air at the ground in the centre
of the considered continent. '

As has been said already, k can be taken equal to 10—4.

The value of krmust be determined from empirical data. This can only be done in
a rather arbitrary way, as the variation of temperature amplitude does not show an
exact exponential course with height. From the obtainable data of North America and

Siberia it fdllows, that in the lowest two kilometers kr is about if z is expressed

1
5000

" in meters, where it must be taken équal to if we consider the lowest 4 kilometers..

1
8000
If we also consider the higher troposphere and the lower stratosphere krmust be taken

1
11000° _
As the yearly temperature variation in the higher levels does not depend exclusively.
on the heating or cooling from below, but also on vertical motions, due to shrinking

and stretching, we will mainly consider the lowest levels and therefore, we will take kr

equal to In still higher levels the yearly temperature amplitude decreases quickly.

equal to 8_(71()7) — 1.25.10~% and combine it with the density variation at the ground. So

k + kr is equal to 2.25.10—%.
Further we take g equal to 9,8, ks to

to 10— and for Australia equal to 0,7.10—%.

Eurasia. 7, = 60° C, the yearly mean temperature amounts to 260°K this
ton .

leading to a value of 3,0.10—* oF for 6, . A, = 6000 km, 1, = 3750 km. The yearly
pressure range over Siberia can be found by reducing the values given in the Hand-
buch der Klimatologie Vol. ITI, part N, to sea level. It is a well-known fact
that the way in which this reduction is made generally, namely by extrapolating the
surface temperature to sea-level, leads to false results as the pressure values found in
this way turn out t6 be too small in summer and too large in winter. We find a
yearly pressure range of about 40 mb by that process. A correct extrapolation is only
possible when the exact temperature height curve is known. If we reduce by multi-

1 : o )
TT000° ! for Siberia and North America equal

plying the yearly pressure amplitude at station level by liplé, where p represents the

mean yearly pressure in the station level expressed in mb, we find a value for the
yearly pressure range which will be somewhat too small. It turns out to be 21 or 22mb
in the centre of the continent. It will, therefore, not be far from the truth if we
suppose the yearly pressure range to be about 30 mb.

The theoretical pressure variation in the point # =y =z = 0 according to the three
approximations is found to be: '

a. Simple integration 280 mb.

b. Differential equation 19 mb.

c. Integral equation 32 mb.

North America. 7, = 35°C in the centre of the continent, the yearly mean
ton

temperature = 270°K and 6,= 1,6.10~% == ; 1,= 1, = 3000 km. Yearly pressure range in

md ’
the centre of the continent 8 mb (Part J of the Handbuch der Klimatologie). -
Theoretical results: '

a. Simple integration 330 mb.
‘ 15



~b. Differential equation 9 mb.
¢. Integral equation 18 mb.

Australia. 7, = 18°C, the mean yearly temperature is equal to 290° K this
leading to a value of 4, of 0,8.10—* t];)Tn ! =0,7.10% 4, = 2500 km and 4, = 1500 km.

The observed yearly pressure range in the centre of the continent amounts to about
13 mb. It should be borne in mind, however, that part of this pressure variation is due
to the seasonal latitude variation of the subtropical high-pressure belt. This follows
from the fact that coastal stations also show a yearly pressure variation, up to 7 or
8 mb. We consider, therefore, the real monsoonal pressure variation over Austraha to be
about 6 mb.

The theoretical results are:

a. Simple integration 900 mb.
b. Differential equation 1 mb.
c. Integral equation 10 mb.

Tt follows from these results that the third approximation is the best one. This is
especially clear if we realise that the yearly pressure range is partly reduced by friction
which is not implicated in our considerations. An exception seems to be formed by
North America. However, the small pressure variation which is found here is for the
greater part due to dynamical processes as many depressions cross the continent in
winter. The first approximation which was used by We xler is insufficient.

We can see from (5.23) that near the borders of the region considered the yearly
pressure range has the opposite sign from -the centre. This effect is well known, as in
Western Europe for instance the yearly temperature and pressure range go parallel. The
effect is not found so clearly near the borders of the other continents though it exists
in East Asia and in North America.

As for Australia, the effect may be blurred here by the moving subtropical high
pressure belt. It only appears that the calculated region with winter pressure rise is
somewhat smaller than the observed one. In the case of Kurasia the maximum east-
west dimension of the calculated region amounts to 9600 km, the maximum north-south
dimension to 5000 km. The real dimensions are about 10000 km and 7000 km.

It is also clear from (5.23) that the winter pressure rise changes into a fall of
pressure at some height while the summer pressure fall becomes a pressure rise in the
free -atmosphere. Using the same constants as before we find that in the centre of
Eurasia the level in which this transition takes place lies about 1500 m above sea-level.
It follows from (5.23) that this value decreases with growing distance from the centre.
Flohn (22) found the transition level in Jakutsk to lie at about 1000 meters, so that
the accordance between theory and reality is also very good in this respect.

- The very high pressures which occur frequently in winter over Siberia, Russia and
North America may be due to local very strong radiation cooling. Tt is also possible
that we have to do here with the advection of cold air of arctic origin or with
processes in higher levels. Sometimes, for example, the Azores anticyclone moves
towards the north-east to become stationary over European Russia. On the other hand,
the very low pressures which may occur in summer are generally due to normal
atmospheric depressions.

We see, therefore, that it is possible to give a satisfactory explanation of the yearly
pressure variation over a continent by means of the foregoing approximate calculations.

We may conclude this section by mentioning J etfre y 8 classical paper on the
general theory of the monsoons (25).
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Comparing his results with ours, we see that Jeffreys also starts from the
approximation according to which the real wind is equal to the sum of a geostrophic
part and an isallobaric one (equations (3) and (4) of section 3.1; y* may be neglected
with respect to 40?2 as the monsoonal period amounts to a year).

Due to the fact that Jeffreys treats the problem in a rather special way,

(o] o0
namely by considering the variations of the quantities U= foudz, V= [ ovdz and
oo o o
P = [ p dz, he arrives directly at his equation (7) of section (3.1) which equation
o

corresponds with (5.18) of our paper if we integrate the latter to z from o to oo. We
only find a height % of the equivalent ocean of 11 km instead of the 7,3 km
Jeffreys found. ' '

This difference is a consequence of the fact that Jeffreys divides the pressure
variations that occur in the free atmosphere in isothermal pressure variations and such
variations which are connected with the entire temperature variations, that is also with
the variations due to vertical motions which we neglected in the first instance. With
this method corresponds a smaller value of kg, so that the final numerical results of
both - theories are the same. It appears, therefore, that Jeffreys’ value of h is equal

2
to /" 7y (2) dz where r, (z) is a reduction factor analogous to r (2) but referring not to
A ‘

adiabatic but to isothermal pressure variations, so that there is a close connection
between his theory and Rossby’s advection theory.

Concluding we may say that both monsoon theories lead to the same result. We
believe, however, that ours illustrates the meteorological processes which occur in monsoon
countries somewhat more clearly. Incidentally we may notice that a shortcoming of both
theories is the supposition that vast continents like Eurasia can be considerd as being flat.

6. Isallobaric effectsr and cyclones.

It has been mentioned by many authors that the deepening of cyclones, tropical as
well as extra-tropical, may be largely caused by conditional instability. Shaw (50) for
instance tried to explain the deepening of tropical cyclones by this mechanism, whereas
Refsdal (32) also applied it to the deepening of depressions of moderate latitudes.
It may easily be understood, that in the ocase of deepening by conditional instability
the air becomes warmer and expands so that there arises isallobaric divergence in the
higher levels. - . '

We can apply formula (5.15) again if only we introduce the right values for the
various constants. Temperature rise owing to conditional instability is general small;
5° C may be an average value or even a maximum one for the lowest levels of the atmosphere

and the centre of the conditionally unstable region.
\ 1

As the heating is transported to a very great height, we may take kr= mm—la
a value which may be considered to be a maximum one. '

If we introduce reasonable values for the various constants of (5.15) we see that
the fall of pressure turns out to be very small, at the low latitudes at which tropical
cyclones arise even less than 1 mb in total. We, therefore, come to the conclusion that
" some other mechanism must be responsible for the deepening of tropical cyclones.

There exist also some other indications that conditional instability does not play a
predominant part in the deepening of these disturbances.

Tirst, it is obvious, that the maximum deepening which is possible owing to the
decrease of density of the air is just equal to the decrease of the weight of a column
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of unit square diameter. This means that the maximum fall of pressure in the case of.

a temperature rise of 5°C taking kr equal to m—! amounts to.

1
15000

Z

(o o] [ele] 5
Ap=yg [ Aode=g [ — & 116,10 00d; = 11 mbar
. (2] (2]

This is much less than the fall of pressure which is generally observed in the
-centre of tropical cyclones.

Secondly in the centre of a tropical cyclone where the fall of pressure is largest,
there is a slow descent of air, causing the so called “eye” of the cyclone. From this
we conclude that there exists no divergence but convergence of air in the higher levels
above the centre and the shower theory of tropical cyclones does not hold there.

It will be necessary, therefore, to look for other mechanisms in order to explain
tropical disturbances. It seems most probable for the moment, that Rodewald’s
theory (35) stating that they are due to strong divergence of an upper air current is
correct. We shall return in some detail to this mechanism in the next chapter.

Perhaps the suggestions of Durst and Sutcliffe (9) indicate a direction in
which we shall also find-part of the solution. We shall come back to this opinion.

It wil also be difficult to ascribe other phenomena like the strongly deepening
cyclones coming from Canada to the heating the air undergoes when the depression
crosses the Atlantic, as we can not divide the isallobaric effects from others which may
be due to the motion of the depressions. It is most probable that divergence of upper
air-currents plays an important role here too. This is also the case with the obviously
frontless depressions coming from Arctic regions and moving slowly Southward along
the Norwegian coast. Sometimes we also find a shallow “warm water depression‘‘ over
the North Sea or the Caspian Sea. These depressions may be partly due to false
reductions of the surrounding colder inland stations, partly to coastal effects as small
temperature differences occurring here over small distances give rise to rather big
isallobaric gradients. It is the same effect that gives rise to the nightly landbreeze.
Z—x (1 -+ cos Z—y) does not form any
longer a good approximation for the density profile in the depresysion.

In concluding we may say, that it appears to be difficult to explain the deepening
of tropical or extratropical disturbances with the aid of conditional instability or ordinary
heating from below. ' L

Under these circumstances the function {1 -+ cos
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PART III
Pressure variations ul_lder the influence of horizontal motions

7. Advection of air of diffe}ent density.

The pressure variation at the ground owing to horizontal motions in the atmosphere

m -
. . o .
is given by %’:—gf I, dz with
(] .
IR RV R A C AN K VA L. R AVAL
Iz—ﬁﬁ \:5&3( oy ox o ox dy) (g 69&)3 + oy oy ox + ox By) (g oy (7.1)

As a first approximation we neglect induced effects for the moment. We will return
to this question later omn.

Working out (7.1) and writing « instead of l, we get:

Q .
op\ 2 op\ 2 do. fOp 02 ap 0%p\
(g) _<_2) g_z_ _10__1;+_P_ﬁg) n
x oy ox \ oy ox oy oy
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I - 1 220 2%\ op op 02y
: (—w oyt ) 2w oy | ady
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oy \ ow ox® ' ow oy? (7.2).

We can distinguish here between terms which depend on the inhomogeneity of the
horizontal field of density: :

op\? op 2 oo 9p Badp\/0%p  0%p
@) -G GEy—gw)Gra)| @

and such terms which are independent of the horizontal density distribution: .

i hiliodh Tt st 3

I — 1 2% 2%\ Op Bp 0%,
S (—5;5 oyt ) o0 oy | awdy

opop | °p op 9%p op  pop
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It is seen from (7.3) that the influence of the advection of air with different
density is much more complicated even in our approximation than was proposed by
Exner (19, 20, 21) in his famous articles on the subject. Moreover we should realize

that the terms depending on %O; which were discussed in 4, are still to add if we want.

to calculate the entire pressure variation due to mass advection. So, taking account of
(4.1) we have to consider the entire expression:

, . 1 1 /oo oadp O do Op 1 2% dp 2% op 1ox /0% 8%
11“2—_72[—3@ 5552%+5;;6_t§g}>+; —axatm—-ayat*ag)ﬁ"az(aﬁ‘a—yé -

op\ 2 ap\ ® do. dp  Bu Op o2p % 7
(- @) GE-5D @] o
Tt is immediately clear that owing to (7.5) a field with equidistant isosteres
perpendicular to equidistant isobars, the case Exner considered, does not give rise to

any pressure variation in our approximation. If isosteres nor isobars are equidistant and
denser air is advected, both positive and negative pressure variations are possible. The
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sign which will occur, merely depends on the second derivatives of p. We see that Iy
depends on the local density variations which are caused by the advection, while I o is
connected with the fact that the air moves in a field with variable density.

It will be a little strange at first sight, that no term is contained in (7.5) re-

Y presenting the pressure variation by advection as we normally
' ; imagine it, that is by geostrophical advection of air of different
o3 _ density (fig. 2). For if a; > «y, that is ¢, < g5, we should expect,

@

and in weather practice we nearly always do expect, a rising
barometer as a consequence of the advection of the heavier
e air. If no increase of pressure occurs we ascribe this fact
“to ‘““processes in the upper atmosphere” a normal mode to
explain unexpected occurrences in meteorology. We can easily
show, however, that it will generally be difficult to draw

ol ‘ conclusions as to pressure variations from the distribution of
X ) . 2 8 ? .
prap P. X isobars and isodenses. For, a—&t) = — [g—;)”—l— g—;”], or if for
Figuro 2. simplicity we take the isosteres perpendicular to the isobars -
o0 ) v, . _lop o'p % 1ap o lopop
ot = Vg0 5 and with v, = Qlaand prem =0 we get %" T glowty T gls oy

This elementary example may serve to prove that things are not so simple with
mass advection as they often are considered to be. If we have a field of density with
equidistant isosteres perpendicular to the isobars and we put the axes of the coordinate
o3p
. s . . . op, @2 o%p o .
variation is to arise. The sign of a—t"depends on that ofa‘—y2 then. Introducing reasonable

system as indicated in fig. 2, we see that

values for the various quantities we find that pressure variations due to mass advection
in an atmosphere without frontal surfaces to be very insignificant.
If for example we take a horizontal temperature gradient of 3° C per 1000 km, in such a

way that colder air, 5000 m deep, is advected, a pressure gradient — %’ equal to 2 mb per

100 km, that is 2.106 in the meter-ton-second system and %: equal to 10~12 in the same
5000 ' ‘

system we find a—g;‘—’ =—9¢ /) (Iyy + 1)) dz = 1 mb per day. In this calculation we did
[¢]

not even take account of the compensating isallobaric effects which are always present
. 2

when a pressure changing mechanism comes into being. With the opposite sign of 2—2:
we would have found a fall of pressure of 1 mb per day. : Y
We may say, therefore, that the pressure variations due to mass advection depend
largely on the exact distribution of isobars, while generally speaking these pressure

‘variations are insignificantly small.

8. Divergence or convergence of isobars.

Of much greater importance then the advection of air of different density is the

o G .
contribution to aﬁt" owing to

1 o 83p op 93p op o%p op  Opop
2 = - 323 )

2 P 8.1
3 ox3 oy  ox%y do.  owoy?oy = oyd ox ®.1)

It can be easily seen that this expression depends on the distribution of the
isobars. In the case of rectilinear equidistant isobars, the pressure distribution with
which geostrophic wind is possible, I,” is zero.

In order to recognize the exact meaning of (8.1) let us consider fig. 3. In this
tigure s;, s, s, and s,’ are elements of two isobars; @, Gy, &, and G, denote negative
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pressure gradients in the midst of the isobaric elements s. These elements s are chosen
in such a way that both areas F; and F, are equal to each other, say F. The line
elements I, m and n are perpendlcular to the isobars. In order to evaluate I, in P we

Figure 4.

Figure 3. ’ Figure 5.
choose the coordinates in such a way that the origin of the coordinate system coincides
with P, the y-axis being the tangent of the isobar through P.

. op . ap . a2%p o'p . .
As in P@:O, I, reduces to — 355 [ Ap} Ap being @—l—a—yz=dep=dw G.
Now from the figure it follows, that

K dz G — (div Gy —(div @), [0 —8'G 8,0y — 8, Gy 2
3 (81 -+ 89) Fy F, 81 1+ 83
or
v w G+ G [5G — &G 80, —sG
IZ - l3 '51 + 82 |: F F (8-2)

We can use this relation to determine the sign of %" from the high level maps.

It is immediately clear that (8.2) is not in accordance with Scherhag’s rule saying
that surface pressure falls when the isobars in the higher levels diverge.

We can see from our formula for instance that symmetrically diverging isobars do
not lead to any pressure variation at all (fig. 4). For in that case s, =s,'; s, =15, and
G, = Gy; G, = Gy. Avnother example, showing that Scherhag’s simple rule is not
quite correct is offered by fig. 5. In this situation, in which the lines represent upper
isobars, surface pressure rises in P in spite of the divergence. This case was already
mentioned by Sieber (51). A third example is offered by equidistant isobars showing
variation of curvature (fig. 6). As @ is constant and s, > 8/, 8; > 8/, 8 < s, and
8 > s, we have [(s;, — 8') @ — (s, — 85') F] << 0 so that I,” is negative and surface
pressure Ttises. This result can also be found in Brunt (6) and goes back on

21



Boyden (5). If on the contrary the air is moving around an antlcyclone, every
increase of isobaric curvature leads to a fall of surface pressure there.

If we call the divergence uniform when G4:Gy = G,: G, and if the isobars can be
- considered to be straight lines, we can find a simple rule cohcerning the influence of
uniform divergence on suface pressure, a rule which takes the
place of Scherhag’s. For in that case s,6,> s,G; and

- 8,/Gy > 5/Gy, so that according to (8.2) the sign of ?6—2;“ is .

determined by G,2— (', as s is approximately proportional
to G (fig. 7). Then the rule says:

a. 1f the high level isobars diverge unifOrmly, surface
pressure falls (rises) if the largest gradients lie on the
high (low) pressure side,

and inversely:
b. If the hlgh level isobars converge uniformly, surface
pressure rises (falls) if the largest gradients lie on the
high (low) pressure side.

Nevertheless Scherhag’s simple rule often shows good results. This is a. con-
sequence of the fact that near the centre of a depression the gradient distribution is
such that divergent isobars give rise to pressure fall indeed.

If we want to apply the divergence-theory to a map on which the isohypses of an

Figure 6.

isobaric surface are represented we have to transform (8.1) accordingly. As dz = —Z}—dp

and we neglect horizontal differentiations of « we get:

, 1 0% 0z %2 oz 2% Bz | 0% o2
1':5;_3 Tt e e S 2 (8.3)
z? oy ox%oy ox  oxoy?oy - oy° ox

N , N _
where the differential quotients 97T are taken along the isobaric surface.

anoy™

We must realise that it is not only the field of pressure in one level which
determines the pressure variations at the ground but the sum of the influences of all
such fields from the ground to the upper limit of the atmosphere. Some meteorologists
suppose that the course of the isohypses of the 500 mb surface are characteristic for
the stratosphere and they consider the good results they obtain by using this surface
as a proof of the fact that the stratosphere is of prime importance in atmospheric
dynamics. It is clear, however, that the influence of the troposphere which contains

% part of the total mass of the atmosphere must be greater. This

also holds for [,” which decreases with decreasing p. On the
contrary, the fact that the 500 mb suface, which marks approxi-
mately the baric middle of the atmosphere, appears to be re-
presentative can be considered as a proof of the fact that the
whole atmosphere influences the pressure variations at the ground
and, therefore, of the relative importance of the troposphere. Owing
to this it is not likely, that an extension of our aerological information
to higher levels by using radio meteorographs will enable us to use
the divergence criterion with much more success. On the other hand
it is clear, that the use of aerological data of higher levels will
doubtlessly improve our insight in weather and inform us on the motion of the centres
of action.

There are several atmospheric phenomena that can be better understood qualitatively
if we apply the foregoing reasonings. An example is offered by the displacement of
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troughs, in front of which the isobars diverge and in the back of which they converge
so that according to our rule near the depression centre pressure will fall in front of
the trough whereas it will rise in the back of it. It is clear that the trough must move
more slowly than corresponds with the gradient wind velocity as the air must move
through the isobaric field if the divergence and convergence are to come into action.
This can explain the fact well known from the weather map, that troughs always move
much more slowly than fronts, the pressure distribution being about the same.

If the distribution of the isobars is unsymmetrical the trough may deepen of fill.

Of course in order to obtain quantitative results it would be necessary to know the
field of pressure in the whole atmosphere above the trough. In practice we can
determine the velocity of a trough best by applying kinematical analysis. Finally it
may be worth remarking that it is J. Bjerkmnes (3) who was the first to ascribe the
displacement of troughs to divergence in their front and convergence in their back.

9. The steering and deepening of disturbances.

It appears also to be possible to explain the steering and the intensity variations
of atmospheric disturbances with the aid of our divergence-convergence considerations.
As was the case with the monsoonal pressure variations we can even arrive at
quantitative results which do not differ too much from empirical data.

The most general form of steering is found when a depression moves anticyclonically
around a warm ‘“high”. An almost classical example, though not always recognized as
such, is offered by the motion of tropical cyclones around the subtropical high pressure
cells. The disturbance happens to follow the high level isobars of the warm ‘“high”
almost exactly. ' ‘

Under certain circomstances the steering upper current shows a strong divergence.
Rodewald (42) was the first to extend Scherhag’s rule for divergent, isobars,
sayng: 7 ' ' ' I

A depression arriving into a divergent wpper current, the so called delta of the frontal
zone, ts going to deepen. _ L

In a frontal zone we have to understand a region in which great wind velocities
occur owing to the presence of a frontal surface, so that the frontal zone is much more
extensive than the transition layer of which the frontal surface forms the idealized
picture. Such frontal zones often occur near the South East coast of the United States,
where the frontal zone broadens eastward, causing the upper current to diverge. o

Again according to Rodewald (35) the divergence of the upper current which
must be regarded as the cause of the deepening of tropical cyclones, is due to fronts.
He supposes that three air masses of different origin are in contact with each other in
the relative situations, causing strong divergence near the triple-point (Dreimasseneck).

Probably the depressions mentioned already which move from -the Arctic Ocean
southwards along’ the Norwegian coast also deepen as a consequence of a divergent
upper current. If there lies a cold anticyclone over Scandinavia while the warmer
Atlantic air is rather homogeneous it is easy to see how the upper current will give
rise to southward moving disturbances and how it will be divergent.

The considerations of Rodewald on the effect of divergent upper isobars on the
deepening of depressions were merely qualitative. If we want to make a quantitative
statement on the displacement and the deepening of pressure systems we are not
allowed to restrict ourselves to the rather qualitative view of the foregoing section. On
the contrary, as in the case of the monsoonal pressure variations, we shall have to take
account of induced isallobaric effects as divergence in the free atmosphere will give rise
to vertical motions. : .

In order to be able to compute the combined effect we add two fields of pressure,
namely the divergent upper current which by itself does not give rise to any pressure
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variation at the ground and the “disturbance” in the form of a cyclone. The first field can .
be represented by

P (2) = p,e*F — Bcl + ot <1 + %)% sin —72}% sin n?z}e;klz (9.1)

whereas the disturbance is given by

Po(2) = — 1, {(cos it + 1> (eos Ty +- 1>J e k2 , (9.2)

In these two relations ¢, and ¢, are a measure for the pressure gradients occurring
in the frontal zone and the disturbance respectively; o is a measure for the rate of
divergence in the upper current. 2 marks the

/ radius of the depression whereas ko, &y, &,
' / - denote the decrease of the various pressure

g 7 | systems with growing height. It is clear, that

" ' / / the introduction of a -pressure distribution
in the depression according to trigonometric

] | — / functions forms only a rough approximation

of the pressure distributions found in reality.
- It is necessary to introduce it, however, to
make calculations possible. It is always possible
to generalise the considerations by writing

—— ~ Do(2) = — 1 05 [gz — @yl ey (9.2))
\ ’\ . . .
: '\\ \ where ¢ and ¢, denote the Fourier series

\ \ for the cyclonic cross-sections y =0 and
' x=0. :

\\ \ \ - The introduction of the factor sin % in

¢

the expression for the divergent field of
» pressure in the frontal zone is to indicate the
A ' fact that the pressure gradient being zero at
the ground increases with growing height to

Figure 8.

a maximum value at an altitude z, = %are. tg %k—l Taking ¢ equal to 20000 m and &, = 0,9.

10—*m—! we find the maximum pressure gradient at 6666 m whereas its direction changes
at 20000 m. The second maxium is found at at height of 26 666 m, its absolute
value being 0,16 of that at 6666 m, whereas the third maximum at 46 666 m has
only a value of 0,03 times that at 6666 m. This means, that the variation of the
pressure gradient with height as we find it in moderate latitudes (westerly winds in the
troposphere and the lower part of the stratosphere and easterly winds above) is sufficiently

correctly represented by the factor sin %z ¢ ", Fig. 8 shows the course of the upper isobars

according to (9.1). ,
The total field of pressure is given by the addition of the fields (9.1) and (9.2):

Piz) = p, e—koz—[gcl + ¢’ <1 —i—;)gsin%sin %zJ e k7 — [<cos——[— 1> <eos~ -+ 1>} e, (9.3) 7

According to the developments made so far in this chapter, the pressure variation at
the ground should be given by

9.4)

[ee] N

oP, g _9POP  ®P 0P _ 9P oP  #PoP)|

s B) % | T oy ! owtoyow  owoytoy ' oyt ow | O
[7]
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It appears, however, that in applying this relation, we find far too great values for
the pressure variations in a diverging isobaric system. As was mentioned already, this
comes from the fact, that we are not allowed to ignore the compensating isallobaric
effects which occur owing to the divergence and convergence in the atmosphere. In
analogy with equation (5.18) we shall have to solve the following miore general equation

in which ¢ (z) stands for %ﬁ, the local pressure variation; and in which Rossby’s

advectiontheory is contained:

00 oo -
g 5P oP P oP %P oP  0PoP | . . g/ e @
Q(Z)*P/M {_3@@ +—‘_6x26ya_x_6xayza_y+$—6; e ndg-l—lj 2 ﬂ(@"_@é quf (9.5)
0 0

In this equation k,is again equal to 11000 if z is expressed in metres.

From the fact that (9.5) must be satisfied for all values of x and y, it follows that
¢. must be composed of 12 parts ¢; between which exists the relation: ' '

qiz) = q1 sin% sin%y <cos %‘y — cos %) + 95 siﬁ% cos % + g5 eos% cos % + g Sin% sin%y sin;z—g -+

Y

+ g5 sin %ﬂ cos 7 iad 2y Y Y 7 iiad il

. mY nx Y .
gin —~ gin == - g, cos —— €08 —— €08 5 - gy ¥ SIN —

Yy
008 57 s coS SN s o7 7 %7 %9 7%

+

+ gz sin ™ cos Y cos W -+ g1 % 8D T sin Y sin 721_2 -+ gy Sin ™Y sin Y + ¢y COS ™ cos (9.6)

A A 2 A A A 24 A 22

The quantities g; must be determined from the following twelve equations:

o0
1 = bg n? [
gl(z) = ———l% ek o [T % 6226—%26 j|dE + Zg%-/ e Fn? 4 (E) d§
0 0
oo oo
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¢2(2) _ﬁ/ eFrf o [ 39 ;; (e + &) cpsin—" e—(} 7hy) & ] dé + Z%%/ e Fa% gy (£) dE
(2] (o]
o0 (o]
5 2
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(o0
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If we put the specific volume o« equal to «, e™*, «, being the value of « at the
. <
ground and if we call @Q; = [ ¢; (&) dé, we can easily write down twelve equations from

0
which the 12 @;’s can be computed:

QZ:%“"%%(Q +ta)e (k1,+lcg—jl/l§) R lcl + gl%y;: kl @
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In order to simplify the formulae we rewrite (9.8) using as abbrevations new symbols‘
in the following way: '

O =—06 1500 Q5=_55‘+9/4“Q5—“Q4 Qg = 0y +910Qy—a @y
Q=05 +510Q, ) Qs =—19 +9/4aQ6—“Q7;bQ10 Qro ="/sa @1 —a @
Q3:5/4dQ3—bQ§ Q7?9/4“Q7—“Q6';b(29 Qu=—0n+%00n—a@y
Q=0 Q—a Qs Qo = 85 + 46 Qs C Qu=%0Qu—aQn (99)
We find the following values for Q:
R e TR S © = e T

_ad
(¢pa—1)%—a®

(Cloa—1)* —at

(*lsa—1) b,
foa— TP —a

(?/4‘1—1)366_17

QG‘ =

ad (%, a—1) 8y
T e I e

(®/pa—1)2—a?

_ —Cla—1)4,

—ady
Qo= e —1) —a?

Ta—1p—@

(lya—1) 8y
Fea— 17 —a?

Qlo = Qn:
a 6y
Cloa—1)F—a*

Qs = (9.10)

-Now the same relations hold for the expressions kie"nz gi(z) as can be easily under-
7T

stood by comparing equations (9.7) with (9.8).

We find, therefore, the following expression for ¢ (z) which forms the basis for
numerical considerations. As a is always large compared with 1, we can simplify the
final result as follows: o
1 16, . mx . wy Ty i 46, .. nx wy 16b6 ax  my
e I g =7 o7 STy 22 = "8 i A
T 72 q(2) = 55 S0 sin — <cos 7 cos 7 sin — co cOs —— COo8

e AU a2 2

166; . nx . wy . mwy 366 . mw my my 36 8,  16.72 b, A L
——6—5;sm7sm7smﬂ—%EmnTcos—[cosQ—Z—}— 65 o 652 730%7' 2 21

160, 16.97b0y) wx oay oay 4ddy o oww oay 360y 0T 0T eos W _
65 a 652 - a2 A A 21 5 a A 22 65 a A A 22
16 ‘ 2 _

Tn order to understand better the meaning of (9.11) we do best to compare the
value of <%1; > that follows from this expression with the pressure variation we find
2=0

in an empirically investigated situation. In doing so we must, of course, always realise,
that the pressure pattern we introduced just to make calculations possible will usually
differ widely from the much more irregular pressure distributions which are found in
reality on the weather map. For i for instance we will have to take some mean value
of the various distances at which the surrounding anticyclones are found from the
depression centre. Moreover, the pressure distribution in a depression will usually not
show the harmonic profile. Nevertheless we may expect that if our approximation is
sufficient to a first degree we will find an explanation in (9.11) of things happening
when a depression moves in a delta of a frontal zone.
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We compare, therefore, the results of (9.11) with the deepening that occurred in
the depression that passed cape Hatteras on January 16 and 17, 1939, and which was
investigated by Rodewald (42). We adapt our theoretical pressure distribution best
to the empirical one by introducing the following values for the various constants,
which are mean values for the period Rodewald considered:

g = 9,8m sec1 =2.10m ky =3/,.104m—1 ¢, = —14cb
I =0,85.10%gec! EF=11.10"4m—? { =2.10%m ¢y = 2,5 cb
oo =0,82.103m3 . ton— by =09.104%m? ¢ = 30chb

The last four values especially are rather uncertain. As we indicated already more
generally, the divergence that was present on January 16. is not of the shape re-
presented in fig. 8. At a distance of about 1000 km (14) east of the depression centre
the divergence comes to an end altogether, in striking contrast with fig. 8. Near the
depression centre the degree of divergence is larger than corresponds with a value of
¢ =—14 cb. A value of — 20 cb would do better there. Adopting the above values
of ¢; and ¢,' we have only described a mean divergence.

At x =y =0 we find by differentiation of (9.1) at 5000 m a pressure gradient of

16 . sin n.5COOO . g P00k, % 10° = 0,57 cb per 100 km, this value agreeing well with the

observed inclination of the 500 mb surface of about 70 gdm per 100 km.
¢, is found by taking the mean value of the pressure differences between the
depression and the surroudning anticyclones. v )
Introducing into (9.11) the values thus fixed for the various constants we get the

following relation for <(;—1;> , expressed in 10—% mb per second:

2=0
<6—P = -} 0,91 sin % in (cos m_ cos 22\ — 23,6 sin 2 os Y -+ 10,0 cos o cos 7Y _
0 /) a—o i Y A A A 24 A 22
— 16,4>sinn—;sin %qsin %—— 37,3 sin%x cos nTy cos %— 10“9 cos nTx sin %ﬂ sin % =+ 4,5 cos %y cos %:Z cos %_y' +
—F 19.1 —;?sin % coS % + 32,7 % sin %gf cos % cos %’ + 14:5 ;sin r;_x sin %i/ sin g—;{ — 35,4 sin %y gin % —
| 98,2 cos ”Ty cos ;—’i—/ | | 9.8)

In fig. 9 the distribution of (%)) expressed in 10—* mb per second over the

z2=0
considered region of 4000 km square is represented. It is seen, that in the centre of the
6t> is equal to — 13,7 . 10~3 mb per second. Now (%) is
proportional to ¢, If we suppose, therefore, that the general divergent field of pressure
Py (2) as well as the cross section through the depression p, (z) remain unchanged and
that the depression does not move too quickly through p, (z), the following relation is valid:

t t t
oP r /0P
[G),o=—n [l (&)
o ‘ o

(4]
. Integrating from {=0 to {= 86 400 we find a deepening

depression, (x = y = 0), <6—P

dt

. 13,7.10—3
where p is equal to ————
2

of 23 mb during a day. In reality thé depression near cape Hatteras deepened about
40 mb in 24 hours. The difference must be ascribed to the inconsistencies we mentioned
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already such as the shape of the pressure curve representing the depression and the
fact that the depression is moving through the upper field of pressure. Nevertheless, it
appears that we are able to calculate the deepening effect which diverging frontal zones
have on depressions moving along them at least qualitatively. This result may be
considered as a theoretical proof of Rode -
wald’s empirical rule.

We can see from fig. 9 that pressure
falls more in advance of the depression than
it does in the rear. This means that the
deepening depression is moving in the direc-
tion of the positive X-axis. The velocity is
about 30 m per second, a value much higher
than in reality where the depression moved
with a velocity of 10 m per second during
the twelve hours of strongest deepening.
We must realise, however, that as the
depression is moving on, it comes quickly
into a region with a less strong upper
current, which reduces the above value. If
we had taken the value ¢/ = — 20 cb we
would have found a deepening of 33 mb
within 24 hours, and a velocity of displa-
cement of the depression of 20 m/sec during
the first hours, both values being in better
agreement with reality. Figure 0 ’ 2

If we put ¢, = 0 we find mere steering '
without deepening of the depression parallel to the high level isobars.

As for an anticyclone ¢, has the opposite sign as for a cyclone, it is clear from
(9.7) that an anticyclone will get stronger when moving along a divergent upper current
whereas both a cyclone and an anticyclone will decrease when moving along a
convergent upper current. It may be embarrassing at first sight that an anticyclone
intensifies in a divergent current. In practice an anticlonic disturbance of any im-
portance will seldom enter a frontal zone which is essentially a place of low pressure at
" the ground. If it does, it will develop into an important anticyclone for instance such
a one which is closing a depression family.

Perhaps the development of a strong winter anticyclone over European Russia can
be explained by an analogous mechanism. Owing to the strong radiation cooling of the
air over Siberia we find a closed high-level depression there, whereas the high-level
isobars in north-western Europe and over the Northern Atlantic may show a North-
South course under some circumstances. We find a weak indication of the possibility of
such a pressure field in the free atmosphere over Northern Russia in the normal
pressure chart at 4 km of the Northern hemisphere as given in Brunt’s “Physical
and Dynamical Meteorology”. If this is true, the strong increase of arctic anticyclomes
moving slowly southwards over Northern Russia could be understood. Meanwhile a
thorough aerological investigation of a winter situation over Russia is lacking up to
now, so that we cannot prove our view.

Nevertheless, in concluding we may remark that the divergence or convergence of
the upper air current, that is of the high-level isobars or isobaric contour lines, must
be considered of great importance and worth observing with attention.
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PART 1V -
Vertical motions and pressure variations at the ground

10. Vertical motions and the deepening of tfopical cyclones.

The influence of vertical motions on pressure variations at the ground shows
physically some analogy with. the effect on these pressure variations due to the
horizontal or quasi-horizontal motion of air in a convergent or divergent isobaric field.
For in the case of vertical motions the pressure variation is also a consequence of the
fact that air arrives in an area with a pressure gradient which is too small or too large

‘compared with the horizontal velocity the air possesses. The pressure variation is given
oo .

by %": _-g'/ I, dz, the integrand' being equal to:

1 o /1 0p 2 /1 op '
I, = — I [@ %sz % <Ea_x S <E@> %} (10.1)

As in previous developments we can see here too that the terms containing
horizontal derivatives of ¢ can be neglected compared with the other terms. Taking
account of this the expression for I may be written:

0

o

dv,0m0p  ov, o° ondtp  op
+QJ__£+J_p+ P

1 v, 00 0p | ov, O%p oo 8%p - 9% or .,
ox20z dy 0z 0y = Dy dyoz “on oy | Coydon

IL=—gloso b4 2L g 2By, 0

2|~ ox 9z 02 ' ox oxdz Yz ' 9z 0x°

This is a very complicated expression from which it is difficult to draw any
conclusion. Nevertheless vertical motions may be of great importance. This was first
emphasized by Durst and Sutcliffe (9) who tried to explain the deepening of
tropical cyclones by computing the effect on surface pressure of the ascent of air
occurring in these disturbances. They supposed that a particle of air reaching a higher
level will find a weaker field of pressure gradient there, and consequently will be driven
out of the cyclone, causing fall of pressure in its centre. :

If we want to verify their view we do best to transform (10.2) into cylindrical
coordinates:

1 v, op oo Bv, 0% oo yo*p 1 op p 1 62p
o ZePOx G (P 1P 10.
15 {Q or or. oz + or oroz Te oz \ or2 + 7 67‘) T <arzaz 7 ordz (10.3)

From this expression we can see immediately that it is not only the sign of the
several quantities <vz, g ) Durst and Sutcliffe considered, which determines the

value of P but that it is the exact distribution of these quantities ‘appearing in the

ot

differential quotients as well. To all appearance Durst and Sutcliffe d1d not
stress this point suﬁmlently

Comparing the various terms of (10.3) it appears that this expression can still be

simplified as the terms containing o g— turn out to be of an order of magnitude 10 times

smaller than the rest. If we neglect these terms we get

1| ov, 2°p s 63p 1 8229 ‘
_ . 10.4
Iy I oroz A ? or?ez | r oroz! (10.4)

The sign of e °, therefore, depends on the ratio of the terms in (10.4). It is easy to
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see, that in- the centre of a cyclone in which the pressure gradients decrease with
increasing helght ——" will be negative if v, is pOsitive As there is a deseending motion

in the centre of a troplcal cyclone however, the eye of the cyclone, surface pressure
should rise there according to (10.4).

2z

The ratio between the- terms containing % and those containing v, will depend

among other things on friction. So it looks as if the problem of the deepening of -
tropical cyclones by vertical motions cannot be solved unless we know exactly how
friction works with these disturbances.

For the time being it seems reasonable to ascribe the deepenmg of tropical cyclones
for the greater part to the Rodewald effect.
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PART V

Pressure variations due to discontinuities

11.  General remarks.

We have seen that according to (7.5) the influence of advection of air with
different density is rather small as long as the air can be considered as to belong to
one air-mass, that means as long as no surfaces of dlscontmulty are present.

Such surfaces being present the various derivatives occurring in (7.5) become much
larger so that in this case advection may lead to rather important pressure variations.
The derivatives only keep their significance when o
the frontal surface can be considered as a thin
transition layer which is always the case. In principle
nothing changes in our former reasoning.

About the connection between the divergence-
theory and surfaces of discontinuity something has
already been said. In fact the origin of the strong
upper current occurring above frontal surfaces must Figuro 10.
be seen in the penetration towards the warm air :
of the cold air in the way which is-indicated schematically in fig. 10. Above a the air
will rise, leading to an increase of pressure in the free atmosphere whereas above b the
pressure will fall as the air moves downwards there. So in the free atmosphere there
will originate a pressure gradient directed from @ towards b, which will be added to the
pressure gradient which is present already. As long as this new gradient is growing in
the free atmosphere the air will move from a to b (isallobaric wind) during which
motion it is accelerated until it moves nearly geostrophically along the isobars, that
- is perpendicular to the cross-section given in fig. 10 and with great velocity. At
places Where the cold air dld penetrate less far towards the warmer air the pressure

gradients in the free atmosphere are
_ less, that means, the upper isobars

diverge (fig. 11). We saw from section

9 how the entrance of a depression
into such a ‘“delta” leads to pressure-
fall whereas the pressure rises in case
of an anticylcone enterring the diver-
gent zone.

We can now better understand
why it is nearly always depressions
which suffer great intensifying in a
divergent system of upper isobars
whereas a strong increase of pressure
in an anticyclone seldom occurs here.

v We saw already how it is more pro-
/—\ bable for a depression to enter the
frontal zone than it is for an anti-

\ cyclone. Moreover we see from the

Figure 11. : present qualitative argument that a

' depression having the greatest cyclonic

rotation in the lowest levels which reaches the “‘delta’” of a frontal zone will try to
intensify the rate of divergence near the centre of the depression as the cold air will
penetrate deeper towards the warm air in the rear of the depression whereas it will be
hampered in its motion in front of the depression. An anticyclone, on the contrary, is
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inclined to destroy the ““delta” of the frontal zone when it enters the latter as the cold
air in front of the anticyclone is forced to move towards the warm air whereas at the
rear the cold air has the tendency to retire.

We can say, therefore, that although the formal calculations of 9 did not indicate
an important difference in the behaviour of a cyclone or an anticyclone reaching a
“delta’” it follows from a qualitative examination of the flow pattern, that in reality
. the strong deepening of cyclones will occur much more often than the strong intensi-

fying of an anticyclone. , ' ‘

The foregoing reasoning on the formation of a strong upper current in a frontal
zone and the influence of the “delta’” on depressions or anticyclones is independent of
the fact whether the transition from warm to cold air is a gradual one or whether
there exists a real surface of discontinuity between the two.

If there exists a real surface of discontinuity, we have to integrate from 0 to oo
through this surface in order to compute %"; For instance divergence of isobars may
occur in both air-masses. We can distinguish two ways in which this integration may
be made according to the idea we have about the surface of discontinuity.

In the first place we can understand the surface of discontinuity to be the limit of
a transition layer between the two adjacent air-masses. It is clear that in this case the
integration from the ground to the upper boundary of the atmosphere of div (ev) can

H—§ H+6 oo i
be subdivided into three parts, namely [ [ and / where H indicates the height of
s o H—-6 H--6 : :
the surface of discontinuity whereas 6 denotes an infinitely small vertical distance
approaching zero. If the integrand in the three integrals is represented by the same
analytical function f(z), which is always possible, we can combine them into one integral

00 ,
/ f(z)dz. Under these circumstances the existence of a frontal surface does not lead to
(2]

any analytical deviation of our foregoing reasonings. Of course the existence of a surface
of discontinuity will influence the flow and so dynamically it will be of importance.
 Secondly we can suppose that the two adjacent air-masses are separated by an
imaginary impermeable surface. In that case the integration from the ground to the
v - H—§ oo
boundary of the atmosphere is represented by the sum of two integrals S and [ . In
) H4-6 ‘
this case therefore the values of the integral at H — 4 and H + ¢ cannot be
omitted. It will be clear that this conception about the surface of discontinuity does
not agree with atmospheric reality where there is never a sharp frontal surface but
always a more or less thick transition layer. Nevertheless it will appear that even with
this idea about an atmospheric surface of discontinuity we can prove that the existence
of such a surface does not influence the analytical expressions we formulated in the
foregoing sections. Besides in doing so we shall be able to disprove a theory on
pressure changes that was founded by Ertel and that got some adherents, especially
in Germany. '

12. Singular advection.

In a great number of articles Ertel (11, 12, 13, 14, 15, 16, 17) introduced the
so-called singular advection. Others took over his ideas, extended them to some
respect and compared them with practical weather situations.

According to the theory of singular advection, pressure variations at the ground do
not of necessity originate in divergent motions of the air above the place of observation
but may be due to the mere existence of surfaces of discontinuity of the order zero or
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one. According to this theory these surfaces need not move themselves, which is
already an amazing supposition. As was said already Ertel’s considerations were
based on the above mentioned second conception of a surface of discontinuity. Accordmg
- to this conception the values of the integral at H — ¢ and at H - 6 appear in the
final result. If these values are different ones and H is a function of the coordinates,
the integration from 0 to oo gives a result different from zero even if the values of the
integral between 0 and H— 6 and between H -+ 6 and oo are zero themselves. For in
that case we have: ' :

H—$. . /
[ r@at [ x)dx—ff(z o4 (H—0)—f (7 + 0} 22 (12.1
0 H+6 : . ‘ )

so that f ' (x)dx does not determine the rlgh‘o hand side of the equation. As a matter

of fact results are analogous if there are several surfaces of discontinuity, H,, H,, ... H,, H;
being a function of the several coordinates.

We shall now determine the influence of surfaces of discontinuity on pressure
variations at the ground according to (12.1). We do best to follow the reasoning of
- van Mieghem (29). According to him starting from the equation of continuity, the
pressure variation at the ground is given by

%’5‘2» fle Qv)dz—{— 2 %[ng]]/Hz—l— 2—1-1;1-} S (12.2)

an expression that can be easily deduced. In it the newly 1ntroduced symbols have the

followmg meaning:
¢ numbers the surfaces of dlcsontmulty, m of which are present. Each such surface
is given by a relation:
z=H;(z,y,1) ‘ ' (12.3)

oH oH
o a Hy = @.

[ovy] is equal to (ovy)z—s — (evx)m+s and indicates the difference of momentum on
both sides of a surface of discontinuity, pointing in the positive direction of the normal
to that surface.

Now we have "

fovy] = [ov,} cos (x, N) + {pv,] cos (y, N) -+ [ov,] cos (z, N) and as cos (z, N) =

. - | .
A, ; cos (y, N) = By ;5 cos (2, N) =

]/H2+H2—|—1 - V' H2+HE+1 V' H2+H+1

we can write consequently
ovsd VEA FH 1 = — [ov,] Hy— [ov,] H, + [ov,]-

From this relation it follows that

o R
afzo =—yg [divovdz—g ‘E. lova) Hy + [ov,] H,— [ev:] (12.4)
0 ?21

 This expression for 66—1:‘" differs from the one Ertel deduced by the term — [ov.]

which is missing in Ertel’s expression. This is a consequence of the fact that Ertel
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started falsely from (Qv ) + ﬂg—y) instead of from the three dimensional expression div(ev).

It means that he cons1ders the discontinuity of ¢v, and ov, whereas he deals with ov,
as if being a continuous quantity. It is clear that this is necessarily in defiance of the
kinematical condition of discontinuity surfaces.
Van Mieghem, apparently in imitation of Ertel omitted — (¢v ) further on in
his article by introducing it separately for a second time with opposite sign.
Maintaining the term we can see immediately that

— g {lov,] H, + [ov)) H,— [ov.]} =g [o] H, ‘ (12.5)

in which relation [¢] denotes 0m—5— 0 m+6, Whereas HtEa—H— By this result (12.4) gets

a very simple meaning. It is the mathematical expression for the absolutely plausible
fact that as a consequence of divergence in both adjacent air-masses, surface pressure
falls where the surface of discontinuity descends locally and vice versa. If the air
moves parallel to the frontal surface, H;, = 0 and no variation of surface pressure
occurs at all, a quite- intelligible result which shows once more clearly that the
conception of “singular advection of the order zero’ is untrue.

This is even clearer with the so called “‘singular advection of the first order” which
should be due to surfaces of discontinuity of the first order. We discuss it briefly
according to the developments of Lucht (27).

He starts from the equation -

,atfg f@_)w dz + — fgvdz—() | : (12.6)

and supposes, that.ov, and gv, are continuous everywhere, but that

{69”} <an >H—a (6%95 Hﬂﬁtof : - | (12.7)
- (e o

in a surface of discbntinﬁity of the first order, the tropopause for instance which is
given by the equation z = H (x,y,t) again.
In order to take account of these relations Lucht transforms (12.6) into:

and

5 aH—5 I _ aH—ﬁ s
Efgdz—l—%f gvﬁdz—]—é; fgvxdz—l—@ f vadz—{——@ fgvydz-——o (12.9)
0 0 H--6 H-+6 :

(4]

Substltutmg (12.7) and (12.8) iﬂto (12.9) he finds the following expression for the
pressure variation at the ground: : :

O
| : agv> <89vy>§ ' ' (12.10)

Now the first term of (12.10) is equal to.g. H times the difference of ov; on both
sides of the surface of discontinuity measured in the wx-direction along the surface of
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discontinuity. And this quantity is zero by definition, so that the first term of (12.10)
disappears. The same reasoning holds for the second term.
The last term of (12.10) can be transformed by partial integration into

o}
Opv, 8@1}1,
[gz ox ; } g /
. o

0
and as the first term is equal to zero we find again the ordinary relation between the
pressure variation at some point of the surface of the earth and the divergence of
momentum in the whole vertical column above that point. So we can say, that
“singular advection of the first order” is a fiction too.

The fact that the theory as developed by Ertel and Luc ht apparently leads to
quantitatively good results does not form a proof for its correctness. For in applying
the theory L ucht for instance uses the slope of the tropopause which is very difficult
to determine. It is never known exactly in the place near the centre of a depression
and an extrapolation is very dangerous as the slope varies considerably from point to
point. Besides he transforms his formulae in such a way that the difference between
the vertical temperature lapse-rates below and above the tropopause enters in them.
Now on the average this difference amounts to about 0,5°C per 100 meter, the lapse-
rates themselves being of the same order of magnitude. A mistake of some tenth’s of
degrees centigrade is very well possible, especially as it is difficult to determine the
exact height of the tropopause. As both the slope of the tropopause and the difference
between the two lapse-rates enter in L uch t’s formulae as multiplicative factors, his
good results must be considered as having no practical value at all.

6@% Bgvys .

13. Pressure variations connected with frontal surfaces.

So we have seen that even according to the second conception about a frontal
surface pressure variations at the ground cannot be a consequence of the mere existence
of such a surface.

Let us try to make some qualitative remarks on the influence of a moving surface
of discontinuity of the order zero on pressure variations at the ground.

If we base ourselves on the equations (12.4) and (12.5) and if we suppose for the
moment that div g9 can be zero, H, being =+ 0, we can distinguish two extreme cases
which in reality will always occur in combination with each other:

a. local variations of the height H of a frontal. surface may be due to a simple
horizontal motion of both adjacent air-masses and their common boundary surface. We
~ call this frontal advection. To estimate the effect this process has on the surface
pressure we put the velocity . perpendicular to the front to 10 m per second, the slope
to 1 and [¢] equal to 10— which are all values of the right order of magnitude.
10-1 dyne

cm? sec

Then g [o] H; equals 1 = 1 mb/3 hours, an order of magnitude that occurs in

reality;

b. local variations of the height H of a frontal surface may be due to slope
variations of the frontal surface, originating in the motions and deformations the both
adjacent air-masses undergo. When its slope diminishes we call the frontal surface
kataklinic, when its slope does not change we call it isoklinic and when the slope
increases we call it anaklinic according to Bleeker (4). A good deal of the observed
pressure variations are due to these slope variations. Finally according to Margules (28)
the kinetic energy of depressions must be transformed from the potential energy
converted when frontal slopes diminish, causing a descent of the centre of gravity.
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" In 11. we saw that we do best to consider a frontal surface as a -thin transition
layer so that we can use the old relation:

opy >
ai;z_gfdiv (0v) dz | (13.1)
Co ]

In this case frontal advection will mean an advection of air of different density
and, therefore, it must be described with the aid of (7.5). _

Slope variations will inevitably be connected with departures form geostrophic
winddistribution in both air-masses and these departures will contribute to div (e9).

Let us imagine for example a-depression with a kataklinic cold front as often
occurs. The cold air in the rear of the depression is subsiding in this case. This
subsidence leads to strong pressure gradients in the free atmosphere above the cold
frontal surface. As these strong gradients do not exist in front of the depression, the
depressioncentre is situated in a “delta”, that is to say the depression will deepen. We
saw already how an anticyclone has the tendency to destroy the “delta”. o

As cold air always has the tendency to flatten, the warm frontal surface of a
depression will usually also be kataklinic. It seems, however, as if the behaviour of the
cold air in the rear of a depression is the most important for the development of a
depression. This was already supposed by other authors and may be confirmed by the
fact that strongly deepening depressions occur in which only a cold front can be
recognized (Canada-depressions) whereas depressions only showing a warm front are
never observed. '

We see by this how Margules’ statement about the conversion of potential -

energy into kinetical energy by means of slope variations of a surface of discontinuity
may be connected with Scherhag’s and Rodewal d’s divergence rules.

It will remain an important task to establish the exact physical connection between
Margules’ energy rules, Bjerknes’ depression scheme and Rodewald’s empirical
divergence theory. It is the writer’s conviction that the exact knowledge of this
connection is the indispensable basis for a better understanding of the general circulation
of middle latitudes. '

The author wishes to express his thanks to Dr. W. Bleeker K. R. Postma

and W. Schalkwijk who assisted him in finishing this paper by suggestions and
discussions.
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