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ON THE KINEMATIC STRUCTURE OF TRANSITION- LAYERS BETWEEN
ATR MASSES

by Dr P, GROEN.

1. When two air masses are separated by a thermal and kinematic discontinuity surface
and the winds are everywhere geostrophic, we have for the slope of this surface the well
known formula of Margules,

As a simple form of such a discontinuity surface we may assume a plane surface, on the
two sides of which we have potential temperatures ¢, and 9, respectively (&, > #,), which
are constant along it. The latter supposition is in good agreement with actual atmospheric
conditions, at least so far as we are concerned with stationary frontal systems (cf. Stiive
19251, Namias 1938). The formula of Margules can then advantageously be written
by means of these potential temperatures instead of densities, as follows:

L nyf8y — vf0y
- where | = 2wsing, o and ¢ being the angular Veloc1ty of the earth’s rotation and the

geographic latitude, respectwely, while v, and v, are the velocities of the colder and of the
warmer air, respectively, parallel to the frontal surface.

A better approximation to reality might be obtained by replacing the d1scont1nu1ty surface
by a planparallel transition-layer, within which the potential temperature & alters gradually
from ¥, on the one side to ¥, on the other; compare fig. 1, where a cross-section of the system
is given, in which the fully drawn straight lines represent a set of isentropic surfaces.

We wish to calculate the slope of such a
planparallel layer for the case that no accelera-
tions are present and that viscosity is neglected
for the present.

To begin with, we might cons1der the
elementary case that we have to deal with
incompressible fluids of variable density. The
calculations would then be somewhat simpler,
but the results would turn. out to be quite
analogous to those we shall arrive at here; in
the formulation of our results, derived for
compressible media, the reciprocal of the potential

Fig, L. temperature (1/9) plays the same role as o for

incompressible media; the resulting formulas

for the latter case may thus directly be written down by replacing 1/ in our results by ¢;

compare formula (1), where 1/9 may be replaced by ¢. It will appear, that this formula is applicable
under much more general suppositions.

If p, be the standard pressure, to which the potential temperature is referred, we have
the following relation:

R . K
p = Rlg = " pde = R*pde,
p
whete k = R/CP = (,285.
Therefore
o= *IR*s.
1) References will be indicated by mentioning the year of publication; see list of literature at the end
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Now we have for the geostrophic wind v in the y-direction
1ap _ R*9 3 _ R* a

= k= TR =T O,
p
or
klv
\ sx @ = i - @)
Further, the statical equation for pressure yields:
1-k
o _ _,P
oz £ R
or : .
: a k kg -
57 P) = — gpEp° : (3)

By differentiating (2) with respect to z and (3) with respect to x, we obtain, in virtue
of the continuity of pressure:

— g2 = 1o @

Now in a first approximation we may take the quantities 1/ and v 9 to be linear functions
of x and z within the transition layer under consideration. On multiplying (4) by A z =
tg a.A x(see fig, 1) we obtain therefore:

g (19, — 1/9) tg a =1 (Vz/ﬁz — vy/8y),
whzch is equivalent to Margules’ formula (1).

But we may still generalize the matter. Let # and v be functions of x and z in such a
manner; that both may be written as functions of ax—z; this means that the surfaces ¢ =
const. and v/# = const. are parallel planes ax — z = const., with no other restriction. It
follows then, that '

1, o 1, 9 1
EZ A PR T R PR
when tg ¢ now stands for the slope of the above mentioned planes.
Equation (4) now gives )
0 ,1 0 ,v
gtgogy G =lgz Gg)-
' , Integrating this along a line
‘ x = const, from z = z, to z =
‘ z, we find

| —
/ - £ (10, — 115 tga = L (/0= 0,8,
as above. So Margules’ formula is
/ also valid for this general case, where -
/ ' now the indices ; and , indicate

any two planes of the set ax — z

= const.; .we may, if we like,
/ denote these planes by the values
- > >, of the coordinate z*=
- ' va: + 1
Fig. 2a. ’ Fig. 2b. perpendicular to all of them. The



variation of ¥ in space may, for the rest, be arbitrary. As to the transition-layer between two
air masses, we may imagine some such distribution as is shown in fig. 2; fig. 2a represents a
cross-section with lines ¥ = const. drawn in it; fig. 2b represents the variation of ¢ with
z along a line x = const.

Between the variation of ¢ in space and that of v, however, there exists a close relation.
To show this we may first derive as an important result the general differential form of the
expression giving the slope of the surfaces & = const., v = const. The above made assumption
as to the variation of ¥ and v in space implies first that v/9 is a function of ¢ or of 1/¢ alone,
The slope of a surface 1/#(x,z) = const. is now, according to (3)

dz a9 fax  auMjox dws) 1 d@p) I * dv

dx o(1/9) Joz T Ww/®jez A — g d(1[® ~ g W — d55) )

This formula is valid independent of any restriction as to the distribution of & in space ; in particular
the surfaces ¢ = const. (v = const.) need not be plane.

If, however, they are plane and are furthermore parallel to each other, as was assumed
above — and for frontal transition layers this assumption is a reasonable one — their slope
dz/dx = tg « is a constant, so that

dw/d) _ g —
'd(_]./-’lf = _Z“tg(l = const.
It follows, that v/¢ = A% + B, where A and B are constants, A = g tg «/l. Hence:
v=A-+ BY. (6)

This means that the v,z — diagram (see for instance fig. 3b of the following section) should
be similar to the @,z — diagram (fig. 2b) but for a multiplicative factor (pos. or neg.) in the
v-dimension. Relation (6) is based on the above assumption as regards the thermal field and
the velocity-field and on the assumed absence of accelerations and vertical velocity components.

2. Eddy-viscosity.
If viscosity terms are taken into account the equations of motion for acceleration-less
current-fields may be written:

-1 op 1 0 ou .
vox T oa W) T=0
1 9p 19 , v, .

Tew T eer Ya) TR

Here, as before, it is assumed that no vertical components of motion are present and that the
velocities are independent of y; furthermore the directions perpendicular to-the surfaces
u = const, and v = const. practically coincide with the z-direction, so that of the viscosity
terms only one needs be written down in either equation.

Now we shall try to find out whether these equations can have a solution with still

u(z) = o. By supposing this, we are left with the following conditions:
‘ 1 op _
— % % + v =0,
op 0 o,
~ 5y + 5 Wg) =0 ()

The first of these two equ.ﬁtions is identical with (2). Since (3) also is valid here, the equations
(3), (5) and (6) remain valid also.
From (7) it follows, that in general a pressure variation must exist in the y-direction, that
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is to say in the direction of the current; it serves to compensate the retarding or accelerating
effect of internal eddy viscosity friction, if such an effect is present. It would be absent in
regions where v is constant with respect to z, or where it varies linearly with z, . being constant;
the latter case might to a certain extent be realized especially in air mass transition layers;
see fig, 3a, where such an idealized v, z-diagram is represented. At the two boundary surfaces
(P and Q) of such a layer, however, things would be upset and by a drag effect the velocity
profile would automatically change from type a (fig. 3) into type b (fig. 3).

Now, in order to make the temperature field stationary and the slope of the frontal layer
constant in space and time, we assume ¢ to be independent of y. On differentiating (3) with
respect to g, we find then:

_—__g(l—k) —-k_aﬂ_ . -1 dp op
oz (6y o R¥ P y ( wk) 62 oy’
or;
0" 6p) . Op
9z " 0y . 6i
Q—— (1 - k)
ay
or:
Py dlog p
(log | 5 ’)—(1 k) Fraat
Hence :
fog| 90 = (L) log p + ¢ (59),
or applying condition (7):
1-k
=, ——) = =Cpp , (8)

We have, therefore,

PR A C(x,y)/p “Odz+ Dixy) .

2/ : Here C(>x,y) and D(x,y) are constants with
respect to z, which for the present may still depend
upon x and y. Now we write

T =“T0 — Z,

where y is some mean temperature lapse rate which,
for the present, we shall treat as a constant. For p we
may then easily derive the following expression:

vy &Ry
T z) ‘

o

p=p, (1~

Hence:



-4 _ z — _ _ B .
[pl k (C)dC"——‘/pl k (1__71_’_5)8(1 BIRY 4
v 0 0
1-ky,

—  1+g(1-K)/Ry 1-k
== = —O—(I—Lz) ’ + const, = — = Tp ——— + const,
¥+ (L—kg/R T, , V—Vad + g/R

We have therefore

v C (x, ») 1-k

o T + D(x,y) , 9

Ly y—7  + &R p (x,y)
a .
or
ov
tay = Cilxy)ydp + D(xy) , (10)
where
C (x,
C1(x,y) _ (x y)

k — ’ 11
i G—y , + 8B v
Here y_; stands for the dry adiabatic lapse rate; g/R = 3,42°C/100 m is the so called »,auto-
convection gradient”, _

A relation (10) may be applied to any height interval, where the temperature lapse rate
is sufficiently constant. The connection between adjacent intervals with different y is obtained

. . . ' ov .
by giving different values to the constant D, so as to make p o (10) continuous (on account

z ap
oy
we may also use one relation (10) for the whole layer of the atmosphere we are studying without
making too large errors.
Applying (6) to equation (10) we obtain:

of the fact that it is equal to (z = ¢) d ). By means of a suitable choice of y, however,

29
or:
uo loghloz = Bp + v/9, - (12
C, D ' '

ﬂ:-_E—) '}’=Br

where C, and D may still be functions of x and y.

Equation (12) should be understood to be a condition of stationariness of a field of motion,
and especially of a kinematic transition layer without a wind shift, due to eddy viscosity.
It is based upon conditions (6) and (7); the former of these two equat1ons has been derived
for a special stratification, such as may be expected to a certain extent in frontal transition
zones, as we have seen. It should be borne in mind, that this stationariness is always a
rather relative one (,,quasi-stationariness’), as diverse influencing factors never can be eliminated
from actual conditions. The eddy conduction in particular will influence the temperature
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distribution, This influence, however, will act rather slowly, as we have supposed the transition
layer to be parallel to the isentropic surfaces, perpendicular to which the eddy conduction is
not large. ’ ‘ , : }

In (12) # will depend on density, or pressure, and on the thermal stratification; these
two factors are represented in the above equation by p, # and 99 oz. Owing to these factors p also
varies with x and y. But a variation of x with x and p, independent of these factors, and conse-
quently not coupled to a variation with z needs not be expected; # and y will, therefore, have
to be constants, independent of x and y, and consequently the same will be true for C;
(C) and D.

For 4 we have: - ‘ ‘ .
_ Bp +yp : '
= “ologboz (13)

Since » will vanish when p vanishes, we may put y = 0 (as ¥ remains finite). Hence:

__Ff ' ;
Hw = W , )y (14)
The question, whether condition (14) can be satisfied in the atmosphere, has to be answered
by the theory of turbulence in stratified media, which, as yet, is not very firmly established.
At any rate this condition is in qualitative agreement with what is to be expected concerning
the influence of stability, which is proportional to @ log #/0z, upon turbulence. Apparently,
(14) requires an influence of thermodynamic stability upon ¢ which is somewhat too large,
especially for small values of 99 /oz. A semi-empirical study by Exner, 1927, and two theoretical
derivations by Ertel, 1932 and 1937, lead to the conclusion that x is inversely proportional
to 9T )6z + g/R, instead of to dlog®[oz = #~199[dz; this would imply that » would become
infinite for 8T /oz = — g/R, but it is not very likely that this ,auto-convection gradient”
g/R = 3,42°C/100 m plays any real réle in the atmosphere. Moreover, it may easily be shown
that Exner’s and Ertel’s results are by no means reliable; see, for instance, Rossby and
Montgomery 1935; as to Ertel’s derivations, the adiabatic expansion and compression
of the turbulent elements were not fully taken into account. The calculations by Rossby and
Montgomery appear to indicate that the true interdependence of x and 9 log # [0z is somewhat
more complicated, and that, roughly speaking, we may write down for u some proportionality
to (9 log 9 /oz -+ ¢)~*, with ¢ > 0, so that only for large stabilities we have an eddy conductivity
which is inversely proportional to stability, whereas for 99/dz = 0 it remains finite. On the
other hand, we may mention the large values of the eddy conductivity found by Richardson
and Proctor, 1925, and by Grimminger, 1938, for lateral mixing in isentropic surfaces, where
no stability suppresses it, values which are by a factor 10* larger than the normal values of
,vertical” eddy conductivity. This again suggests that in a free medium, where no vicinity
of a rigid bottom influences the turbulent motions, the eddy conductivity will increase
enormously when stability vanishes. — But (even if this be not so), as, in the vicinity of transit-
ion layers, we have sufficiently stable stratifications, the presence of a small positive term ¢
in the actual eddy-viscosity-function will, in general, not' make a function const. (olog ¢ /0z)™
to be too bad an approximation in those regions, so that, after all, we may conclude that the
form of relation (14) will not deviate too far from real distributions of x in the atmosphere
near frontal transition zones; that is to say, that for a given situation a value of § may be
found, which makes (14) agree fairly well with reality. -
The constant § = C,/B determines the relation between the pressure variation in the
y-direction and the vertical velocity distribution, Indeed, C, = const. C = const. p*—19p/oy;

k/2
_p
3 log 9Joz

v . ..
» we may also deduce: [ = const. , where | = mixing length.

| 02|

-1 If we write u = p [?



B = dv/dd. In principle, therefore, a pressure- and velocity distribution may be established
in‘such a way, that in the free atmosphere a quasi-stationary situation of a frontal transition
zone (in the above mentioned sense) is fairly well maintained without an important extra wind
shift due to eddy viscosity. Characteristic of this situation is the absence of vertical velocity
components. This result differs from a conclusion by Bjerknes et al. 1933, page 499, stating
certain upshdmg and downshdmg motions in such transition zones to follow necessanly from'
the equations of motion, when viscosity is not neglected *).

As to the signs of the constants used, we may state the following. In (14) 8 is positive,
so that C, has the same sign as B. Let ov /az be negative, as in figures 2 and 3 (¢g a is-positive);
sinice 94 [0z is positive, this means that B is negative, and so is C,; finally Cis positive, and so
1s9p/0 y. The pressure field looks therefore like one of those given in fig. 4. Here we should think
of situations in the free atmosphere, as ground friction was not taken into consideration.

b / N
’ H } H

P L
Fig. 4.

If the warmer air were to the right of the front, instead of to the left (so that zg « would be
negative and 9v/dz positive) the sign of 9p/9y would have to be reversed. (We might, besides,
superpose a uniform motion in the x-direction and a cortesponding pressure gradient in the
y-direction over the whole field).

Finally we shall make an estimate of the order of magmtude of the pressure gradient
op/oy (,,anti-viscosity pressure gradient’” as we might call it). According to (8) and (11) we have :

1-k k1-k — :
ooy = Cp~ = — Cprp ~ v —v 7+l R
Now C; = BB = p ' ud log 9oz . dv/d,
so that
o _ Q@ 1 p1 ' _
v 0% dv

1) This statement is based on the theory of the Ekman-spiral, which assumes constancy of u. Here
11es the cause of the discrepancy. '



Here we have to take for x and 99 0z some two corresponding values. Now reliable empirical data
concerning the variation of # with 94 [0z are rather scanty. We shall, therefore, take some mean
values (in the free atmosphere) for both of them: u = 150 g/cm sec, 8¢ joz = 0,4.107~* °C/cm.
Further we put: T = 250° C, y-y,; + g/R = 3.10~* °C/cm. For dv/dé we may assume a

rather large Av = 20 m/sec to correspond to a rather small A9 = 1.5 °C. With these values
we obtain ap/oy = 10~° g/cm? sec® = | mb/1000 km. On account of the large value of dv/d?¢
which we have introduced, the ,,anti-viscosity pressure gradient’ dp/oy may in reality be often
still less than this value. Only for very large values of u (great wind velocities) it might
occasionally surpass it, provided dv/dé be large enough. (A large value of dv/d9 means,

according to (5), a steep frontal layer, as the termi v in (5) is always very small, representing,

as it does, the slope of the isobaric surface).
Finished 1944,
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