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CHAPTER 1. HISTORICAL SURVEY

INTRODUCTION

It is known from history, that already before the beginning of our era the North
Sea shores of Holland and Germany were badly damaged by floods, of which many are
said to have been accompanied by heavy storms. It was indeed. soon realized, that they
were caused by the wind. These floods were therefore called ,,Storm surges” (one must
distinguish between the actual storm surges and those caused by waterswollen rivers!).
One of the best-known storm surges occurred on November 18th of 1421, when 10 000 persons
perished and 72 villages were completely swept away by the sea. Other well-known surges
are those of November 1st of 1570, December 25th of 1717, November 14th of 1775 and
February 4th of 1825.

The last storm surge that caused considerable damage occurred on 13—14 January 1916.
After this flood a “Warning-service for storm surges” was built up in Holland. This service
gives warnings when dangerously high levels of the sea at the coast are to be expected.
As, however, in practice it turned out, that the method, used for calculating the waterlevels,
was not wholly satisfactory, an attempt is made to improve the method of prediction.
The results are contained in the present publication. After a survey of the most important
investigations concerning this problem, theoretical considerations follow. These are applied
to the working up of the collected data. The results of this application are in their turn
discussed, likewise with the help of the theoretical considerations mentioned.

1. Investigations of storm surges on the Duteh coast

In the preceding century it was already discovered that a satisfactory study of the
influence of the wind on the sealevel could only be carried out after elimination of the
astronomical tides. One of the first to do this was ENxcELENBURG (1, 2). He calculated for
* the years 1887 and 1888 the average value of the sealevel at Flushing for each day of
this period, simply by averaging the values of high tide and low tide. These averages
were correlated with the wind and air-pressure prevailing on the same day. Considering
the values of the height of the sealevel as a function of the direction of the wind it
was found, that the sealevel was higher than normal when a seawind was blowing,
especially with Westerly wind. Southerly and Northerly winds increased also the height
of the sealevel, but much less than the Westerly winds. An Easterly wind, however,
diminished the height of the sealevel.

"But not only the effect of the direction of the wind was considered, ENGELENBURG
studied also the effect of the pressure of the air. He found, that an increase in air-
pressure of 1 mm mercury caused a lowering of the sealevel by 6 mm when an Easterly
wind prevailed, and by 8 mm when a seawind was blowing.

ENGELENBURG had not yet the pre-computed heights of the astronomical tides at his
disposal. But Orrr had, who in 1897 published (3, 4, 5) very valuable researches on
the effect of wind and barometric pressure on the height of the sealevel. He compared
the heights of the tides given in the tide-tables (calculated for Hook of Holland and
IJmuiden, and later also for Helder) with the actually observed ones. The difference
between calculated and observed values must be caused by wind and by changes in the
air pressure. As a first result of his study, and a very valuable one, OrTT found, that
the meteorological and astronomical effects can be superposed upon each other as they
disturb each other only very slightly. Though the sealevel is indeed slightly more
affected by the wind at low tide than at high tide, OrrT could safely neglect this
small difference in his final formula. The difference between calculated and observed
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height of sealevel is called meteorological effect. This effect is caused by the combined
action of wind and atmospheric pressure. When we consider exclusively the effect of the
wind, we use the term “‘windeffect’”.

A second result of ORTT’s investigation was the introduction of a “time-lag”. Already
other investigators had noticed (see § 2), that a certain time is needed for the wind to
reach its full effect. When a storm breaks suddenly, the sea reaches its maximum
height only after a certain lapse of time. Orrr found, that for the Dutch North Sea-
' coast the time-lag amounts to 6 hours. For that reason he related in his further
investigations all values of the height of the sealevel to the data of wind and
atmospheric pressure prevailing 6 hours earlier.

In this way the relation between height of the sealevel and meteorological conditions
was studied. His results can be summarized in the following formula:

{=K.R+4 R;(716 — B), (1)
where: » '
¢ = meteorological effect;
K = factor, indicating the influence of the force of the wind;
R =, , » ’ ' ,» » direction of the wind;
Ry =, , » ’ " » 5 atmospheric pressure;
B = atmospheric pressure in cm mercury. :

‘The relation between the velocity of the wind and the magnitude of the factor K
is given in table 1. :

TABLE 1 Value of K as a function of the velocity of the wind

Windvelocity (m/sec) 1.5 3.5 6.0 8.0 16,0 | 12,5 | 15.0 | 18.0 | 21.5 | 25.0 | 29.0

K. ... ...... 04 2 6 | 10 16 25 36 50 70 90 110
o4 vz .. .. ... 0.3 2 5 9 14 22 32 45 65 88 118

In table 2 the relation between the factors R and R, and the direction of the
wind is given.

TABLE 2. ~ Value of R and Ry as a function of the direction of the wind

Directi
: tﬁzc,f;ﬁd‘)f N |NNE|NE |ENE| E |ESE| SE |SSE| S |SSW| sW (WSW| W [WNW| NW [NNW

“R. . ... 06 00—07—10~13}~12-08-—0.1] 04} 06 09| 1.2 1.6/ 15 13| 09
By . . .. 12 11 10 9 7T 6 7 8 8 6 6 8 10 {12 14 |13

If we study table I more closely, it turns out, that the influence of the wind is
nearly proportlonal to the square of its welocity. To show this, the value of 0,14 V2 has
been entered also in table 1 (V = velocity of the wind in m/sec It is clear, that we
may put with sufficient accuracy: K = 0,14 V2. ' .

We may say therefore, that for any direction of the wind the windeffect . is
proportional to the square of the velocity of the wind. The same result was obtained
by other investigators (see § 2). »

The influence of the direction of the wind can be inferred from table 2. The
maximum positive value of the windeffect occurs, when the wind has a direction
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between W and WNW. The maximum negative windeffect is found, when the direction
of the wind is between E and ESE, which differs exactly 180° from the former
direction ! Tt is also evident that an on-shore-wind has a greater effect than an off-
shore-wind (maximum positive value of R = 1,6, maximum negative value of B =—1.3).
Analogous results were obtained by other investigators. The explanation is the fact,
that in the case of an off-shore-wind part of the sea is more or less sheltered from the
wind by the coast. , : :

" The influence of the atmospheric pressure is indicated by the second term in the
right hand side of equation (1). This term makes it clear, that the level of the sea
rises when the atmospheric pressure decreases and vice versa. Now, when on our coast -
the atmospheric pressure decreases, it might be expected, that the sea would rise
proportionally to the fall in pressure, the proportionality factor (R,) having the value:
density of mercury/density of seawater = 13,2, as the hydrostatic equilibrium must be
maintained. But OrTT found, that R, is-not constant and equal to 13,2, but a function
of the direction of the wind. The theoretical value is reached only for the direction NW
(R, = 14). For all other directions we have: R, <C13,2. ORTT attributes these differences
to the influence of differences in the field of wind at greater distances from the coast.
The first term in the right hand side of equation (1) (K R) is supposed to represent
more or less the influence of the local field of wind, contrary to the second term, in
which, according to the above-mentioned explanation, the influence of the field of wind
on the whole North Sea (distant effect) plays a role. A more quantitative separation of
the two effects was tried by OmTT in a later investigation (5), but the results were far
from satisfactory. :

As a last result OrTT found, that the effect of meteorological conditions was practically
the same at Hook of Holland and IJmuiden. The same formula was therefore given
(equation (1)!) for both places.

ORrTT’s investigation is very important, as he treated the problem of the influence
of wind and atmospheric pressure on the level of the sea very thoroughly. We summarize
his results therefore as follows: '

a. Elimination of the astronomical tides (ORTT: simple superposition).

b. Inertia of the sea (OrTT: the height of the sea lags 6 hours behind the meteorolo-
gical causes). '

¢. Relation between the windeffect and the welocity of the wind (OrTT: quadratic).

. Relation between the windeffect and the direction’ of the wind (ORTT: maximum when
- wind is WNW).

e. Relation between the height of the sea and atmospheric pressure (OrTT: depends
on the direction of the wind, R, = 13,2). )

. Influence of distant parts of the windfield (ORTT: some influence is present).

g. Difference in meteorological effect along the coasts (OrTT: no difference between Hook
of Holland and IJmuiden).

The next investigator to be mentioned here, is GarLk (6). OrTT obtained only four
values for the meteorological effect on each day, by comparing the calculated and actually
observed values of high tide and low tide. GALLE, however, obtained a complete elimination
of the tides for a whole day (every hour of the day!) by introducing the “harmonic
analysis” of the tides (see e.g. VAN DER STOK, 7a and 7b). The tides were represented
in the well-known way as a superposition of a set of partial, simply harmonic tides:

§= X8, cos (ot — A). : @)

' S,, w, and A, are characteristic constants for each partial tide, which are known
for many places on the Dutch coast. With the aid of formula (2) the height of the
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astronomical tide can be calculated for any moment. Assuming a simple superposition,
the meteorological effect is found afterwards by subtracting the calculated value of the
astronomical tide from the actually observed height of the sealevel.

According to this method Garr# calculated the meteorological effect for specially
_selected days, on which storm surges occurred, for some places on the North Sea and
Zuiderzee coasts. Qualitatively a close relation between wind and meteorological effect
was found (Garri neglected the influence of the atmospheric pressure). More important
were his investigations concerning the influence of distant and local effects. He computed
- for 42 storm surges the average barometric field and the average meteorological effect on
our coasts present two days before, one day before and on the day itself of the storm
surge. The average barometric field shows a deepening depression, moving from Iceland
to South-Scandinavia. By the friction between the wind and the surface of the sea a
current is set up, which is deflected to the right of the direction of the wind.
According to Gair®, therefore, the windfield will, already before the day of the storm
surge in question, cause an accumulation of water in the North Sea, mainly due to the
wind on the Atlantic Ocean: “‘effect of distant causes”. Upon this effect the local wind
will superpose its own effect on the day of the storm surge considered because the
water, already entered into the North Sea through the Channel and the “Norwegian
Sea’”, cannot flow away during the actual storm. In this way the considerations of
OrTT were completed by GALLE.

A thorough investigation of a number of storm Surges was carried out by the
Government committee for the ‘“Rotterdamsche Waterweg” (8). This committee was
established as a consequence of floods, caused by the storm surge of 13—14 January of
1916. The results, obtained by this body have been used up to the present for the
prediction of the height of storm surges. The investigations of this committee were likewise
based on the assumption of the simple superposition of the meteorological and astronomical
effects. For 19 storm surges occurring between 1887 and 1917, covering in all 100 days,
the height of the astronomical tide was calculated with the aid of formula (2) for Hook
of Holland for each half hour of the selected days. The values computed in this way
were subtracted from the actually observed values of the height of the sealevel, and
2562 values of the meteorological effect were obtained. These values were related to the
wind, registered at the same time with the apparatus at Hook of Holland. The effects
of atmospheric pressure and ‘“time-lag” were neglected. For each direction of the wind
(SW, WSW, W, etc.) and each Beaufort degree of windforce the corresponding values
of the meteorological effect were averaged. In this way table 3 was obtained. With the
aid of this table figure 1 was drawn.

TABLE 3

Meteorological effect (in cm) at Hook of Holland as a funciion of the force and the direction of the wind

Windtorce (Beaufort)
6 7 8 9 10 11 12
Direction of the wind ' - .

T
SW . . . ..o 6 8 16 13 32 — | —
WSW . . . ..o 26 29 48 65 101 164 —
W. . . s e 45 79 84 114 150 153 163
WNW . . . .o 46 68 118 | 126 157 213 245
NW. . ... .. 0.0 71 82 115 150 178 204 203
NNW . ... .. ... ... e 49 64 - 73 133 | 150 — 175

An outstanding feature of these curves is that they do not have similar shapes.
Evidently, the meteorological effect cannot be represented in this case by formula (1), or
by part of it. For then, the curves should nearly conform (as the effect of the
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atmospheric pressure is not eliminated, some distortion of the curves will be present).
Moreover the quadratic law of the windeffect seems not to hold in this investigation. In
figure 1 the windeffect is plotted against the force of the wind, measured in degrees
Beaufort. For the Beaufort scale, however, the velocity-equivalents are given very nearly
(Stmpsow, 9) by: V = 0,75 B (V in m/sec, B in degrees Beaufort).

If the quadratic law were obeyed, we should have:

t=alV?2=a.(0,75)2 B*>=0b B3

¢ should therefore be proportional to the cube of the windforce.

"As can be seen directly in figure 1, this is certainly not the case. The committee also
computed the average meteorological effect existing two days before, one day before and
on the day of the actual storm surge.
They obtained respectively 22 om,
39 cm ands 90 cm. The effect for the 50
foregoing days was again attributed
to “distant causes”. An investigation
was carried out concerning the ques-
tion, where these “distant causes’ had
to be located. The correlation coeffi- 444
cient was computed for the relation
between the “wind on the North Sea”

(the vectorial mean value of the wind 175 . 4 / NNW.
prevailing on the KEast coast of _ / ?
England, on the Dutch lightships / // '

cm

NG

225

“Schouwenbank” and “Maas” and at !5 7
Hook of Holland) and the meteo- /
rological effect. The direction of the 25 | _ ) /
wind was taken into account by using / 7
in the correlationformula the WNW- // :

component of the “wind on the North 100

Sea”. The value of the correlation

coefficient », computed in this way, //
was: 7 = 0,918. b b 75 /7//

It was found, also with the aid

=

of a graphical method, that the mete- /
/
—

orological effect was more strongly 30
connected with the “wind on the North
Sea’” than with the wind on the coast.
This constituted a very valuable

L~ SW A

25

|

result: the effect of distant causes was t
mainly due to the field of wind present afn o
above the whole Southern part of the 6 7
North Sea. Only a small fraction of Beaufort —>
the meteorologlcal effect must still be Fig. 1 Meteorological effect (in cm) at Hook of Holland as a function
ascribed to wind existing elsewhere. of the force and the direction of tho wind

The change in the meteorological
effect along the coast was also investigated. On the day of the actual storm surge prac‘tlcally
no differences were found for places on the coast between Brouwershaven and Helder.
But in Flushing and Vlieland the effect was slightly less (by - 8 %,).

The results of the “government committee of 1916” were afterwards used by vaw
EveErDINGEN (10) for the establishment of a ‘“Service of Warnings for Storm Surges”.
We are here of course mainly concerned with the prediction of the actual height of
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high tide. The direction and force of the wind occurring some hours before the time of
high tide were estimated and the corresponding meteorological effect was read from the
curves of figure 1. This value had to be added to the predicted value of the height of
high tide from the tide-table to obtain the value of the actual height of high tide.
Often the value computed in this way had to be corrected for the effect due to distant
causes. For in most cases the heights of the tide computed in this way for the period,
immediately preceding the actual storm surge, were too low (the actual heights being
communicated to the Meteorological Institute, the seat of the Warning Service for Storm
Surges). Now according to vaAN EVERDINGEN, the difference between the calculated and
observed values of the height of the tides was due to distant causes. This effect was assumed
to remain constant throughout the whole storm surge, and was therefore used as a correction
in the computation of the heights of high tides during the storm. But in practice it
~was often found, that the heights of high tide, computed in this way, were too high.
Evidently the “effect of the distant causes” did not remain constant throughout the whole
storm surge. A new investigation was therefore inaugurated to obtain a better insight into
this question. The results of this investigation are laid down in the present publication.

Other valuable researches were published by LerLy (11, 12), the “government committee
for the Zuiderzee” (13) and MazurE (14), especially concerning the formula derived and
used for the windeffect in a closed channel. This formula is:

a V2L cos y
=t ®

windeffect (in cm); : :

a constant. Mostly values 0,035 <a < 0,045 are found;

windvelocity (in m/sec);

length of the channel (in km);

depth of the channel (in m);

angle between the direction of the wind and the axis of the channel.

‘In publications (13) and (14) is assumed: a = 0,036. The windeffect according to (3)
is assumed to be quadratic in the windvelocity. Moreover it is inversely proportional to
the depth of the channel. ' v

[ T

<N

2. Other investigations

In the preceding paragraph the different causes, which influence the development- of
a storm surge, are indicated in connection with the Dutch researches ion this problem.
In this paragraph we shall discuss systematically the results of other investigators, arranged
according to these different causes. A summary of all the literature on storm surges is
not meant. A survey of this literature is given among others by Wirring (15), KrRUMMEL (16)
and THORADE (17). ‘

We discuss the different causes in the same order as in § 1.

a. Elimination of the astronomical tide ' .

According to LenTz (18) the meteorological effect is practically superposed upon the
astronomical tides, without affecting the latter. But according to BupenpEY (19) this
is not quite true. The height of the sealevel is more influenced at low tide than at
high tide. His explanation of this fact can be summarized as follows: the depth of the
sea at low tide is less than at high tide; as the wind influences shallow water more
strongly than deep water, the sea is more influenced at low tide than at high tide. The
same result was obtained by Doopson (20) and Dixms (21). On the whole these
differences are rather small, however, and they can be easily recognized by their purely
periodical character with the period of the tides, so that they can be eliminated subsequently.
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b. Inertia of the sea

Already BuseNDEY (19) assumed, that the condition of the sea would become stationary,
if the wind blows during a sufficiently long time. For each place on the coast this
stationary state would be reached after a certain ‘‘retardation-time’, characteristic for the
place in questlon For the Belgian coast ScEHULZ (23) obtained a “time-lag” of 3 hours,
a value which is considerably lower than that found by OrrT (6 hours). DixNes (21)
however obtained for the windeffect on the English East coast a time-lag of about
6 hours. Doopsox (20, 22) in- cm
vestigated also these time-lags. 240
He found, that a local wind
influences the sea immediately,
whereas the wind at more distant
places exercised its effect only

- 200

‘160

after a certain time-lag. See |3 TN

further f. / 7\/ \
Mo6LLEr found already (24), 80 / Y

that the sea does not approach / N

its steady state by simply rising % 7 X

asymptotically. According to this . ! o

investigator oscillations of the sea \

are created. In approaching its _40 :

final states the sea oscillates there- 1
fore about this stationary valuesas -8

well in the case of the formation M istaay O 2ndday O 3ddyy O 4hday " Sthday
of a windeffect during a storm Fig. 2. Oscillations of the sea due to wind.

as in the case of the flowing away em

of the surplus of water after a 24

storm. The amplitude of these

oscillations is the greater the 200

quicker the changes in the direc-
]thIl or force of the wind. Accor-

! ding to MOLLER therefore, a storm 120

‘which breaks suddenly is more

‘dangerous than a storm which 80

‘develops gradually, because in the

former case the fluctuations of 40 y

the sea will exceed the stationary o b \ \

level to a much larger extent,
thereby causing the maximum .4 ) N
meteorological effect to be abnor- 4
mally great. Oscillations of this sA-e0l . Lh - -
type have been discovered also 1stday 2ndday 3dday 4thday Sthday

by other investigators. La Cour Fig. 3. Oscillations of the sea due to wind.

(25) found an oscillation of the

Southern part of the Baltic during the storm surge of 15—16 J anuary 1916 According to
THORADE (26) analogous oscillations were generated in the Sont.

But also oscillations in which the whole North Sea partlclpated were found by THORADE
(17). The perlod amounted approximately to two days, which is rather 1ong for the North
Sea. (Longest “eigen periode” of the North Sea according to THORADE is 1§ day).

Waves, travelling from the North around the whole North Sea, have been descrlbed
by Doobson (20).

The theoretical explanation of this phenomenon was first given by PROUDMAN and
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Doopson (27). They calculated the variations of the height of the sealevel at the coast
caused by a suddenly or gradually varying field of wind or atmospheric pressure. The
results of their calculations for two types of variation of a windfield are shown in figures
2 and 3.

In both flgures the broken lines 1nd10ate the height of the sealevel if at each moment
the sea would be in the stationary state corresponding to the field of wind, present at
that moment. In both figures the oscillations are clearly present. It is also evident, that
the normal state, after the storm has ceased, is reached by asymptotically decreasing
oscillations. In both™ figures a time-lag can also clearly be seen.

In these calculations the rotation of the earth was neglected and other s1mp11fy1ng
assumptions were introduced. Nevertheless, it may be said, that this investigation gives a
rather complete theoretical account of the phenomena connected with the inertia of the
sea. Analogous calculations were performed by HorroCks (28), the earth’s rotation being
taken into account. His computations are extremely complicated and their use for numerical
work is therefore difficult. HOrRROCKS, too, was compelled to introduce simplifying assumptions
(nowind present at the coast!).

' Hipara (29, 30, 31, 32) does not assume, that the wind is zero at the coast, but
neglects the earth’s rotation. He finds, that, when the wind starts, the level of the sea
at the coast begins immediately to slant to an extent adjusted to the wind.

The most complete calculations have been carried out by Nomrrsu (33, 34, 35, 36,
37, 38, 39). The Coriolis-force is taken into account, and he calculated the height of
the sealevel for the case in which the wind at the coast is zero, as well as for the case
in which the wind is uniform above the whole sea or channel. In the first case
according to his computations oscillations are generated. In the second case he finds, as
did Hipaxa, that the level of the sea begins immediately to slant at the coast, which
state is then propagated seaward off the coast. The wvelocity of propagation is nearly
the same as for the propagation .of a “long wave” (tidal wave, etc.).

¢. Relation between windeffect and velocity of the wind

LENTZ pomted out already in 1879 (18), that the windeffect is proportional to the
square of the windvelocity. A thorough investigation was carried out by CoLpiNa
(40, 41). He obtained a formula, which we write (for comparison with formula (3)) in
the following form:

0,048 LV? cos? ¢ -

= J7]

In this formula ¢, L, V, v and H have the same meaning as in formula (3). The
two formulas are immediately seen to be nearly identical, only in the formula of
Corpine the second power of cos y is used. CoLpiNG takes therefore the square of the
component of the wind in the direction of the channel into account.

CorpiNg used for the verification of his formula the differences in height of the
sealevel, caused by the storm of 12—14 November 1872 in the Danish waters and the
Baltic. The formula was found to be fairly satisfactory.

Wirting (15) investigated the relation between the mean Value of the height of the
sealevel and the gradient of the atmospheric pressure (means over a month !). This method
of correlation had certain advantages, viz. that the effect of the “time-lags” is practically
absent in these monthly means. As, moreover, the gradient causes both the wind (and
therefore the windeffect!) and the effect of the atmospheric pressure on the sea, the
relation. between gradient and total meteorological effect may be expected to be simple.
As both the absolute magmtude and the direction of the gradient should be taken into
account, the gradient is decomposed into its North and East component: A N and A X
respectively. For the relation between the difference in height of the sealevel between
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two places A V and the values of the two components of the gradiént Wirting
obtained the following general formula:

AV p.AN+q.NE.

P and g are constants, havmg their characteristic value for each pair of places on
the coast of the Baltic. It is possible to eliminate from this formula the effect of the
atmospheric pressure and to connect the windeffect, found in this way, with the vector
of the wind, as the windvector can be easily deduced from the vector of the gradient.
On doing this, it turns out that a linear law holds for the relation between the
velocity of the wind and the value of the windeffect. WirTiNGg himself, however, points
out, that this relation is not entirely reliable, the water in the Baltic being strongly
stratified, which may be the cause of this different behaviour of the relation between
the velocity of the wind and the windeffect. These results, too, were obtained with the
aid of monthly means, which may cause some confusion in the results.

LEVERKINCK (42) assumed for the relation between windeffect and velocities of the wind:

="k

In this formula k& was not a constant, but was in its turn a function of V. This
resulted in the fact, that up to nearly 20 m/sec, { was proportional to a power of V
much less than 2. But for velocities well above 20 m/sec £ was practically a constant.

Scuurz (23) found in his investigations on the effect of the wind on the level of
the sea at the Belgian coast a quadratic law. But his formulas have been derived only
for velocities between 1 and 6 degrees Beaufort, that means for rather small values of
the velocity of the wind.

Havrorp (43) investigated the windeffect on the great American lakes. He obtamed

L=k V™,

Here the power of V is even grealer than 2.

PALMEN (44, 45, 46, 47) investigated the windeffect on the Baltic. The effect of the
atmospheric pressure was carefully eliminated. In the beginning he fournd a linear law
for small values of the windvelocity (45). But the observations in cases with strong winds
could better be represent/d by a quadratic law (45, 46). He found for the windeffect -at
a distance of 100 km: ' . ‘

Z:: 0,063 V2.

This formula only holds for a certain part of the sea, for which PALMEN estimates a
depth of ca. 50 m. He shows theoretically, that the windeffect should be approximately
inversely proportional to the depth of the sea. If we introduce this into his formula, and
write the latter in a form similar to formula (1), we obtain:

0,032 L V2 cos g
7 .

. ' =

Herrstrom (48) derives from observations, made on the American lake Okeechobee
during hurricanes, in which very high wind velocities occurred, the following relation:

L=t. VLS,

The power of V is in this formula less than 2.



d. Relation between windeffect and direction of the wind

ScrauLz (23) found, that the relation between the value of the windeffect and the
direction v of the wind, could be represented fairly well by a cosine function. The
maximum value of the windeffect was reached for the direction WNW. According to
ScrULZ the positive and negative values of the windeffect were distributed nearly sym-
metrically. »

LenTz (18) found, however, that the negative effect is smaller than the positive
effect, if we consider the same windforce in both cases. He attributes this phenomenon
to the fact, that an off-shore-wind is only able to produce sufficiently high waves
after having travelled some distance over the water, so that the part of the sea on
which the wind can exert its influence is smaller in the case of an off-shore-wind than
in the case of an on-shore-wind, which results in a difference in windeffect between the
two cases. : :

According to LEVERKINCK (42), the greatest effect is caused by a wind, which
blows parallel to the longitudinal axis of the North Sea. See below f. This is also the
opinion of PrRUGEL (49). DinEs (21) found, that the greatest valuesof the windeffect on
the East coast of England were caused by Northwesterly wind on the whole North Sea.
DoopsoN (20) obtained similar results (see however below f).

The results we discussed so far in this section were, however, concerned only with
the coasts of the North Sea. But we may mention here also some investigation of the
windeffect in lakes or inland seas which are more or less enclosed, like the Baltic.
Many theoretical researches on this problem have also been published. In this case one
is mainly interested in the direction of the slope of the watersurface relative to the
" direction of the wind, when the equilibrium state. of the surface under the influence of
the wind has been reached. When we have found this more general relation, the
angular distribution of the windeffect can be easily calculated for any place on the
coast of the lake or sea (HrLLsTROM, 48). Investigation showed, that on the European
and American lakes the slope of the water surface assumes the same direction as the
direction of the wind. On greater inland seas, however, the direction of this slope is
not exactly the same as the direction of the wind. This originates in the influence of
the rotation of the earth, which causes a deflection of the slope to the right of the
direction of the wind; this deflection though small is clearly perceptible. This has been
found by many investigators. CoLping (41) constructed for various times the lines of
equal height of sealevel of the Baltic and the Danish waters during the storm of
12—14 Nov. 1872. On his splendid charts he also indicated the position of the isobars
and the trajectories of the wind. From these charts it is easily derived that indeed the
direction of the slope of the sealevel approaches gradually the direction of the wind.
If we take the effect of the atmospheric pressure into account it turns out, however,
that the direction of the slope is slightly deflected to the right of the direction of the
wind. But this difference is small and amounts only from 5° to 10°.

From these charts still an other fact may be derived: the islands in the sea and
the form of the coasts do not influence at all the position of the isohypses of the water-
level. This position is fixed by the direction of the wind and the depth of the sea only.

WirTiNg (15) too found, that in the Baltic the slope of the water is deflected only
from 0° to 5° to the right of the direction of the wind. For the North Sea, too,
WittinG tried to find the relation between the gradient of the atmospheric pressure
and the meteorological effect. His results are not very reliable, as sufficient observations
were lacking. Nevertheless we may conclude from his work (correcting for the effect of
the atmospheric pressure!), that also in the Southern part of the North Sea the slope
of the water has nearly the same direction as the wind. The greatest values of the
slope occur in the most Southerly part of the North Sea (between Holland and England,
in the Helgoland Bight). This can be explained easily: here the sea is shallowest.

10



. PALMEN, too, (44, 46) studied the angle between the direction of the slope and the
direction of the wind in the Baltic, after correcting for the effect of the atmospheric
pressure. He found in general a deflection. to the right (44). But when the velocity of
the wind is small, large individual deviations may occur, the magnitude of the slope
then being small, so that other effects have a relatively large influence. During the
storm of 3—7 October 1936, however, the whole Baltic reached finally a state of
equilibrium. He found, in connection with the high wind-velocities then prevailing, (46)
a rather constant deflection to the right, average value 3°, in good agreement with the
results of WITTING. , .

The result of all these investigations is very satisfactorily confirmed by theory. The
theory was founded by Exmanx (50, 51, 52). He obtained, that in enclosed seas, in
which the force of Coriolis can not be neglected, the slope of the water is deflected to
the right of the direction of the wind. The windeffect should be inversely proportional
to the depth of the sea. Analogous calculations, based on more general assumptions,
were carried out, among others, by JEFFREYS (53, 54) and NomITsU and TAxEcAMI (38).
They assumed a quaratic law of friction for the water along the bottom of the sea
(see also chapter II), whereas Exmax simply assumed the velocity of the water to be
zero at the bottom. The latter investigators found also, that the value of the wind-
effect is nearly inversely proportional to the depth of the sea, but that the angle
between the slope of the surface and the direction of the wind changes slightly with
the velocity of the wind and the depth of the sea. From their computations one can,
however, deduce that this angle for the case of the Baltic amounts from 1° to 5° in
perfect agreement with the results of PArmiN and WITTING.

e. Influence of the atmospheric pressure

On this subject, too, many researches have been carried out. For an enclosed sea
theory yields the result, that the sea is simply in hydrostatic equilibrium (see, among
others, (37)). The slope of the sulface of the sea should, therefore, be directed exactly
parallel to the gradient of the atmospheric pressure. This result was used by ParLmEN
(44, 46) for eliminating the effect of the atmospheric pressure. As the density of the
seawater is approximately 1,03, a difference of pressure of 1 cm mercury should cause a
difference in height of the sea of 13,2 cm, when perfect hydrostatic equilibrium is
reached. This stationary state, however, is very probably never reached under the
conditions prevailing during a normal storm surge on the coasts of the North Sea (more
or less quickly moving depressions, etc.). Accordingly many different values for the
proportionality-factor were found, ranging between 5 and 30 cm of water per cm
mercury. This problem will therefore be treated more in particular. ,

Attention is called here to the work of ProupMaN (55) on the influence of a
moving depression. According to his theory a moving wave is generated under these
conditions on the surface of the sea. But the most important result of his considerations
is, that in this case higher values of the sealevel may occur, than would follow from
the simple hydrostatic law. He derived the following formula for the ratio between the
actual variation ¢ and the variations according to the simple hydrostatic law ¢ in a
closed channel:

1

3

1=
c

e

\

v = velocity of the movement of the depression; \
¢ = velocity of propagation of long waves.

If we have approximately: v = ¢, very large disturbances of the watersurface may Ooccur. -
Douaras (56) is of opinion to have found a confirmation of this theory in practice.
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Nowmrirsu (57) and TakecaMI (58, 59) obtain similar results. In this way theory
offers an explanation of the occurrence of “waterequivalents” which are larger than the
theoretical value deduced from the hydrostatic law.

f.  Effects of distant causes |

It was already known to Lentz (18), that the variations of the sealevel near the
coast were often more closely connected with the wind in other places than with the
local wind. LEVERKINCK (42) assumed, that the height of the sealevel in the Helgoland
Bight was principally influenced by the mean value of the wind on the whole North Sea.
The component of the wind parallel to the longltudmal axis of the sea (approximately
perpendlcular to the line Skudesnédes-Aberdeen) should in this connection be considered
more in particular. Assuming an angle of 16° between the wind on the Sea and the
isobars, LEVERKINCK was able to calculate the value of this component from the
difference in airpressure between Skudesndes and Aberdeen. It turned out that the
value of this quantity and the meteorological effect in the Helgoland Bight were indeed
closely connected. The curves for the two quantities were nearly identical, only one
curve lagged a certain time behind the other (see below b!). The correlation factor
amounted to 0,93.

Dinms (21) also correlated in his investigation the meteorological effect with the
wind on the whole sea. A very important study of this question was carried out by
Doopson (20). He assumed (following WirTiNG, 15) a linear equation of regression for
the relation between the meteorological effect at London Bridge and the North and
Kast components of the gra(hent of the atmospheric pressure at London Bridge, at
60° N.L., 0° E.L. (a point in the neighbourhood of South-Norway) and at 50° N.L.,
10° W.L. (South of Ireland). The local barometric pressure was also taken into account.
To connect the direction of the gradient with the direction of the wind Doopson
assumed an angle of 20° between the wind and the isobars. In this way he was. able to
obtain the direction' of the wind which is most effective in influencing the sealevel at
London Bridge, the relative influence of the wind in the three places mentioned and
also the tlme-lag between the wind and its effect. DoonsoN finds, that the influence of
the wind in these different places is nearly equal. The most effective directions of the
wind and the corresponding time-lags are summeérized in table 4.

TABLE 4

Most effective directions of the wind for raising the sealevel at London Bridge and corresponding time-lags
\

q tty\{ London Bridge North Sea ' Irish Sea
uanti : .

Effective direction of wind . . . . NNE Nw E
Time-lag (hours). e e e 0 ' 12 12

The most 1mportant result of this mvestlgatlon is, that a Northwesterly wind above
the North Sea is most effective in raising the sealevel on the coasts of the Southern
part of the sea. The effect of the wind in the Irish Sea seems difficult to explain
physically. Pronounced time-lags are present.

g. Difference in meteorological effect along the coast

SCHULTZ (23) obtained the result, that the value of the meteorological offect along
the Belglan coast varied only little. From other investigations it follows, that the wind-
effect in the Helgoland Bight is often larger than on our coasts. This should ~most
probably be attributed to ‘the shallowness of the sea in this place.

12



3. Scope of the present investigation

The researches mentioned in the preceding paragraphs can be summarized as ‘
follows, according to the different aspects: :

a. Astronomical and meteorological effects are simply superposed upon each other. After
subtraction of the calculated values of the astronomical tides from the actual heights
of the sealevel, it is possible that little fluctuations remain, which can however easily
be recognized, and removed.

b. Owing to the inertia of the sea oscillations relatlvely to the equilibrium state
ocour, in which the whole North Sea eventually partakes, with periods, which may
amount to two days. The fluctuations in the field of wind cause fluctuations in the
height of the sealevel with a certain time-lag, which on our coasts amounts
probably from 3 to 6 hours.

¢.  The relation between the velocity of the wind and the windeffect obeys approximately
a quadratic law. ‘

d. The most effective direction of the wind in raising the level of the sea in the
Southern part of the North Sea is approximately NW. This part of the sea
behaves nearly as an enclosed sea.

e. The relation between the height of the sealevel and the atmospheric pressure is closely
connected with the structure and the movement of the field of pressure. The
average value of the “waterequivalent” is however smaller than the theoretical value.

f.  The windeffect in the Southern part of the North Sea is closely connected with the
mean value of the wind on the whole North Sea. v

~g. The change in the meteorological effect along the Dutch North Sea coast, South of

Helder is in most cases negligible.

A great drawback of the methods which hitherto have been used, is, that the
results only hold for the awerage of a great number of cases. But for the Warning
Service for Storm Surges it is of the utmost importance, that each individual case could
be explained. For that reason a general scheme should be built up to predict the development
of every storm surge from the expected development of the field of wind -and pressure. In
this scheme the wind at different places of the sea should be taken into account. In
this way the structure of the whole field of wind, even in the case of pronounced
inhomogenity, should enter into the computation. To be able to do this in the most
simple way, a theoretical investigation into the influence of the wind at different places
of the North Sea is first carried out. Also the phenomena of inertia (oscillations, time-lag)
are studied. The theoretical considerations serve then to work up the compiled data and
finally results are discussed.
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CHAPTER II. THEORY OF THE WINDEFFECT IN THE NORTH SEA"

~ In this chapter theoretical considerations are given concerning the various aspects of
storm surges, discussed in chapter I. These investigations will guide us in working up the
collected data. The problem of the windeffect in an enclosed sea is chosen as the
central problem, as this is the most important one for the North Sea. Consequently the
following problems are treated: angular distribution of the windeffect, phenomena of
inertia, effects of distant causes and inhomogeneity of the field of wind. We shall use
throughout this chapter the following symbols:

x, y, = = set of Cartesian coordinates (right hand-system), by which the motion of the
“water is described. The xy-plane is laid in the undisturbed surface of the sea,
the positive direction of the z-axis is pointing downwards.

H = depth of the sea (generally H is a function of x and y).

Vs, vy — components of the horizontal motion of the water. v, and v, are functions of z.
H

H
8., Sy = components of the total current (S, = / vz, Sy = [ vydz).
W = Uy + . 0 0
S = S+ 18,
S = vector with components S, and S,.
i = imaginary unit of the complex plane.
¢{ = deviation of the sealevel from the undisturbed position.
, ol ag ,
Y2y Yy — —a_xp_‘—?y-
= Yz + Wy
= vector with components y, and y,.
W., W, = shearing stress (frictional force) of the wind along the surface of the sea.

— vector with components W, and W,.
= vector with components v, and v,.

= vector of the frictional force between two adjacent layers of water (components:
u, and u,).

density of the seawater. | : :
(virtual) coefficient of friction between two adjacent layers of water.
coefficient of friction along the bottom of the sea.

angular velocity of the earth.

average geographical latitude of the North Sea.

= 2o sin ¢. , ’

— )L

acceleration of gravity.

mixing length. :

component of the total current perpendicular to the coast.
velocity of the wind above the sea (measured at a height of 6 m).

I

I

ol

Q

Il

|

S t‘gaﬁw

|

7 Vzi; (depth of frictional influence, Exman’s ‘“Reibungstiefe”).
0 .

1. The Fundamental equations

The motion of the water, caused by wind and fluctuations of the atmospheric pressure,
are governed by the frictional forces which arise, when the various layers of water slide
along each other. For our investigations it suffices to consider the forces arising from
differences between the horizontal velocities of the various layers. It is true, that also
frictional forces are generated when differences of velocity in horizontal direction exist
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(“lateral mixing”), but in our investigation we are allowed to neglect these forces.
Moreover, we shall consider exclusively the horizontal motions, neglecting the vertical
components of the motion.
According to the theory of turbulence the frictional force (shearing stress) 4, exerted
by a layer with a velocity # and coordinate z on an adjacent layer with a velocity
(o 4 d®) and coordinate (z |- dz) is represented by the formula:

This is a force per unit of area. u is a coefficient of friction governed by the
turbulence in the water. The particles of water with different wvelocities are mixed by
turbulence; to express the rate of mixing PRANDTL introduced the “mixing length” m.
With the aid of this quantity x could be represented in the following way:

2]

oz

p= om*.

For the complete description of the motion of the water it is necessary to assume a
relation between m and z. m will be closely connected with z. In the neighbourhood of
the surface m can never attain large values, as the mixing there is much reduced by
the spacial boundary of the water. Downwards the value of m will rapidly increase, as
the uppermost water layers will be most strongly disturbed by the wind. After having
attained a maximum, m will decrease again, and finally obtain at the bottom a very
small value, as here again the mixing of the water is redueed by the fixed boundary of
the water.

PranpTL and v. KARMAN (60, 61) have derived formulas for m. But these formulas
are not appropriate for our purpose. It is possible to integrate with these formulas the
equations of motion only in those cases, in which it is allowed to neglect the rotation
of the earth, as, for example the flow in boundary layers or pipes. But in the case of
a sea, in which it is not allowed to neglect the earth’s rotation, it is not possible to
integrate the equations of motion in closed formulas. For our calculations however we
need exactly the solutions for the motion of the water in closed form. '

Erman (50, 51, 52) calculated the motion of the water assuming m to be a
constant. But even in this case it is not possible to express the solution in a closed
form. This is due to the factor |8%/oz | which occurs in the formula for u, causing the
formula for # to be quadratic in 2%/oz.

FJIELDSTADT (62) gives an other solution. He does not introduce the mixing length, but
introduces for p the formula:

2 n e . ‘
"LL:””(1~H—+—£)’ 0<§<<1,0<n<1. (2)

In this formula ¢ represents a very small length. According to equation (2) the
coefficient of friction has a maximum at the surface of the water, but a very small
value at the bottom. Neglecting the rotation of the earth the eguations of motion can
be integrated in a closed form, on the assumption that the velocity of the water at the -
bottom is zero, which is physically speaking evident. If, however, the rotation of the
earth is taken into account, the integration cannot be performed in closed form.
However, PATLMEN has shown (neglecting the earth’s rotation) that the decreasing of m
towards the bottom results in a motion of the water, which has more or less the
nature of a gliding of the water along the bottom of the sea. Only in a thin “boundary
layer” the velocity of the water decreases rapidly and becomes vigorously zero at the
bottom. In order to obtain the integral of the equations of motion, taking the rotation
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of the earth into account, we assume therefore, that z is a constant throughout the
water. But gliding of the water along the bottom of the sea is tolerated (cf. a. o.
Nomirsu and Takscami, 38, 39). The condition, that the velocity of flow along the
bottom of the sea = 0, must then be replaced by a formula governing the “friction”
between the water and the bottom of the sea. This “law” of friction can be established
in the following way: if we neglect the rotation of the earth the equations of motion
can be integrated in closed form in both cases (variable ¢ and constant u with sliding
along the bottom). It turns out, then, that the results of both calculations can be
made the same if we assume a linear relation to exist between the frictional force and
the velocity at the bottom. This will be shown here in more detail. The formulas (1)
and (2) represent the shearing stress existing between two adjacent layers of water. But
in the equations of motion appears the force which acts on a layer of water. For this

force k, acting on a layer of unit area and density ¢ we have (per unit of volume):

LR IN
. l_aﬁ_la %
T pd péoz Pz

Y

On a layer of water acts also the force caused by the slope of the surface of the

* water. The components of this force (per unit of volwme) are:
I a5s :
ar o
.—g EL" —_— E[/'

We write this in the condensed form:
+97.

‘The equation of motion becomes (neglecting ‘the rotation of the earth, as already
mentioned):

& 1@ % . : , , )

‘EE:Ea_z@sz) +9y. 3)

Striétly speaking the left hand side of the equation should have the form:

b

a—ya

o] oz
E + vw;x _l_ /Uy
| ov b7

In the case of homogeneous fields of wind the terms U”a_z and vyé are usually
exactly = 0. It can be shown by numerical computation that also in the case of
inhomogeneous fields of wind their relative influence is so small, that it is allowed to
neglect these terms. This is done in all calculations which follow. \

Equation (3) can now be integrated, if we introduce the formula for # and also the -
boundary conditions. The boundary condition valid for the surface of the water does
not depend on the way in which u varies with z. Here the friction between the layers
of water has simply to be in equilibrium with the friction exerted by the wind on the

water. This frictional influence of the wind is denoted by W. In this way we obtain:
e N
(77:);:0 - (lu 6_2) z:o: .

But at the bottom of the sea we have different boundary conditions, according as
we introduce the formula (2) or a constant w.
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In the first case we obtain:
®)e=g = 0.

In the second case we assume a linear law of friction (see above):

We shall integrate the equations for the two cases and compare the results.

a. Varable p.

We assume the fields of wind to be stationary. Then, when the state of equilibrium
is reached, no changes with time occur. The equation of motion (3) becomes then:

_18

T "

For y we assume:
M= H, (l ——%) n.
This is evidently the formula of Fsenpsrapt, which we have simplified by putting

e=0.
The boundary conditions are:

>

b B N A
_ (lu Ez) S W, (3)=g =0

The solution becomes (as can easily be verified):

. o —31—n _i2—ﬂ

In studying the windeffect we are chiefly interested in the total current, which is
caused by the wind and the slope of the surface. We compute therefore also:

H > R
3 g, wH? 290y H?
S= = == T i—me—m B

b. Constant p.

In this case we assume p to be a constant, so that the equation of motion becomes:

The boundary conditions become:

v > b5l N
o (M gz)z:o_ W’ - (M a_z)z=H_ ¢ f ' (U)Z:H.
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The solution is:

>

5 =9 @y W g L L gosm + ).
D=0 (Y o () g H A+ W)

Here, too, we compute S:
> B s 1,1 1 1
o= = WHZ% * fﬂgﬂ"y 3 +0fH§

Evidently this formula is very much the same as the first formula for 8. Now it is
possible to select such values for x4 and f, that the coefficients of W and 7 7 in the two
formulas become the same. We have attained, then, that in both cases 8 is the same
function of W and 7, so that conclusions derived from the equatlon for § (a.o. the
magnitude of the windeffect !) become also the same. And this is exactly our purpose.
To this end we must introduce for ¢ and f:

=1, (2—n) (3 —n),

j=to o (1—mn) (2—mn) (3—n)
2np H

We shall use these formulas in the following calculations.

In order to obtain the value of the windeffect we have to take into account the
force of Coriolis. This force, exerted on a particle of unit volume and velocity o
amounts to:

Force of Coriolis = 2w sin ¢ . |3 | =17

The direction of this force is perpendicular to the direction of the motion and
- deflected towards the right. Introducing this in formula (3) and again writing down the

boundary conditions, we obtain the following set of equations for.the components of the
motion of the water: :

o, p?

ER az2 (4a)

2 =§ a;:;’ — W, + 9y o (49)

)

—n (aa”zu) =W, | . (4d)

—u(3) _ —eldew, (4e)

| = () =et- e, | W
=Yty (2—m) (3 —n), | - (5a)

_ e (1—m)@—n)@—n) o)

f= 2noH
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In the following paragraph we shall use these equatiohs. We compute the windeffect
caused by a homogeneous wind in an enclosed sea. It is then allowed to assume

avw__avy_o
o

2. Windeffect in an enclosed sea

For the integration of equations (4a)—(4f) and (5a)—(5b) we introduce the following
complex vectors: ‘

w= v, +iv,

Y=" TV
W=W,+iW,.

The equations can then easily be written as follows:

_ptu_, A ()
14 a v o, : K (az)z=o_ v, . M(az)z=H—"Qf‘(w)z=H.
Introducing:

oc=.(l -+ 4) Vg—‘i

and also the well-known abbreviations:

4o PP

3 , sinhp= R

cosh p=

the solution of the last set of equations can be written in the following form:

W f@ sinh o (H —2) + cosh o (H —2) ig O{Q cosh oz
w= - . f 4 T” u ; —1|. (6)
e sinh o - i cosh oH sinh o.H -+ i cosh o

Now it was already pointed out in paragraph 1, that the fotal current is more important
for the following calculations than the distribution of the Velocﬂnes in the water. We compute
therefore this total current S:

H H H H
8=8, +i8,= [vdz+i [vde = [ (v, +iv)de= S wde.
0 0 0 0 )

We obtain: ‘ W -
f_@ (cOsh aH—1) . fgy s1nh oH

i
S = 25 7 -+ gly . 7 —H
# Zeosh ol -+ sinh aH ;Q/; cosh o H - sinh « H

We introduce the following abbreviations:

D= VZ_IL; @kman’s ,,Reibungstiefe’’), =" h = 5’
@ .
19
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Na,—= F .[cos h.sinh b + sin & cosh A& - F sin £ sinh %],

Nb= F.[cos hsinh h—sin % cosh % - F cos % cosh Vk],

Nc = }F .[cosh 2h— cos 2k + 3 F . {sinh 2k —sin 2h}],

Nd= LF?. [sinh 2k +-sin 2h],

N = cosh 2k — cos 2h + F . {sinh 2h — sin 2} + LF2.{cosh 2A + cos 2h}.

Substituting into the equation for S:
/4

1= [a—z’(l——b)]-}—gf]y.[%—i(l-—%)] ‘ o

Substituting the expressions (5a) and (5b) for f and u res pectively, we can write for F':

:@ZS(I—n)D 3(1—mn)

U anH 7wk ®

F

From the equation for § we can now derive the value of the windeffect, if we introduce
the boundary condition for S at the coast. It is clear, that at the coast no component
perpendicular to the coast of the fofal current can exist. This current can only be
directed parallel to the coast. Introducing this condition, the value of § is fixed for
any point in the sea, and, knowing S, we can in its turn calculate y as a function
of W with the aid of equation (7). But this formula holds only, when the .vertical
distribution of the velocities in the water is represented by equation (6). And this is
not fulfilled in the immediate neighbourhood of the coast, because at the coast a
vertical interchange of water must exist between the different layers. TAREGAMI (63)
has shown, however, that the disturbance, caused in the wvertical distribution of the
velocities, extends from the coast only to a distance of the order of 3—5 H. And this
distance is completely negligible in comparison with the distances covered by the wind-
effect in the North Sea. The boundary condition can, therefore, simply be written as
follows:

8,=0.

We consider now a sea of constant depth, subjected to a homogeneous field of
wind. In the following paragraph it will be shown, that in this case we have for any
point in the sea: :
8§=0, y= const.

The surface of the water remains a plane. The magnitude and direction of its slope
is given by y. From the equation for § the value of y can be deduced at once:

W 1—b+ai
y=— e :
goH I‘Fw!d
h
1—b+ai
e is a complex quantity, so that we canwrite:
— : -
_—l—b-—l—m = keiw,
1__zc—|—d
h
where k'is real. Hence:
. _ W
= —ke'V . —.
e goH

Taking the absolute value on both sides:

| =+ 5oz VI
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This formula gives the magnitude of the slope. The direction of the slope is deflected

to the left of the direction of the “windvector” W over an angle y. Let us now study
the values of £ and y somewhat more closely. _ v ‘

The value of k depends only on the value of A (and through % on the value of
H|D) and of n. It can be shown, however, that always: '

1<k=<?,.

The slope of the water is therefore inverse,ly'"’proportiona,l to the depth of the -

water, if we neglect the slight variation of k. To obtain a better insight into this
question the value of k for different values of the depth (in terms of the “Reibungs-
tiefe” D) and of n is given in the following table. The values of  are also computed.

TABLE 5 | | | Value of k and v
S
H - H<<€ H:% H— H=D H=2D H>>2D
71/ k Y k P - k P k P k P k- Y
o. ... ... 1.50 0° 149 |—1°0| 1.47 |—4°5| 1.27 [-10°7] 1.08 |—4°9| 1.00 0°

....... 1.38 0° 1.37 |—1°0| 1.3¢ |—4°5| 1.16 |—10°7| 1.02 |—3°3] 1.00 - 0°
....... 1.25 0° 125 [—1°0| 1.22 |—4°2] 1.06 |— 4°.8] 1.01 [—1°8] 1.00 0°
....... 1.13 0° 1.12 |—0°8| 1.10 |—2°6| 1.02 |— 1°8 1.00 |—0°8]| 1.00 0°
....... 1.00 0° 1.00 0° |- 1.00 0° 1.00 0° 1.00 0° 1.00 0°

[

el )

From this table it is seen immediately, that v is always negative. The slope of the
surface is therefore turned to the right of the direction of the wind, which is also
found in practice (see chapter I, paragraph 2).

Further y turns out to be always small. We are more particularly concerned - with
the question as to which value of n yields the .
closest agreement with observation. FJELDSTADT
deduced from his observations, that the best
value of n amounts to 3/,. From values for pu,
given by THORADE (17) it appears also, that
this value is probably the best one. The values
of v connected with this value of n are very
small, in very good agreement with the results
of PALMEN (yp = —3° if H = 50 m, see chapter I,
paragraph 2). We may say therefore, that the
direction of the slope and of the wind are nearly
the same. Further it turns out, that the value
of &k does not change very much with a change Fig. 4 Windeffoct in an enclosed soa
in depth. For a more complete discussion of this,
it is necessary, to know more about the value of the depth of frictional influence D.
PALMEN obtains experimentally the formula:

D—351547.

Here D is the value of the depth of frictional influence in meters and V the velocity
of the wind in m/sec. We are chiefly interested in the windeffect caused by windvelocities
between 15 and 25 m/sec. D has then an average value of 140—150 m. Now the depth of
the part of the North Sea to which the windeffect is mainly restricted varies from 40 m
to 80 m, that is from 0,3 D to 0,5 D, so that it follows from table 5, that in these
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circumstances the value of k does not vary appreciably in this part of the Sea, viz.
from 1,12 to 1,10 (for n =3/,!).
Neglecting, therefore, entirely this slight variation of &, we put:

Hence:

| or=——g | )

For any place on the coast of a perfectly enclosed sea of constant depth the value
of the windeffect can be deduced with the aid of formula (9). Assuming that the
fluctuations in the sealevel, caused by the wind, remain small in comparison with the
depth of the sea, it can be shown, that the height of the sealevel does not change at
the centre of gravity of the surface. It was already pointed out, that when the wind-
effect is due to a homogeneous field of wind, the surface of the sea remains a plane.
This plane cuts the undisturbed position of the surface along a straight line. This line
is taken as the w-axis (see figure 4). The slope of the surface has everywhere the
value |y |. The windeffect ¢ at a distance y from the z-axis becomes:

t=lrl.y.
The volume dI of the column of water with area do and height ¢ is:
dl =|y|.y.do.

The total volume of the water is of course constant. Integrating dI over the whole
sea, we obtain, therefore:

I=[fly|.y.do=0.
As |y | is a constant:
[[y.do=0.

But this is exactly the condition, required for the centre of gravity of the whole
surface to be situated on the z-axis, the line on which in all points { =0. As for any

direction of W the centre of gravity is therefore situated on the x-axis, we have in this
point always:
{=0.

If we wish to know the value of the windeffect in P, we calculate the difference of
the height of the sealevel in P and in the centre of gravity Z. Along the line ZP we have:
oo, o R

dx + = dy = -—,gT.JS:——[y].dS.cos v

d = E’,_B oy

" Here ds is the vector with components dz and dy. The difference A ¢ in height between
Z and P is found in the following way:

P

P
AC:/dC:——[y[ .cosw.fds:—lyl.cosw.L.
z Z

Substituting |y | from formula (9), we obtain finally:

=|W|.L.cos1p

AL 7o
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In this formula the value of | W | must be substituted. PaArmiin found: W= 3,2 X 104 72
(V = windvelocity in m/sec, W in -dyne/cm?). Expressing L in km and H in m and
introducing go = 103, we obtain the following formula for the windeffect:

2
A C _ 0,032 VHL cos Y ) (10)

This agrees fairly satisfactorily with formula (3) in chapter I. The latter refers,
however, to the windeffect in channels, in which conditions may to some extent differ
from those at sea. This may explain the difference in -the proportionality factors
(0,036 as compared with 0,032). We shall, therefore, use in our computation
formula (10). For an enclosed sea the windeffect might be completely computed with
the aid of this formula as a function of the velocity of the wind V and the directions
of the wind . This formula is confirmed quite well by observations of the windeffect
in inland seas (‘“Wadden”-Sea, ‘“Zuider’-Sea). But we are chiefly interested in the
question of the applicability of formula (10) to the actual conditions in the North Sea.
To investigate this we need a more simplified form of equation (7). First we rewrite (7)
in the following form: - :

WZA.%+34ML~ (Ta)

Substituting in this equation: § = 0, we obtain the relation between y and W:

4w
V=T gem
As it turns out however, that
w .
= , (equation (9
7= oz (eaustion (9)

holds in close approximation, we have:
A/B=1, 4= B.

Equation (7a) can therefore be brought into the form:
w
IS=4|— Huyj.
[ +o7]

If we study, the values of a, b, ¢ and d from equation ’(7)0more closely it turns
out that in the case of the North Sea it is allowed to write approximately:

w
e PO pyge L am L 30—
o PR T 14F+3F’ 7 D’ T wh
o
Substituting the numerical values of H, D and m, occurring in a storm surge in
the North Sea, we obtain approximately: p : s
G=1. i o
w
‘ ‘ — +gHy
Hence: o s=2 : (11)
, i+ _

23



3. Windeffect in a bay

" In this paragraph the windeffect is investigated which occurs in a sea, open to the
ocean. The North Sea is represented schematically in figure 5. The length of the sea is
assumed to be 2L, the breadth to be L. Thisrepresents  a_ _ __ _ __ __ _____________ "
fairly well the ratio of the actual dimensions of the :

North Sea. x- and y-axis have been introduced in :

the way, shown in the figure. This Sea cannot be !

considered as an ‘“enclosed sea’. For that reason ,_ %
the considerations of the preceding paragraph have
to be modified to calculate the value of the wind-
effect along its coasts, especially for the South coast.
For here the centre of gravity (x =0, y = —L) cannot
be taken as centre of reference, because the level of |
‘the sea will fluctuate here also. And besides, the gene-
ral assumption S = 0 does not hold either in this Sea. : N

!
1
1
|
|
1
{

G

07777, | ~— 0777,

, b E
For the computation of the windeffect in this T %
Sea we have to add the equations of continuity to Fig 5.. North Sea (schematically)

the formula for § and the boundary conditions. The
equation$ of continuity formulates the relation between the divergence of the total current
and the Tluctuations of the Sea-level:

o8, oL
dx Ty ay T

As we consider only stationary states:

o
="
aS a8, o N
Hence: + 0. ‘ (12)
We add the equations:
w
— +gHy
§ -2
. 1
* + E

| (equation (11) of the p&'eceding Chapter),
S, = 0, along the coasts.

But to these equations still another condition has to be added, viz. the condition
for the state of the sea on the line CF.
Equation (12) can be satisfied by introducing the stream function @ :

o od
le:_”@, lSy:a—x.

The streamlines of the total current are given by the lines: ® = const.

Perpendicular to the streamlines we have everywhere §, = 0. But this is exactly
the boundary condition at the coast. Without restricting the generality we may put therefore,
® = 0, at the coast.
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Now a differential equation for @ has to be found. Solving equation (11) for y,
separating into real and imaginary parts, and introducing the formulas for S, y and A,
we obtain finally:

oo W,

o®0 D oD of W, 1 ed D od
z oH

1
TH @ )

dnH? " oy’ Y% T oH "H oy dnH? o’

In these equations H is assumed to be a function of z and y. In this way these
equations are applicable also to the case of a sea of variable depth.

Differentiating the first equation partially with respect to y and differentiating the
second one with respect to = and subtracting, we obtain after rearranging:

20 2 od [zaH 471‘6[1] 20 [28[1 »4naﬂ]_4n [W oH oH

o T o e |How " Doyl sy \Hoy Dowl oD LVt "vew T
0 0
—|—H( W”——ﬂ)]. (14)
0 oy

This differential equation must be solved with the condition, that ® = 0 along the
coasts and a condition for the line CF, which has still to be established. This will be
done in discussing two different cases: a homogeneous field of wind above a sea of
constant depth and above a sea of variable depth.

.a. Bay of constant depth

In this case we have:

oH _oH _ oW, _ oW, _ oW, oW,
ox oy ) ox oy ox dy

The equations become simply:
2d 2P
. ox® —ay—z:O' (14a)

® = 0, along the coast.

For the line CF no special condition is introduced. But we assume the physically
plausible condition, that the disturbance, which the bay causes in the flow in the
ocean, extends only to a distance comparable with the dimensions of the bay itself.

The general solution of the differential equation, which satisfies the boundary condition
along the line CDEF consists of the superposition of all special solutions of the equation:

0 Ty — y _
o= Y A4, [e(2m+1) T, Y (MH_L ]cos (Qm—f—l)@s—}—
m=0 ‘ L
oo i T _ " 7y
—f—EBn[z Ly ? (4n+L)]sins2'n£x—;. ' (15)
n=1 ? L

But it is difficult to determine the values of the constants A4, and B,. We use,
therefore, a numerical method for the computation of an approximate solution of (14a).
When the ocean has the same depth as the bay, the problem can be solved in a
simple way. The homogeneous field of wind causes a flow of water in the ocean parallel
to the coast (which is assumed to be infinitely long!). This current has everywhere the
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same velocity, as the field of wind has everywhere the same strength so that the slope,
caused by the wind (see paragraph 4) will be also the same everywhere. The total current in
the ocean can be represented therefore by equidistant streamlines, parallel to the coast.
We assume (see figure 5), that the influence of the bay does extend only to the line
W -~ BAHG (a larger area would not change the results materially and

e e only increase the work of numerical computation). We assume,
therefore, that AH is the first undisturbed streamline in the sea,
and that the deviation of the disturbed streamlines begins between

or © et - A and B and ends between @ and H. The value of @ along 4B is,
therefore, still “undisturbed”, that means, changes linearly. In B:
oo ® — 0, which is also true for the line BCDEFG. Along GH @ is

again a linear function, along AH ® is a constant. In the numerical

example which has been computed, @ had the value 130 along 4H.

Fig. 6. Lattico for the In this way the boundary condition is completely established,

computation of @ so that the differential equation can be solved unambiguously. We

use a numerical method of computation, the well-known “method of

averaging” (see e.g. WoLF (64), COURANT (65)). We compute the value of @ in a set of

lattice-points, evenly spaced and covering the whole area, using the theorem, that the

value of @ in a certain point is always the mean of the values of @ in the neighbouring
lattice-points. This is shown in figure 6:

Gy= 1 (D) + Dy + Dyt D). - (16)

This theorem can easily be deduced from the differential equation. When the distance
between the lattice-points amounts to #, we have:

L | IR RS e RS 1 R
e R RS R E R
I R 1 B R R = R |
oo B[] R BT R
o P

. 2 . 2
¢1+@2+¢3+¢4=4¢3+h236¢ @g 2

T oy 40

— I
oxt oyt % 3

But according to the differential equation the second term on the right hand side is
zero, so that: \ -

P oD

ht
-a:xT—I—a—y(%s—]— .......

HP+ By + Py + P)= Dy 5.

If we make h small enough, the terms with & can’ safely be neglected and
equation (16) appears. Now the computation runs as follows: in the lattice-points arbitrary
values of @ are assumed, as a first approximation. In all lattice-points the value of @ is
then successively replaced by the mean value of & in the neighbouring points. This
operation is repeated until the values of @ no longer change. We have obtained ‘then,
that in each lattice-point & has the mean value of @ in the neighbouring points: In
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each lattice-point the differential equation, therefore, is fulfilled. In the figures 7 and 8
the result of the computation is given. The computed values of ® have been entered in
the lattice-points, the streamlines have been drawn and numbered with intervals of 10.
The penetrating of the streamlines into the bay, which was to be expected, is clearly visible.

' When we study the values of @ in figure 8 it

£ E—"" appears, that the values in the bay itself can

e be represented nearly by the simple formula:
e ——— Y

B :CV? G D, =23l . cosg—?.
X /7/ / l,v// 27 / //// % ) . 4

‘ 7 , Z ‘ The values, computed with this formula,

: are also shown in figure 8. Clearly a very

satisfactory agreement exists over almost

the whole bay. But if we compare &, with

formula (15) it turns out immediately, that

7 @, constitutes the first term of the expansion

Z given in (15). We obtain thus the very

D E/ '~ important result, that we are allowed to

: 7 7 neglect all other terms, as the first one

Fig. 7. Strefmlines in the North Sea gives already a very good-approximation

of & in the bay. Now we confront the
result we found with the current which would occur in the bay, if it were closed entirely
along the line CF. If ® must be zero at the coasts and must at the same time satisfy
equation (14a) it follows, that we have everywhere:

o = 0.

This result, viz. that in an enclosed sea of constant depth the current is zero
everywhere when the field of wind i is homogeneous, has been used already in paragraph 2, in
deducing the value of the slope of the surface.

In our case one might say, that the @, actually -° ' -#-% % .° (0 WED LD MO
found, is a superposition of the @ for an .0 .8 .12 .12.8 .0 20 TRz L 7h.0
enclosed- sea and the @ which represents the , ., o ¢ .4 .0 0 .4 L6h.64.4 .0
penetrating of the current from the ocean v 3 2 .
into the bay. But we can derive very generally ° % +¥%-%-2.0 A
the important theorem, that @ in the North .o .t . 2.2 .1 .0 N R P
Sea can always be represented as a superposﬂsmn o L% .t .1 L% .0 0 L1 o
of two solutions:
o .0 . %.%.0.0 6 .0 .%h.% .0 .0
=0, 4 D,
Z_I_ 4 o] o] 0.0 0.0 .0 o} Yo . o .0
.In-this formula @, is the solution for the o o . 6.0 .0 .0 0 .0 .0.0 .0.0
sea if it were enclosed, and @, is that part of :
.0 .0 ,0.0 .0.0 .0 ,0 .0.0 , 0.0

@ which represents the penetrating of the cur-
rent from the ocean into the bay. &, is the .o .o .0.0 .0 .0 .0 .0 .0.0 .0
solution of the homogeneous differential equation ' 9.

for the bay, which we obtain from the general _ e
eq_ua,tion by Puttlng W W = (. Fig. 8. Values of @, calculated with two different methods

The proof is simple. In the most general

case we have to solve equation (14) with the boundary conditions @ = 0 dlong the
coasts and the condition that the disturbance caused by the North Sea in the currents
in the ocean extends only to a limited distance into the ocean. This leads to fixed
values of @ in the bay: @. But we can also solve (14) for the case of an enclosed sea.
We obtain then D,
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Now we consider the difference between ® and @, which we call @,:
o, =0—0,

Then it follows immediately from the theory of linear differential equations that @,
is a solution of the homogeneous differential equatlon which satisfies the condition @ = O
along the coasts CDEF.

In this way the validity of the theorem is shown. But it is still .more important,
that @, can always be represented to a very close approximation by the first term of
the expansion, which constitutes the general solution of the homogeneous differential
equation. This can be shown in an analogous manner as already employed above in the
case of a sea with constant depth, etc. We can say, therefore, that this term constitutes
the “‘effect of the opening”.

In the case considered above, we had simply:

7y
x

=@, +D, =0+ @rer—L cos%.

The value of the constant has been left undetermined, because in our case it has
still to be fixed. In our numerical computation we were namely concerned only with
the form of @, not with the absolute value of ®. The windeffect can be derived now
from the equations (13):

& W, 1 o® D o® of W, L o D 0P
V2w oH VH o Tl oy’ Yoy ol " H oy dnH® T (13)

The windeffect along a certain path is calculated as follows:

o 0
—@dx——?dy .

"ga;‘d o | ‘W, dx + W, dy /1 yod 3
47[./9H2 ox

_ ?
Ac_v/fﬁ_x Ty Wy = goH gTﬂdeH

The components of the vector of unit length, indicating the dlrectlon of the integration-
path, are: :

de dy . . .
_ 75 ' qs (ds is an element of the integration-path).
Hence: ‘
dx dy
Wmdx+Wydg/:de ds—}—Wy ds= Wds .

W, is the component of W in the direction of the integration path.
In a analogous way it can be shown that:
a@- a@ _®

aqﬁ
= gradient of @ perpendicular to the path of 1ntegrat10n Substltutmg the derived

simphflcatlons into the equatlon for AC we obtain:

W, ds 1 D a0
AL= ]gQH +4n/gﬂz.%.d& (17)

In order to obtain a condition for the line CF we assume generally, that
}3 height .of the sealevel in € and F will not be changed by the wind. In the
case of the North Sea we are surely allowed to do that. In ¢ and F -holds
therefore: ¢ = 0. To obtain the height of the sealevel we 1nteg1"ate (17) along the coast.
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But along the coast we have everywhere @ = 0, and therefore d® — 0 also. Substituting,
we obtain: -

(o (Wil LD o0
-~ J goH dm ) gH® " om

In the general case we have, as shown previoﬁsly:
=0, o,

where @, is the solution of the imhomogeneous equation, solved for the enclosed sea, and

Fig. 9. Depth of the North Sea (in m)

@, is the first term of the expansion constituting the general solution of the homogeneous
equation, with an as yet arbitrary constant factor. This factor can now be determined
by the conditions ¢ =0 in C and F. Integrating (17) along CF:

F I r

1 29 a@rd 1 D oo x+i i%dx

7 F
W ds 1
o 9H ox dx+é[g_ﬂ o O EO gH? oy dm 4 gH® oy

o 9ol

{p—Cc=0== +

As &, is fixed completely and only one arbitrary factor occurs in ®@,, all integrals
can be evaluated. In the equation occurs only the still unknown arbitrary factor, which
can be solved then from the equation. Then all is known about & and the windeffect
can be computed.
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To evaluate the windeffect for Hook of Holland, we must integrate approximately
to the point = 0 on the South coast. Using the method described previously for the
computation of the windeffect { we obtain finally:

_2LW,

¢= goH

We obtain obviously the result that only the component of the ‘wind along the
longitudinal axis of the North Sea influences the sealevel at Hook of Holland. This is
very similar to the result of LEVERKINCK (see chapter I, paragraph 2). When it is no
longer assumed, that the sea has constant depth, the result is modified. This case is
treated sub b. -

b. Bay with variable depth

In figure (9) the average lines of depth of the North Sea are given. It turns out,
that we may assume, that these lines are perpendicular to the longitudinal axis of the
Sea. We have, therefore, approximately:

oH oH

% =% o +0.
The differential equation obtains a simple form if we assume a linear relation

between H and y: : :

H— %—D.(?, +ﬂ). -~
. L
Hence:
o _ D
oy 2L

Substituting in differential equation (14):

@ 20 2n od 2n W,

w2 oyt L oew L o

By numerical computation, analogous to that previously carried out sub a, we find
that @, can be represented approximately by the formula:

Tz
LW, 33 X . T
D; = 2 42T 005 0 gin Y.

L oL’
&, becomes:
mwr 7Ty V2
= x
G,=Ade” L cos %
Hence:
e e | myy2
B LW, 3z mx . 7Y AR AR
qﬁ_diifdir_ e cosfsmé—l—l—l—Ae (C08 -

The windeffect at Hook of Holland can be found with the method discussed sub a.
We obtain: : '

D' is the position of Hook of Holland (DD’ = D'E) on the line DE. The formula
for ¢ is derived assuming a linearly changing depth in the North Sea. We assume,
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however, that this formula also holds for the actual configuration in the North Sea.
Writing H, for the nearly constant depth of the Southern part of the sea, we obtain:

4 Lw, 1 o/

b= . . .
3 goH, 3 god,

In this formula L is half of the “length” of the North Sea. We put: L =450 km.

Introducing the angle u between the ‘direction of the wind and the direction of the
longitudinal axis of the North Sea, the formula for ¢ can be rewritten:

_ 14LW . cos (p — 15°).

¢
goH, v

W = absolute magnitude of the influence of the wind.

- v = angle between direction of the wind and direction of the longitudinal axis of
the North Sea (positive, if the direction of the wind is West of the direction of the
axis of the Sea).

According to the formula the wind has its maximum effect, when the direction of
the wind is about 15° West of the axis of the sea. As regards the angular distribution,
the cosine-law holds, in agreement with the results of Scmurz and WiITTING.

Analogous to the derivation of formula (10) in paragraph 2, we can introduce the
formula of PAaLmEN for W. We get: ' '

B 0,032 V2 cos (y — 15°)
) t=14 L. T

Introducing: L = 450 (km), H, = 40 (m), V = 20 (m/sec), y = 15°, we obtain:
¢ =201 (cm). . '

From table 3 and figure 1 in Chapter I, however, appears, that the maximum
windeffect connected with a windvelocity of 20 mj/sec (9 Beaufort) amounts to 150 cm
approximately. That is less than the theoretical value. It turns out, therefore, that the
windeffect caused by wind in the North Sea only is quite sufficient to yield the observed
values. Even if the observed value of the windeffect is greater dan 150 cm, no ‘“distant

causes” (on the ocean, etc.) need be considered: the windeffect can be explained in . o

terms of the field of wind on the North Sea only.

Now maximum values of the windeffect occur with NW-wind. It will be shown, in
the following paragraph, that indeed in this case the wind on the ocean cannot cause
an extra windeffect in the North Sea. 7

In the same way as indicated above, we can calculate the part of the windeffect
which is caused in the Southern part of the North Sea (South of the line Dunbar—
Skagen, cf. paragraph 5). We obtain approximately: 160 cm (V =20 m/sec!). We see,
therefore, that the greatest part of the windeffect is caused in- this section of the North
Sea. This result will be used later. : :

4. Influence of the Channel

Until now we have always assumed, that the North Sea is closed at its South end.
But we have to investigate still the modification in our results, caused by the Channel.
We shall study therefore first the windeffect in an infinitely long channel. We use
equation (11) for the current §:

W
— +gHy
=0 (11)

D
YT dndH

31

o
i



Taking the z-axis parallel” to the longitudinal axis of the channel, we can write
down the condition for the current in the channel: S, =0. '
Physically it is clear, that the slope of the surface will be directed perpendicularly
to the coast. Hence:
Ve =Y

Separating equation (11) into real and imaginary parts, we obtain:

1 1( D D %
IS, = —————1 I [E 34—nﬂ. Wy——Wgﬂg —’gﬂgyz_“4nﬂ'yy .
+ 1672 H?

Substituting S, =0 and y,=0:
47 D
'}/y: -gQ—D [Wx—“m . Wy] .
In a very deep sea D << H holds. Hence:

47t
vy= @ . Wx

‘ The slope becomes independent of the depth of the sea. The variable value of H is
substituted by the constant quantity 1/4= D. -

Moreover it turns out, that only the component of the wind parallel to the coast
causes the windeffect. This is an important result. For the windeffect on the western
coast of Europe by wind on the ocean can acquire an appreciable value only when the
wind is parallel to this coast, viz. a South-Westerly wind. A North-Westerly wind has
no influence at all. And this is generally the direction of the wind when a storm surge
occurs. We arrive, therefore, at the conclusion, that in general no additional windeffect
is caused by the wind on the ocean, when a storm surge occurs. This result is quite
different from CGarif’s result (6), who assumed that part of the windeffect of the storm
surges was caused by the action of the wind on the ocean. Our conclusions are also in
perfect agreement with our previous result (paragraph 2), that differences in the value of
the windeffect in the North Sea can be attributed wholly to differences in the field of wind
on the North Sea itself. We arrive, therefore, at the very important conclusion, that in
~ the working up of the material it is not necessary to take into account the wind on

the ocean. Only the wind on the North Sea, and eventually also in the Channel need
be considered. :

Now we return to the windeffect in the Channel. The depth of this part of the sea

is much smaller. We put: .
D = 2H

Substituting this, we get:
. 27 | 1
Vy=— @. [Wm —ZZ Wy] .

If we introduce here also the angle between the direction of the wind and the axis
of the Channel (positive, when the direction of the wind lies in the 1st or 2nd quadrant),
and also the absolute value W of the influence of the wind, we obtain: :

_

= W cos (yp — 9°).

Tn this case, too, the sealevel is chiefly influenced by the component parallel to
the coast. It follows, that a maximum windeffect is caused in the Channel by a WSW-wind.
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The evaluation of the windeffect is rather difficult, as we do not know exactly the
“effective width” of the Channel. If we assume, however, that the opening near Calais
can be taken as “‘effective width”, we should obtain a value of 30 km. In this evaluation
it must be taken into account, that the windeffect must be considered relatively to the
middle of the Channel, so that the distance over which the windeffect is caused, amounts
to only 15 km. Introducing L and H, of the formula of paragraph 3, we get:

r—o02. W

.cos (y — 9°).
9o, (p—9°)

When we compare this with the formula of the windeffect in the North Sea:

Lw ,
(=14. .cos (p —15°),
oo, (y )

it turns out, that the effect of the Channel is much smaller than the effect of the
" North Sea. The Channel can, therefore, be considered as a basin with nearly constant
height of the sealevel. This basin influences the windeffect in the North Sea: as the
water flows away to this basin a levelling of the sea surface is caused, which results in

a decrease of the windeffect. As we are allowed to assume, that this decrease is proportional
to the windeffect itself, we obtain instead of the previous formula the following one:

~

Lw
E=k.14. )
goH,

cos (p —15°%), 0 <k < 1.

" In this equation k£ is a constant, denotmg the ‘““decreasing influence”. of the
Channel. It can be shown, that the value of % is not much less than 1, for example
0,8 or there about. But these estimates are very arbitrary.

As the effect of the Channel is much smaller than the effect of the North Sea, it
will simply be superposed upon the effect of the North Sea. If we try to combine the
two effects in one formula, it is essential that the direction of the wind in both places
be taken with reference to the same fundamental direction. We take the direction due
West as the fundaiental one. The formula for the windeffects have then to be modified a
little. It was measured in the North Sea with reference to the longitudinal axis of the
North Sea, which makes an angle of about 70° with the direction due West. And v
was measured in the Channel with reference to the direction of the axis of the Channel,
which we assume to be —40° (= W 40° 8!). Taking this into account and representing
the direction and influence of the wind in the Channel by %, and W, respectively, and
of the wind in the North Sea by v, and W, we obtain finally:

r—o02. 1

Lw
. CO8 30° E.14. 2

. COS — 55°).
g@ Ho (1/)2 )

5. Effect of an inhomogeneous field of wind

Until now we have treated in our investigations only homogeneous fields of wind.
But it is quite possible, that -the field of wind is mof homogeneous. In this case the
direction and the force of the wind vary so strongly on the North Sea, that they can
not be replaced by their mean value. If the isobars are only slightly curved, we are
still allowed to treat the field of wind as homogeneous, provided we consider only part
of the North Sea, for example the Southern part of it. We derived previously (paragraph 3),
that in this section of the sea is caused the greater part of the windeffect.

This section is indicated in figure 10 by the number II. The other sections, which
we take into account, are also indicated in figure 10, numbered I and III. In accordance
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with the results of our previous investigations, we try to represent the data obtained in
actual storm surges by the equation:

=4,V cos (1, — &) + A,V,%cos (py— &) + AgVs% cos (53— &3).

A, A, A, = constants, valid in the three “windsections”.

Y1, Pa s = mean direction of the wind in the three sections I, II and III respectively.
&, &, & = directions of maximum influence in the three sections.

Vi, Vs, Vs = velocity of the wind in the three sections.

With this formula most cases can be described. But it is possible, that a depression
has its centre above the North Sea. Then the field of wind is inhomogeneous even in the
indicated smaller sections of the sea. This case must therefore be treated separately. We
assume again, just as in paragraph 3:

But we are no longer allowed to assume, that W, and W, are constants. In this case ‘
, ' . the differential equation becomes:

2P P 2xod D 2@

ox* ' oy L ox HLoy

[ o) (-]

0 2L oz oy

The right hand side of the
equation takes a simpler form, if
we assume, that the depression has
a circular form, that the wind blows
parallel to the isobars and that we
g are allowed to write for | W |:

r = distance from the centre of the
depression,
W, = value of | W | at the distance
L from the centre.

“Substituting the formula for | W]
we obtain:

ow, oW, 2w,
ox oy L

When we consider the first

Fig. 10. .The “windsections” of the North Sea term on the I'lght hand side of the

differential equation, it turns out,

that in practice the average value of this term will be small compared with the second

term. For that reason the first term is neglected. Neglecting also the term with a®/ey on
the left hand side, we obtain finally:

20 20 2 00 W, (4 ¥
da? o2 L x| oL ( +f)

In accordance with the methods, developed in paragraph 2, we evaluate @ as a super-
position of &; and @,, &; being the solution of the inhomogeneous equation in the case
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of an enclosed sea, and @, being the solution of the homogeneous equation, which has
the same form as in paragraph 3. The computation is quite analogous to the com-
putations in paragraph 2 and paragraph 3, so that only the final result is given here:

Wods .o, & Weds

C: Y .
goH J goH

The second term is the ‘“circular integral’’ round the whole North Sea. The value
of this integral is certainly > 0, as in the case of a depression. on the North Seg  we
have always: W, > 0. The first integration must be performed along the line CDF' (see
figure 5).

The windeffeet is to a first approximation again represented by the simple formula

W, ds
/ goH
influence of this term is much smaller than the influence of the first term. ¢ is,
therefore, mainly represented by the first term. .

If we consider a circular depression with a constant gradient, we are able to
calculate the velocity of the wind at any distance from the centre (see Chapter III,

. It is true, that the second term decreases the value of the windeffect, but the

=
BN\

ol

Fig. 11. Windeffect caused by depressions in different positions

paragraph 2). When we know ¥V we also know V2, and it is then possible to calculate the

W, ds
value of 5
f gQH . 3 - .

figure 11. The windeffect has been calculated in cm, assuming a constant gradient in

the depression of 10 mb/500 km. This has been done for all positions of the centre
indicated on the chart. We have entered in the chart the values of the windeffect and
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drawn isopleths with intervals of 5 cm. The result is shown in the figure. This must be
compared with practice. But the following should be borne in mind: in computing
figure 11, we have used already the results of chapter IV for the homogeneous fields of
wind. We studied namely these cases first and of course it is clear, that the isobars
will become nearly straight on the North.Sea, when the centre of the depression is
situated far from the North Sea. In these cases the windeffect on the coast can be
calculated immediately with the formula, resulting from the investigation of the homo-
geneous fields of wind. In this way the “asymptotical directions” of the isopleths have
been found.

6. Nonstationery state

In the preceding paragraphs we have studied the stationary states of the sea. But
in practice the sea is practically never in a stationary state, when a storm surge
occurs. On that account the phenomena connected with inertia have to be investigated,
for it is our purpose to reduce all states to stationary ones, as the simple formulas,
derived in the preceding paragraphs, only hold for the state of equilibrium.

In order to investigate the non-stationary states the differential equations involving
the' time have to be used. In these considerations, just as in the case of paragraphs 2, 3, 4
and 5, we want the formula for the tofal current, because only for the total current
the equation of continuity takes the simple form:

88, , oS, @&
o Ty A

The fundamental equations of motion, however, hold for the velocities of the individual
waterparticles. To obtain equations of the form we need, an artifice has to be used. We
write the fundamental equations in complex form (cf. paragraph 1):

ow 0 ow .
0 i (M 5;)_d9w + goy.
Integrating with respect to z from 0 to H:
2 ow Pofowy . K 7
Q/ amtdz :f . (”'52) dz — ilg \/‘wdz —I—gg'yfdz.
0 0 4] 0

H
Substituting 8= [ wd.

. 0

oS dw dw .

05 = (# -a;)H— (Ma—z)o— iloS + go yH.

But the boundary condition at the surface was:

ow
—(3),~ "

o8 ow .
e = <M _)H + W —iloS +goyH.

Hence:
oz

The term (M 2—1:) represents the frictional force along the bottom. For this force we
‘ - _
had also a condition, in which however, proportionality with the velocity at the
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bottom was assumed. And in our new equations only the fofal current S occurs. We
must therefore replace this term by another expression. To this end we again use the
stationary state. For this state we have:

o8

ot

Substituting, we obtain a relation for §:

0= (M iﬁaiu) + W —1ilpS 4 goyH.
2/ H
But in paragraph 2 we obtained:
w
— +gHy
=2
. 1
V] —!'- E

or, rewritten:

Oz—ilQS—%g—}— W + goyH.

This equation is nearly identical with the first equation for S. But both equations
refer to the same thing, viz. the relation between the total current and the external
forces, acting on the water in the stationary state. They must, therefore, be exactly

identical. Hence:
(%)__d§
# 0z H_ 4h "

And the equation for aS/et becomes after some rearranging:

o8 . N W
Ez—“wﬁﬁ+?+mi

With the aid of this equation of motion we shall investigate the oscillations caused:
by: a) suddenly, and b) gradually varying fields of wind.

a. Suddenly varying field of wind

As a first approximation we neglect the force of Coriolis. In the case of the North
Sea this is certainly allowed. We replace the North Sea by a channel, which is closed
at one end (in x = 0). In this channel only motions parallel to the axis of the channel
occur. The equation of motion reads:

s - Is W
T + ? + gHy.

As y will not remain constant, we introduce again:
g

YT T

Substituting:
oS

o

w ol

The equation of continuity becomes (neglecting the transversal motions):
o8 o

oz et
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The boundary conditions become:
z=0:8=0.
x=2L: {=0.

In order to determine the motion completely, the initial condition has to be added.
In the beginning the whole sea is in its normal state. Hence, we have everywhere:

t=0:8=0,=0.

In order to be able to integrate the equations of motion we first eliminate the
term W/o. This term does not depend on the time: at the time ¢{ = 0 the ‘“wind”
suddenly takes the value W but remains constant thereafter. Substituting:

; L
CZC ‘f—(x/—ZL)-gQ—H,

we obtain:
aS_ IS Ha@’ a8 ol

- @ w ot

The initial condition for ¢’ is:

w
'=—(x—2L).—.
g (= ) ol
The other conditions remain the same.
By numerical computation it was shown, that a satisfactory approxmlatlon to reality
was obtained by substituting:

it _ Cn

pre—e b g, ‘ S—e¢ . 9.

¢ and 8 satisfy the equations:

aSl . aCII
= H G (18)
as”  or” ;
» ox ot (19)
Boundary conditions and initial conditions remain again the same:
| x=10:8=0. 7
z=2L:0"=0
w
t=0: 8 =0, [ =—(@—2L). —.
¢ (® ) goll
Equations (18) and (19) are ‘the well-known . '
equations of motion, describing the propagation of R
a disturbance in all sorts of media. In our case I .-~ | TN ., ! b
the solving of the equations necessitate the definition = o L S T =
of the function F(x), which is represented graphically ! | RN

in figure 12. A B represents the surface of the water

in the undisturbed state. A’B is the initial pos1t10n

of g, The line A4’B has to be extended in the way, indicated in figure 12. This
“curve’’ constitutes the function F(zx) we want. This function sat1sfles the conditions:

4
Fig. 12. Function F(x) -

F (@)= F (—),
F (z) = —F (4L — ).
38



¢ and §' are represented by the following formula, which can easily be verified:

8 = — ¢/2[F (x—ct) — F (z + ct)],
= —}[F(@—cl) + F (& + ct)],
¢ = VgH.

Substituting the equations for {’ and { we obtain finally:

lt

W .
C:(x—ZL).geTI—%e AF (x—ct) + F (x + ct)l.

We are chiefly interested in the value of ¢ for x = 0. Substituting in the equation
for ¢: x =0, and taking into account:

F(z)=F (—u),
-we obtain:
it
_2Lw %
= —gQ—H—e . F (ct), , (20)
2LW
0)="""_

Oscillations are thereby found to occur indeed. For F(x) is a periodical function,
and so, therefore, is F (ct). Formula (20) may be interpreted in the following way:
neglecting the exponential factor ¢ behaves, as if the ‘“waves” represented by the
function F(x) (cf. figure 12!) were propagated towards the coast with the Ve1001ty c.
-This result is important. -

The period of the oscillation follows from the equation (of figure 12):

: cT'=81L,
hence:

r= 5
¢

Assuming, that the windeffect is caused only in the Southern part of the North
Sea (section II, cf. figure 10), we should obtain:

T = 28 (hours).

This is a period of approximately one day. The maximum value of the windeffect,
however, is reached after !/, 7, or 7 hours. This would be in agreement with the result
of Ortr. ScuuLz (cf. Chapter I, paragraph 2), however, found a much smaller “time-lag”
(3 hours). This is explained sub b. Considering the windeffect in the whole sea, the
value of 7' can no longer be calculated with the simple formula given above, as the
depth in the whole sea changes considerably. Assuming , that the average depth of
section IIL (cf. figure 10) amounts to 160 m, we calculate the time in which a
disturbance is propagated from the Southern end to the Northern end of the Sea. We
find: 10 hours. According to this result the period of a full oscillation would amount to
40 hours. From the actually observed period we can therefore derive, which part of the
sea is partaking in the oscillation. This result will be used in Chapter V.

But the extinction-factor is also important. It has the form:

_k
B8R
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Considering first the southern part of the North Sea only, we obtain approximately:

l D
Fy vy 10—5.

This means, that the amplitude of the oscillation is reduced to the fraction l/e of
its original value after 105 seconds, i.e. nearly one day. This rate of extinction only
holds for a storm. Otherwise the rate of extinction is much smaller, as the value of D
decreases with decreasing velocity of the wind (cf. PALMEN, 44).

The rate of extinction is also modified a little, if we also take the Northern part
of the Sea into account.  We calculate this in the following way. It was shown
previously, that the changes in the level of the Sea could be interpreted as the
~ propagating of disturbances of the surface of the Sea. We calculate therefore the
decrease of the amplitude of a disturbance after having been propagated around the
whole Sea. We assume that section II and section IIT of the Sea (cf. figure 10) both
have the length L, and moreover, that in section II the depth of the Sea is H, and in
section IIT: 4 H, If the velocity of propagation in section II is ¢, it is 2¢ in section III
(err = VgH = \/4gH, = 2+/gH, = 2¢). In T seconds the disturbance has traversed section
II. We have:

L =cT.

Then section 1II is traversed in 17T secends.
After traversing section II the amplitude of the disturbance is reduced by a factor:
rD .

. ¢ sam,, Then it traverses section ITI, in which its amplitude is reduced again, this time
1TD .

by the factor e imHo,
If the original value of the amplitude is 4,, and its final value 4, we have consequently:

__ITD _1iTp _lTD(E_Fl).
A=A, . ¢ swHo 64an:Aae 7Hy \8 " 64/
We try to bring this into the form:

g LD
8w H,
A= A4,e

For the time ¢ in the last formula the total time required to traverse the two
sections must be substituted, hence: '

t=T+1T=1}T.
Equating the exponents of both powers of e, we obtain:

o = 3/,.

The rate of extinction of the travelling disturbances is in this case, therefore, not
itDh 3 ItD

proportional to e #af, but to ¢ #8xH. The difference is only small. To a fair approximation
it is allowed, therefore, to take only the extinction caused in the southern part of the
North Sea into account, as the order of magnitude of the rate of extinction can only
be estimated.

In all the preceding calculations the force of Coriolis has been neglected. It is
possible, however, to take this force into account by numerical computation. The results
obtained previously remain mainly the same. Only transverse currents occur, which results
in ‘a transformation of the “oscillation” of the North Sea into a wave, swinging around
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‘the sea from right to left, just as in the case of tidal waves. This phenomenon may be
explained qualitatively in the following way. When a North-Westerly wind suddenly
starts, the water will accumulate in the southern part of the sea. This is accompanied
by a current towards this southern part. But the force of Coriolis, acting on this
current, causes a deflection to the right, which results in an accumulation of water
against the Eastern coast of England. The maximum of this effect is reached before the
maximum effect on the South coast of the North Sea occurs. When the water swings
back, a heaping up of the water against the Eastern coasts of the North Sea is caused
in the same way. Thus a kind of wave is generated, which swings around the North
Sea from right to left, in the same sense as a tidal wave. This was found also by
Doopsox (20).

An other consequence of the influence of the force of Coriolis is, that the oscillations
are slowed down a little. TAYLOR (66) has numerically solved an analogous problem. He
found, that in the case of a basin like the North Sea the proper period of the basin
was increased, but only by 10—20 9,. Bearing this in mind, it was therefore surely
allowed to neglect the rotation of the earth in our more or less approximate considerations.

b. Gradually varying fields of wind

When the wind does not vary suddenly but gradually, the development of the wind-
effect may be calculated using the results of section a. We start from the formula:

It

2LW — &
— —e F(at).
goH, (e

=

We have shown (cf. @), that F () is a periodical function. But the actual form of
F (¢) is not suitable for computations. For that reason we substitute ¥ () by a cosine-
function. If the period of the oscillation is 7', we assume:

2LW 27t
Fct) = — —— . cos——.
(e goH, T

We put also:

L _B

8h T
Hence:

——2LW [1 —e_ﬂ.% cos@]
goH, T
Finally we substitute: "
~ d 2L’ ; 44
_gQHo o

{, is the stationary value of ¢ ultimately reached. Substituting, the equation becomes:

r—c .1 *Ig-‘% 2t
= 0.[ —e .eos?].

This formula is generalized in the case of non-stationary fields of winds (PROUDMAN,
Horrocoks, Nomrrsu). The method we use is based upon the linear form of all differential
equations and other conditions used in the computation. We only assume, that the
period of the oscillations of the Sea is independent of the variations of the field of wind.

The fact that the field of wind changes with time may be formulated in this way,
that ¢, is no longer a constant, but a function of time. For, generally, with every state
of the field of wind an other value of ¢, is connected. Now as all equations are linear,
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it is immediately clear, that all fluctuations in the windfield cause corresponding fluctuations
of ¢, which are simply superposed upon the motion and the state of the. surface
already present. If at the time v we superpose a variation df, on l,, a df will be
superposed upon the ¢ already present, for which the equation holds:

_B(t—)

dCZdCO.[l—e r .'coszn(tT_T):I.

But for dZ, we can write:
~ (4L,
s =(G),_
Hence:
B(1—1)
{45, — 7 278 (t—1)
dé_(ﬁ)tzr[l—e . COS L ]dr.

All fluctuations in ¢, caused by fluctuations of the field of wind after ¢ = 0, are simply
superposed. We obtain: —

CdeCZj(%)t;T. [l—e——ﬂ(t’-”—ﬁ. cosﬁﬂj:——r)]dr.

Using this formula the effect of changes in the field of wind are easily calculated.
Special cases will now be considered. As a first case we take:

¢, = A sin wt.

This is the case of the development of a storm: the wind increases, which cor-
responds with an increase in the height of the level of the sea, which is in “equilibrium”
with the wind. After reaching a maximum the wind decreases again. Most storms show
this development. Only rarely the wind remains at its maximum for one or two days
on end. And even in this case ¢, may show a marked maximum as well, because
probably the direction of the wind will change during the storm, which causes also variations
in {,. We obtain the following equation for {:

‘ ' _ b= 27 (t—1)
Z,‘:O/choswr.[l—e T .cos—f—]drz

: B.t
. . —F 21t .2
= 4 sin wt——wTA.[ﬂaﬂcos ot + 0T a; sin wt —e r gﬁao cosi—l—Qymzsm—;zfg].

T

. 132 +4n2 + wZTZ
T (PR F 4+ 02T — (dnowT)?

Ay

/32 — 43.[2 + w2T2

“WEB T A+ of T2 — (dnol)E

B — 2 —da? w2 T?
“T B F an? + of T — (4o D)

Three cases are considered:
' 1. o << 2a/T.

In this case the wind varies vslovvly compared with the characteristic period of the
Sea. We obtain approximately:

{ = A sin wt.
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As might be expected, the sea has evidently the opportumty to adjust itself at
every moment in accordance with the wind, being permanently in the stationary state.

2. o =27/T.

The wind varies with the same period as the characteristic period of the sea (resonance)
We obtain approximately:

. 7 —B-7 (x .
C:A[%smwt———coswt—f—e T —coswt—%smwt”.

p p

Evidently the phase of the sea differs from the phase of the wind. For further
comments we must know the value of . We have:

Both 8/l .and T are of the order of magnitude of one day (cf. a). Hence:

g~ 1.

The factor of cos w? in the equation for { becomes =. It appears, therefore, that
the phase of ( is changed nearly 90°. The amplitude is much greater than the
amplitude of the “equilibrium value”. This effect occurs sometimes in practice.

3. w>>2aT.

The wind is varying rapidly, which is the case in a very gusty wind. We obtain
approximately:
{=0.

The sea is not influenced by the fluctuations of the wind. This is important. For
we find here, that in working out the material we must use only the mean value of
the wind during periods- comparable with the characteristic period of the sea.

In practice we have in most cases approximately:

_Z
The case:
T
= ~1
w Vi B s

is, therefore, evaluated completely. The result is shown in flgure 13, in the same way
as in figure 3. The line 4 shows the function 4 sin wi. It is assumed that the wind
after decreasing again to zero remains zero. The line B represents the fluctuations of
the sea caused by the storm. The oscillations, occurring after the wind has ceased, are
clearly visible.

In figure 14 analogous curves are shown. Only the curve A has a somewhat
different form, and the calculations have been performed with an other value of B(f=2).
In its general features this figure is very similar to figure 13. But attention should be
drawn to the following feature of these curves: when the sea has attained its maximum
rising-velocity the curves 4 and B are nearly parallel. The same is true, but in a less
pronounced manner, for the falling part of the curves. In these parts we obtain curve
B by shifting curve 4 to the right over a certain distance: the “‘time-lag” A ¢. The
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value of At for the rising part of the curves differs from the value for the sinking
parts. We shall try to verify all these results in the working out of the material. But
to do that we want the curve A in the practical cases. This line is found, however, by
comparison with figure 13. For in this figure also a curve ' has been drawn which is

'
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Fig. 13. TFluctuations caused by a gradually varying field of wind (storm surge)

obtained by subtracting curve A from curve B. The curve is practically symmetrical
with respect to the point ¢ = 7'. But from our material we can only deduce the line B.
Now C is found approximately by reflecting the part of curve B after the storm has
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Tig. 14. Fluctuations caused by a gradually varying field of wind (storm surge)

ceased in the point ¢t = 7. Subtracting this curve from B we obtain approximately
curve A, which constitutes the stationary state. And this state can be correlated with
the field of wind according to the considerations of the paragraphs 2—S5.

The conclusions, here arrived at, throw also some. light on the assumption of GALLE
(cf. Chapter I, paragraph 1), that the water, accumulated in the North Sea on the days
preceding the day of the actual storm surge, aids also in raising the level of the Sea
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on this day itself. From our calculations it follows, however, that the Sea adjusts -itself
according to the variations in the field of the wind only with a “time-lag” amounting
at most to 6 hours. Here we neglected the oscillations. Only these oscillations, caused
by wind on the preceding days, can to some extent influence the height of the Sea
during the storm surge. But these oscillations are on this day already rather strongly
diminished so that their influence is small. Our final conclusion as regards the “distant
effect of the ocean”, is therefore, that we may safely neglect this effect in our
investigations. - ’ '

In this paragraph only a changing homogeneous field of wind above the whole of
the North Sea has been considered. For that reason we have still to treat the
phenomena of inertia, caused by non-stationary inhomogeneous fields of wind. We are
concerned here with very complicated oscillations of the Sea. We assume, however, that
in these cases the same value of the characteristic period T occurs as in the case of
homogeneous fields of wind. But sub b no special assumptions were made concerning -
the nature of the field of wind causing the “equilibrium value” ¢,, so that if 7 is the
same, all equations remain the same and we are allowed to apply all results of the case
of homogeneous fields also to the case of inhomogeneous fields of winds. '
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CHAPTER III. THE MATERIAL

Tt is most important for the Warning-Service for Storm Surges to be able to predict
the development of each individual storm surge. In the same way as the government-
committee “Rotterdamsche Waterweg”, we have therefore selected a set of storm surges,
which have been studied in accordance with the results of the previous chapters.

The selection of the storm surges was guided by the principle, that if possible all
high surges should be investigated, but that on the other hand the test-material should
not become too extensive, as its complete study would then take too much time. In
this way 14 storm surges were selected out of the period 1920—1940.

Next the place (or places) on the coast must be selected for which to compute the
meteorological effect. It was more or less _self-evident, to choose Hook of Holland, as
thereby our results would be more easily comparable with the results of the government-
 committee “Rotterdamsche Waterweg’ and of OrTT, who both investigated the meteorological
effect at Hook of Holland. Moreover the place to. be selected, should not lie at the
entrance of an estuary, as this would to a certain extent complicate matters. For that
reason Hook of Holland was chosen.

We selected the storm surges for our study from the period 1920—1940 for three reasons.
First because the recent storm surges should also be included; secondly because only in
this period reliable records of the direction and force of the wind along our coast were
‘available. And thirdly it was desirable, that four times a day a weather-map was available
for studying the field of wind and atmospheric pressure over the whole North Sea.

From the records of the wind on our coasts and the weather-maps the field of wind on the
North Sea was deduced. From the records of the sealevel at Hook of Holland the mete-
orological effect was derived. How this was done is described in the following paragraphs.

1. Elimination of the tides

) From the department of ‘“Waterstaat”?!) records were obtained of the sealevel at
Hook of Holland for the following periods, covering the selected storm surges:

4—7 December 1920 21—28 November 1930

17—22 January 1921 16—20 Januarp 1931
4—11 November 1921 18—22 October 1935

24 November—1 December 1925 - 14 October —4 November 1936
9—16 October 1926 ' 290 November—9 December 1936

22 November—2 December 1928 ‘ 28 Januari —5 February 1938.
11—22 January 1930 -

These periods do not cover the actual storm surges only, but also the oscillations
of the whole North Sea after the storm. From these records the astronomical tides had
to be eliminated. The best method for this purpose is that already previously used (see
Chapter I, paragraph 1) of calculating the tides with the aid of harmonic analysis. The tides
were evaluated according to the method developed by VAN DER Stox (7a, 7b). The tide
is represented as a sum of partial tides:

&)= Z 4, cos (w0 + Ve— Hp) : (1)
£(t) = fluctuation of the sealevel, caused by the astronomical tides.
4, = amplitude of the n’th partial tide.
w, = angular velocity of the n’th partial tide.
y, — astronomical argument of the n’th partial tide.
#, — phase constant of the n’th partial tide.

1) Department for the maintenance of dykes, roads, bridges and the navigability of canals.
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The formula holds for any arbitrary day. For a certain tide w, is the (constant)

angular velocity, which is known with great accuracy. The astronomical argument V,
changes from day to day, but is a constant for one and the same day. The value of 7,
is tabulated by vaN DER Stox for the different tides. The phase constant x, is a
constant for each place on the coast, but its value changes from place to place. This
constant has been derived from the tidal phenomena for many places on the Dutch
coast. The amplitude A4, is for a definite spot on the coast also nearly a constant. Tts
value changes only slightly with a period of 19 years (Sarosperiod). The tabulated
values of 4, are the mean values for this period. Table 6 contains the values of the
tidal constants, used in the computation. These partial tides have been selected in
accordance with the condition: 4, =>4 (cm).
: In this way 16 tides were selected for Hook of Holland (P, and 2, are slightly
smaller than 4, but they should be taken into account too). Besides the tables for V,
VAN DER Stok tabulates also the variation of a tide during its own period. The
corresponding tables for @, v, L, i, MN, and My were omitted, however. They had
to be computed from the values of w,. The values of the constants, tabulated in
table 6, were all kindly communicated to us by the department of “Waterstaat’.

TABLE 6 Values of the tidal constants for Hook of Holland

Partial tide A, (cm). %y (°) w,, (°/hour)
K....... ‘ 7.86 351°.4 15.0410686
O, .. ..... 11.15 181°.3 13.9430356
e 3.86 341°.3 14.9589314
. ... 4.76 135°.9 13.3986609
My. . . ... 75.26 70°.6 28.9841042
Sy o oL 18.65 130°.8 30.0
Ny. . ... .. - 11.62 45°4 28.4397296
K,. . ... .. 541 132°.8 30.0821372
Yo v v v v v .o 6.10 34°.1 28.5125830
2MS8. ... .. 8.25 189°.7 27.9682084
Ly . o . .. .. 8.25 76°.5 29.5284788
Ao v o o o 3.74 100°.1 29.4556254
M, . ... .. 17.45 130°.1 T 57.9682084
MS,. ... ... 10.45 185°.8 58.9841042
MN,. . .. .. 6.97 114°.7 57.4238338
Mg, . ... L. 4.42 62°.3 86.9523126

With the aid of all these data the height of the tide was calculated with intervals
of half an hour for each day of the selected period, covering 117 days in all.
Subsequently the height of the tide was subtracted from the corresponding height of
the sealevel, which was derived from the records at Hook of Holland. In this way
about 5600 values of the meteorological effect were computed. These were plotted
against the time. From these curves it was at once clear, that in many cases the tide
had not been removed altogether. An oscillation with a period of 6 hours was especially
conspicious with great persistancy. These oscillations were removed from the distiurbed
curves by an averaging of overlapping intervals: the mean value of all 13 values of the
-meteorological effect ranging from (¢—3) to (¢ + 3) was considered to be the true. value
of the effect at the time ¢ For straight portions of the curves this method yielded
excellent results. But for the more strongly curved portions wrong values were obtained,
as the curves were “flattened” more or less by the process of averaging, which for that
matter is only plausible, as it is this very “flattening” of the curve, which is the
object of the whole procedure. For that reason a special device was used for these
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portions of the curves. A~ smooth curve was drawn, which represented the general
course of the disturbed curve. The differences between this estimated curve and the
actual curve were evaluated. And the method of overlapping averaging was then applied to
these differences. This is allowed, because the curvature of the curve has been artificially
removed. With the aid of the averaged values of the differences the estimated curve is
afterwards corrected. In this way the oscillations with a period of six hours were removed.

But in some cases the corrected curves still showed slight but clearly perceptible
oscillations with the period of the My-tide. These oscillations could not be removed
with the method of overlapping averaging, as the period of M, becomes comparable
with the periods connected with the storm surges themselves. On that account an other
method was used. The “points of inflexion” of the superposed oscillations constitute
also “points of inflexion” of the compound curve. In these points the amplitude of the
oscillations becomes zero. By drawing through these points of the compound curve a
smooth curve, we obtain a fair idea of the undisturbed curve. The difference between
the compound curve and the estimated curve can now be plotted. This difference
constitutes the tidal oscillations, which were superposed upon the curve of the pure
meteorological effect. We change the estimated curve so long, till the curve of the
differences shows a nearly purely harmonic oscillation. By means of this graphical
method all remaining tidal fluctuations were eliminated with complete success. The
" curves for the pure meteorological effects obtained in this way, are represented in
figures 33a—46a. The curves are plotted against Greenwich mean time.

9. The wind on the North Sea and in the Channel

Tt was shown already in paragraph 2 of Chapter 1T, that we must know the mean
value of the wind in the three sections of the North Sea shown in figure 10. Until now the
wind on the Sea was computed from the isobars on the Sea, derived from weathermaps.
Also the gradient was computed sometimes from the difference in atmospheric pressure between
two conveniently situated places. The direction of the wind is derived from the isobars
by assuming a constant angle between the wind and the direction of the isobars or the
gradient of the atmospheric pressure. Also the velocity of the wind may be computed
from isobars or gradient. ’

In our investigation the wind on the Sea will likewise be computed from the
isobars. The observations on board the ships at sea are few and unreliable, especially
concerning the velocity of the wind, so that they cannot be used as a base for the
computation of the wind on the Sea. We used the daily weather-maps issued by the
Deutsche Seewarte for the determination of the field of barometric pressure on the Sea.
But in each separate case the relation between the field of pressure and the wind was
established by comparing the field of pressure above Holland with the wind on the
coast, derived from the records. of the wind at Flushing, Hook of Holland, IJmuiden,
Helder, Vlieland and Rottumeroog. Moreover; the estimates of the wind, made on board
the light-ships ‘“Noord-Hinder”, “Haaks” and “Terschellingerbank” were used as material
for comparison. From all these data the wind on the coast was derived. Also the
gradient of the field of atmospheric pressure above the coast was computed from the
isobars of the weather-maps and the difference in atmospheric pressure’ between Dutch
Meteorological stations. The relation between the velocity of the “wind on the coast”
and the gradientwind, computed from the gradient of the barometric field, was used
afterwards to calculate the velocity of the wind on the Sea from the isobars on the Sea.

a.i The wmd on the coast

For each station the wind at a height of 6 meters above the earth has been
derived from the records (cf. e.g. Braak, 67, 68). Only in this way the values of the
windvelocity at the different stations become mutually comparable. But even after
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.reduction in the indicated way large differences of the windvelocity remain. The
recorded windvelocities at Rottumeroog, Vlieland and Flushing are mostly lower than the
corresponding velocities at Hook of Holland, IJmuiden and especially Helder. Generally
these last stations are in good agreement with each other. But when however differences
‘occur also between these stations, the most “probable” value of the windvelocity has to
be found. In this case we make use of the estimates of the light-ships. It should be
borne in mind, however, that the velocity-equivalents of the estimates at sea are not
altogether identical with the internationally adopted equivalents of the scale of Beaufort.
At sea the estimates are generally low (KurLBRODT, 69, BLECK, 70). The velocity-equivalents
of the Beaufort estimates at sea are for that reason higher than the internationally fixed
scale of Beaufort equivalents. According to BRAAK (personal communication) the equivalents
given by BrLECK are better than the international equivalents. Both have been tabulated
in table 7. Combining in this way the data of the coast stations and the lightships we
obtain at last a value of the velocity of the wind at the coast.

TABLE 7 International and BLECK equivalents of the Beaufort scale

Degrees Beaufort 1 2 3 4 5 6 7 8 9 10 11 12
International equivalent . ... | L1 | 25| 43| 63| 86| 11.11 13.8| 16.7| 19.9| 23.3| 27.1 | > 29.0
Breck equivalent . . . . . . 18| 44| 70} 96| 122 148 174 20.0| 226 | 25.2| 27.8 | > 29.1

Not only the wvelocity, however, but also the direction of the wind on the coast is
fixed. This is computed as the mean of the directions of the wind at all stations along
the coast. Only Rottumercog is omitted, because this station shows often a direction of
the wind which is largely different from the direction on the other places.

b. The gradient-wind

fter having computed the velocity of the wind at the coast, the velocity of the
gradientwind must be obtained also. We put: ‘

V = velocity of the gradientwind,

o = density of the air,

R = radius of curvature of the paths of wind,

¢ = gradient of the atmospheric pressure,

! = 20 sin ¢ (for definitions cf. Chapter 1I).

Infroducing these symbols we obtain the following relation, when the wind paths
are curved cyclonically: y

g
A 2
W+ % (2)

o depends on the ‘temperaturé and density of the air. Putting:

0, = density of the air at 0° C and a pressure of 76 cm (p,),
¢ = temperature of the air in °C,

p = atmospheric pressure,

« = coefficient of expansion of the air (« = 0,00366),

we obtain:
1_1+o p
e 0 B
Introducing: .
AP=DP,—ps
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we obtain approximately, as can easily be verified:

11 1 '
s 0w s v, o=El i 3)

The value of ¢ is fixed with sufficient accuracy if we take permanently:

p= 1000 mb.
We must then express A p in mb too. Substituting also the value of «, we obtain:

100 6= 0,1 A p + 0,366 ¢. _ _ _ (4)
Substituting (3) into (2):
2
lVJrl/— E(1+5)=%, G,=G(1+8). . (5)

In this equation 8 is represented by (4).

For the derivation of V from the values of G, R, ¢ and p, we construeted two
graphs. With the first graph the value of 6 was obtained in a simple way from the
values of p and ¢. Then G, was evaluated with the aid of equations (5). And finally
the value of V, corresponding with the values of G, and R, was read from a graph,
showing the relation between G and V for different values of R.

In our investigation the value of G was calculated from the differences of air-
pressure between Flushing, Helder and de Bilt. Moreover the value of G was derived
from the distance of the isobars on the weathermaps as a check. Through the values
of G a smooth curve was drawn, yielding an additional correction. The value of p was
read simply from the weathermap, the value of ¢ was derived from the observations
made on board the lightships. The radius of curvature of the windpaths were simply
assumed to be equal to the radius of curvature of the isobars. This is however not true
in general. Only in the stationary case blows the wind (nearly) parallel to the isobars."
But we are interested precisily in non-stationary cases. The wind fluctuates strongly:
storm surge ! The evaluation of the right windpaths, however, is very complicated and
inaccurate. For that reason we preferred to use simply the curvature of the isobars.
Besides the error, made in this way, is nearly compensated. We calculate namely the
ratio between the velocity of the actual wind on the coast and the velocity of the
gradientwind, obtained according to the indicated method; we derive the wind on the
Sea however from the value of the gradientwind, calculated according to the same
method, and the ratio, previously found. It is evident, that in this way an error,
caused by a wrong value of the R, is nearly compensated. For if we calculate a value
of the gradientwind which is too high, the other value of the gradlentwmd will most
probably be also too high, and nearly in the same ratio.

A vparticularity, connected with the computation of the ratio between gradientwind
and wind on the coast, is the correlation of this ratio with the difference in temperature
between air and sea. It turns out, namely, that this ratio is much greater in the case of
higher temperature of the Sea (“‘cold air mass”) than in the case of higher temperature
of the air (“warm air mass”). Averagely we find:

case 1. T, < T, (cold air mass): ratio = 0,76,

case 2. T, >1T,, (warm air mass): ratio = 0,60.

This difference can easily be explamed by taking into account that the greater turbulence
in the cold air causes a stronger mixing of the air at the sealevel with the air at
greater heights of which the velocity is nearly that of the gradientwind.

The mean value of the ratio amounts to 0,75. This is very close to the ratio for cold air,
owing to the fact that only a few cases of warm air are present. PALMEN (46) also determined
the value of this ratio. He obtained the value 0,76, in perfect agreement with our result.
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¢. Wind on the Sea

In order to determine the .velocity of the wind in the three sections of the North
Sea, shown in figure 10, the mean value of ¢, R and p was derived from the weather-
maps for each section. The value of ¢ was assumed to be identical with the temperature,
measured on board the lightships. With the method, described in section b, the velocity
of the gradientwind was calculated. From this value the velocity of the wind at the surface
of the Sea was calculated with the aid of the ratio between the velocity of the wind at
the surface and the velocity of the gradientwind, computed for the Dutch coast from
the observations. The values for the wind on the Sea obtained in this way, were plotted
against the time and a smooth curve was drawn through them. Finally from these
curves the values of the wind were read, which are tabulated in the tables 25—38.
These tables give also the average direction ¢ of the isobars in the three sections,
" taking (cf. Chapter II, paragraph 4) v = 0° when the direction is West, v > 0° when the
direction is North of West and y < 0° When the direction is South of West. We choose
the direction of the isobars, for it turned out, that on the coast the relation between
the direction of the wind and the direction of the isobars was very poorly defined. As
it- is rather probable, however, that on the Sea the direction of the wind is much the
same as the direction of the isobars, we decided to use the directions of the isobars in .
stead of the direction of the wind. We calculated only the average of the angle between
the direction of the isobars and the direction of the wind on the Dutch coast, and we
obtained: 8°. This value is somewhat smaller than the values assumed by other in-

vestigators:

LevErkINCK: 16°,
WirTiNg: 15°—20°,
Doopson: 20°,

Baur and PurLreps: 13°.

On that account we shall use a value of 10°, when we discuss the results of our
investigations (cf. Chapter V).

The accurate method, described above, for calculating the wind on the Sea, has been
applied only to the wind on the days of the actual storm surges. For the days after
(or before) the storm surges, on which only small fluctuations of the Sea occur, the
wind (especially the velocity) needs not be known with the same utmost accuracy. It
turned out, that it was sufficient, to deduce the values for the wind from the Beaufort
estimates of the wind on the weatherstations, surrounding the North Sea. The values,
obtained in this way, are indicated in the tables by printing in italics.

The considerations given so far are applicable only to the cases in which it is possible
to evaluate an average value of the wind in the indicated sections. But it is also
possﬂole, that the centre of a depression is situated above the North Sea. The field of
wind is then so inhomogeneous, that the computing of a mean value of the wind would
cause the investigation of the material to become erroneous. For that reason we determine
the structure of the field of pressure by indicating the position of the centre of the depression,
the direction of the long axis of the depression, the average value of the gradient of
the pressure on the short axis, and the ratio of short and long axis. If a depression
has a circular form no difference is present between long and short axis. In this case
only the mean value of the gradient of the air pressure is noted. In the investigation
of the material the depressions are studied separately.

All data have been derived from the synoptic weathermaps for 1 h, 7h, 13 h and
18h G.M.T., so that our data for the wind rvefer to these times. To simplify our
calculations we have therefore plotted the values of the meteorological effect against

G.M.T. too.
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CHAPTER IV. INVESTIGATION OF THE MATERIAL

The various storm surges can be compared only after elimination of the effects of -
inertia. The field of wind can then be correlated with the remaining stationary state, and
it is exactly for this stationary state that the formulas hold, which were derived in the
first 5 paragraphs of Chapter II. '

When we have obtained the curves for the stationary state, the effect of the barometric
pressure is first eliminated from these curves. Thus the pure windeffect remains, which
is studied in connection with the field of wind. This investigation is again divided into
two sets of cases: those with a homogeneous field of wind in the three sections of
figure 10, and those in which the centre of a depression is situated on the North Sea
or in its immediate \%ioinity. As a check, the formulas, obtained in this investigation,
-are used for computing the development of the various storm surges from the fields of
wind, whereupon the results are compared with the actually observed values of the
meteorological effect. Jn this way we obtain a fair idea of the extent to which the
computed values tally with the observed ones.

1. Elimination of the oscillations due to inertia

We eliminate the oscillations of inertia with the aid of the results of paragraph 6 of
Chapter I1. For that purpose we have first to determine from our material a value of 7T
(the period of the characteristic oscillations of the North Sea) and of g, the quantity which
regulates the extinction of the oscillations. We derive the value of these quantities from the
oscillations occurring after the storm. We can represent them by the formula:

— Bt 27t
= de COS - ‘ (1)

As T and g have to be determined from the oscillations, the oscillatory part of the
curves must be separated from the pure windeffect, which may be present. We perform
this by means of the method, explained in Chapter IIT for the elimination of the
remaining traces of the M,-tide. Just as in that case we connect in the present one the
points of inflexion by a smooth curve and subtract this estimated curve from the
compound curve. The differences constitute the superposed oscillations of inertia of the
whole Sea. We change the position of the estimated curve so long till this curve and
the curve of the oscillations both run smoothly. It is possible, that after removal of the
oscillation with the shortest period fluctuations with longer periods still remain. These
oscillations are then removed in the same way. The result in shown in the figures
33b—46b. The periods 8—10 Nov. 1921; 13—16 Oct. 1926; 28 Nov.—2 Dec. 1928; 18—22
Jan. 1930 and 25—28 Nov. 1930, are instances of cases in which only one oscillation was
superposed upon the windeffect. More superposed oscillations are found for example in
the period 30 Oct.—4 Nov. 1930. Of course, the final curve shows also fluctuations with
time. As, however, the longest period of oscillation of the North Sea amounts theoretically
to 40 hours, we are able to decide whether the observed fluctuations are due to real
oscillations or to a gradually changing windeffect.

In this way those parts of the figures 336—46b, which are not related with a
storm, are constructed. We take fully into account the tables of the wind, so as to
analyse only those periods, in which only a gradual variation of the windeffect is to be
expected. ' _

From the curves for the oscillations, obtained in this way we derive the values of
and 7T according to formula (1). The value of 7 often changes during a period. The average
value must then be determined from the positions of maxima and minima or zero-points.
Moreover the average value of § can be deduced from the decrease of the amplitude with
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time. In this way the values have been found, which are tabulated in table 8. In this
table the periods are given for which the values of f and 7' have been derived.

TABLE 8 Values of f and T as functions of V
= = 2
Period % Period % Period =
B | @ > & @ | b~ N @~
Deec. 6—7, 1920 . .| 63 6 6.7 || Jan. 11—14, 1930 .. 32 9 112.3 || Oct. 2426, 1936 . . 39| — | —
Jan. 20—22, 1921 . .| 37 8 112.3 || Jan. 18—21, 1930 . .| 563 1 7.7 || Oct. 30—Nov. 1, 1936 | 28 6 6.6
Nov. 7-—11, 1921 . .| 46 5 6.5 || Nov. 21—22, 1930 . .| 36§ — | — Oct. 30—Nov. 3, 1936 | 62 5 6.3
Nov. 27—29, 1925 . .| 36 7 7.7 || Nov. 25—28, 1830 . .| 48 4 8.3 || Nov. 2—4, 1936. . . 33 5 6.9
Nov. 30—Dec. 1, 1925| 47 7 7.4 || Jan. 19—20, 1931 . .| 32 2 4.0 [| Dec. 7—9, 1936. . . 46 5 7.1
Oct. 13—16, 1926 . .| 31 1 5.0 || Oct. 21—22, 1935 . .{ 38 6 7.4 | Febr. 1—5, 1938. . . 31 5 1117
Nov. 30—Dec. 2, 1928 | 38 1 [10.0 | Get. 21—23, 1936 . .| 48 4 7.0

The values of 7 are expressed in hours. For g the value of g x 10% is entered and
finally the values of the windvelocity averaged over the whole North Sea in the periods
considered (in m/sec) are also given. The latter quantity has been determined too, because,
according to theory, the value of § depends on the value of D, and D depends in its
turn on the value of V. We compare, therefore, also the theoretical predictions with
practice with reference to this point.

On studying first the values of 7', it turns out, that a large scattering exists. But
the values of 7T are distributed more or less systematically around the average value:

. T, =41 (hours).

This is in excellent agreement with theory, which predicts a value of 40 hours (cf.
Chapter II, paragraph 6).

For 8 we have to study its relation with V. Here also large individual fluctuaticns
occur. Averaging, however, the 18 cases in which both g and V have been determined so
as to obtain three mean values of B and V, yields the values tabulated in table 9. It
turns out, that a linear relation exists between the two quantities:

B X 105=2,0 +0,37 V. : (1a)

TABLE ¢ Relation between f and V

V (m/sec) B x 108 20+037TV
5.9 4.2 4.2
7.3 4.7 4.7
10.0 5.7 5.7

The values of 8, calculated with the aid of formula (1l¢) have also been entered in
table 9. The fact that perfect agreement exists is a strong argument in favour of the
linear law. :

This can be compared with the theoretical formula for g, which was derived in para-
graph 6 of Chapter II. For the whole North Sea we obtained:

D
— 3
5—4'875[{0'

The value of 7', refers to an oscillation in which the whole North Sea partakes. For
that reason we have to use also for g the formula which holds for an oscillation of the
whole Sea. In the formula H, is the average depth of the Southern part of the North Sea.
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We assume:
Ho = 40 (m).

For D we use again the formula of PArmEN:
D=35+547.

In our geographic latitude we have:
=101

Substituting D and ! in the equation for g we obtain:
B x 108=2,6 +0,40 V.

These values are slightly higher than the values we obtained experimentally. But
taking into account the approximative character of the theoretical considerations and the
rather uncertain derivation of equation (la) from the observations the agreement between
theory and “‘experiment” is very satisfactory. -

We now calculate g for the case of a storm. Using our empirical formula and
assuming that an average value of the windvelocity of 20 m/sec occurs during the storm

surge, we obtain:
ﬁ::lo—,

But we computed figure 18 with the value:

| pT=1,
and figure 14 with the value:
o BT =2.

In our case we obtain, substituting the value 7', = 41 (hours):
BT=14.

It is therefore to be expected, that for the actual development of a storm surge
conditions will be intermediate between those of the two figures. This result has been used
in constructing the curve for the stationary states. Here again the graphical method has
been applied: the oscillation, existing after the storm, has been extrapolated backwards
during the period of the storm surge itself. The amplitude was found approximately by
taking the first negative maximum after the storm. The phase of the oscillation was found
by a careful comparison of the actually recorded curve for the meteorological effect with
the curves, given in figure 13. In this way some arbitrariness is introduced. But as, so far,
the graphical method has yielded reliable results, we ventured to suppose, that also in
this case reality would be approximated fairly well.

The oscillation, found by extrapolating backwards, was subtracted from the curve of
the actual storm surge. Once more the estimated curve was altered so long till the course
of both this curve and the curve obtained by subtraction became smooth. In this way for
all storm surges a perfect separation was obtained of the stationary state from the oscillations
caused by inertia. The results are shown in figures 336—46b. From these curves we read
the value ¢, of the stationary meteorological effect present at the synoptic hours (1 hour
G.M.T. etc.). The values of ¢, have also been tabulated in the tables 25—38. They have
served as a base for the next investigations. '

9. Elimination of the barometric effect

The pure windeffect is obtained, after subtracting the barometric effect from the values
of the total meteorological effect (‘“‘stationary” value!).

The values found for the meteorological effect, after having carried out the processes
explained in paragraph 1, refer to the stationary state of the sea, connected with the field of
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wind and barometric pressure. We have therefore investigated the barometric effect during
periods with very feable winds and slowly changing fields of pressure, so that the state
of the sea could be considered as stationary. This investigation was carried out for Helder.
For days, on which a windforce of at most 1 or 2 degrees Beaufort was noted at the
Dutch coast stations, the predicted values in the tide-table were compared with the .
actually found values of high water and low water. When such a feable wind blows,
the windeffect can be neglected. The difference between actual and predicted values of the
tides are then entirely due to the influence of the field of pressure, so that we can correlate
these differences with the local barometric pressure in Helder, neglecting the influence of
the gradient of the field of pressure.-

The differences calculated from the value of high tide yielded the same relation with
the barometric pressure as the differences calculated from the values of low tide. This
relation turned out to be linear:

‘ (A D)p= 0,45 (1004,5 — p), @)
(A ¢)p = barometric effect of the Sea,
p = local pressure (in mb).

If the local pressure were compensated hydrostatically the coefficient of p should be
nearly 1. As we have neglected the direction and absolute value of the gradient of the field
of pressure, however, this coefficient will be smaller. For it can be shown, that this omission
will result always in a decrease of this coefficient. This is confirmed by our empirical
result. An other investigation of this relation yielded a somewhat greater value of the
coefficient. Therefore rounding off a little we assume as the relation for the barometric
effect:

(AQ)p=1%. (1093 —p). : (20)

With the aid of this formula the values of the “pressure effect” have been computed.
The values of (A¢), have been tabulated in the tables 33—46. The values of the pure
windeffect, which have been tabulated in the 12th column of the tables 33—46, have been
obtained by subtracting (A ¢), from ¢, (the “stationary” value of the meteorological
effect, cf. paragraph 2). '

3. The relation of the windeffect with the windvelocity

In the investigation of the windeffect the relation with the welocity of the wind was
considered first of all. According to paragrahp 5 of Chapter II a quadratic relation should be
found. This can be checked by selecting cases with a perfectly homogeneous field of wind and
then comparing the values of the windeffect caused by different windvelocities all having
the same direction. It turns out, however, that a fixed direction of the wind provides only
very few values, which can be compared, so that more directions of the wind must be
considered. These directions must, however, be chosen in such a way, that the same wind-
velocity yields nearly the same windeffect for these different directions. Only then are
we allowed to use more directions of the wind. For that reason we choose these directions
in the vicinity of v = 50°. For it was shown in Chapter 1I, that a homogeneous field of
wind yields the maximum value of the windeffect, when ¢ » 50°. And in the vicinity of the
maximum the windeffect changes only slowly with the direction: the value of cos (y — 50°)
changes only by 1 9% — 2 9, if y changes from 40° to 60°. We consider therefore
directions in the vicinity of = 50°.

In this way we have extended the number of cases in which the windeffects can
be compared with each other. Nevertheless few cases are found in which the field of
wind is perfectly homogeneous. On that account we have to reduce our conditions still
further. Now in Chapter II was found, that the windeffect was mainly caused by the
wind in the Southern part of the North Sea (section II, cf. figure 10). We now select
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therefore all cases, in which the wind in sections I and III does not differ much from
the wind in section II. As, however, the wind in section II causes the greater part of
the windeffect, we correlate the values of the windeffect only with the velocity of the
wind in this section, neglecting the (very small) influence of differences between the
wind in section II and the wind in sections I and III (causing differences of a few 9 in
the windeffect). In this way we have selected the cases of table 10, in which the direction

TABLE 10 Relation belween windeffect and velocity of the wind -

Date Hour{ -y 14 ¢ Date Hour| v ¢ Date Hour{ vy v ¢ -
Jan. 19, 1921 11 50°(20.8] 155 Nov. 26, 1928 18 | 59° [ 15.0] 86 Qct. 20, 1935 18 | 50° | 12.4| 44
Jan. 19, 1921 7| 58°119.0} 134 Nov. 27, 1928 1] 55°)13.0| 74 Oct.- 20, 1936 18 | 46° | 11.0| 54
Jan. 19, 1921 13 | 64° [ 16.7| 99 Nov. 27, 1928 7| 54°|12.1| 71 Dec. 1, 19386 1| 43°|18.3| 141
Jan. 19, 1921 18 | 55° [ 14.6| 70 Nov. 27, 1928 13 | 58°(12.3| 71 Dec. 1, 1936 7| 44° [ 18.2] 176
Nov. 25, 1928 18 | 53° 1174|115 Jan. 17, 1931 71 40°118.9| 133 Dec. 2, 1936 18 | 47°[13.6 71
Nov. 26, 1928 1] 59°120.1) 172 Jan. 17; 1931 13 | 51°|18.4} 139 Jan. 30, 1038 | 1 | 42°117.7| 119
Nov. 26, 1928 71 61°|19.3| 142 Jan. 18, 1931 18 | 47° 112.5| 45
Nov. 26, 1928 13 | 60° [ 17.0] 195 Get. 20, 1935 13 | 50° | 14.3) 71

of the wind in section IT and also the velocity of the wind (in m/sec) have been tabulated. The
values of the windeffect have been entered also. We now examine the question as to whether
the relation between the velocity of the wind and the windeffect is quadratic or not. To thisend
we have plotted the values of ¢ against the values of V2 It turned out, that considerable
scattering was present. We determined therefore the average value of { and V?*for 4 sets of

" ‘ cases. The results are given in table 11. In
e order to obtain nearly the same mean
50l - value of y in all sets, so that the average

TABLE 11 Average relation between { ond V?

oy

Mean value of ¢ . . . | 51° | 51° | 53° | 54°

. ., V2o .| 146 | 184 | 293 | 385

» o Lo 57 70 | 114 | 147

S0l

tatistical weight . . . 1 1 2 1

" o3 L ?IM i L S values should be comparable, it wasneces-
Vis ' sary to introduce slightly different statis-
Fig. 15. Averago relation between { and V2 tical weights of the groups. These statis-
“tical weights are also given in the table.
The values in this table have been plotted in figure 15. If the law for the windefiect
is really quadratic in the velocity, the points of figure 15 should lie on a straight line.
This line should pass through the origin, as of course the windeffect is zero when the
velocity of the wind is zero. Looking at figure 15, we see immediately, that the points lie

indeed on a straight line, passing through the origin. _
We arrive at the conclusion, therefore, that the quadratic law holds. We use this result

in the determination of the influence of the direction of the wind.

4. 'The relation of the windeffeet with the direction of the wiild

The investigation of the relation of the windeffect with the direction of the wind is
carried out first for the cases in which the velocity of the wind is accurately known.
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Afterwards the other cases are studied (cf. Chapter III, paragraph Zc¢). According to the
previous paragraph, we are allowed to put for the windeffect:

{=a(y). V2 (3)

V = velocity of the wind (in m/seé),
a (y) = windeffect caused by wind with a direction  and velocity 1 (m/sec).

With the aid of formula (3) we can calculate from any value of  the corresponding
value of a. In this way we obtain a great number of values of a. By averaging all these
values we can determine the curve showing the relation between a and .

But in averaging simply all values of @ errors would be introduced. To show this we
consider the formula for ¢ derived in Chapter II, which we may write as:

{=aV?cos (v —y,).

We substitute for cos (y — v,) the scalar product of the vectors i+ and 4, of unit
length indicating the direction y of the wind and the direction y, of the direction of
maximum windeffect respectively:

>

cos (p — 1,) = i o -

Hence:

Now if we average N values of ¢, corresponding to slightly different values of p, we
obtain:

1
N,
- n=1 n=1I

It is clear, therefore, that the values of V2 have to be averaged wectorially.

According to this result in each case the North- and West-components of the vector
with absolute value V7?2 and direction y have been computed. These values are arranged
according to the value of v and then averaged. From the components of these “average”
vectors we compute again the length and direction of the vectors. The values of { are also
averaged. We have obtained_ in this way the value of the windeffect, caused by the wind
with a direction coinciding with the direction of the “mean” vector and a velocity equal
to the root of this “‘mean” vector.

This process of averaging has been carried out for all three sections of the Sea. For
each section 22 values of ¢, V and v have been obtained. All these values were the result
of averaging approximately 20 cases. A first preliminary investigation showed at once,
that the angular distribution did not follow the cosine law. This is caused chiefly by the
windeffect in section IL. As the influence of the wind in sections T and III is only small,
we are allowed to assume for them a pure cosine distribution, whereas the angular distribution
of the influence of the wind in section IT must be taken as arbitrary. We put therefore

C=a,V 2 cos (y;— &) + @y (w,) . V2 + a3V3? cos (w; — £3), (4)
where:
Vi, Vy, V3 = windvelocities in sections 1, II and III respectively;
a,, a3 = constants;
1, ¥a w3 = directions of the wind in sections I, 11 and IH respectnely,
&1, &, & = directions for maximum windeffect in sections I, TT and IIT respectively;
a, (p,) = angular distribution of the windeffect in section II.

It turned out, that by this formula actual conditions could indeed be very well
represented. As a first approximation the first row of values of o and ¢ tabulated in
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table 12 were found. The values of @, and ¢, give only the values of a, (y,) and v, for
the direction of the wind causing the maximum windeffect.

TABLE 12 Values of a and e in different approximations

Section I Section 11 Section II1
41 | & 2 . & ) &3
First  approximation | 0.09 —25°| 033 65° 0.05 90°
Second ’ 0.087 | — 26° 0.333 66° 0.048 92°
Third » 0.087 | —26° 0.333 66° 0.048 | - 92°

From these values is seen at once, that the influence of the Channel and the Northern
part of the Sea is indeed small. These 1nﬂuences may be treated therefore as small
disturbances.

The values of a, &; a5 &; and the form of a, (y,) (given more or less by a, & in
the table) are now improved in the following way. For each case we calculate the value
of ¢, defined by the equation:

La={C—a V2 cos (yp;— &) —ayV3? cos (p3—é&5). - / (8)

In this computation the values for a,, &; a; &; obtained in first approximation
(cf. table 12) are used. .
Then we should have:
o=y (p5) . Vo2

From this set of values for {, we compute, averaging Vecterially as explained aboire,
an improved curve for a, (,) (second approximation). With the aid of this curve we can
calculate values of “Z,”’:

b= C—ay(py) . Vot —a3V3? cos (93— &5)-

¢, should be represented by:
' &= a, V® cos (yp;—&).

From the set of values for ¢; we can derive improved values of e, and ¢, (second
approximation).

With the values of the second apprommatlon for a, (v,) and a,, &; we can calculate
values for “Z;”, and calculate improved values of o and & (second approximation).

With the values of the second approximation the whole process can be repeated and °
a third approximation computed. The successive approximations have been tabulated in
table 12. It turns out, that the third approximation yields the same values as the second
one. These values are therefore the correct ones to be used in equation (4). The angular
distribution, found in this way for a, (y,) is tabulated in table 13 and is also shown in

TABLE 13 Values of the angular distribution of ag (,)

Yoo o . | —36° | —23° | —12° 0° 12° 24° 38° 48° 56° 71° 88°

ay (). | 0.071 - 0.070 0.123 0.171 0.210 0.270 0.297 0.308 0.330 0.328 0.317

figure 16. It appears at once from figure 16, that the points representing the different
values of a, (y,) lie closely to the smooth curve drawn through them. This curve can
be drawn accurately, however, only for the values of y in the interval: — 50° < » < 100°.
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A striking feature of the curve is its assymmetrical character. The maximum is situated
near 66°, whereas the point half way the two zero-points is situated near 46°. This asymmetry
will be discussed later (Chapter V).

We have used until now only the values of ¢ for which accurate values of the wind-
velocity had been derived. Now
also the other values of ¢ are
considered. To check, whether or
not, different results are yielded,
we calculate in each case the value
of ¢, with the aid of equation (5),
using the correct values of o, &;
a3, & (third approximation).

Considering the values of ¢,
obtained in this way, we find, that
‘morevaluesshould beaveraged here
than in the preceding investigation,
because of the stronger scattering
of the individual values. In order

to obtain the form of the curve we © |
have, moreover, to effect the ave- e e o w4 s e 0 @ W o
raging of overlapping intervals for ' ‘

the Easterly directions of the wind.

v 40U

—

wvasag.

0 suaf

[RLT]

u2a0f

oss0 |

X0 .

Fig. 16. Angular distribution of a, (y,).

TABLE 14 Values of ay (y,) from the cases with estimaied windvelocities
Py —763° — 29° — 7° 15° 58° 132° — 148° — 178°
ag (). . .| —0.043 | 0.058 0.149 0.223 0.345 —0.046 | —0.280 | — 0.260
TABLE 15 ‘
Angular distribution of the windeffect in the three Sections of the North Sea and in the whole North Sea (a (y))
k4 a; (Y1) g (15) a; (5) a(y) Y ay (1) g (15) a; (3) a(y)
— 40° 0.084 0.020 — 0.032 0.072 140° | —0.084 | — 0.019 0.032 | — 0.071
— 30° 0.087 0.055 | —0.025 0.117 150° | — 0.087 | — 0.098 0.025 | — 0.160
— 20° 0.087 0.093 0.018 | 0.162 160° | —0.087 | — 0.169 0.018 | — 0.238
— 10° 06.084 0.131 — 0.010 0.205 170° —0.084 | — 0.220 0.010 | — 0.294
0° 0.078 0.171 — 0.002 0.247 180° | — 0.078 | — 0.254 0.002 | — 0.330
10° 0.070 0.209 0.007 0.286 — 170° — 0.070 | —0.271 | — 0.007 | — 0.348
20° 0.060 0.246 0.015 0.321 — 160° [ —0.060 | —0.280 | — 0.015 | — 0.355
30° 0.049 0.278 0.023 0.350 ~— 150° | —0.049 | — 0.277 | — 0.023 | — 0.349
40° 0.035 0.303 0.030 0.368 - 140° | —0.035 | — 0.268 | — 0.030 | — 0.333
50° 0.021 0.322 0.036 0.379 — 130° —0.021 | —0.253 | — 0.036 | — 0.310
60° 0.006 0.331 0.041 0.378 — 120° | —0.006 | —0.234 | — 0.041 | — 0.281
70° — 0.009 0.333 0.045 0.369 — 110° 0.009 | —0.207 | — 0.045 | — 0.243
80° | — 0.024 0.327 0.047 0.350 — 100° 0.024 | — 0.177 | — 0.047 | —0.200
90° — 0.038 0.306 0.048 0.319 — 90° 0.038 | —0.150 | — 0.048 | — 0.160
100° — 0.051 0.271 0.048 0.268 — 80° 0.051 { —0.118 | — 0.048 { — 0.115
110° | — 0.063 0.212 0.046 0.195 — 70° 0.063 | — 0.086 | — 0.046 | — 0.069
1206° | — 0.072 0.136 0.042 0.106 —  60° 0.072 | — 0.052 | — 0.042 | — 0.022
- 130° ) —0.079 0.058 0.038 | 0.017 — 50° 0.079 | — 0.017 | — 0.038 | 0.024

| In figure 17 the curve of figure 16 has been drawn once more and besides the points,
representing the values of «, (y,) in table 14, have been plotted. We see, that the points
in  the interval — 50° << ¢ < 100° lie very closely to the curve. This - justifies - the
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assumption of the reliability of the other pomts too, so that these points have served to
complete the curve of figure 17.

The curve of figure 17 has been tabulated in table 15, together with the values of
a, cos (yp; — ;) and a cos (p, — &;). Moreover the sum « (y) of the three separate windeffects

L.

0.9

-0.100

~0.2a0f

- t80* ~160° -140% -120° -100° -80° -60° ~40° -0 o 20° 40° €0 B3 oo* HO® 140° 160° t8g"
Fig. 17. Values of a, (y,) derived from the cases with estimated windvelocities

has been computed. This represents the windeffect caused by a wind having the same
direction and velocity on the whole Sea and the Channel.

These values have been plotted in flgure 18. '

Here, too, the asymmetrlcal character is clearly perceptible. We see also, that the
negative wmdeffeot is less pronounced than the positive one. This result was also found

0 -a0’ -2v o w3 Q00 &a° 80° 100° 4207 1407 0T Ed”

Fig. 18. Value of a (y) for a homogeneous field of wind

| by other investigators. If we represent the new curve by the formula ¢ = a (v), the wind-
effect, caused by a homogeneous field of wind with direction y and velocity V would be:

L=a(y). Ve , (6)

With the computation of table 15 and the plotting of the figure‘s 17 and 18 our task:
“the investigation of homogeneous fields of wind” is completed. For with the aid of this
table (resp. figures) and the formula (4) or (6) the windeffect can be calculated for any case.
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5. Depressions

In paragraph 5 of Chapter I1 we derived the value of the windeffect, caused by depressions
with different positions of the centre. Isopleths for the windeffect as a function of the
position of the centre were calculated. But we mentioned already in Chapter II, that in
the computation in question the results of the preceding paragraph had been taken into
account. When the centre of the depression is namely situated at a great distance from
the North Sea, the field of wind in the different sections may be taken to be homogeneous,
and the windeffect can be calculated from the direction of the isobars and the velocity of
the wind. The velocity of the wind can be calculated from the gradient (which is taken
to be constant everywhere and equal to 10) and the curvature of the isobars, using the
ratio between gradient wind and surface wind obtained in Chapter TII. In this way the
far off parts of the isopleths have been computed. The parts on the North Sea, however,
were computed with the formula, derived in paragraph 5 of Chapter 1I. In practice, therefore,
the position of the far off parts of the isopleths need not be examined. Only the parts on the
North Sea should be checked. And in investigating this problem, we are allowed to use
the fact, that the isopleths must have positions, already fixed for those parts which lie
at a certain distance from the North Sea. :

In order to study the windeffect of the depressions on the North Sea, we examine
first the relation between the windeffect and the value of the gradient G' of the barometric

TABLE 16 Numerical data concerning depressions sttuated on the North Sea
Lati- | Longi- Ratio of ;o 5 5 ”

Data Hour tude tudge @ 0 the axes ¢ 10 &' & b0 g £
4 December 1620 1 sate | — 54| 251 — — 122 | 16 7.6 | 1.23 | 19.2 3 | 155
4 December 1920 7 54° — 9° 27 — — 149 20 7.5 1.07 | 20.4 15 20.7
4 December 1920 13 53° — 5%° 27 — — 130 10 13.0 17.8 15 12.0
4 December 1920 18 51° — 43° 21 — — 72 2 36.0 — 16.3 9 3.5
68 November 1921 7 55° — 21° 21 98° 1:2 46 13 3.5 | 0.85 8.7 4 11.0
6 November 1921 13 53° — 63%° 28 73° 2:3 148 13 114 1.54 | 16.1 16 14.0
6 November 19821 18 53%° —10° 26 60° 1:2 141 20 7.1 1.10 | 18.9 14 21.8
25 November 1925 1 57° — 5° 15 — - 38 21 1.8 | 0.86 | 16.9 2 18.7
30 November 1925 . 13 54° — 1° 10 — — {—15 6 — -15.0 2 7.5
30 November 1925 18 523° | — 2° 8 — — |—15 2 — — |-23.4 2 3.9
1 December 1925 1 50%° — 44° 6 — — |—10 | —2 — — |-27.8 1 1.6
9 October 1926 13 574° — 1° 18% — — 30 16 1.9 | 0.56 8.8 4 13.2
9 October 1926 18 574° — 2%° 23 |—30° 1:2 65 18 3.6 | 072 13.8 3 15.4
13 October 1926 1 58° 20 18 — — 3 12 3.1 100 | 11.4 6 | 15.2
13 October 1926 7 564° | — 14° 17 20° 1: 2% 29 15 1.9 0.70 | 11.9 6 12.2
13 October 1926 13 56° — 7° 14% 3° 1: 2% 28 22 1.3 | 0.64 | 16.9 4 12.2
14 October 1926 7 581° — 3° 134 — — 3 20 1.8 [ 1.00 | 19.2 4 17.2
23 November 1928 13 7 57%° 24° 28 — — 60 11 5.5 0.73 7.7 16 13.4
23 November 1928 18 57° — 1° 27 — — 73 15 | 49| 0.70 | 10.0 15 12.3
24 November 1928 1 584° — 5° 25 — — 115 22 5.2 | 0.86 18.4 6 20.3
24 November 1928 7 58° — 7% 244 — — 142 25 5.7 1.14 | 23.7 6 23.8
24 November 1928 13 58° — 7%° 24 — — 145 25 5.8 [ 1.20 | 25.2 6 23.8
25 November 1928 13 574° | — 24° 20 78° l1:2 72 18 4.0 | 1.06 | 15.1 2 15.4
22 November 1930 18 584° 13° 21 — — 68 14 4.9 1.14 | 15.4 9 11.1
23 November 1930 1 574° — 64° 23 70° 1:3 124 23 54 ) 1.07 | 20.2 5 21.8
19 October 1935 13 59%° — 33° 24 —_ — 81 21 3.9 0.71 14.1 12 18.9
19 October 1935 18 57%° | — 8° 27 — — 130 22 5.9 0.86 | 17.8 4 19.3
20 October 1935 1 58° — 8° 25 — — 160 26 6.2 [ 1.04 | 25.8 13 -24.6
20 October 1935 7 564° | — 8° 214 — — 120 24 5.0 | 1.13 | 26.0 9 23.3
19 October 1936 13 55° — 4° 16 — — 48 15 3.6} 1.30 | 18.8 3 13.9
19 October 1936 18 55° — 7° 18 — o 77 20 3.9 125 | 23.8 3 14.6
5 December 1936 13 574° | — 4° 15 30° 2:3 44 20 2.21 1.03 | 21.9 2 17.8
5 December 1936 18 a7° — 6° 15 20° 1:2 46 22 211 098 24.3 5 20.4
6 December 1936 1 57° — 9° 15 — 5° 2:3 52 26 2.0 092 | 29.2 5 25.8
6 December 1936 7 563° — 73° 15 — — 60 23 2.6 | 1.22 | 26.7 2 22.3
6 December 1936 i3 56° — 6%° 16 98° 2:3 68 21 3.2 1 1331 22.1 5 20.2
6 December 1936 18 56° — 6° 17 93° 1:2 73 21 3.6 | 1.26 | 20.9 6 14.2
7 December 1936 1 564° | — 8° 16 94° 1:2 80 24 3.3 | 1.38 | 258 5 23.5
7 December 1936 7 56° — 8° 15 87° 1:2 52 23 23 104 | 19.1 5 22.7




pressure, occurring in the depression. We cannot use here, as in the case of the homogeneous
fields of wind, the velocity of the wind, for this velocity changes throughout the depression
(from zero in the centre to a maximum value in a certain distance from the centre). Hor
that reason the gradient is here used.

To find the relation with the gradient, we compare the value of the windeffect, obtained
in each individual case, with the theoretical value of the windeffect caused by a depression
with the same position of the centre, but having circular form and gradient = 10 (mb/500 km).
This value is derived from figure 11. We denote it by ¢’y In table 16 we have tabulated
all available depressions, situated on the North Sea or in the immediate vicinity of the
North Sea. The value of ¢, introduced above, is tabulated in column 9. In column 10 the
ratio between the actual value of the windeffect ¢ and ¢’y, is given. Studying the values
of these ratios, we perceive that for the cases of 4 Dec. 1920, 13 h and 18h, this ratio

_differs largely from the other values. For that reason these cases have been printed in
italics and have been neglected in the further investigation.

The other values show, however, also some scattering, so that mean values have been
calculated and tabulated in Table 17.

TABLE 17. Mean relation between windeffect and gradient of atmospheric pressure

Mean value of the gradient (@) . | 14.7 | 164 | 204 | 244 | 272
s m w o TAti0 Ol . 1.99| 309 397| 566| 7.05
1= S e . .| 2t6 |29 |46 |595 | 740

We try to find the relation between ¢/, and G. To this end we put:

8O~ - C P
T = (ZG
' Clo

or:

log ; =log a + p log G.
10

By plotting log G against
log ¢ty and drawing the
smooth average curve best
adjusted to the points we obtain:

p~~19.

We see, that the relation is
almost quadratic. To check this
we plot in figure 19 £/{’,, against
@2 We have tabulated the value

Fig. 19. Relation between /", and G of & also in table 17. It turns
_ out, that nearly all points of
figure 19 lie closely to a straight line, passing through the origin. Only one point lies
outside this line. We derive from the figure:
£ 00095 6. (7
10

In these computations we neglected the deviation of many depressions from the.
circular form. We next investigate therefore the influence of these deviations. We write
formula (7) in the following form:

£ = 0,0005 &', G2 , , ()
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With the aid of this formula the value of ¢ for “circular form” is computed for
each depression from the values of ¢(';, and G. When the depression has not a circular
form, the calculated value of ¢, ¢, will generally deviate from the value of ¢ actually
found (¢!). For all cases under consideration we compute the ratio of ¢ /', Denoting this

ratio by a, we have:
=ual'

We calculate first the mean value of @ for the depressions with circular form. We

obtain:
a=1,00.

so that formula (7) holds for circular depressions. We consider now the ratio between the
axes in the depressions of elliptic form. In more than half of the total number of cases
this ratio amounts to !/,, the other depressions not differing much from this “standard
form”. As the number of elliptic depressions is too small to investigate the influence of
a change in the ratio between the axes, we investigate only the influence of “elliptic form”,
assuming all depressions to have nearly the same ellipticity. In this investigation we try -
to find the relation between the value of @ and the direction 6 of the longer axis. Of course
this relation is also a function of the position of the centre of the depression, but we neglect
this influence. : '
When we plot the values of @ against the values of 6 we obtain clearly a definite
relation. Great individual scattering occurs, however. In order to obtain a formula, we
consider again mean values (cf. table 18). We assumed the following formula for a :

a=1—a,cos (2 0—¢).

TABLE 18 Mean values of a and 0

6 2° 62° 94°

o 6.79 1.16 1.17

-

We must, indeed, have a periodic function of 26; as when the direction of the
depression has turned through 180°, its position is the same as before and we must have
the same value of a. We obtain:

a=1-—021 cos 2 6. O ®
In figure 20 this curve is shown with reference to 140
the points of table 18.
Finally, therefore, we obtain for an elliptic depression  '» | 7 o o)
the following formula: . /\

£ = 0,0095 (1 — 0,21 cos 2 ) &'y, G2 '
. 0.80 _\_J

In this formula ¢ ‘10 is still the value of ¢;, in figure 11.
With the aid of formula (8) we are able to reduce all de- g o l . . .

pressions to “circular’ ones, by calculating a new value of the R L M s
windeffect (') from the observed one () with the formula: 0—>
1 Fig. 20. Relation between ¢ and 0
'=-.¢
a

With the aid of the quadratic law in G we further reduce all values of ¢’ to the
value of ¢’ for ¢ = 10. We call these values ¢,,. They have been tabulated in, column 12
of table 16. These values have been plotted on a map. They should all lie on isopleths. As,
however, individual scattering exists, mean values have again been computed, giving
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statistical weights to the different values of f;, according to the values of G2 tabulated
in column 13 of table 16. The mean values, obtained in this way are indicated by crosses
in figure 21. But the scattering even in these values is too great, so that mean values
were again computed, this time indicated by little circles in figure 21.

55°

50°

5° 0 5
Fig. 21. Isopleths for ("',

Through these points isopleths should be drawn for {;,. In doing this it should be
borne in mind, that the position of the isopleths at a greater distance from the North Sea
must be the same as in figure 11, as was pointed out previously. Taking into account all
conditions we obtain finally the isopleths, drawn on figure 21. Comparing these isopleths
with the lines of figure 11, we see that differences occur in the Northern part of the Sea.
The empirical values of (;, are lower than the theoretical ones. In the Southern part,
however, the empirical values are higher. For the rest, however, the agreement between
theoretical and empirical values is satisfactory.

From these curves is read the value of {;, for the positions of the various depressions
under consideration (Z'';4!). ¢';o has been tabulated in column 14. Comparing them with
the values of ¢;, (column 11) we see large deviations. This scattering compelled us previously
to work with mean values!
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6. Time-lags

In the preceding paragraphs the stationary states have been analysed, now only the
question of the time-lags must still be investigated. i ‘

We do this in the following way. With the aid of table 16 and formulas (4) and (2a)
for all cases of homogeneous field of wind the value of ¢ is computed. We omit in these
computations the cases in which depressions occur, as we saw in the previous paragraph,
that in these cases large individual scattering exists. The values of ¢ obtained are now
compared with the actual ones, especially for those cases, in which the windeffect increases
or decreases. For these cases we compute the difference between the stationary (calculated)
and non-stationary (actually found) value of ¢, that is A ¢. ' :

We next consider the stretches of the rising and falling parts of the curves, that are
nearly straight. When a constant time-lag exists, these stretches of the stationary and
non-stationary curves must be parallel and for the difference A ¢ we should have everywhere:

g
AC:E-AL

Al = constant time-lag,
dl|dt = variation of { with time (e.g. cm/hour).

cm <« em
40 _ a0 “a_

] / L i i) 2 Oc i} —
° 5 o 5 gt 5 0 15 s
%_, em/hour “l" i om/hour % s
Fig. 22. The relation between ( Fig. 23. The relation between ‘ Fig. 24. The relation between
A ¢ and dl/dt (rising part) A{ and d{/dt (falling part) A ¢ and d{/dt (oscillations)

When we_plot A ¢ against dz/dt, we should find a linear relation. This is found indeed;
only a difference in time-lag exists between the rising and the falling part of the curve.
Mean values of A ¢ and d(/d¢ are tabulated in table 19. These values are also plotted in
figures 22 and 23. Clearly the linear relation holds very well, so that the assumption of
a constant time-lag is fully justified. We compute the value of the time-lags from the figures.
These values are also tabulated in table 19.

TABLE 19 Mean values of A\ ¢ and d¢/dt
Phenomenon A £ (em) ‘ At (hours)

o . dg dt 3.5 80 | 140 :
Retardation occurring in rising part of the windeffect AL 8.0  16.5 39.8 2,2

. o y aja | 48 | 73 | 101
Retardation oceurring in sinking part of the windeffect Al 14.8 19.4 289 2,8
Difference between stationary and non-stationary dljdt 4.4 7.8 13.2 2‘2

value of the maximum : NC 8.1 | 214 26.6 ’
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An other phenomenon connected with inertia is the fact, that the maximum oscillates
to higher values than the stationary one. Hence we have also investigated the relation
between the mazimum rising velocity and the difference between the stationary and non-
‘stationary values of this maximum (cf. table 19, and figure 24). It appears, that this relation
is very nearly also a linear one, so that, here too, a sort of time-lag can be introduced,
which has the meaning, that the difference between stationary and non-stationary values
- of the maximum is found by multiplying the maximum rising velocity by the (constant)
value 'of the time-lag, which, according to figure 24, amounts to 2,2 hours. This is the same
value as that of the time-lag for the rising part of the curve.

We also examined the difference in time between the reaching of the stationary and
the non-stationary maximum. It appears, that this difference is rather constant and amounts
likewise to: -

A t= 2,2 hours.

Tt turns out, therefore, that all time-lags, for the rising part of the curve, amount to
2,2 hours. The time-lag for the falling part of the curve is somewhat greater: 2,8 hours.
With the aid of these.time-lags we are now able to compute approximately the actual
development of a storm surge from the computed stationary curve and this stationary
curve can be determined in its turn by means of table 16 and formulas (4) and (2a), so
that we can now compute completely the actual development of the storm surges under
consideration. A discussion of the results of this computation and of the other results is
given in Chapter V.
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CHAPTER V.. RESULTS

In the preceding Chapters we studied theoretically and empirically the conditions in
the North Sea. In the present Chapter the theoretical and empirical results will be compared.
- We shall try to explain the differences between them and discuss the accuracy, which can
be reached in practice in the prediction of storm surges.

1. Agreement between theoretical and empirical results
a. . Homogeneous ﬁelds of wind

For the homogeneous fields of wind the theoretical and empirical results concerning
~ the stationary state are tabulated in table 20. We have given the values of maximum
windeffect for V' = 10 (m/sec) and the direction of the wind, causing this maximum effect.

TABLE 20 Theoretical and empirical results compared
Cmax (exp.) {max (theor.) Ymax (€XP.) 7 Ymax (theor.)
Section TI. . . . .. 8,7 (cm) (cm) — 36° — 15°
» Im. ... .. 33,3 (cm) 40 -(cm) 56° - 50°
» mr. . . . .. 4,8 (cm) 8 (cm) 82° 80°

We have taken into account, that throughout our empirical investigations the direction
of the isobars has been used. To obtain the corresponding direction of the wind, we sub-
tracted 10° from the empirically derived values of the optimum directions of the isobars.
On the whole a fair agreement between theory and practice is found, which is very satisfactory,
as no perfect agreement between these two could be expected, the theoretical investigations
being rather approximative.

It turns out, therefore, that the assumption of a bay, which is practically closed at
its Southern end, as used in our theoretical considerations, is justified. Starting from this
conclusion, we study once again the value and angular distribution of the windeffect in
-section II. The theoretical value, computed for this section, applies to a perfectly enclosed
sea. Already in Chapter IT we remarked, that this value will not be reached, due to the
lowering influence of the Channel. For this value of the windeffect in section II applies
to the case, that no wind is blowing in section I and III, so that the accumulated water
can flow away to the “basin with normal level” constituted by the Channel. Thus a lower
value of a, should be found, than the one theoretically calculated for a perfectly enclosed
sea. We obtain indeed a lower value. The difference is, however, not appreciable, indicating
that the influence of the Channel is not very large, which also was predicted in Chapter II.
. These theoretical considerations being all of them confirmed quite well, we should expect,
~that the theoretically computed angular distribution would also be confirmed by the empirical
data. And this is not the case. In figure 21 we notice a very marked asymmetry instead
of the cosine-law, which we expected to hold. This asymmetry cannot be explained by
the presence of the Channel. For the effect of section II can be considered to be the total
effect, if no wind blew in sections I and ITI. As in that case no fluctuations of the Channel
oceur, it acts only as a basin with constant sealevel, which reduces all values of the wind-
effect nearly in the same ratio. Asymmetry, however, is not caused by this fact, so that
we have to look for another explanation. To this end we calculate:

£’ = 0,243 cos (yp —46°).

We calculate also the ratio between ¢ (the actual values of the windeffect, caused in
section II, cf. table 15) and ¢’. We plot in figure 25 the values of this ratio (/{’ against
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the corresponding direction of the wind. A nearly symmetrical curve results, with a maximum
near y = 125°. Besides, we calculate mean values of the difference in temperature, A T
between the air and the sea (A T = T,, — T,,.), which follow from the observations on
the lightships, made during the periods of the storm surges considered. These values have
been tabulated in table 21 ., '
and also plotted against y in » : _
figure 26. B - ‘ -
Comparing figure 25 with /

figure 26 we see a striking
analogy between the two cur-

ves in both, namely a strong
rising setting in between =0,
and v = 30°, which in both
curves continues till y =90°.  «|
Here the curve for A T ends,

as no sufficient data were *“
available to extend it. But
the analogy between the two T

parts of the curvesisstriking ¥ .} | . . RS SR RN TR SR TR SO SO

enough. This offers an expli- - e - ot ot owrer oo @ W w e W e
. Vs o

cation of the asymmetry of the Fig. 25. The relation between (/{’ and o

angular distribution, which is
shown in figure 25. Other investigations (SEILKOPF, 71; KIMBALL, 72) already drew attention
to the fact, that the height of the waves depends not only on ‘the velocity of the wind,
but is besides strongly influenced by the difference in temperature between air and sea.

TABLE 21 Relation between N T and the direction of the wind

e oo —35°1—22°|—12°| —1°| 1I° 22° 33° 43° 49° 55° 65° 84°
AT . . ... —03|—o05—06|—07|—05|—06|—13|—16|—20{—21|—24|—34
o mser . : In a cold mass of air (air colder than the sea)

the waves are much higher and more irregular
than in warm air masses (air warmer than
~the sea). But if in a cold mass of air the sea is
more disturbed by the wind than in a warm
mass of air, the frictional forces will also be
greater, the contact between air and water
being clearly more pronounced. Greater fric-
tional forces, however, cause also greater
windeffects. For that reason the analogy
between the curves of figure 25 and 26 may
be assumed to result from this effect. We
arrive, therefore, at the conclusion, that the
Fig. 26. The relation between AT and y asymmetry of the angular distribution of
. section II is, at least partly, explained by

the influence of the difference in temperature between the air and the sea.

A second cause for the asymmetry, shown in figure 25, is, however, surely present.
The size of the waves on the surface of the sea (which determines to a great extent the
amount of the friction between wind and sea) is determined partly by the ‘“‘fetch” of the
wind over the water (cf. a.o. THORADE, 17). Applying this result to the North Sea, it
turns out, that the highest waves will be present in the Southern part. of this Sea, when
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the wind blows parallel to the longitudinal axis of the sea, that means for » = 80° — 90°
(v refers to the isobars!) Now the maximum of the curve of figure 26 occurs near 125°.
This is not perfectly in agreement with the value of v, just mentioned. Taking into account,
however, the more or less approximative character of the curve for ¢ in this interval, we are
allowed to conclude, that this effect will also contribute to the asymmetry of the windeffect.

As this second effect is doubtlessly present, no quantitative results can be given concer-
ning the influence of A 7' on the windeffect. Nevertheless these effects should certainly
be borne in mind, in particular when comparing other investigations with the present results.

b. Depressions

The researches on the depressions were somewhat less satisfactory than those on the
homogeneous wind fields. It is true, that the computed position of the isopleths (fig. 21)
is in rather good agreement with the theoretical position (fig. 11), but a rather large scattering
in the individual cases remains. This can be explained in the following way. We have
determined the field of wind, connected with the depression, only by giving the form of
the depression (direction and ratio of axes, gradient), but the wind is also influenced by
the motion of the depression. For in a moving depression the paths of the airparticles acquire
quite an other radius of curvature than can be computed from the isobars only, and this
results in other values of the velocity of the wind. For that reason the mean position of
the isopleths of figure 21, in which the motion of the depressions have been averaged out
more or less is close to theory, but deviations occur in the individual cases. On that account
we also reduced the number of cases of “depressions” as much as possible by considering
them as “homogeneous” in the three separate sections of the sea and used the actually
recorded wind, which was only extrapolated by the form of the isobars and the magnitude
of the gradient in the sea. In this way we obtained in the cases of homogeneous wind a
rather good approximation to the actual windvelocity on the sea. We should, therefore,
use this method also in practice as much as possible.

c. Nonstationary state

We obtained the same time-lag, viz. 2,2 hours, for all effects, connected with the rising
part of the storm surge: namely the retardation in the rising part, the excess of the real
maximum over the stationary one, the retardation in the time of the maximum. It is easily
explained why the retardation in the rising part and the oscillating up of the maximum are
both ruled by the same time-lag, when namely both effects have the same time-lag, they
have also the same magnitude (cf. Chapter IV, paragraph 6). And when the level of the
sea was previously too low, it is only plausible, that it will oscillate upward afterwards,
and become too high, and nearly by the same amount by which it was too low.

The time-lag by the falling part of the storm surge is greater than the time-lag for
the rising part: 2,8 hours. This can also be explained easily: if no upward oscillating-effects
were present the retardation would be the same as for the rising part, but the first-named
effect adds to the “retardation” in adding to the height of -the recorded windeffect. This
is also in agreement with theory (cf. figures 13 and 14). The values of the time-lags them-
selves must, however, also be explained. In Chapter IT we obtained as a result, that, when
the wind rises suddenly and remains constant afterwards, the stationary value of the
windeffect is only reached after 7 hours, if we omit the oscillations. Here we have, therefore,
a time-lag of 7 hours. But if the wind varies “linearly” (viz. the value of the corresponding
stationary state of the windeffect) it can easily be shown, that the stationary and non-
stationary curves become nearly parallel after a short time and show a time-lag of 31
- hours. This holds, however, only for a sea with constant depth. If we take into account
the variation of the depth in the North Sea, a still smaller value of the time-lag is obtained,
viz. 23 hours, approximately. This is rather close to the empirical values, which are
therefore explained satisfactorily. ' '
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9. Comparison with previous investigations

In this paragraph we compare our results with the results obtained by previous
investigations, concerning the conditions on the Dutch Coast (cf. Chapter I).

Like OrTT, we obtained a quadratic law for the windeffect as a function of the wind-
velocity. This result is different from the result of the committee “Rotterdamsche Waterweg”,
which obtained curves with a pronounced “point of inflexion”. The explanation can easily
be given. The parts of the curves, given by the committee (cf. figure 1), in which the slope
decreases, are namely connected with very high velocities of the wind (11—12 Beaufort
grades). These velocities were, however, not measured on the whole sea, but only at Hook
of Holland. Now these high velocities of the wind rarely extend over a large area. They
occur generally only in the “trough” of a depression, which covers only a certain limited
area. For that reason the measured very high windvelocities at Hook of Holland correspond
probably with a lower mean windvelocity on the whole North Sea! On that account the
windeffect observed in connection with these windvelocities are also too low. And this
naturally results in a ‘flattening’? of the curves of figure 1. :

Our results concerning the angular distribution are different from both Orrr’s and
theé committee’s results. Our curve has on the whole been shifted towards greater values
of y. This can be explained by the fact that we correlated the windeffect with the direction
of the wind (isobars) on the Sea. And generally the isobars on the Sea are veered with
reference to the isobars on the coast, so that we obtain the same values of the wind-
effect for greater values of y than investigations who use the direction of the isobars on
the coast. _ :

The angular distribution, found by Orrr and the “committee”” show very little
asymmetry. In the case of the “committee” it can be shown that this results also from
the different directions of the isobars on the sea. This is also true for OrrT, but in the latter
case a second reason is present. His results are namely mean values of the windeffect during
a whole year. And in this case air masses with other temperature-effects will bé present
also. This tends to reduce the effect which we held partly responsible for the asymmetry
of our curves. - ' '

Finally we obtained a much lower value of the time-lag (2,2 and 2,8 hours) than OrTT
(6 hours). The value of OrTT, however, will probably be connected with the fact, that he
had only at his disposal the value of the windeffect with intervals of 6 hours (high and low
tide 1). This had as a quite natural effect, that the influence of the wind could not be
perceived in the ‘“‘simultaneous” value of the windeffect, but in the ‘“next’” one, so that
his value of the time-lag could only be given in multiples of 6.

We arrive at the conclusion, that the differences between our results and those of
former investigations can be explained quite satisfactorily and must be attributed chiefly
to shortcomings in the methods previously used.

3. Prediction of storm surges in praectiee

By means of the results of Chapter 1V we have calculated the values of the meteorological
effect in the non-stationary state for all storm surges, which we have investigated. These
values are at once comparable with the values actually found. In this way we can make
out, whether our formulas give satisfactory results for the actual development of each
individual storm-surge. The computation ran as follows. First the stationary curve was
calculated. From this curve the time and position of the actual maximum was derived by
means of the time-lags and the position of the rising and falling parts of the non-stationary -
curve were determined. These points were connected by a smooth curve. The values,
obtained in this way for the meteorological effect, are shown in the figures 33a—46a by
little circles. Besides, they were tabulated in tables 25—38. The oscillations after the storm
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surges have not been calculated, as it is rather difficult to predict the actual period of these
oscillations. We have, therefore, only calculated the stationary state for these parts of
the curves. ‘ »

It we consider the results, obtained in this way, it turns out, that the development
of every individual storm surge is indeed represented very satisfactorily. This justifies the
conclusion, that we are able to predict in practice also the development of future storm
surges with considerable accuracy, by means of the results of Chapter IV. The different
aspects of the computation will now be discussed in some detail. '

a. Superposition of meteorological effect and the tides

It was found in Chapter III, that even when we calculated the astronomical effect
from a great number of partial tides, the elimination of the tides was not perfect. Evidently
the phase and the amplitude of the tidal waves change more or less during a storm surge
in an unknown way. The superposition of the astronomical and meteorological effects
'is not wholly additive, as also : ‘
other investigators found. But
in practice it is just the height 8 7 | WSW
of high tide, which we need, W4SW
as this is of the greatest im-
portance in causing danger. We -
can calculate this height only 60
by superposing the -calculated
meteorological effect and the
value of high tide predicted in
the tide-tables. Here, too, errors 4
can therefore be made in an
unknown way. This should be

borne in mind in predicting the ' ‘ / NWsS
height of high tide, as well . : We
I

cm

WNW +5SW

as in criticizing afterwards the 0
results of a warning for storm

Pp==
T

b. Phenomena of inertia o .
——————NNW

These are of importance

for the determination of the \
actual development of a storm
surge (e. g. the time of high ' —
water can occur in the period ,
of rising meteorological effect). : - \
But we are chiefly interested in | ' '
the maximum height of the me- % -4
teorological effect. To evaluate
this height we have to make V—
an estimate of the maximum
“rising-velocity” of this effect.
In most cases this can easily be done. From figure 23 can be read immediately the amount,
which must be added to the computed ‘“stationary” value of the maximum. From the
distribution of the points in figure 23 we see, that in most cases the ‘“rising-velocity”
amounts to 20—30 cm/hour. Although in many cases this rather rough approximation
will be sufficient, a more accurate value will generally be needed.

5 10 15 20 .25 30 m/sec

Fig. 27. Windeffect in section T
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¢. Relation between windeffect and windvelocity

We found, that the windeffect is proportional to the square of the windvelocity. The
highest mean value of the windvelocity for which this law was checked, amounted, however,
only to 19 m/sec. In this mean value velocities up to 23 m/sec. were averaged, so that we
can only conclude, that the quadratic law has been checked up to velocities of 20—23 m/sec.
However, windvelocities higher than 25 m/sec will rarely be present above the whole
Southern part of the North Sea. An extrapolation of the quadratic law up to 25 m/sec is
justified, but extrapolation up to 30 m/sec becomes a little doubtful: HELLSTROM (48)
obtained his value of 1,6 for the exponent of V exactly by taking into account the wind-
effect caused by very large windvelocities (up to 52 m/sec!) on an American lake. For that
reason the parts of the curves between 25 m/sec and 30 m/sec in the curves of figures 27,
.28, 29 and 30 should be used with some caution. :

From these curves it follows also, that a large error is introduced into the value of
the windeffect, if we make an error of 1 Beaufort in the estimated windforce (i. e. an error
of 3 m/sec in the estimated windvelocity !), when this windforce is great (10 Beaufort or

cm more). The windvelocity
300 : ' : : NNW should, therefore, be esti-
' ' - mated very carefully. Mo-
N+NW reover we are concerned
| with the windvelocity on
the Sea. It must be borne
20 : : in mind that the average
value of the ratio between

WNW ¢he velocity of the actual
/ wind and the velocity of the
gradient wind was found to

be 0,75 in our in vestiga-
tions, as otherwise in the
practice of the Weather
ol _ w Service the windvelocity on
/ the Sea might be estimated

200

too low. Also the influence
of warm or cold air mass
must be taken into account.

100 , A
- The graphs in figure
16—18 have been computed
~ vious investigations were
3 0 5 @ B 0 m/sec glways computed for the

v
Service the direction of theisobars can be predicted with greater accuracy than the direction
of the wind. On that account we use in our graphs also the direction of the isobars.

/ - d. Relation between wind-

WSW effect and direction of
/ / / the wind

50 d
/

/ \ - for the direction of the

1 ] 1sobars. The graphs in pre-

Fig. 28. Windeffect in section TT direction of the wind. But in

. the practice of the Weather

Now the figures 16—18 give only curves for the quantity a(y), which is used in the

equation:

f=ualy). V5 .
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' tions to a correction”.

But in practice it is desirable to have a set of curves analogous to figure 1. We calculate,
therefore, the value of the windeffect for a fixed direction of the isobars as a function of
the velocity of the wind. The figures 27—29 refer to the three sections of the North Sea,
figure 30 has been computed for a perfect homogeneous field of wind on the whole sea.

In using these graphs in practice, it should be borne in mind, however, that the wind-
effect is influenced also by the difference in temperature between the air and the sea (cf.
paragraph 1 of this chapter) :

All cases, investigated in the present 1nvest1gat10n occurred in autumn or in winter.
But, though rare, a storm surge may also occur in summer. It is possible, that in such a
case somewhat dlfferent conditions prevail, which would influence the value of the wind-
effect. This will hardly ever be the case, however. :

For the prediction of the windeffect of depressions, the isopleths of flgure 21 and
formula 8 of chapter IV should em
be used. The accuracy of these 50
predictions is not so great, how-
ever, as in the case of homo- : N
geneous fields of wind.

40 NNW

e. Effeci of atmospheric pressure

For the average effect of
the atmospheric pressure we 30

obtained the formula: . . '
(A 0)p= $ (1003 — p). /
. 20

With the aid of this formula
the effect of the.atmospheric pres-
sure can in practice be calculated
verysimply. This formuladoesnot 0
yield absolutely reliable results, as
it represents the average effect of

the atmospheric pressure. The di- Zé/
§

NW

WNW

NN

rection of the isobars, which is 0 !
sure to influence this effect, has o
been neglected. As, however, the
values of this “pressure-effect’ al-
waysremainsmall,these omissions
will not cause serious errors, as

they would necessitate “‘correc- \ \ o

-10

-20 <
f.  “Duistant effects”

In the previous Chapters it T SW
was shown that the wind on the * s 10 5 2 2 30.  m/sec
Atlantic needs only be taken into V— :
account, when a South- Westerly Fig. 29. Windeffect in section III

wind is present there over a large

area. But this is very seldom the case. Moreover, 1n these cases there is never caused such a
high windeffect on our coasts, that a “storm surge” results. If the wind on the Atlantic has
an other direction, no Wmdeffeot will be caused at all. We may, therefore, neglect the wind
on the Atlantic in the prediction of storm surges. The only “distant effect”” we have to
take into account is the wind in the Northern part of the North Sea. The influence of this
section of the sea, however, is small, and has been fully determined by the graphs of figure 29.

73



In this section on “distant effects” we discuss also the influence of preceding storms
(“distant in time” !). For preceding storms cause oscillations of the whole North Sea, which
may yield additional height to the height of the next storm surge.

Tf such a case occurs, we have to take into account the period, amplitude and extinction

cm
350

300,

250

200|

150

100

50

N

N g

5
V—

Fig. 30. Windeffect in the whole North Sea

of the oscillations. cau-
sed by the preceding
storm. It is rather diffi-
cult to estimate the
amplitude. For in the
storm surges we studied
previously these ampli-
tudes were found only
after a careful elimina-
tion of the tides and after

- studying closely the re-

maining curves for the

‘meteorological effect. In

practice, however, an
analogous analysis of the
conditions of the sea
cannot be carried out im-
mediately after a storm
surge has occurred, so
that the amplitude of the
oscillations must be esti-
mated in an other way.
We use to this end the
graphs of figure 24, sub-
stituting here the descen-
ding-velocity. In this way
we obtain an estimate of
the amplitude of the os-
cillation after the storm.
For evaluating easily the
rate of extinction we
computed the graphs of
figure 31. For different
values of the windve-
locity we calculated with
the aid of equation (la)
of Chapter IV the factor

which must be multiplied by the initial value of the amplitude, so as to obtain the

value of the amplitude at any moment.

If we assume a period of 40 hours it can be estimated whether or not the next storm
surge can be influenced by the oscillations. The windvelocity should be taken into account,

as it influences the rate of extinction considerably.

It will be generally found, that the influence of preceding storms is rather small.

g. Differences in the meteorological effect between places along the coast

This subject has not been investigated in the present study. OrrT, however, found,
that the difference of the meteorological effect between Hook of Holland and Ymuiden
was negligible. In practice, however, warnings for storm surges are given chiefly for places
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in the vicinity of Hook of Holland, so that the study of the variation of the meteorological
effect along the coast was superfluous. It turns out, in practice, that no serious errors are
introduced by assuming the same value of the meteorological effect for all places on the
coast between Flushing and Hook of Holland.

But farther North (up 0

to the Helgoland Bight) the N

value of the meteorological

effect is sure to vary. For s \\\\

Cuxhaven, for example, were \ ' Y20 (o

observed the maximum values \ \ /s"c)

of the meteorological effect  o¢ AN —

tabulated in table 22. The \ \\\ L, ~——

corresponding values at Hook \ A \

of Holland have also been 04 \\\ o, <See —]

entered, from which a change L 3g, e, '

in the effect along the coast T %Zf‘eq \\ T

appears, which must be per- , @ Lol

ceptible already on the Dutch 3 \\\\\

part of the coast. This can & T ]

be explained theoretically by < ool ] — =
0 2 ! 12 2 2% 3 3% 4

means of the formulas of days —»

Chapter 1T and Chapter IV. Fig. 31. Rate of extinction

Besides, the theoretically
computed values for Cuxhaven are also given in table 22. They are in perfect agreement
with the empirical data. We shall here, however, not enter further into this question.
In practice the prediction of a storm surge will run as follows. After having estimated
the direction of the isobars and the velocity of the wind, which will occur in the three sections
of the Sea, the stationary value of the windeffect is derived from the graphs of figures 27—30.
The effect of the atmospheric pressure is subsequently added. In the case of a depressmn
the isopleths of figure 21 must be used.

TABLE 22  Meteorological effect ot Cuahaven

Date
T Oct. 18, 1936 | Oct. 27, 1936
Place \ .
Hook of Holland . . . 155 140
Cuxhaven . . . . . . 320 . 330
Cuxhaven (theor.). . . 315 335

After having obtained the ‘“‘stationary value of the meteorological effect the maximum
rising-velocity of the rising part of the effect is estimated. From the graph, given in figure 24,
the additional height of the actual maximum is obtained. The time of this maximum is
found by shifting the time of the “stationary maximum” by 2,2 hours. The retardation
during the rising and falling part of the effect can be derived from figures 22 and 23. In
this way we obtain an idea of the development of the meteorological effect. On this
meteorological effect the height of the tides must be superposed, which are derived from
the tide-tables. Only then can we form an opinion of the maximum height of the sealevel.
If this height will endanger the dykes, a warning is issued. For Bergen op Zoom, situated
on the East-Scheldt, the windeffect on this estuary has to be taken into account. From
the preceding considerations it may be derived, that many sources of errors are present
in the prediction of the height of a storm surge. Especially the estimate of the windvelocity
is liable to uncertainty, so that it may cause large errors in the prediction. An error of
10 cm at least must be expected. '
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CHAPTER VI.. THE WIND EFFECT ON THE EAST-SCHELDT

After having studied the meteorological effect on the Dutch coast, it is important to
study also the windeffect caused in the estuaries, which break the coastline. For the windeffect,
caused in places on the banks of these estuaries, consists of two parts: the windeffect on
the coast, and the windeffect caused in the channel, formed by the estuary iftself. For
Bergen op Zoom, situated at the end of the East-Scheldt, this has been investigated by
vaN EverpINGEN. He found, that the windeffect (the. ‘‘pressure-effect” was negligible)
could be represented by:

Al=a(y). VA

Here again, therefore, a quadratic law. a(y) is the coefficient which represents the
angular distribution of the windeffect. The values of a(y) are tabulated in table 23. In
this table, and throughout this chapter, v does not denote the direction of the isobars but
of the wind.

TABLE 23 Angular distribution of the windeffect on the East-Scheldt
Direction of the wind . . . . . . SW WSW w WNW NW NNwW
aly) .. ... SRR L 0.054 0.111 0.212 0.240 0.245 0.171

An approximate value for a(y) can be found. The windeffect can then be represented
by the equation: '
A &= 0,26 V2 cos (y — 30°). 0!

If, however, we calculate the value of the constant factor of equation (1) theoretically,
we obtain a much smaller value than 0,26. Besides, it turned out in practice that
formula (1) yielded results, which were far too high. This problem has therefore been
investigated again. The theory is discussed in the first paragraph. Next a better formula
is derived from the data at our disposal, which agrees perfectly with theory. And finally
the reason, why vAN EVERDINGEN obtained such a different result, is investigated.

1. Theory

In discussing the theory of the windeffect in the East-Scheldt, we are allowed to treat
this as a case of a long, narrow channel, closed at one end. In this case, according to
several investigations, we have

A=

0,036 V2 L cos (p — 1o)- @)

H

length of the channel (in km),
windvelocity (in m/sec),

= direction of the wind,

= direction of the channel,

= depth of the channel.

Il

e e gt~

From the theory, given in Chapter II, we can derive immediately the result, that the
formula for the windeffect must have indeed the same form as equation (2). In Chapter II,
however, we assumed a value of 0,032 for the constant factor, in accordance with the
results of PaLmMiN. But the investigations of PALMEN are concerned with a large inland
sea. For that reason the value he obtained for this coefficient cannot be simply applied
to the case of a narrow channel, as here other conditions prevail. That is why we use
throughout this chapter the value 0,036, which has turned out to be in good agreement
with the conditions in channels. '
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In formula (2) we have to substitute the values of L, v, and H for the East-Scheldt.
Here, however, some difficulties arise. The East-Scheldt consists namely of parts with very
different depths Especially transversely the depth changes considerably: apart from one
or two very deep navigable channels, very shallow parts occur. In the longitudinal direction
changes in H and y, occur also. All these changes in depth must be taken into account.
First we shall investigate the influence of the depth changing in transverse direction.

We assume the slope y of the waterlevel to be always directed parallel to the longitudinal
axis of the part in question of the channel. And moreover, that y is a constant everywhere
in a transverse direction. This is not absolutely in accordance with reality, but this assumption
will do in our case.

If we neglect the rotation of the earth, which is allowed in the case of a narrow
channel, we can easily derive from the theory of Chapter II, that the total current in a
point of a cross-section of the channel can be represented by the equation:

S ()= py H () +q W H ().

H = depth of the channel, considered as a function of the transverse coordinate b;
p, ¢ = constants, which are independent of H;

= slope of the watersurface;

W = vector of the frictional force of the wind.

If the depth of the channel were constant over a cross-section, we should everywhere

have § = 0. Hence:
'J"——g —
- p'H.

But in our case this is no longer true. In the shallow parts there will exist a current
which flows in the direction of the wind, and in the deep parts the water will flow in the
opposite direction. The only condition for the stationary state is, that the total current
through the whole cross-section shall be equal to zero, as the channel is closed and in no
place a permanent accumulation of water occurs. Hence:

B
[ 8@).db=
0
B = total breadth of the channel. Substituting in the equation for §:

B
S (B).db=rp H3(b )b+ H2 ydb = 0,
/ v

3)

In the case of the KEast-Scheldt we can, therefore, avail ourselves of formula. (2),
provided we calculate an ‘“‘average” value of I with the aid of formula (3).
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If we calculate the value of M in the way just mentioned for all parts of the
East-Scheldt, it appears that H changes along the channel. We put therefore:

H= H().
] — coordinate in the longitudinal direction of the channel.

It was already pointed out, that v, is also a function of 7, so that the total windeffect along
the channel can be represented by: - ,

L o
A& =0,036 V2. f cos {y - W, (D} dl.
0 H ()

L = total length of the channel.

Evaluating A ¢ by means of this formula in the case of the East-Scheldt, we finally

obtain: ,
A &= 0,10 V% cos (p — 20°). @)

Comparing this formula with formula (1) it appears, that the optimum direction of
the wind computed by us (v, = 20°) agrees rather well with the result of vAN EVERDINGEN
(yo = 30°). The value of the coefficient we obtained, however, is much smaller (0,10) than
vAaN EVERDINGEN’s value (0,26). And it will presently turn out, that our theoretical result
is confirmed perfectly by the empirical investigation. :

2. The material

Here too, as in the investigations in preceding Chapters, we have to obtain data
concerning the wind and the windeffect on the East-Scheldt. They will be treated separately.

a. Windeffect

Tor the derivation of the windeffect on the East-Scheldt we have to compare the
. height of the waterlevel at the beginning and at the end of the channel. But in this case,
records of the waterlevel are not available as in the case of Hook of Holland. At the
beginning (Burgh) and at the end (Bergen op Zoom) of the channel only the height of the
high tide at day is observed: In order to obtain the value of the windeffect in the channel,
we have therefore to compare the differences between the calculated and actually observed
values of these high tides. This yields the windeffect at Burgh and Bergen op Zoom. And
we obtain finally the windeffect, caused in the channel itself, by taking the difference of
the two windeffects. We see, therefore, that we must first of all compute the astronomical
height of high tide at Burgh and Bergen op Zoom. Now only for the places Zierikzee and
Wemeldinge, situated on the East-Scheldt, predictions of the height of the tides are published
in the tide-tables for the Dutch coast. That is why we tried to start from these predictions
for the computation of the heights of the corresponding tides at Burgh and Bergen op
Zoom. Without going into detail we give the results of our investigation. Introducing:

Bu = height of high tide at Burgh,

Z = height of high tide at Zierikzee,

W = height of high tide at Wemeldinge,

Be = height of high tide at Bergen op Zoom,

we have: Bu=2%—3.
Be—189 = 1,129 (W —161).

All values of the height of high tide are expressed in cm with reference to N.A.P.
By means of these formulas we are able to calculate the height of high tide at Burgh and
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“ Bergen op Zoom. The value of the windeffect can then be found by comparing the calculated
and actually observed values of the high tides. Finally the windeffect caused in the channel
itself is obtained by taking the difference between the windeffects at Burgh and Bergen
op Zoom. We obtain in this way the values of table 24.

b. The wind

In order to obtain the value of the velocity and the direction of the wind on the
East-Scheldt vAN EVERDINGEN used the records of the wind at Flushing. It turns out,
however, that owing to the meteorological station being situated in the vicinity of the
town, the recording of the windvelocity yields values, which are too low, when 3 > 0°.
When ¢ < 0°, the windvelocities, recorded at Flushing are in agreement with the velocities,
recorded at the other stations on the coast. When y > 0°, however, the velocities at Flushing
amount only to 60—65 9, of the velocities recorded elsewhere. If we introduce:

V = actual velocity of the wind,
V' = recorded velocity of the wind (for y >0°),

we have approximately:
V=167V

| Substituting in formula (4):
A C=0,26 V'2 cos (p — 20°).

This formula is nearly identical with formula (1), so that, in all probability, the wrong
result of vAN KEVERDINGEN is caused by his using wrong values of the windvelocity. For
obtaining the true velocity of the wind we have therefore used:

for » << 0°: the records at Flushing, Hook of Holland and IJmuiden;
for » >0°: the records at Hook of Holland and IJmuiden.

Moreover, it appeared from the preceding chapters, that time-lags occur in the generation
of the windeffect. We assumed a time-lag of 1-—2 hours for the East-Scheldt and for that
reason corrclated the windeffect with the average value of the wind over a period of
3 hours before the time of high tide. '

Also we did not use the directions of the isobars, but of the wind itself.

The values obtained in this way, are tabulated in table 24.

TABLE 24 Values of windeffect and wind on the East-Scheldt
Date Vv P Iy : Date V- v | ¢
17 January 1921 . . . 11.5 | —85° 6 20 December 1926 . . . 17.5 90° 40
© 18 January 1921 . . . 14.0 —45° 16 21 December 1926 . . . 7.0 40° | — 1
18 January 1921 . . . 20.0 0° 30 23 November 1928 . . . 8.0 | —65° 9
19 January 1921 . . . 18.5 25° 26 24 November 1928 . . . 18.5 0° 43
5 November 1921 . . . 15.5 5° 23 25 November 1928 . . . 16.0 — 20° 24
6 November 1921 . . .. 22.0 30° 26 26 November 1928 . . . 17.0 30° 21
25 November 1925 . . . 16.0 40° 35. 1 13 January 1930 . . . 125 | —25° |— 4
26 November 1925 . . . 4.0 " 90° 2 14 August 1930 . . . 16.0 15° 24
27 November 1925 . . . 14.0 30° 22 15 August 1930 . . . 15.0 1 20° 23
9 March 1926 . . . 13.0 | —30° 20 16 August 1930 . . . 7.0 20° 5
10 March 1926 . .-. 20.5 35° 29 10 November 1930 . . . 13.5 25° 6
9 October 1926 . . . 17.0 | —25° 7 11 November 1930 . . . 16.0 50° 1
10 October 1926 . . . 20.0 15° 25 12 November 1930 . . . 11.0 0° 8
10 October 1926 . . . 9.0 [ —20° 3 22 November 1930 . . . 13.0 | —60° 25
11 October 1926 . . . 120 | —55° |— 3 23 November 1930 . . . 21.0 50° 50
12 October 1926 . . . 7.0 | —30° 5 23 November 1930 . . . 16.0 "10° 35
13 October 1926 . . . 12.0 | —20° 4 17 January 1931 . . . 19.0 25° 53
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Date 14 Y ¢ Date 14 P ¢

18 Janvary 1931 . . . 14.0 | . 30° 22 6 December 1936 . . . 150 [ — 5° 22
16 February 1935 . . . 19.0 | —25° 29 - 7 December 1936 . . . 11.0 80° | — 6
17 February 1935 . . . 9.0 | —10° 11 19 February 1937 . . . 9.0 20° 0
19 October ~ 1935 . . . 16.0 | —55° 12 28 January - 1938 . . . 16.0 20° 17
20 October 1935 . . . 12.5 30° 16 29 January 1938 . . . 170 | —50° |— 9
8 September 1936 . . . 180 | — 5° 32 30 January 1938 . . . 22.0 20° 57
16 October 1936 . . . 13.0 20° 4 31 January 1938 . . . 15.0 60° 30
" 17 October 1936 . . . 13.0 | —10° 12 1 February 1938 . . . 10.0 | —50° 1
18 October 1936 . . . 15.0 30° 13 2 February 1938 . . . 15.0 | —30° 15
19 October 1936 . . . 13.0 20° 18 3 April 1938 . . . 11.0 20° 8
20 October 1936 . . . 12.0 65° 20 4 April 1938 . . . 17.0 45° 18
26 October 1936 . . . 118 | —60° | — 8 30 May 1938 . .. 9.0 10° 7
27 October 1936 . . . 20.0 0° |. 33 31 May 1938 . . . 19.0 |- —10% 35
28 QOctober 1936 . . . 15.0 . 35° 1 3 October 1938 . . . 85 | —70° |—16
30 November 1936 . . . 110 | — 5 |— 7 4 QOctober 1938 . . . 165 | —56° |— 6
1 December 1936 . . . 16.5 35° 12 5 October 1938 . . . 22.0 | —20° 33
2 December 1936 . . . 12.0 20° 22 22 April 1939 . . . 180 [ —65° |—17
4 December 1936 . . . 110 | —10° 14 23 April 1939 . . . 12.0 20° 12
5 December 1936 . . . 10.0 | —70° 4 11.0 5° 11

3. Investigation of the material and results
According to theory the windeffect can be represented by formula (4):
A &= 0,10 V2 cos (1,0——20"). (4)

Applying a method, analogous to those used in previous Chapters, it was first shown, that
also in the present case, the windeffect was proportional to the square of the velocity of the wind.
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Fig. 32. Windeffect on the East-Scheldt

As this investigation offers no new points of view, we abstain from giving further details.
Having established the quadratic law, here again all values of the windeffect could
be reduced to the same velocity and subsequently be compared. The cosine-law could be
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shown to hold indeed. This was to be expected, because here no such effects are present,
as invalidate the cosine-law on the North Sea. -

Having established also the form of the angular distribution, the value of the constant
in the formula could be determined by the method of least squares. We obtained:

A &= 0,089 V2 cos (p — 24°). ‘ : (5)

This formula is in excellent agreement with equation (4) as well as regards the optimum
direction of the wind as the value of the constant. It is hereby once more shown, that
formula (1) was erroneous.

For the practical application of formula (5) it is desirable to convert it into a set of
graphs, showing the value of the windeffect for different directions of the wind. This has
been carried out in figure 32. The graphs refer to the directions SW, WSW, W, WNW,
NW, NNW and N.

From formula (5) it appears, that the graphs for the directions W and NW are nearly
identical, also for WSW and NNW, SW and N.

In order to avoid undue intricacy, we computed, therefore, “mean curves’’ for these
“pairs of directions”; these curves, which are quite sufficient for practice, are given in
figure 32. The curves are drawn as full lines only up to V = 25 m/sec. As this is, here
again, the limiting value, to which the quadratic law has been checked. Up to 30 m/sec,
however, this law has been extrapolated, which is indicated in the figure by the broken lines.

To predict the total value of the windeffect at Bergen op Zoom, we have to predict
first the windeffect on the coast. To this value the windeffect has to be added, caused
according to the graphs by the wind on the coast in the East-Scheldt. In practice this has
- been done already in a number of cases, with quite satisfactory results. :
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TABLE 25

Numerical data concerning the storm surge of December 1920

Date Hour | 7V, Y1 Vs P2 Vs Ys £ (exp.) o (AQ)p | Co—(AL)p} £ (cale) AT
4 December 1 Depression (see table 16) - 90 121 — 1 122 84 — 0.5
id. 7 Depression (see table 16) 155 150 1 149 166 — 1.2
id. 13 Depression (see table 16) 168 131 1 130 157 + 0.5
id. 18 Depression (see table 16) 86 67 — 5 72 60 — 1.9
5 December 1 | 12.5] 90°| 11.01140°} 4.0} 80°| —16 2 — 10 12 — 8 —
id. 7 1 100(135°| 9.5|145°| 4.0|120°| —38 — 23 —12 —11 — 22 —
id. 13 9.6 150° 9.0|150°| 4.0|156°| —43 —39 —12 — 27 — 27 —
id. 18 9.5(163°| 86(157°| 4.0|180°| —42 — 46 —12 — 34 — 29 —
6 December 1 9.5(157° 80|164°| 4.51210°| —39 — 48 —12 — 36 — 33 —
id. 7 9.5)162°} 8.0|170°| 4.5]|230°} —37 —46 | —12 — 34 — 34 —
id. 13 | 10.0|168°| 8.0}177°| 5.0|243°| —35 — 40 —12 — 28 — 37 —
id. 18 [ 10.0|171°| 8.0|182°| 45.0|251°| —32 — 35 — 12 — 23 — 37 —
7 December 1 9.0 174°| 80|(190°| 55|261°| —28 — 27 —11 — 16 — 37 —
id. 7 75178 7.5|196°| 6.0|266°| —24 — 20 —10 | —10 — 33 —
id. 13 8.6 181°| 7.0(203°| 6.0(268°| —16 | —14 | — 9 — 5 — 28 —
id. 18 3.5 [184° 6.6(210°| 6.0|270°| — 9 — 8 — 8 0 — 25 —
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TABLE 26 Numerical dato concerning the storm surge of January 1921 '

Date Hour | ¥, Y1 V, Y2 Vs Y3 ¢ (exp.) o (ADp |eo—(AD)p] & (cale.) AT
17 January 1 [ 11.7 }—18°| 13.2 | —28°| 12.8 [-26° 5 | 0 — 13 13 - 4 — 1.3
id. 7 | 12.0—16°| 13.3|—26°| 13.0 |—24°| — 9 2 — 10 12 6 + 0.3
id. 13 | 127 —13° | 13.71—22° | 13.5 |—19°| — 15 9 — 7 16 14 — 0.6
id. 18 | 13.3|— 8°| 14.0 |-—17°| 13.8 |—12°| — 3 23 — 3 26 24 + 0.9
18 January 1142 0°| 14.5|— 8°f 14.2 0° 71 56 | 1 55 © 39 + 1.6
id: 7 | 15.07 12°( 15.5 5°| 152 12° 76 94 5 89 59 + 21
id. 13 | 17.0| 24°| 17.4| 20°| 16.9| 24° 100 133 8 125 89 + 1.0
id. 18 {19.0( 37°| 199 36°| 19.2| 39° 155 155 6 149 131 — 1.0
19 January 1 [19.5] 50°( 20.8| 50°| 19.5| 56° 162 157 2 155 175 — 1.4
id. 7 | 17.6| 55°| 19.0| 58°| 18.0| 65° 157 132 — 2 134 155 — 11
id. 13 | 15.0| 57°| 16.7 | 64°| 14.8| 62° 129 94 — 5 99 119 4- 0.5
id. 18 | 12.7| 43°| 146 | 55°| 12.5| 30° 86 62 — 8 70 85 — 0.5
20 January 1 | 11.0| 22°| 13.0] 22°| 12.5| 22° 4 25 — 8 33 55 —
id. 7 95| 20°) 115 22°) 12.0 22°1 — 30 8 — 9 17 41 —
id. 13 80| 18°| 10.0f 20°| 11.5| 19°| — 12 1 —10 | 11 27 —
id. 18 7.0 16°| 9.0| 18°| 10.5| 16° 12 — 1 —11 10 17 —
21 January 1 6.0 9°| 8.0| 15°| 9.0 6° 32 — 1 — 12 11 7 —
id. 7 6.0 3°| 80 9°| 9.0|—4° 21 1 ~— 12 13 4 —
id. 13 7.0 o°| 9.0 2°| 11.0 |—9° 1 (§ —11 17 5 —
id. 18 9.0 0°| 100 |—1°| 13.6|—7°| — 8 11 — 9 20 10 —
22 January 1 | 1156 |—1°| 126 |—1°| 15.0 0° 7 "20 — 7 27 24 —
id. 7 | 13.0 3°| 14.5 6°| 15.0 | 14° 28 29 — b 34 42 —
id. 13 | 13.0| 10°| 16.0| 17°| 14.5| 28° 49 42 — 5 47 62 —
id. 18 | 126 17°| 1656 25°| 14.0) 37° 66 54 — b 59 77 —
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TABLE 27 Numerical data concerning ihe storm surge of November 1921
Date Hour | ¥, 1 V, s Vs vs | £ (exp.) Zo (Alp |Co—(AL)p| C(cale.) AT
- 4 November 1 5.6 [—15°| 5.3|—45°| 4.3 |-80° 7 7 — 3. 10 | — 1 — 3.5
id. 7 6.7 |— 8°| 62|—-35°| 52|—67° 7 71 — 3 10 0 0.0
id. 13 8.0 5°) 8.7[—24°| 7.3|-35° 9 12 | — 2 14 4 + 0.5
id. 18 | 10.3| 16°]| 12.0 [—11°| 11.0 |—-13° 16 24 — 1 25 15 + 0.5
5 November 1 |121] 27°| 15.0 7°| 14.0( 14° 46 51 0 51 45 — 1.3
id. 7 112741 32°) 16.1| 22°| 14.3| 32° 75 72 0 72 78 | —3.1
id. 13 | 121 | 30°| 15.7| 37°| 12.2] 72° 89 76 0 76 94 | —03
id. 18 | 10.8| 17°| 14.2| 46°| 7.0 98° 79 66 1 65 8 | —34
6 November 1 —_ — —_— — — — .34 48 3 45 53 — 25
id. 7 Depression (see table 16) 8 51 5 46 47 | — 29
id. 13 Depression (see table 16) 161 156 8 148 127 — 1.2
id. 18 Depression (see table 16) 181 146 5 141 177 | —44
7 November 1 — — — — — — 117 108 1 107 129 — 4.9
id. 7 8.8 66°) 14.4| 66°| 144 |. 70° 76 84 { — 2 86 89 | —43
id. - 13 7.9| 68°| 125 | 68°] 12.5| 80° 47 64 | — 4 68 64 | —2.1
id. 18 | 7.0 70°] 106 70°| 10.6| 90° 37 50 | — 5 55 . 46 | — 4.6
8 November 1 7.0 70°| 9.0 80°| 7.5 80° 38 321 — 6 38 23 —
id. 7 7.0 85°| 8.0|100°| 6.6 85° 33 8 | — 7 25 13 —
id. 13 7.01102°) 7.5|108°| 5.0 80° 15 5| — 8 13 5 —
id. 18 7.0|118°( 7.0|106°| 60| 65°| — 3 | — 5 | —10 5 1 —
9 November 1 6.0137°| 6.0 8°| 50| 26°| —25 | —16 | —12 | — 4 | — 7 —
id. 7 8.0|154°} 3.5\ 66°| 6.0—10°f —37 | —23 | —13 | —10 | —12 —
id. 13 4.0 170°| 25| 25°| 6.0(—-30°| —38 — 27 — 14 — 13 — 13 —
id. 18 4.0 180°) 2.0|— 6°| 60|-38° —32 | —30 | —15 | —15 | —15 —
10 November 1 4.0(187°| 246|—40°( 40|—45° —20 | —381 | —15 | —16 | —17 —
id. 7 4.5(189°| 3.01—-75°| 8.5 |—47°| —21 —32 | —15 | —17 — 18 —
id. 13 5.0|188°| 4.0(-100°| 6.0|—48°| —28 | —33 | —17 | —18 | —22 —
id. 18 55| 186° | 4.5|-125°| 6.0|—-49°| —33 | —34 | —17 —17 | —25 —
11 November 1 6.0|182°) 6.6 |-145°| 65|1—-60°| —39 | —35 | —16 | —19 | —27 —
id. 7 7.01175° 6.0|-160°| 6.5|—62°| —43 | —37 | —15 | —21 | —30 —
id. 13 7o 170°| 7.0\-175°| 7.0|—-55°| —44 | —39 | —13 | —26 | —32 —
id. 18 8.0.|165°} 7.65|-180°| 7.6[|—60°1 —43 | —40 | —11 —29 | —33 —
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TABLE 28 Numerical data concerning the storm surge of November 1925
Da_te Hour| 7, v | Ve P2 Vs Y3 { (exp.) o (A)p |Co—(ALp| £ (cale.) AT
24 November 1| 57 8°| 68| 87°| 6.8 85° 8 8 { — 5 13 11 | —25
id. -7 56{ 80°| 68| 73°| 6.8| 78° 8 8 — 5 13 11 — 2.2
id. 13- 57| 72°F 69} 62°| 69| 75° 9 9 | — 4 13 12 | —23
id. 18 63| 70°| 7.8| 58°| 7.8| 73° 10 16 — 2 18 17 — 2.5
25 November 1 Depression (see table 16) 18. 38 0 38 32 — 2.2
id. 7 1 13.0| 67°| 15.6| 82°| 154 [ 115° 49 81 2 79 55 — 2.9
id. 13 | 16.1| 84°] 21.7| 93°( 18.0| 107° 168 160 4 156 164 —44
id. 18 | 15.8| 89°| 20.7| 95°( 17.6 | 101° 171 137 2 135 164 | —4.2
26 November 1 | 96| 87°| 13.2| 92°| 12.7| 88° 75 51 0 51 8 | — 4.7
id. 7 46| 80°| 7.5] 83°| 7.5 75° 11 17 { — 2 19 27 | —39
id. 13 241 65°| 58| T1°| 5.8 63°| —24 7 — 4 11 9 — 2.3
id. 18 25 57° 58| 56°| 58| 56°| —21 12 — 4 16 9 — 3.9
27 November 1 53| 35°| 9.9| 41°| 9.9| 57° 14 25 — 4 29 20 — 3.8
id. 7 8.1 40°| 12.8 45°| 12.8| 63° 47 39 | — 2 41 48 | — 39
id. 13 [ 10.2| 58°| 144 | 66°| 144 | 71° 77 54 0 54 76 | — 3.8
id. 18 | 11.2¢} 70°| 15.1 | 76° ] 15.1| 77° 92 . 67 2 65 86 — 3.1
28 November 1 | 11.8} 77°( 15.1| 80°| 15.0| 83° 92 85 4 81 88 — 3.9
id. 7 | 11.6| 81°| 14.7| 81°| 14.5| 91° 82 93 4 89 85 | —4.7
id. 13 | 10.8 | 83°] 14.1| 84°( 13.9| -98° 71 88 4 84 77 | —3.0
id. 18 99| 8°)13.0] 89°( 12.5(103° 69 72 3 69 69 | —3.1
29 November 1 8.71 83°| 11.1| 95°| 10.3|107° 63 45 2 43 52 — 3.3
id. 7 79| 70°| 85| 8°| 7.8)101° 39 24 1 23 35 — 6.1
id. 13 7.5 45°| 5.6| 22°| 6.0|-50° 12 6 0 6 15 — 1.7
id. 18 771 20°| 44|-40°| 55|-80°( —10 | — 4 | — 1 — 3 4 | —4.1
30 November 1 80| 0°)| 60|-80°| 75-130°| —24 | —10 | — 2 | — 8 0 —
id. 7 8.0|-86°| 8.01-106°| 6.5|-140°| —21 —11 1 —12 | — 3 —
id. 13 Depression (see table 16) —12 | —10 5| —15 12 —
id. 18 Depression (see table 16) — 4 | — 8 7| —15 10 —
1 December 1 Depression (see table 16) 8 | — 5 B | —10 4 —_
id. 7 8.0|110°| 9.0|135°| 6.0|120° 11 — 2 1 — 3| — 1 —
id. 13 | 6.0 100°| 6.5 90°| 4.0|100° 6 1 — 2 3 0 —
id. 18 4.0 90°| 40| 70°| 3.0| 90° 1 3| — 5 8 0 —
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TABLE 29 Numerical data concerning the storm surge of October 1926
Date Hour | 7, Y1 Va P2 Vs L) ¢ (exp.) Lo (ADp [Eo—(AL)p| £ (cale.) AT
9 October 1 6.0 (—12°| 10.7 {—25°| 6.5 |- 40° 12 12 0 12 9 | —04
id. 7 | 14.0 [—-19° | 15.0 |—40°| 11.6 |-120° 12 17 3 14 12 1 —14
id. 13 Depression (see table 16) - 14 37 7 30 35 | —1.3
id. 18 Depression (see table 16) 44 72 7 65 59. | — 2.7
10 October 1 {177 27°] 20.1 ] 37°] 19.0] 63° 117 130 5 125 131 — 34
id. 7 | 163] 37°| 20.8]| 48°| 19.8| 76° 172 154 3 151 194 | — 3.8
id. 13 | 14.2| 37°| 17.7| 51°| 16.5| 75° 138 108 0 108 147 | — 2.7
id. 18 | 11.8| 27°| 13.7| 45°| 11.3| 64°| .91 69 | — 3 72 97 | — 3.6
11 October 1 9.0 0°1 97| 21°| 20| 26° 38 36 | — 5 41 41 — 3.6
id. 7 84 |—11°| 88|~ 4°( 48— 1° 5 23 | — B 28 11 — 34
id. 13 | 11.2}—7°]| 11.0 |—13°| 102 |— 7°{ —12 22 | — 3 25 13 | —1.7
id. 18 | 13.0 7°1 14.3 [— 9°| 13.0 3°] — 7 30 0 30 28 | —1.0
12 October 1 | 142] 21°) 16.6| 13°( 15.2| 50° 44 62 3 59 - 68 | —0.2
id. 7 | 13.6( 18°| 16.5] 36°} 16.0| 73° 96 81 1 80 115 | — 29
id. 13 | 12.0 8°| 14.5( 33°| 145 76° 98 73] — 1 74 100 | — 2.2
id. 18 | 10.5|— 4°| 11.6 |[—16°| 5.0| 68° 62 55 — 3 58 54 — 3.7 .
13 October 1 Depression (see table 16) 22 35 — 2 37 38 — 3.9
id. 7 Depression (see table 16) 21 28 — 1 29 39 + 0.1
id. 13 | Depression (see table 16) 35 27 — 1 28 - 40 + 0.1
id. 18 1 181 )— 7°| 124 |- 7°] 117 )— 7° 34 27 | — 2 29 31 — 0.1
14 October 1| 13.2|—10°| 12.8|— 3°| 6.0|— 6° 27 30 | — 2 32 36 + 0.1
id. 7 Depression (see table 16) 26 33 — 2 35 35 4+ 0.3
id. 13 | 123 |— 7°] 12.3 7°1 9.1 10° 36 4 | — 1 35 42 | — 07
id. 18 ( 11.5 |—10°| 11.4| 9°| 10.2| 27° 42 1 — 1 35 39 | —13
15 October L] — | — [1056] 13°] 9.0 40° 39 32 | — 2 34 29 —
id. 7] — | — 9.0 16°| 7.0| 42° 28 29 | — 3 32 20 —
id. 3] — | — 7.0 21°) 4.5 45° 17 25| — 4 29 12 —
id. 18 | 11.0|—10°) 6.0| 25°| 45| 48° 12 21 — 5 26 6 —
16 October I {f — ] — 40| 30°| 3.5 &2° 17 17 | —'5 22 3 —
id. 7 8.01135° 3.5 35°| 3.0| 55° 23 12 ] — 6 18 | — 3 —
id. 13 4.01160°| 25| 41°| 25| 58° 12 8 | — 7 I5 | — 5 —
id. 18 201180°| 2.0 48°| 20| 61° 0" 4 | — 8 12 1 — 6 —
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TABLE 30 Numerical data concerning the storm surge of November 1928
Date Hour | V, Y1 V, Ya Vs Ys £ (exp.) %o (A0 |Co—(AL)p| £ (cale.) AT
22 November 1 117 -138°| 11.6 |-43°| 108|—64°| — 2 | — 3 | — 5 2| — 2| +03
id. 7 | 124 —11°| 12.2 |--37° | 11.3 }—53° 20 20 — 5 25 5 + 12
id. 13 | 13.0 |—10°| 12.7 |--381° | 11.6 |—43° 37 37 — 4 41 11 +1.0
id. 18 [ 134 |— 9°| 12.8|—24°| 11.6 |—34° 46 47 — 2 49 19 + 0.3
23 November 1 132 |— 7°] 12.,5|—18° | 11.3 [—25° 53 53 0 53 26 + 0.1
id. 7 | 126 |- 5°| 11.8 [-12°| 10.7 [—18° 56 56 2 54 29 — 1.2
id. 13 Depression (see table 16) 58 65 5 60 63 + 04
id. 18 Depression (see table 16) 66 82 9 73 - 86 0.0
24 November 1 Depression (see table 16) 114 125 10 115 127 — 1.3
id. 7 Depression (see table 16) 150 151 9 142 161 — 2.1
id. 13 Depression (see table 16) 164 154 9 145 167. | — 1.0
id. 18 | 17.8| 25°| 17.9| 38°] 17.0] 70° 157 139 7 132 149 —1.5
* 25 November 1 1170 15°| 16.8] 13°( 14.1| 15° 105 97 4 93 108 — 14
id. 7 | 16.8 5°1 16.1—16°| 9.7 [—50° 57 70 7 63 64 1 —1.9
id. 13 Depression (see table 16) 57 85 13 - 72 53 — 0.2
ooid. 18 | 17.7| 40°| 174 53°] 15.2| 72° 114 130 15 115 107 — 2.2
26 November 1 {178 45°( 20.1] 59°| 18.8| 70° 195 182 10 172 193 — 3.1
id. 7 | 16.8] 42°( 19.3| 61°| 15.7| 69°. 174 150 8 142 173 — 29
id. 13 | 14.8| 39°| 17.0| 60°) 11.8| 69° 128 111 6 105 124 | — 1.5
id. 18 [ 185 37°| 15.0| 59°| 10.1{ 70° 96 91 5 86 102 — 2.0
27 November 1 [ 13.0| 41°| 13.0| 55°( 9.1| 71° 65 78 4 74 74 | —1.8
id. 7 | 13.0| 48°| 12.1| 54°| 93| 73° 54 74 3 71 60 — 2.2
id. 13 | 13.2] 58°| 12.3| 58°|J10.5] 75° 62 73 2 71 58 — 12
id. 18 [ 135 66°| 13.0] 64°] 12.6 | 79° 70 73 1 72 60 — 2.0
28 November 1.1 1371 73°| 14.7| 74°| 144 | 83° .81 72 — 1 73 76 — 24
id. 7 | 135 80°( 151 81°| 14.8| 87° 87 68 — 3 71 80 — 2.1
id. 13 | 12.0| 81°| 144 | 88°( 13.5| 89° 84 62 | — 5 67 75 — 1.7
id. 18 { 10.0| 81°| 12.6| 89°| 11.0| 89° 66 54 — 8 62 56 — 2.5
29 November 1 88| &0°) 11.0| 70°| 9.5| 10° 36 42 — 9 51 29 —
id. 17 7.0 65°| 9.0 45°| 8.0] 10° 15 32 — 10 42 - 17 —
id. 13 7.0 40°) 9.0 25°| 8.0| 10° 5 26 — 10 36 - 14 —
id. 18 7.0 25°| 9.0| 25°| 8.0 25° 7 24 | — 9 33 15 —
30 November 1 7.0 35°| 9.0 45°| 8.0| 48°| 17 24 | — '8 32 18 —
id. 7 7.0 65°1 95| 65°| 84| 65° 31 27 — 7 34 25 —
id. 13 76| 65°( 10.0| 70°| 90| 70° 45 29 — 7 36 30 —
Cid. 18 8.0 65°| 105 65°| 9.5| 65° 45 31 — 8 39 31 —
1 December 1| 80| 65°| 11.0| 60°| 10.0) 60° 30 34 | — 8 42 35 —
id. 7 8.0| 65°| 12.01 60°| 11.0| 60° 21 36 1 — 9 45 41 —
©oid. 13 8.0| 80°| 12.56| 70°| 12.0| 60° 24 37 — 9 46 46 —
id. 18 8.0 90°| 12,5 78°( 12.0| 60° 34 36 — 9 45 47 —
2 December 1 7.0 100°1 12.0) &80°) 11.0| 60° 48 32 — 9 41 42 —
id. 7 65| 95°| 11.0| 75°| 10.0| 45° 37 26 — 10 36 35 —
id. 13 6.0 90°| 10.0| 45°| 9.8 0° 17 20 | —10 30 24 —
id. 18 8.0 60°| 8.0 0°| 8.0|—45° 3 12 —11 23 7 —
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TABLE 31 Numerical data concerning the storm surge of Janmuary 1930
Date Hour [ ¥V, Y1 Ve | v Vs Ys £ (exp.) Lo (ADp |Co—(ADp| £ (cale.) AT
11 January 1 | 11.6—20°| 134 |—54°| 14.0|—40°| —15 | — 1 21 —3| —4 | —11
id. 7 | 11.8 |—18° | 13.8 [48° | 14.3 |—50° | — 52 5 4 1 — 3 — 0.9
id. 13 | 12.2 [—17°| 14.2 |—43° | 14.7 |—42° | — 28 11 5 6 3 — 0.9
id. 18 | 12.6 |[—16°} 14.5 |—38° | 15.1 |-38° 18 16 .6 10 7| —08
12 January 1 {13.2|—15°| 15.1 —30°| 15.7 [—30°| - 115 24 7 17 17 —4.0
id. 7 | 14.0 |—14°| 15.8 |-23°| 15.9 |—23° 67 33 7 26 27 | —23
id. 13 | 14.8 [—12° | 16.7 |—15° | 15.5 [~13° 18 43 7 36 42 — 0.7
id. 18 | 15.6 |—10°| 17.7 |— 9°1 13.5|— 6°| — 16 53 6 47 57 — 1.0
13 January 1 ]158|—6°| 184 |— 1°| 4.5 1° 81 72 5 67 76 + 0.1
id. 7 1147 |—4°|176| 4°| 35| O0° 157 88 4 84 78 | — 1.7
id. 13 | 124 |—13°{ 15.1 |— 2°1 8.5|— 8° 84 75 - 1 74 66 | —0.3
id. 18 | 10.8 |[—27° | 12.2 |—22°| 9.7 [-25° 17 44 — 1 45 42 -+ 0.5
14 January 1 | 1051-35°} 11.0 [—43°| 9.0 |—43° 6 8 | — 3 11 - 4 —
id. 7 | 10.5 |—40° | 10.5 |—42°| 7.0 |—42° 8| — 3| — 4 1 5 —
id. 13 | 10.5 |-85° 10.0 [—41° | 4.0 |—41° 3 0] — 4 4 5 —
id. 18 | 10.0 -—-60°) 10.0 |—40°| 2.0]—40°| — 1 5| — 4 9. 6 —
15 January 1 | 10.0—40°| 9.5|—26°| 0.0|—-25° 8 13 | — 5 18 8. —
id. 7 9.01—-25°| 9.0 4°| 0.0 5° 19 20 | — 5 25 16 —
id. 13 8.01-30°1 8.0| 20°| 6.0| 40° 30 24 | — 6 30 15° —
id. 18 8.01+-50°) 65| 20°| 9.0| 30° 32 26 | — 7 33 14 —
16 January 1 7.9|—62°| 46| 11°| 8.0\ 10° 24 23§ — 8 31 3 —
id. 7 75 —=83°| 3.5 |—11°] 7.0—10° 13 - 15 — 9 24 — 2 —
id. 13 8.01—90°| 8.56—45°| 4.0|—45° 1 2 | —10 12 | — 4 —
id. 18 8.01—88° 6.0(-62°| 5.0|—-65°| —10 | — 9 | —12 3| — 7 —
17 January 1 8.5 —8°| 80|—71°| 9.0|—70°| —26 | —22 | —12 | —10 | —15 —
id. 7 9.01—78°| 10.0 |-—71°| 11.0 |—70°{ —40 | —30 | —13 | —17 | — 22 —
id. 13 9.0|—-68°| 11.5|—65°| 126 |—65°| —52 | —31 | —13 | —18 | —24 —
id. 18 8.6 |—60°| 11.5|—60° | 13.0|—60°| —b3 | —30 | —12 | —18 | —21 —
18 January 1 8.01—50°| 11.0 (—60° | 13.0 |—50°| —20 | —24 | —11 | —13 | —15 —
id. 7 7.5 1—40°| 10.0 |—42° | 11.5 |—40° 4 | —18 | —10 | — 8 | —' 9 —
id. 13 7.01—-35°1 8.5|-38°| 10.0 |—40° 8§ | —12 | — 9 { — 81 — 6 —
id. 18 7.5 |—40°| 8.51-38°| 10.0 [—40° 51— 17— 8 17— 35 —
19 January 1 8.0 |—45°| 10.0 |—45°| 12.0 |—45°| — 3 | — 1 | — 7 -6 | — 6 —
id. 7 9.0 1-50°| 11.0 |—48°| 13.0 |-50°| —10 3| — 6 9| — 8 —
id. 13 8.6 —-50°| 11.0 —48° 13.0 |—60° | — 14 6 | — 5 1 | — 7 —
id. 18 8.0 |—45° ) 11.0 |—40° | 12.0 |--40°| —12 8| — 5 13 | — 3 —
20 January 1 7.0 —40°| 10.0 |-—25° | 11.0 |—25° 4 8 | — 5 13 3 —
id. 7 5.5 1=27° 9.61—15°| 10.0 |—15° 16 71 — 5 12 6 —
id. 13 4.5 —16°| 9.01— 8| 9.0[-10° 22 5| — 6 11 6 —
id. 18 3.6 [ —14°| 8.0|— 6°| 9.0 5° 21 3| — 17 10 3 —
21 January 1 3.0120°| 7.0 8| 7.0}-10° 14 1| — 8 9 0 —
id. 7 3.0 —40°| 6.5-20°| 6.5[—-20° 5| — 1| — 8 71 — 2 —
id. 13 3.8 1—70°| 6.01—45°| 70—45° — 7T | — 4 ] — 8 4 | — 6 —
id. 18 4.0|-80°| 60|—60°| 70|—60°| —18 | — 6 | — 8 2|1 — 9 —
22 Januaty 1 5.01—90°| 6.5|—72°| 846 |—70°| —28 | — 8 | — 8 0| —12 —
id. 7 6.0-90°| 7.0-75°| 95|-75°( —25 | —11 | — 8 | — 83 | —14 —
id. 13 7.0—-85°| 8.0—72°; 10.5|—70°{ —16 | —13 | — 7 | — 6 | —16 —
-id. 18 8.01—80°| 9.01—-65°11156(—-65° — 7 | —14 | — T | — T | —14 —
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TABLE 32 Numerical data concerning the storm surge of November 1930°
Date Hour V. Y Ve Y, Vs Vs £ (exp.) Lo (ADp Eo— (ALl C (cale.) AT
21 November 1 ]10.01-20°(9.01—30°| 9.0—55°| — 6 23 3 20 12 + 1.5
id. 7 1 11.1—-21°| 9.3|-30°| 7.7|—45°| — 2 25 3 22 14 + 1.0
id. 13 | 12:1-=22°) 9.8|—29°| 6.5|—36° 17 28 3 " 25 18 +- 1.5
id. 18 | 13.0 |—23° | 10.5 —28°| 5.6 |—30° 51 32 5 27 23 + 0.
22 November 1 | 13.8—22°{ 11.9 —25° | 5.0-[—23°| - 73 38 6 32 30 + 0.6
id. 7 | 14.3 [—20°| 14.0 |--22°| 4.7 [-10° 49 46 7 39 39 + 1.6
id. 13 | 14.8 |—18°| 16.5 [—10°| -4.3--26°|-- 38 58 8 .50 53 | 4+ 1.9
id. 18 Depression (see table 16) 41 76 8 68 54 | 4 0.8
23 November 1 - Depression (see table 16) 100 129 5 124 84 + 0.3
id. 7 | 100 20°| 19.6| 45°| 19.6| 70° 181 153 0 153 172 — 2.2
id. 13 9.6 5° 18.1|.48°.{-18.1.| 75° 139 115 — 5 120 135 — 0.9
id. 18 |1 10.3 |—18°| 15.5( 41°| 15.5| 68° 100 83 - 8 91 105 { —1.0
24 November 1 | 12.0— 80°) 125 10°| 12.5). 0° 45 45 | —'8 53 48 —
id. 7 | 13.0 |[— 70°| 13.0 |— 30°| 13.0 |— 70° 7 22 — 6 28 15 —
id. 13 | 13.0 |—20° 13.0 |- 55°| 13.0 |—100°| — 16 10| — 3 13 3 —
id. 18 [: 13.0 |— 15°| 13.0—61° :13.0 |—=105°| — 18 7 0 7 1 —
25 November 1 | 13.0 |— 15° 13.0 |— 63°| 13.0 |—105° 6 12 2 10 | — 2 —
id. 7 | 13.0 |— 15°| 13.0 |— 61°| 13.0 |—100° 30 19 3 16 1 —
id. 13 | 12.5 |— 15° 12.56 |— 58°| 12.5 |— 90° 44 25 4 21 3 —
id. 18 | 12.0 |— 15°| 12.0 |— 54°| 12.0 |— 80° 47 30 4 26 5 —
26- November 1 | 11.0 |— 15°| 11.0 |— 48°| 11.0 |— 70° 43 37 5 32 8 —
id. 7 | 10.0 |— 15°| 10.0 |— 43°| 10.0 |- 55° 37 42 5 37 10 —
id. 13 9.0 (— 15° 9.0 |— 35° 9.0|— 45° 32 43 5 38 12 —
id. 18 8.0\ —17°1 8.0|—30° 8.0|— 38° 30 42 4 38 12 —
27 November 1 7.01—20°% 7.0—22° 7.0|—25° 34 39 3 36 11 —
id. 7 6.0 1—30° 6.0}— 15° 6.0|— 10° 38 34 0 34 9 —
id. 13 | 50— 95° 6.01— 8° 5.0 5° 38 28 | — 3 31 4 —
id. 18 4.0 |—180°| 4.01— 8°| 4.0| 10° 31 22 | — 4 26 0 —
28 November 1 4.0 |=190°| 4.0|— 15°| 4.0 10° 17 14 | — 5 19 | — 3 —
id. 7 3.0 |=200°| 3.0 |—100° 3.0 |— 40° 5 9~ 5 14 | — 5 —
id. 13 3.0 |--210°| 3.0 |—160°| 3.0 |[—100°| — 2~ 6| — 5 11 — 8 —
id. 18 3.0 |—220°| 3.0 |—180°| 3.0 |—100°| — 2 5| — b 10 | — 8 —
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TABLE 33 Numerical data concerning the storm surge of January 1931
Date Hour | V, ¥ Va Y2 Vs Y3 { (exp.) o (A (Co—(AL)p| £ (cale.) AT
16 January 1 8.3 14°| 11.3 8°1 114 8° 6 14 — 5 19 23 + 1.0
S id. 7 | 10.8] 15°| 13.2 9° 12.7| 10° 11 23 — 3 26 36 [ +09
id. 13 | 132 19°| 15.1| 11°| 140 12° 24 44 — 1 45 54 + 1.
id. 18 | 15.1 [ 25°] 169 15°| 15.0| 21° 42 69 2 67 73 + 1.3
17 January 1 | 17.0| 36°|( 18.5| 27°| 16.0| 41° 84 110 5 105 105 + 0.5
id. ‘ 7 | 172 44°| 18.9( 40°(| 16.6 | 57° 150 138 5 133 - 135 — 09
id. 13 | 1569 51°| 184 | 51°| 16.8| 66° 154 144 5 139 143 — 0.2
id. 18 | 13.7| 53°] 17.6| 60°| 16.5] 69° 136 132 3 129- 130 — 1.0
18 January 1 | 114} 54°( 16.0| 65°{ 16.0] 70° 100 101 1 100 110 — 1.7
©oad. 7 | 10.3| 52°| 14.8| 62°] 14.9| 66° 65 76 0 76 91 — 2.1
id. 13 9.8| 48°| 13.5| 54°| 13.5| 59° 65 56 — 1 57 76 — 0.9
id. 18 | 10.1 | 41°| 12.5( 47°( 12.6 | 50° 51 43 — 2 45 62 | —2.5
19 January 1 | 105 30°)| 105 30°| 5.0 30° 15 31 — .2 33 41 —
id. 7 95| 15°} 95| 15°| 40| 15°| — 9 25 — 1 26 31 —
id. 13 8.5 5°| 8.5 5°| 3.0 5° 3 20 0 20 22 —
id. 18 7Hl—8°| TH|—6°) 30— 5° 15 17 1 16 15 —
20 January 1 6.6 |—15°| 6.51-15°| 3.0—15° 16 12 2 10 11 —
id. 7 8.5 |=25°| b6.5|-85°| 4.5|-25° 0 8 2 6 7 —
id. 13 4.561-35° 4.5|-35°| 6.0|-35°| —13 4 3 1 5 —
id. 18 3.9 |—45°| 4.0 —45°| 7.0|—-45°| —19 0 3 — 3 3 —
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TABLE 34 Numerical data concerning the storm surge of October 1935
Date Hour| Vi | w1 | Ve wa | Vs Ya ¢ (exp.) Lo (AD)p  |Eo—(AL)p| £ (cdle.) AT
18 October - 1 7.21 40°| 14.7 | 36°|i14.7| 43° 41 62 — 9 71 63 || —0.7
id. 7 93| 26°| 14.3| 32°|:14.3| 26° 78 53 — 9 62 62 | —21
id. 13 | 11.1| 8°|13.9| 8°('14.0 0° 60 3 | —10 43 49 [ — 1.2
id; 18 | 12.6 |— 4° | 14.2 }— 9° | 14.5 |—20° 27 17 — 10 27 34 | —20
19 October "1 | 14.0—10°]| 16.0 |—21°| 16.3 [-34°] — 25 4 | — 5 9 27 [l —03
id: 7 |'14.81— 4°| 194 |—17°|19.2 |--32°| —21 18 0 18 40 |I —29
id. 13 Depression (see table 16) 61 84 3 ' 81 91 || —1.7.
id. 18 ‘Depression (see table 16) 128 135 5 130 149 | — 2.5
20 October 1 Depression (see table 16) 177 165 5 160 199 | — 3.2
id, 7 Depression (see table 16) 144 123 3 120 144 [ — 2.6
id. 13 ['11.7| 70°] 14.3] 50°| 14.8] 70° 90 72 1 71 89 {1 —2.3
id, 18 | 11.0| 68°| 124 50°| 143 | 65° 45 43 — 1 44 66 | —3.0
21 October 1 | 100 60°| 11.5| 60°| 13.5| 60°| - 3 20 | — 2° 22 52 —
id: 7| 95| 45°| 10.5| 50°| 12.0| 50°| — 6 9 | — 3 12 43 —
id. 13 | 84| 30°| 9.6| 40°| 10.5| 650°| — 3 2| — 4. 6 35 —
id. ‘ 18 78| 20°| 84| 60°| 9.0| 60° 2 0] — 4 4 28 —
22 October 1| 66| 10°| 65| 70°| 7.5| 70° 8| — 1| — 5 4 17 —
id. T 4.5—10° 55| 75°1 6.0 75° 71— 247 — 5 3 11 —
id. 13 | 4.0[(-50°)| 45| 0°| 4.0 0° 0] — 1 — 6 5 1 —
id: 18 | 3.01—90°| 3.0—90°| 3.0|-90°| — 6 | — L | — 6 51 —'5 —
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TABLE 35

Numerical’ data concerning the first storm surge of October 1936

Date Hour [V 1 V, P2 Vs vy | & (exp.) .&o (AD)p |Lo—(AQ)p| C{cale.) AT
14 October 1 4.0 0°| 4.0 10°| 3.0| 10° 2 2 — 6 8| — 1 —
id. 7 4.0 - 5°| 4.0|-50°| 3.0 0° 1 2| — 6 8 — 2 —
id. 13 5.0 0°| 6.0|—13°| 4.0]—-13° -2 2| — 5 7 2 —
id. 18 5.0 8°| 7.0(-18°| 6.0—-18° 5 4 | — b 9 5 —
15 October 1 5.0 13°| 8.8 5°| 8.3 5° 12 12 | — 5 17 12 | —o0.1
id. 7 6.3 20°| 104| 15°| 10.1] 15° 21 22| — 5 27 20 | —04
id. 13 7.6 26°| 1L.7| 24°| 11.7| 24° 31 32 | — 6 38 31 + 0.3
id. 18 8.7 29°| 129| 28°| 134 | 28° 40 42 | — 7 49 42 + 04
16 October 1 |10.0| 31°| 14.1| 30°] 15.1; 30° 50 54 | — 8 62 53 | — 0.5
id. 7 | 11.0| 30°| 15.0| 28°| 164 | 28° 57 60 | — 8 68 63 | —0.6
id. 13 | 11.4] 26°| 153} 23°| 16.8| 22° 62 62 | — 8 70 64 | —04
id. 18 | 11.0| 16°| 15.3| 14°| 16.5| 10° 61 58 — 8 66 61 | —0.5
17 October 1 9.8 4°| 145 4°1 14.5 —12° 54 48 | — 7 55 45 | —0.5
id. 7 9.7 |— 5°| 13.6 |— 5°| 13.0 |—45° 40 36 | — 6 42 30 + 0.3
id. - 13 | 105 |— 4°| 13.7 |—10° | 13.0 —40° 22 27 — 5 32 23 + 0.5
id. 18 | 12.0 1°1-15.0 |— 9° [ 14.5 |-21° 15 36 | — 4 40 26 -+ 0.5
18 October 1 [14.5] 15°| 19.3 1°( 194 | 12° 75 98 | — 3 101 57 + 0.3
id. 7 | 164 27°| 209 20°| 21.1| 38° 141 138 | — 4 142 127 — 1.8
id. 13 | 13.9| 31°| 19.7| 36°| 19.8| 50° 152 134 | — 5 139 158 { — 0.8
id. 18 | 11.7| 27°| 16.5| 37°| 14.8] 50° 132 106 | — 6 112 122 — 1.8
19 October 1 [ 1.0} 12°| 12.3] 11°| 8.6| 25° 66 55 | — 6 61 58 | — 1.8
id.: 7 | 11.6|— 5°1 10.2|—14°| 4.3|-18° 20 30 || — 4 34 23 | —3.0
id. 13 Depression (see table 16) 24 47 — 1 48 31 — 24
id. 18 Depression (see table 16) 60 80 3 77 46 | —2.0
20 October 1 | 145 72°| 17.8] 80°| 17.9] 80° 125 118 0 118 127 | —26
id. 7 1125 69°) 16.2| 77°| 16.1| 77° 120 101 — 3 104 125 | — 2.8
id. 13 | 10.3| 60°] 13.3| 66°| 13.0| 66° 82 - 66 | — 6 72 78 | —2.0
id. 18 9.8| 48°| 11.0| 46°| 10.8| 46° 44 46 | — 8 54 50 | —2.2
21 October 1| 100 13°| 10.0 13°| 10.0| 13° 12 32 — 6 38 27 —
id. 7 9.0 §°| 9.0 8| 9.0 8° 10 26 | — 4 30 21 —
id. 13 80| 14°| 80| 14°| 8.0| 14° 22 23 — 3 26 17 —
id. 18 70| 19°| 7.0 19°| 7.0| 19° 34 20 | — 3 23 15 —
22 October 1 65| 18°| 65| 18°| 6.5 18° 35 18 | — 3 21 11 —
id. 7 6.0 14°| 6.0| 14°| 6.0| I4° 25 16 | — 3 19 9 —
id. 13 6.0 3°| 6.0 3°| 6.0 3° 14 14 | — 3 17 7 —
id. 18 6.0—10°| 6.0|—10°} 6.0|—10° 5 121 — 3 15 5 —
23 October 1 6.0[—30°| 6.0(-30°| 6.0|—30°} — 2 10 | — 3 13 1 —
id. 7 6.0|—40°| 6.0{—40°] 6.0|—40°| — 3 8 | — 3 .11 0 —
cid. 13 6.5 |—42°| 6.5|-42°| 651—42°| — 1 6 | — 2 8 0 —
id. 18 7.6 —40°1 V.8—-40°| 7.5]|—48° 3 5| — 2 7 2 —
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TABLE 36 Numerical data concerning the second storm surge of October 1936
Date Hour| Vv, (21 Vs Pa Vs s £ (exp.) o (Al |Eo—(AD)p| { (calc.) AT
24 October 1 9.0|—38°| 9.0|—-38°| 9.0|—-38° 11 4 1 — 1 5 3 —
id. - 7 | 10.0 |--35° | 10.0 |--35° | 10.0 |—-35° 18 4 | — 1 5 4 —
id. 13 | 11.0 —30° | 11.0 |--30° | 11.0 --30° 15 5| — 2 7 6 —
id. 18 | 12.5 |—27°| 12.6 |—-27°| 12.5 | —27° 7 6 | — 4 10 8 —
25 October - 1 1.13.2] 12°(12.7-28°| 14.1 |-30°| — 8 10| — 5 15 10 | —0.7
©id. 7 1133 7°1 129 |—27°| 13.4 —29°| — 19 14 | — 4 18 14 | —07
id. 13 [13.4 1°( 13.1 |—26°| 12.6 [-28° 43 20 | — 3 ' 23 18 | — 2.1
id. ‘ 18 | 13.7 — 3°] 13.3 |—24°| 12.2 |--27° 84 26 — 2 28 22 — 2.3
26 October 1| 14.2|— 5°| 13.6 |—21°| 12.1 —24° 88 34 — 1 35 26 — 2.8
id. 7 |.14.7 |— 3°| 14.0 |[-17°}| 12.5 |—-19° 63 42 0 - 42 32 — 2.6
id. 13 | 15.4 0°] 14.6 [ —14°| 134 |—11° 35 53 1 52 38 | —21
id. : 18 |i15.8 4°1 159 -11°| 14.2 |— 2° 20 63 2 61 47 | 4+ 0.1
27 October 1 | 16.3 8°| 18.7 |— 6°| 15.7] 15° 46 80 3 277 67 | —0.2
id. 7 (1611 12°121.5| 0°] 16.8| 30° 98 96 2 9 96 | —3.7
id. 13 | 15.5| 18°]| 22.7 7°1:17.5 | 44° 131 114 1 113 134 - — 3.0
id. 18 | 15.0| 24°| 21.7| 15°| 17.6| 53°| 138 124 0 124 142 — 3.2
28 'October 1 1141 32°] 19.3 28°116.8| 62° 131 130 — 1 131 126 | — 3.9.
“id. 7 1130 38°) 17.2| 41°|:156| 66° 118 120 — 2 122 122 — 2.3
id. 13 | 11.6) 40?| 15.0( 51°| 14.0| 70°] 103 98 | — 3 101 96 | 4+ 0.5
‘ id; 18 |, 94| 35°| 13.2| 50°['11.8| 65° 93 75 — 5 80 75 — 1.6
29 October 1| 40| 6°|11.0] 40°| 7.0| 40° 60 4 | — T 51 44 —
- d. 7 45— 8° 100 5°1 7.0 6°) 16 24 | — 9 33 16 —
id. 13 8.51—10° 9.51-25°| 8.0|-25°| — 17 12 | —10 22 0 —
oid. » 18 6.0—15°| 9.01-35°| 10.0|—35°} —13 8 | —1I0 18 | — 6 —
30 October ' 7.0}—-15°| 8.01—40°| 8.0|—40°| — 6 8| — 9 17 | —'6 —
Todd. Tl 701200 7.681-35°| 7.0{—-35°( . 10 10 ] — 8 18 | — 3 —
id, 13 8.01—17°| 6.5|-25°| 6.56|-25°| ~ 16 12 1 — 7 19 0 —
L id. 18 8.01—13°1 6.5 |—15°(. 5.5 |—15° 14 13 | — 6 19 2 —
31 October 1|80 20 45| 15°| 45| 15° 20 15 | — 5 .20 5 —
T id. 7 8.5 35°| 4.0 50°| 4.0 50° 30 16 | — 5 21 4 —
id.- 13 | 846 75°| 3.5 65°| 35| 70° 32 16 | — 6 22 | — 2 —
id. " 18 8.6 95°| 85| 70°| 35| 70° 26 16 § — 7 23 | — 5 —
1 November 1 851100°) 3.0 70°( 3.0| 60° 15 15 | — 8 23 | — 7 —
id: 7 8.0 95°| 3.0| 65°| 5.0 0° 6 14 | — & 22 | — 8 —
id.” 13 | 80| 75°| 30| 60°| 7.0—40°| — 2 13 | — 8 21 | — 7 —
id. 18 7.5 40°| 3.0 56°| 7.0|—40°] — 6 12 | — 7 19 | — 5 —
2 November 1|70 0°) 34| 50°| 5.0 30°| — 3 11 — 6 17 1 —
id. 7 6.5 |—10°| 3.5 42°| 4.0| 70° 14 10 | — 6 16 3 —
id. 13 60— 8°| 40| 35°| 4.0 90° 36 11 — 5 16 4 —
id. 18 8.5 0°| 45| 30°| 5.0 90° 27 12 | — 5 17 4 —
3 November 1 50| 5°| 50| 23°| 50 35°| 4 13 | — 4 17 5 —
~id. 7 44| 10°) 65| 18°| 6.0] 25°| — 6 14 | — 4 18 6 —
id. 13 | 40| 10°| 65 10°| 7.5 10° 16 15 | — 4 19 6 —
id. 18 401 10°) 7.0| 4£°| 8.0 4° 34 16 | — 4 20 6 —
4 November 1| 40 7| 76— 4°| 9.0 — &° 26 17 | — 4 21 6 —
id. 7 3.5 8°| 8.0|—10°| 10.0|—10° 14 16 | — 4 20 4 —
id. - 13 3.5 0°| 8.5|—16°| 106 |—16° 6 15| — 5 20 3 —
id. 18 [ 3.0|— 6°| 9.0—22°] 10.0 |-22° 6 14 | — 6 20 1 —
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TABLE 37 Numerical data concerning the storm surge of December 1936
Date Hour | V, L% Vs Yo Vs Ys { (exp.) Lo (ADp [Co—(AL)p| £ (cale.) AT
29 November 1 36| 90°| 6.0)— 7°|150—-2° — 65| — 3 | — 6 3| — 7 —
: id. 7 86| 60°| 7.0|— 1°| 140 |—12°| — 8 2|1 — 5 7 0 —
id. 13 8.0| 20°| 80| 6°(1256| b6° — 5 9| — 5 14 7 —
id. 18 | 10.0 o°| 9.0 10°) 11.0| 10°| »- 23 17 — 5 22 15 —
30 November 1 {100] 12°| 10.2| 16°| 10.3| 12° 47 31 — 5 36 24 + 0.2
id. 7 | 10.6| 20°| 11.3| 19°{ 11.4| 16° 25 47 — 4 51 32 + 1.2
id. 13 [ 12.2| 30°| 14.2] 24°| 15.2| 26° 38 69 | — 3 72 44 + 1.8
id. 18 | 14.81 38°| 17.9| 31°| 18.6| 38° 79 96 — 2 98 84 -+ 0.6
1 December 1 ] 183 43°| 20.1| 42°) 20.2| 51° 137 140 — 1 141 124 — 1.1
id. 7 | 18.2| 44°] 20.8| 49°| 20.7| 58° 178 174 — 2 176 176 — 2.8
id. 13 | 15,0 43°| 19.7( 50°( 18.8 | 58° 170 148 — 3 151 163 — 2.3
id. 18 | 12.2| 38°| 17.2| 46°| 16.6| 54° 137 114 — 3 117 128 — 2.5
2 December 1 [ 115 30°| 150 41°| 14.6| 48° 93 9 |[— 2 92 8 | —2.7
id.. 7 |.12.8| 28°( 13.9| 40°]| 13.8| 48° 64 81 0 81 74 | —0.9
id. 13 | 13.9| 31°( 13.5| 42°| 13.5| 58° 54 75 3 72 7% | -—0.6
id. 18 | 14.1| 36°( 13.6|.47°| 13.6| 64° 75 72 1 71 7% —15
3 December 1 1135 34°| 13.4| 52°| 134| 63° 81 61 | — 1 62 73 | —28
id. 7 | 119 26°| 11.8( 40°| 12.0( 45° 60 48 — 3 51 64 — 2.0
id. 13 | 10.8| 15°| 9.6 7°1 108" 0° 35 33 — 5 38 36 — 2.3
id. 18 | 10.8] 9°| 10.0 [—11°| 11.5 [—40° 14 231 — 5 28 16 0.0
4 December 11117 9°1 134 (—15°| 14.2 |—45°| — 10 20 — 4 24 14 + 0.7
id. 7 | 123 14°| 16.3 0°1 173 —5°] — 3 48 — 3 51 38 + 0.
id. 13 1 12.2| 17°| 183 20°| 19.2| 35° 49 99 | — 3 102 99 + 1.6
id. 18 | 11.4| 11°| 182 21°| 19.2| 35° 114 107 — 4 111 119 — 1.2
5 December 1 [100—5°| 152} 5°| 14.0| 5° 102 58 | — 4 62 75 | —21
id. 7 8.6 |—18°] 11.8 |—43°| 10.0 |—-65° 37 42 | — 4 46 12 | —07
id. 13 Depression (see table 16) 11 40 — 4 44 42 — 2.1
id. 18 Depression (see table 16) 22 42 1 — 4 46 45 | —2.2
6 December 1 Depression (see table 16) 44 48 — 4 52 49 — 3.3
id. 7 Depression (see table 16) 64 5 | — 5 60 52 | — 3.6
id. 13 Depression (see table 16) 83 62 — 6 68 60 — 2.5
id. 18 Depression (see table 16) 96 66 | — 7 73 70 | —23
7 December 1 Depression (see table 16) 84 62 — 8 80 76 — 28
id. 7 Depression (see table 16) 53 43 | — 9 52 67 [ —2.6
id. 13 7.5| 80°| 11.0| 80° 11.0] 80° 21 - 22 | —10 32 4 | —21
" id. 18 6.2 50°| 9.4 50°| 98| 50°| — 5 4 | —10 14 27 | —25
8 December 1 60— 6°| 80— 6°|100[-20°| —34 2 | —11 13 10 —
id. 7 8b({—8°| 7.6 0°| 9.0|-10°| —37 0| —11 11 3 —
id. 13 501 0°| 70| 7° 80| 0°] — 9 0| —12 12 1 —
id. 18 45| 38°| 65| 25°| 8.0 15° 29 0| —12 12 1 —
9 December 1 4.0 6°| 6.01 20°} 84| 30° 32 0| —12 12 1 —
id. 7 4.0 o°| 6.0 10°| 9.5\ 30° 9 0 — 12 2. — 1 —
id. 13 4.01-25°| 65|—15°| 110 0°| —11 0| —1I3 3| —5 —
id. 18 4.6-1-180°| 7.0 |—25°| 12.0 |—20°| — 21 0| —14 14 | —12 —
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TABLE 38 Numerical data concerning the storm surge of January 1938

Date Hour | V, Py I/ Ps Vs Pa ¢ (exp.) &o (AD)p [Co—(AD)p| Clcale) [ AT
28 January 1 | 12.0 0°] 13.1 |—22°] 13.1 |-—22° 6 — 3 — b 2 11 — 1.3
id. 7 | 13.2 5°1 13.8|—14°| 13.6 |—14°| — 8 — 21 — 3 1 23 — 0.5
id. 13 | 143 | 10°| 148 |— 5°| 145 |— 5°| — 12 12 0 12 40 — 0.3
id. 18 | 155 16°| 15.8 2°1 15.6 2° 12 36 4 32 57 + 2.0
29 January 1| 17.2] 22°1 17.5 9°| 17.5 9° 68 88 9 79 | 80 + 2.3
id. 7 {1881 28°| 19.2| 17°| 19.2| 17° 115 127 10 117 105 — 0.5
id. 13 [ 19.5| 32°1 20.2| 25°| 20.2| 25°{ . 155 146 8 138 141 + 05
id. 18 119.2| 37°| 19.8| 32°| 19.8| 33° 170 145 7 138 159 — 0.7
30 January 1 | 178 39° 17.7| 42°| 17.7| 45° 118 125 6 119 134 —1.1
id. | 7 | 15.8| 38°| 154 50°| 154 | 53° 72 99 5 94 110 — 1.5
id. 13 | 139 36°) 135 52°| 13.5{ 56° 86 73 3 70 87 — 1.3
id. 18 | 124 | 29°| 12,0 47°| 12.0| 45° 79 54 0 54 68 — 1.8
31 January 1 109| 14°( 10.8] 16°| 10.8 0° 42 34 — 3 37 43 | —1.6
id. : 7 1109 2°| 10.7|—13°| 10.7 [—45° 5 22 — 5 27 16 — 1.2
id. 13 | 11.9 |— 8°) 11.5 |—27°| 11.5 |—50°| — 16 16 | — 3 19 12 + 05
id. 18 | 13.9 —12°| 13.2 |--29° | 13.2 [-45°| — 13 13 0 13 15 + 1.5
1 February 1 1161 |—14°| 154 —27° | 15.2 |—40° 19 20 2 18 25 + 1.
id. 7 | 17.7 |—-13°] 17.7 |—22°| 16.4 |--30° 65 36 3 33 42 — 0.9
id. 13 [ 178 |— 5°| 18.6 |—15°| 16.7 [—16° 64 55 3 52 59 + 0.7
id. 18 | 17.0 4°| 18.3 |— 8°( 16.3 0° 33 64 2 62 67 + 0.1
2 February 1 |154| 15°] 16.8 5°| 152 21° 55 69 0 69 74 — 0.5
id. 7 | 136 22°} 150 13°| 14.2| 36° 86 66 — 2 68 68 — 0.7
id. 13 | 116 27°| 13.5| 18°| 13.0| 38° 94 56 — 3 59 59 + 1.2
id. 18 9.8 23°| 121 18°) 11.8§ 30° 70 44 — 5 49 46 — 0.1
3 February 1 86| 15°7 10.0| 15°| 11.0| 15° 23 28 — 6 34 29 —_
id. 7 80 10°} 9.0| 10°| 10.0| 10°| — 5 - 18 — 7 25 18 —
id. 13 7.0 a°| 8.0 8% 9.0 5° 0 11 —- 8 19 12 —
id. 18 6.5 0°| 85 0°| 9.0 0° 12 6 — 9 15 8 —
4 February 1 65— 5°| 9.0|— 4°| 10.0 [— 4£° 10 2| —11 13 4 —
id. 7 7.01—10°| 10.0 |— 8°| 11.0|— 8| — 6 — 1 —12 11 5 —
id. 13 7.6 |—15°( 11.0 —11°| 12.0 —10°| — 13 — 3 —12 9 6 —
id. 18 7.0 |—25°| 10.0|—13°| 11.0 |[—11°| — 5 — B — 13 8 4 —
5 February 1 6.5 —35°| 9.0|1—18°| 10.0 |—12° 8 — 7 — 14 7 — 1 —
id. 7 6.0|1—45°| 861-22°| 9.0|—-13°| — 4 — 9 — 14 5 — 5 —
id. 13 8.0 |—85°| 865|—28°| 8.5|—14°| —20 — 11 —12 1 — 6 —
id. 18 8.0 —70°| 86|—33°| 8.5|—14°| —27 —13 —11 — 2 — 5 —
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