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Summary

In the present paper the author ventures a new attack on the problem of predicting nocturnal
temperature fall in order to make it possible to take account of a number of details in the nocturnal heat
exchange processes near the earth’s surface without, however, making computations too laborious for
practical use. The paper is divided into a theoretical part (I) and a practical part (II). The latter, however,
is not much more than a first outline of a practical procedure. Moreover, a lot of experimental work -
should yet be done in order to make the present results fully paying.

After a critical discussion of the formulas that have formerly been used in theoretically computing
nocturnal radiational cooling (sections 1—3) the author’s own formula is discussed (section 4). For this new
formula the assumption of constancy of the effective radiation (R) of the earth’s surface guring the night
had been dropped, instead of which a linear variation of R with temperature was assumed. The new
formula may be a considerable improvement especially for cases when the mghts are sufficiently long. When -
t—» oo the formula yields a certain lower limit for the temperature.

In sections 5-—7 the effects of the initial temperature distribution in the ground, of the eddy
conductivity of the air and of condensation of water vapour upon the process of cooling are discussed.
It appears that, when we take into account these effects in a reasonable way, a formula of the form
described in section 4 may still be used. By transforming this formula into a non-dimensional form it even
appears that one main graph.is sufficient for computing temperature variations, all details of the heat
balance entering as certain constants only into the unit of temperature and into the unit of time that
ought to be chosen for the said non-dimensional representation. For the evaluation of some of these
constants a few auxiliary graphs or tables might be constructed. It has been assumed that the night is of
sufficient uniformity for taking mean characteristics as regards air mass properties and cloudiness.

In section 8 two poss1b1\, complications are only briefly touched upon.

The rest of the paper is devoted to a short discussion of the possibilities of practically applylng the

theoretical resnlts arrived at.

Introduction

The problem of predicting groundfrosts has for a long time been realized to be as
difficult as it is important. Now, qualitatively speaking, the same is true as to fore-
casting weather in general. The former problem, however, is much more complicated, as
the general synoptic forecast constitutes only part of the data, needed to its solution.
Among these data we may distinguish three elements: '

a. the general synoptic forecast for a certain district;
b. the given local microclimatological conditions for the piece of land concerned;

¢c.  the local microineteorologieal conditions at the beginning of the night and during
it, which largely depend upon (1) the general weather in the past and upon (2) the
local weather of the preceding day. ’ N

As to @, we are especially concerned in the following elements, to be expected for
the coming night: (1) cloudiness, (2) humidity of the air, especially in the lower parts of
the atmosphere, (3) wind velocity. '

By b, the given local microclimatological conditions” , we understand various micro-
climatological elements, which are more or less independent of weather (though they may
vary with season), as for example: the sort and disposition of the soil, the vegetation on
it, the lie of the land (more or less sheltered by neighbouring trees or buildings) as well
as the general orographical conditions, etc.

¢. For the same land, in the same season, however, the soil constants which govern
the thermal processes in it, are to a high degree dependent on its water content, which
in its turn depends upon (1) the general weather in the past, (2) the local weather of
the preceding day. The same is true as to the surface temperature at the beginning of
the night and the humidity of the air immediately above the ground or above its vegetation.
For convenience, we take all these factors together in the term ,,mlerometeorologlcal
elements”. :
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For the meteorologist it is impossible to take all these factors into account. With the
factors sub a and ¢(1) this can still' be done, in general, but for the ‘rest the only
thing he can do is to give some specialized forecasts for a small number of soil types.
The user of the forecasts (the agriculturist) will then have to apply the forecasts intelligently
to his special circumstances, of which he has to judge himself.

Apart from this practical aspect of the problem, however, it is possible to study it
from a purely physical point of view, in order to find a method for computing the nocturnal
minimum, when all meteorological factors, soil constants and other influencing circumstances
are known, or rather approximated in the form of a certain number of constants. The
principal aim® of the present study is to describe such a method (part I). In part II we
shall briefly enter into the practical sides of the matter. '

As to the existing literature on the subject, the larger part of it differs in character
from the present study and results in a rather large number of more or less empirical
‘rules, a survey and discussion of which (up to 1940) one may find in the well known
paper by Kessler and Kaempfert, 1940). We shall not enter upon those rules
here. Studies of a similar character as the present one are the papers by Brunt, =
1932 and 1939, by Philipps, 1940, and by the author, 1947.

Strictly speaking, the first attack of this kind on the problem of predletmg temperature

" variations at the earth’s surface was made by Richardson, 1922, in his great study

,,Weather Prediction by numerical process” (Ch. 8; 2/15); his physical treatment of the
matter was excellent and complete, from a theoretical point of view; it was not, however,
worked out into a specialized practical form.

1)  References are indicated Iby giving the year of publication, see the list of literature-at the end of this paper.



PARTI THEORETICAL PART

(This part is a continuation of the author’s paper in ”Journal of Meteorology’” 1947)

1. Mechanism of cooling.

In the following we shall suppose the land to-be plane.

We write down the energy balance at the surface of the earth in the followmg form
' (compare fig, 1):

B=R—A—0C, _ (1)

where B = heat stream density in the ground; it is reckoned pos1t1ve, when the heat
stream is directed towards the surface; B — density of effective
radiation from the earth’s surface; 4 = density of the heat stream - R
in the air, arising from the eddy conduction in it (the-molecular

conduction will be neglected here); it is reckoned positive, when

the stream is directed towards the earth’s surface; ¢ = density of e A

~ the heat stream, -which arises from the condensation of water \I/ \|/ '
vapour at the surface; by stream density we always understand
the stream per unit area. By the “effective radiation” (R) we
understand the outgoing radiation of the earth, as given by the
Stefan-BoltZzmann law, minus the incoming radiation from . “Fig. 1
the atmosphere (R'),

o—>

_R: O"T4-——_RI, . ) (2)

where 7' = surface temperature.
Any advective term in the energy-balance will be dlscarded
To give an idea of the order of magnitude of the various terms of the energy
balance (1), we write down some plausible values for summer nights in moderate latitudes:
B =0,10, R = 0,15, 4 = 0,035, C = 0,015 cal/cm?min.
- For the atmospheric radiation R’ from a clear sky formulas have been proposed, “best
known of which are the following two:
1. Formula of Brunt 1): :
: ' R'= cT%a + bv/e). : (3)
2. Formula of Angstrdém 2): '

R =T (a—B.10~7¢). | 4)

In the formulas e denotes the water vapour pressure in the atmosphere at the
earth’s surface; @ and b, or «, B and y are mostly taken to be constants. According to
the theoretical deductions given to justify these formulas 2), they ought to be functions
of temperature and humidity of the air. It may be readily seen, however, that even
then, the two formulas have only statistical value*). The best method to determine R’
for a clear sky and a given atmospheric structure is the radiation chart method. For
the construction and use of a radiation chart we refer to the papers by M61ler, 1932,
1943, 1944 and by Elsasser, 1942, and to section 10 of the present paper (part II).

The radiation from a covered sky depends on the sort and height of the clouds
and on the structure of the atmosphere below them. When we denote this radiation by
R}y the radiation from a partially clouded sky, with a cloudiness N/10, can in general
be written as follows: : .

10—N
10

' N ’
'RN_RI_I_ R—I_T(_)R,IO’

N R
1 Bro— B) =

1) Brunt 1932, 1939.
2) Angstrém 1918, 1929.
3) . For formula (1) see Pekeris, 1934; for formula (2) see Ramanathan and Ramdas 1985 and Philipps, 1940.

~ 4) Other formulas have been proposed by Robitse h and by Elsasser.
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where R’ is thei radiation from a clear sky, discussed above. For R';, we may refer to
the papers by Angstrom, 1919, 1936, Asklsf, 1920, Meinander, 1928, Dufour
1938, Brunt, 1939, Geiger, 1942 (Ch. 2).

In section 11 we shall return to this practical question. Here we may further remark
the following: '

As ground frosts are phenomena, which, in the seasons when their predlctlon is of
economical importance, are of a more or less exceptional character, they will, in those
seasons, only occur when atmospheric conditions are exceptionally favourable to. their
realization (small degree of cloudiness, small wind velocity). For this reason we shall, in
the following, assume that these atmospheric conditions are not influenced by a frontal
cloud or wind system; for cloudiness, this means, that we assume it to be small and
constant during the night.

The left hand side of (1) can also be ertten as follows:

where 2 is the heat conduction coefficient of the soil; the suffix ; means that the value
of aTjez must be taken at the earth’s surface, where z = 0; z is counted positive in the
upward direction.
The temperature variations in the soil are governed by the equatlon
ol 1 8, oT
_a_t gc oz (Z o )’

(6)

where ¢ — density; ¢ = specific heat of the soil. When the soil is homogeneous, this becomes:

ol oI A
o e T e (7)
~ x is called the thermal diffusivity”.
By this equation the temperature function 7'(z, f) is determlned once for all if only
an 1n1t1al temperature distribution 7'(z, 0) be given:

T (2,0) = F (2). - (8)

Now in our problem 7(z,0) is only defined for z<C 0, because for the time being
we have only to deal with ground temperatures (the air temperature variations are governed
by different laws). 7T (z, ¢) as a solution of (6) or (7) is, therefore, only determined if
one more- boundary condition for.z = 0 is given; this boundary condltlon is, according
to (1) and (5), that for all values of ¢

—A(az)_R—A—O. G

- The right hand side of (9) is a function of time, as R, 4 and C are in general not
constant. - "
The solutions 7 (z,t) concern us especially as to their behaviour for z = 0, that is
to say at the earth’s surface.

2. Solutions for special cases.

In order to find solutions of (6) or (7), satisfying conditions (8) and (9), we can
make various simplifying suppositions. To begin with, we shall suppose a homogeneous
soil, or at least a soil for which we may operate with a mean value of 4, which may
be treated as a constant, so that we have to deal with the simpler equatlon (7).

For the three following special cases solutions have formerly been given in the literature:

1. T (z,0)= const (with respect to z), R = const (with respect to t), 4 =0, C=0.



_ The solution for this case was put forward by Brunt, 1932. Brunt did not
mention the first of the above assumptions explicitly, but made an essential use of it,
nevertheless. What he lays stress on, viz. the abrupt beginning of (effective) radiation
and of cooling, which is a characteristic feature of his first treatment (compare case 3,
below), is not simply equivalent to this assumption. If 7' denotes the temperature for
t = 0 (for all values of 2, according to the first of the above assumptions), this
solution is: E

2R z <

T (2,t) = To—%<\/ﬁe~4_%t+z [ e du) ‘ (10)
Z'\/ﬂ »2/2\/% f.
- For z=0 we find for the surface temperature as a function of ¢#:

2R —

T=T()=T,—— t,
| (0,%) Vmwv‘ (11)
where w = 1/0ch = gc\/% (12):

has been called the ’contact coefficient”.

2. T (2,0) = const, R = const, 4 = const = 0, ¢ = 0.

The solution for this case was given by Philipps, 1940. The latter started
from the supposition, that in the air also a transport of heat takes place obeying
an equation of the type (7)!), that is to say, that the eddy conductivity 5 is in-
dependent of z (a supposition, which surely does not hold in the atmosphere). He
then finds a solution, which can be obtained from Brunt’s solution by substituting
W+ wy =06y % + 0,6,4/ %4 = v/ged + €, /ooy for w ; here o, , ¢, mean the density and the
specific heat at constant pressure of the air, respectively; », = #/o, might be called the
thermal eddy diffusivity of the air, analogous to the coefficient » in equation (7). In
this way he finds for the surface temperature '

2R+/i g 2Ry
Vaeov% + 0utaVxa) T V/m (wtwy)

“where ' ws= ¢\ 0a. (14)

T—T(0,t)=Ty—

(13)

3. Brunt (1932) has given still another treatment of the matter, by means of
a harmonical analysis of a whole 24 hours cycle of radiational heating and cooling of
the ground. He assumes again a constant effective radiation during the interval from
sunset to sunrise, but on account of the daytime heat transport in the ground, the
latter is now not isothermal at the beginning of the night, as it was in ‘the first case.
This makes the temperature variation curve, especially in the beginning of the night,
much more acceptible than in the first case, where, for ¢ = 0, d7/dt = — o (see
(discussion of this case in the following section). As regards the temperature distribution
in the ground, this is of such a nature that it makes the 24 hours mean value of
temperature independent of z, or: 7(z) = const (mean temperature distribution is iso-
thermal, a simplification, which, of course, although it is a better one than the assumption
T (2, 0) = const, does not yet fit the actual state of things, in general). 4 and C are
here again discarded as in case 1 (4 =0, C = 0). The result is a Fourier development
of temperature variation. We shall return to this treatment in section 5 (C).

In a theoretical investigation on this subject, performed during the war, the author
has gone beyond these three special cases. One of the results of this investigation has
already been published elsewhere (Journal of Meteorology, 1947). In the present paper it
is developed still somewhat farther (section 4). Furthermore, we wish to make ourselves -
free from as many as possible of the simplifying assumptions, referred to above. We
shall start with a closer examination of the simplest case.

1) Besides, he neglects the role of radiation in the heat interchange in the air.



3. Simplest case (Brumnt).

T (z,0) = const, B = const, 4 = 0, C=0
Conditions (8) and (9) become here respectively:

T (z,0)= T, for z <o, ‘ (15)
oT o / |
— (a_z)z: R. , (16)

The solution 7' (2, t) for this case is given by (10), as we have seen. It is -easily
. obtained by first finding S = a7'/ez, which satisfies also equation (7) and for which we
“have as conditions equivalent to (15) and (16),

8 (z,0)=0 for 2 <<0 o (17)

S(,t)=—RA | (18)
The solution 8§ (z,1?) is '
2R % : : |
§=—-—= [ e¥du. (19)
v —zl2V/ it :

 For some fixed values of ¢ its graph is given in fig. 2; the curves are Gauss-
integral curves, of which only the right hand parts (z<< 0) have a physical meaning here.
T (z,t) (10) is then found by integrating (19) with respect to z and applying (15).

i

Fig. 2 . Fig. 3

The temperature distribution in the ground, as given by (10), is illustrated for a
set of fixed values of ¢, in fig. 3. The dashed parts of the curves (z>>o0) have again
no physical meaning here. - . : :

Characteristic of these temperature distribution curves is that their tangents in z =o -
all have the same inclination, determined by (16). For ¢ = o, properly speaking, this tangent
is undetermined, the complete solution showing a discontinuity in 27/sz.
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The temperature variation at the surface (z = o) is described by (11) and illustrated
Cin fig. 4. ‘ '

There are two characteristic features of this solution, which claim our attention, viz.:

1. The unlimited temperature fall, when f—> oco; this T
is a consequence of the assumption that R = const for all
values of ¢. :

2. The infinite negative value of a7'/o¢ for ¢ = o; this T, S
is a consequence of the discontinuity existing in the upward
energy stream K at the earth’s surface, for { = o, according
to our assumption, that for 2z = + 0, £ = R, for z = — o,
E = o, at that moment.

We may also formulate the state of things as follows:
for ¢ = o, the second derivative of 7 (z,t) in 2= o is infinite,
as is shown in fig. 3, curve ¢ = 01); and this means, accord-
ing to (7), that a7/ot = — co. ‘

Finally we shall give a numerical example to illustrate formula (11). For R we
take the same value as was given in section 1: R = 0,15 cal/cm?min = 9 cal/cm?h;
for o, ¢, 4, we take some more or less “normal” values, so that w = 1V ock = 3 cal/emh? deg.

(We shall return in Part II, sections 11 and 12 to the question of the numerical
values of these soil constants under various circumstances).

Formula (11) now becomes:

1
T T,—33° <_,t ) f2
hour

Fig. 4

from which the temperature fall in, say, 9 hours is computed to be To— T = 10°.

4. Variation of R.

- T'(2,0) =const, A =0, C =0 (as above); R = const. .

We have introduced here, as a first corrective to the simplifications of the foregoing
case (Brunt), a characteristic feature of the process of nocturnal cooling, viz. the non-
constancy of R. The cause of the variation of R lies in the cooling of the earth’s
surface and- of the lower layers of the atmosphere, causing o7% as well as R to
diminish. The decrease of R’ being smaller than that of ¢7%, R will decrease also, its
rate of decrease depending on the steepness of the arising ground inversion. This
effect was treated by the author’s theoretical paper in the Journal of Meteorology,
referred to above. This treatment runs, in brief, as follows. As an approximation we
may formally write R, as a function of ground temperature, as follows:

- B=R(T)=Ro + (T —To)=HT—T)), (20)

where f = oR/eT and T) = Ty — Ro/f is the value of 7, at which R would vanish, if
we would extrapolate formula (20) so far. '
The boundary condition (16) now becomes

_—Z (6_2>z=a: Ro +.f(T‘_ To)z=0: f(T— T1)2=0' (21)
In order to find a solution of (7) satisfying conditions (15) and (21), we first

introduce 7'-— Tl = % as a new variable, instead of 7', u satisfies the same differential
equation (7) as 7', whereas (15) and (21) are transformed into:

Ro ou i

u(z,O):Tu—leTzug, for z <o and a—z—f—zu%m for z=o0, _ (22)

1) The upper part of which is the dashed straight line.



respectively. | Now, by performing a further transformation, putting oufoz + uf/d = v, it
has been possible to find a solution u, satisfying conditions (22), this solution being

Ro; —z fz+f2tc 1/t ‘
T_TIZ”:T%@<2«/E>+6 o (szergcﬂg’ =

where @ means the Gauss integral function:

2 x
D (x) = v fe_f'/“ dy.

We may give a dimensionless representation of this result in the following form:

T

where u, = R,[f (a temperature), ‘ _ ‘(25)'
-t = Age/f? (a time), : (26)

# = Af (a length); ‘ : (27)

it should be born in mind here, that in the application of (23) and (24) z is negatwe
or zero, — 2 being the depth oons1dered

. 21'

— >

Fig. & Fig. 6

In fig. 5 we have drawn tlie temperature curves as given by (23), (24) for a set of
fixed values of .

Unlike the tangents in z = o to the curves of fig. 3, the tangents to the
temperature curves in that level are not parallel; they have one common point of inter-
section at 4 = o0, z =2z, = A/f.

For t =o the complete curve shows again a d1scont1nu1ty in the inclination of its
tangent in the point z =o.
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The temperature variation at the surface may be obtained from (23) or (24) by putting
z = 0, the result is: ' :

B, I t
=T T, =2 |1 _— — . )
v rommtp o)) =
or, in a dimensionless representation:
w_T—T_ 1ty m
= el —e (Vi) (29)

as illustrated by fig. 6 (upper curve) and fig. 7.
From fig. 6 we observe, that here again the value of a7/a¢ for { = o0 equals — oo, as
in Brunt’s solution; the causefof this fact is the same as above, viz. the assumption,

0.0 ' ' ' ¥ ] L 1 v J I L Y ' 1 T 1 T
1 _
c
>
I < ]
| AT -
UO
- 1—% A
Vi
-4.0 e N
0.5 1.0 1.5

Fig. 7

that, for ¢ =0, 87/oz = o, for all values of z, whereas the outgoing radiation R, 7 0.
The fundamental difference of our formula from that of Brun t, however, is that
in the former 7' approaches to 7', as a limit, when ¢ increases indefinitely. '
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‘The precise connection between Brunt’s result and ours may best be seen from
a series development. According tot (28) the temperature fall ater a time ¢ is »

& el 3]

By developing this into a Taylor series after ascending powers of fV/t/Agc we obtain:

SRV ]

If we cut off all terms except the first one, we are left with Brun t’s formula (11),
if in the latter we put B = R.. L

T,—T=u,—u= -

. (30)

In fig. 7 we give a representation of the computed temperature variation as a function
of 4/t. Tt is clear now, that Brun t’s formula in this representation gives a straight line,
touching our curve in the origin, when R = R,. By choosing u. and ¢ as units of
temperature and of time, respectively, we have obtained in fig. 7 a graph, which corresponds
to the dimensionless representation (29) and is therefore independent of the special values
of the various constants occurring in (28). For the proper use of this graph we only need
to know the quantities %, (25) and ¢; (26).

. As a numerical example we may substitute the same values of R, o, ¢, 4 and f as
previously used: R, = 9 cal/cm?h, +/gci = 3 cal/em®h* deg, f = 0,3 cal/cm®hdeg, by which
%, = 30°, ¢, == 100 h.

_ For t=9h we find a temperature fall of 0,265 uo = 8°, whereas formula (11) gave
10°, as we have seen. ‘ ,

For large values of ¢ the deviation of Brunt’s curve from ours becomes very
large. Our result may therefore be of importance for studying the temperature fall
during the polar night, a problem treated by Wexler, 1936. Wexler used Brunt’s
formula, which assumes a constant value of R, for estimating the time necessary for
attaining the temperature at which the incoming radiation and the outgoing radiation
cancel each other (our temperature 7T,), a somewhat inconsistent procedure.

From the asymptotic behaviour of the function @ for large values of the argument
it follows, that for very large ¢ the decrease of 7'— T become proportional to ¢~ %

Evaluation of f. .-~

In section 11 a qualitative discussion of the factors influencing the: value of f will
be given, in connection with the discussion of typical radiation diagram curves. For the
present we shall yet try to find a way of estimating this
quantity theoretically. To this end we choose a very simple
ground inversion model, see fig. 8. We have chosen, here,
as the ordinate the quantity

h

6= f odz,
where % = height above the earth’s surface. The initial
temperature distribution may be represented by the function
T (a, 0); let it be linear with respect to a, near the earth’s
surface. Let the ground inversion that arises be represented by

Too|aT| T T (a,8) = T (a, 0) —%:—“, for o <a;—a| AT, (32)
Fig. 8 .
where |AT| is the temperature fall at the earth’s surface;
the quantity o (the “flatness” of the inversion) is assumed to be constant while the depth
of the inversion grows. ) ’ '
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‘Now, when the ground temperature has fallen an amount A 7, the heat given off
by the air is

o ’ ,,/v, B
S ey [T(@,0) —T(a,t)]= } o, a2 ™ =46, (AT a= ¢, )% ta, (33)

where we have used the approximative formula: A 7T = y4/t, according to Brunt.

On the other hand the amount of heat glven off by the air to the earth may also
be calculated from the heat balance, as it is equal to the time-integral of the sum
of (1) the atmospherical counter- radlatlon R’ and (2) the heat conducted downwards by
eddy conductivity, A4, minus (3) the fraction of the earth’s radiation absorbed by the
air, which is dependent on the total water vapour content (per cm?) of the atmosphere.
We may write for the last term: ks7“, where k& can be determined from the radiation
diagram; it may be treated as a constant within any not too large interval of
temperature. For the second term we may write: A= (r/1+r) R, where r = A/ B is assumed
to be constant during the night (It is necessary to use some of the results of section 6,
here). Thus we obtain: :

t

t R t
T (R’ +1:w_ ko T4)dt:f ([1_10]6174—%)(# [ Rxa=TF.  (34)
Or:
2R* :
a="s (35)

As in first approximation 7' varies linearly with 4/¢ (formula of Brunt) and the
quantities ¢7* and R are considered as linear functions of 7' in the limited temperature
“interval we are concerned with, we may, for the time mean of R*, as defined by (34)

take the value corresponding to the temperature T'o — /3| A T |. :

For applying this we should first make a preliminary estimate of A 7' (for instance
by means of the formula | A T | =y4/t) and of the variation of R with 7. Eventually
we may, with help of the value of f found, afterwards repeat the computation and
thus find a better value of f. The quantity denoted by y may be put equal to

2R o
s —— 36
4 (L4712 7hoc (39)

This follows from Brunts formula, modified for the effect of eddy conductivity.
(see section 6); for R we may agam take some mean value, here.

The flatness” « of the inversion to be expected having been computed in this way,
we must now calculate f from it. To this end we proceed as follows. The limiting
values, between which f—=( 6/8T (¢T*— R') lies, are: :

R ’
= 40T foun = 4o (1 — W)

the latter value corresponding to the limiting case of R'[¢cT* remaining constant, which
would be realized approximatively for « = o5 (the temperature curve then shifts parallel
to itself; an eventual loss of water vapour by condensation is left out of consideration).
Therefore we take the following working form:

j=to Té(l—ﬁ;;;’;‘l), S @37

where p is assumed to be a function of « only and to go from 0 to 1; f(o) =0,
B (c0) = 1. The function B(«) to be used should now be determined by computing from
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a large number of examples, plotted on the radiation chart, the values of g for various
values of «. This may be done most easily in the following way:
R, _ oR[oT.
1—§ oTt 40T

hence:

oT A (4O‘T3 — aR/aT) _oTt AR

40" TR A@TY (38)

b=

The ratio AR'[A(cT%), for any value of AT, is equal to the ratio of two areas
on the radiation diagram which may be easily measured.

Some provisional random tests gave as a result an interdependence of g and « that
may rather well be represented by the following provisional formula: '

=} + 39 (0,53 *log « — 0,07), o

where @ is the Gauss integral function, « being expressed in g/om? deg. Between the
values o= 0,1 and « = 10 this formula may rather well be replaced by the simpler one:

B = 0,465 + 0,265 Vlog «. (40)

Thus, in order to determine f we have first to determine « from formula (35), then
g from (39) or (40) and finally f from (37).

By applying this procedure to the example discussed in section 10 we get f=0,25,
whereas from Franssila’s measurements the value f = 0,30 (cal/cm? h deg) was derived.

5. Non<isothermal temperature distribution in the ground for ¢t = o.

A. Tt we have a solution 7'm (2, t) of equation (7), satisfying (15) as an initial

condition, the function -
T(t)=1T, (1) +mz (41)

also satisfies (7), while for ¢ = o we shall have
' T(z,0)= T, + maz. (42)

If, now, we want the solution (41) to satisfy the condition (16) or (21) we obtain

02 Jz=0

whence

—a(aT’") — B+ im,

02 [y—0

or, according to (20),
oT
—2 (sz) =Ry (L — Ty = [ (T— T , (43)
where now
R, + Am

f

The solution 7 (z,t) satisfying the system of equations (7) — (42) —(21), can there-
fore be constructed from (41), where Tw (2, ) is the solution, satisfying the system
(7) — (15) — (43); the latter solution is known from the preceding section; we have only
to substitute R, + im for R, in (23), (25), (28), (30). The effect of the occurrence of
the term - mz in the intial condition (42) upon temperature variation may therefore
be said to consist in the substitution of an “apparent radiation” R - im for the real
radiation R.
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We observe further that the solution gives a temperature function for z= 0 (at the
earth’s surface),

I'=T (0,8)= Tm (O, £, 1 (45) '

which starts again with a d7T/dt = — oo for ¢ =0, except when R, 4+ im = 0.

There are two reasons why a function 7, 4 mz (42) will, in many cases, be a
- better approximation of the initial temperature distribution in the ground, than the
isothermal distribution (15) — so long as we restrict
ourselves to that layer of ground, which takes part in the
diurnal temperature variation. These reasons are: o

1. Annual temperature wave in the ground. In the
cold season, the effect of this “wave” may be described
as a heat store in the ground; in the warm season as a
“cold store”. As this wave penetrates into a much deeper
layer of the ground than the diurnal temperature variation,
the 24 hours mean temperature distribution may in the upper
layers, where the latter variation is perceptible, be approxi-
mated fairly well by a linear function of z.

2. On this linear mean temperature distribution a
diurnal temperature wave of much smaller dimensions is
superposed. The effect of this wave is a cold store” in the
ground (of a much smaller capacity than the one mentioned
above, to which it superposes itself) during the warmer part Fig. 9
of the day, i.e. during the afternoon. At the boginning of ' .
the night, this “cold store” will, in general, not yet have been compensated. This means
that the effect in question will, in general, give a positive contribution to the coefficient
m in (42) and (43). (It is clear, that the linear form (42) is only a first approximation,
which, however, will often fit the facts better than the isothermal one). One might object
that the real temperature distribution at the beginning of the night is rather of the
type shown by fig. 9, a, instead of a linear distribution, fig. 9, b (the seasonal effect
has been left out here; or, in other words, the temperature distribution, represented in
tig. 9, should be superposed to the 24 hours mean temperature distribution). That is to
say: in the upper centimeters of the ground we have to expect a negative value of
oT[oz, instead of a positive one, even if we should have, across the whole layer considered
(which is, in general, at least 30 cm deep), a positive value of AT/ Az It may be
expected, that, in consequence of this small heat store in the uppermost groundlayer,
a less steep temperature fall will set in than in the case of an isothermal initial state.
This will, however, only be true for the first one or two hours, in general. The total
temperature fall during the night, if the latter be not too short, will be larger than in
the isothermal case, as is to be expected if we replace the temperature curve a (fig. 9)
by a straight line b. : .

This conclusion is confirmed by Brun t’s computation, mentioned above (section 2,
case 3), to which we shall return in part C of this section. The result of this computation -
is a temperature curve giving a total temperature fall during the night, about 10 %,
larger than the temperature fall, computed from an isothermal temperature distribution
at the beginning of the night, though the temperature curve starts less steeply.

- Numerical example. For effect (1) (seasonal effect), we quote a result of Peerlk am ps
1944, who measured ground temperatures under various circumstances. For a number of
clear summer days, for instance, he found a 24 hours mean temperature difference of 4,3°
between the levels z = 0 and z = — 30 cm in a grass covered clay ground. This yields a
mean temperature gradient m = 0,14°/em in this layer. With 1 = 0,15 cal/cm min deg we
obtain Am=0,021 cal/cm?min = 1,3 cal/cm?h. In the numerical example given above (section 4)
we had B, =9 cal/cm?h, so that R, + im becomes 10,3 cal/cm?h. This is a increase of 14 9%,.
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Further, for effect (2)> we simply refer to the above mentioned computation by Brunt.
Finally, for the total effect, we quote measurements by L. Herr, 1936, from

~which can be decuced a temperature gradient m = 0,24°/cm for the upper 356 cm of the

ground, in the evening of a day in July. With the same value of 4 as used just now,
we obtain im = 2,2 caljem?h; if R, would again be 9 cal/em?h, we should have an
apparent increase of effective radiation of 25 %-
We see, therefore, that, at least in summer, the effects discussed in this section may
2 sometimes give an appreciable correction to the computation
L of the nocturnal temperature fall. »

T B. There is another possibility to make our initial
condition agree more closely with real temperature distribu-
tions. : ‘

If, from (41), we construct the temperature curves for
a set of values of ¢, as we can conveniently do with the
help of the curves of fig. 5, we obtain, for any positive
value of m, a set of curves as shown in fig. 10.

Now, if T*#(zt) is a solution of (7), satisfying (21) as
a boundary condition, the same is true for 7' (z, 1) = T*(z,t + to);
" if T*(z,0) is given by the right hand member of (42), the

initial state, corresponding to this solution, is given by

T (z,0) = T* (2, t,) = T}, (2, 1,) + mz. (46)

Fig. 10

This initial state is represented by one of the curves
of fig. 10, if only the right value of m be used. When we now compare fig. 10 with fig. 9,
we see, that among the curves of fig. 10, we may in general find one that better fits the
curve @ of fig. 9 than curve b of fig. 9 does, if only the right value of m be used in
fig. 10. : ’

If curve b, fig. 9, is given, this value of m can be estimated by drawing some sort
of “asymptote” to curve g (dashed line ¢ in fig. 9), which has to play the role of the
straight line in fig. 10. .

Since £, > 0, the solution 7T (z,t) constructed here, gives a temperature variation at
the earth’s surface, having, for all >0, a finite value of its time derivative. '

The temperature fall after a time is given by '

- ) IAleT(to)—T(t+t0):
where 7'(t) denotes the function, known from (45).
0. Tt is here the place to discuss briefly Brunt’s computation of a whole ,

24 hours day’s temperature variation, by which he corrected his own computation of
the temperature fall during a night. Apart from the expounding of this method we

~shall give two simple generalizations, of which it is capable.

Brunt (L c.) assumed the net inward radiation F (¢) (= incoming radiation from sun
and atmosphere minus outgoing terrestrial radiation) to follow a harmonic law during the
daytime and to be constant during the night: '

F(t)= — I sin g¢— R for —m < gt < o (daytime),

F(@#)= — R (const.) for o < gt < 7 (night).

This function can be developed into a Fourier series as follows:

1 :
F(t) = p —R—1, 1 sin qt—ZJI; (Y cos 2qt + )15 cos 4gt +....).
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Let the temperature at the surface of the ground be represented by the Fourier series
T=T,+ Py cos (@t —&) + P, cos (2t —&,) - .... ete.
The correspondmg solution 7' (2,t) of our equation (7) is- -
T (2,8) = T, + Pyl cos (gt — &, + yz) + Pael® cos (2qt— é5 1 ugz) + . .. . eto.,
where =\ q[2%, Hz»:\/m’---: ete. -
On differentiating and putting z = 0 we find that

oT

Fy=2 a—_\/gcl Z P, \/nq cos (nqt n §> S e
As this series must be identical with the one above for  F (f), we easily fmd all
coefficients P, and phase constants e, of the temperature function. Furthermore it appears that

Iln— R=o,

in other words, that the net gain or loss of heat by the ground during 24 hours is
zero. This is a consequence of the fact that the solution 7' (z,¢) used here is such as to
make the 24 hours mean temperature distribution in the ground isothermal. '
"The characteristics of the temperature curve during the night, computed in this way,
have already been mentioned in part A of this section.
This calculation can still easily be improved in two respects. First we can add a
term + «z to the above temperature function 7' (z, ¢), the new temperature function
T (z,t) + «z still being a solution of (7). The 24 hours mean temperature distribution in
the ground is then no longer isothermal and the 24 hours net gain or loss of heat by

the ground no longer zero, but:
I J/m— R = .

The small secular ohange of ground temperature from one day to the next, which
is, in nature, involved in this gain or loss, may of course be neglected when it is only
the diurnal variation we are concerned Wlth

The second modification we might perform is to drop the assumption that R is a
constant. We might for instance put R = R P sin (gt + ¢) (not simply R= R,— P sin g¢t,
as Brunt suggests).

Still better would be to use:

R:Ro+f(T—T0):Ro+f[P1 cos (qt—é/i)—}—.... etc.].

The unknown coefficients P;, P, etec. would théreb‘y occur in both - Fourier series-
representations of F(¢), but this would not essentially complicate the calculation.

6. Conductivity of the air.

In this section we drop the assumption 4 = 0. Indeed, in general there will be an
eddy conductivity of the air causing a heat stream, which during the night, runs
downward towards the radiating surface of the earth. Now to develope a satisfactory
theory in order to take into account this very complicated phenomenon is an extremely
difficult problem. We shall therefore attack the matter from the empirical side. To this
end we have examined the results of measurements of the terms of the energy-balance at
the earth’s surface, as have been carried out for example by F. Albrecht, 1930, and
M. Franssila, 1936. From this examination it has appeared, that the ratio A/B did
not vary much during the nights (there seems to be a maximum in the forenight). For
illustrating this statement we have here written down two sets of hourly values of this
ratio, derived from results of measurements by the above mentioned authors.
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F. Albrecht, one clear night, 19—20 VII 1925.

19--20 h.|20—21 h.{21—22 h.|22—23 h.| 23—0 h. | 0—1 h.

AB . ... 0.28 0.32 0.30 0.28 026 | 023

M. Franssila, 3 clear or slightly clouded nights in August 1934.

20—21 h. [21—22 h.|22—23 h.| 23—0 h. } 0—1 h.{ 1—2h. | 2—3h. | 3—4h. | 4—5h,

AB .. .. 0.23 | 0.37 0.45 0.40 0.33 0.33 0315 | 043 0.34

For our calculations, we may therefore assume, as a working hypothesis, this ratio to
be constant. This means that we assume the total heat stream, compensating the
radiative energy loss at the earth’s surface, to be distributed over the two conduction
heat streams, viz. A and B, in a constant ratio — so long as the condensation heat
stream O is still neglected. The value of this ratio will depend upon the ratio of the
conductivities of the two media (air and soil).

Tt can be proved theoretically, that this ratio will indeed be a constant if the two
following conditions are satisfied: '

1. The mechanism of the air heat ’conduction” must be such that the air temperature
variation obeys a differential equation

% = %, %23; (#, being constant) (7a)
of the same type as equation (7), which is valid for the soil.

2.  The temperature distributions in the air and in the ground must stand in such
a relation to each other, that, for a certain moment ¢ = #,, the temperature curve for
the air becomes the counter-image of that for the ground, if the coordinates z of all
points in the air are multiplied by a factor 1/x/x,.

It will appear that, if the latter condition is satisfied for ¢ = %o, it is satisfied for
all values of ¢; furthermore, that, even if the first condition be fulfilled, the second one
is a sufficient condition, it is true, but not a mecessary one.

We shall denote the temperature of the air, as a function of z and ¢, by T,(2,?)
(22 0), that of the soil as before, by 7 (z,¢), so that, for continuity, we have

Tyl0,8) = T (0, 1) (47)
It T (z, f) is supposed to be known (z<C 0), the temperature distribution in the air
for a certain moment, 7T,(z,1%,), together with the boundary condition (47), determines
the function T,(z,t) as a solution of (7a) for all values of #.
Now, for z>o0, we introduce the following transformation of coordinates:

z:——Z\/K/%.

By substituting this into (7a) we see, that T,, as a function of Z and ¢, satisfies
the same differential equation as 7' (z, ¢). If, therefore, for t = 4, T, is the same
function of Z as T is of z, the same is true for all values of ¢{. Hence ‘

(aT‘l) :(£> for all values of ¢. (48)
87 |z 02 [4—0
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Now, the fact that for ¢t = ¢, 7T, is the same function of Z as T is of z is
equivalent to the above condition 2. From (48), on the other hand, follows:

(‘a;>z - _V(a> _

orl)
oT,\ LAy /%
A= }tA( - >z=0_ B |/ =B
where
}'A. }'A.
= —_— 49
?‘ A \/%algc (49)

In (49) i, denotes the eddy conductlon coefficient of the air; we may write
AA = 7Cq; \

where 7 is the “eddy conductivity” (”’Austausch-coeffizient”), ¢, is the specific heat of
the air. As to the x, in (7a) and in (49), we should bear in mind, that equation (7a) is
supposed to describe the total temperature variation in the air and this is not only an
effect of eddy conduction, but also of a radiative apparent “conduction”. In writing
%, = A4)0.,, We have therefore, in general: 1,>4,, #,>7/o,.

Equation (49) states the constancy of r = A/B, in so far as i, and », may be
considered as constants, as supposed, and in addition gives the value of 7, if the two
conditions underlying its deduction are satisfied. It may easily be seen, however, that,
when (7a) is satisfied, there are oo possible temperature distributions in the air, for a
certain moment ¢ =4¢, such that the ratio 4/B is constant. Indeed, any given constant

value of 4/B = r gives a constant value of a—,—]f//;zz—" ;that is to say: if, as before, T'(z, t)

is supposed to be known 2), not only 7o, ) but also (2 T,[oz),_, is known and conse-
quently 7',(z,¢) is determined as a solution of (7a), for all values of ¢ and z.

We have therefore co solutions, such that 4/B is constant.

The suppositions, underlying Philipps’ calculation (l.c.), mentioned in section 2
(case 2) are only a special case of the above stated conditions, underlying (49). Indeed,
Philipps started from isothermal initial temperature distributions in the air as well
as in the soil (so that condition 2 is satisfied); as to the heat conduction in the air, he
. reckoned only with an eddy conduction; and by assuming the eddy conductivity to be
independent of z, he arrived at equation (7a) whereby condition 1 is fulfilled.

We, however, shall not try to give the above deduction, resulting into equation (49)
the character of a theoretical “’basis” of our calculation, but shall assume the constancy
of A/B merely as a more or less empirical suggestion; we have already seen, that the
above “’deduction” uses certain suppositions, which are sufficient, but not at all necessary
for this constancy, so that in reality it implies assumptions of a much wider scope.

As we have seen, we may have in B a constant term — Am (see preceding section),
which is a consequence of a “heat store” or a “cold store” in the ground. As in the
atmosphere such store” effects do not, by far, occur in the same degree, we shall
subtract this term from B and from R; so, in this case, what we distribute in a
constant ratio over soil conduction and air conduction, is the ’apparent” radiation R + im,
introduced in the preceding section.

As an illustration, we might easily perform a reconstruction of the above discussed
theoretical case so, that the postulated relation between the temperature distributionsin

1) As in the lowest layers of the atmosphere, which concern us here, the temperature gradients are in general large .
compared with the adiabatic lapse-rate, we may, without introducing any appreciable error, use 97/0z instead of (28/02)T/d,
as, strictly speaking, we ought to do (9 = potential temperature of the air).

: To R

%) As B=A4 + B =(1+ r)4, we have, as a determining boundary condition for 7(z, ¢): — l( 6z) =1 T

2=o0
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the soil and in the air (condition 2) now applies to T (2, 1) —mz = Tu(z, ¢) and T2, 1)
instead of to T (z,t) and T, (2,¢). :

In the following -of this section we shall, for brevity, always write R and B, but
shall keep in mind, that, when necessary, we shall have to understand by this symbols
the ’’corrected” values R + Am, B -+ im. :

If r is given, we can find the solution of our problem in the following way: As
R—= A+ B= B(l1 +r), we have B = R/(1 + r). Instead of (23), we obtain therefore, as

a boundary condition:

oT R, |
() =iy L. (50)

Tor the calculation of temperature variations by means of the formulas of section 4,
this amounts to the substitution of R,/(1 -+ 7) and f/(1 + ») for R, and f, respectively.

From the measurements by Albrecht and by Franssila, discussed above, we
can deducel) mean values of 7 of 0,28 and of 0,375, respectively; these values would

give apparent reductions of R, and f of about 20 % and 27 %, respectively.
' From (25), (26) and (27) it can be seen, that #, and. 2, are increased by this
reduction, whereas u, (and therefore also 7T) remains unaltered.

We may of course apply this modification to the calculation by Brunt (section 3)
as well as to ours. In doing so, we easily arrive at the formula of Philipps, if only
we use special suppositions, underlying his deduction. By neglecting radiative “conduction”
of heat in the air, as he did, we obtain x, = 5o, = 2A4/0,¢, and thereby, according

to (49):
_ 1/ Aa0a_ , /10 ,
T—V Aoc _C“VZQG' ' (1)

By substituting E/(1 4 7) = R/(l —]—V%ZL:“) for B in Brunt’s formula, we obtain

Philipps’ solution (section 2, case 2). In addition to what has already been said
about his treatment of the problem, we may here emphasize, that his discarding the role
of atmospheric radiation in the interchange of heat within the air is serious, as this
role is an important one.

In order to apply the result of this section to any practical case, we must know
the value of r to be used. This value will largely depend upon wind velocity. The
stronger the wind, the larger the eddy conduction in the air and, consequently, the
larger A/B =r. | ‘ . ’
- Although we have seen that formula (49) had only a very limited validity, it may
give an illustration of this dependence. If, for the moment, we write x»,= »,+ »' =1 Jo, + ',
(49) yields:

7%
vV (nlo, + ' )Age

According to this expression, r increases when the®eddy conductivity increases; now
we know, that » is roughly proportional to the wind velocity. If the latter would
become so large, that »’ could be neglected compared with 7/e,, we would again ‘obtain
the expression (51); r would then become roughly proportional to v.

‘We may try formula (51) by using for the various constants, occurring in it, data,
quoted from Franssila’s investigation, mentioned above: 1 = 0,123 cal/cm min deg,
oc = 0,59 callem3 deg, ¢, = ¢, = 0,24 cal/g deg, o, = 0,001275 g/em?, 5 = 0,2 gfem sec.
« This yields: » = 0,11, whereas his direct measurements of the terms of the energy
~ balance give: r = 0,32 (see section 11, part IL of the present paper; we have here

reckoned with a term Am in R and B, so that r = A/(B -+~ Am)# A/B; in the beginning

1) We have not reckoned with a term Am, here.
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of the present section r was equal to A/B; so that a slightly different value of  was found).

We observe here first, that the above value of % is a rather uncertain element in
the computation; and secondly, that (49) is not a general expression for 7. Apart from
the fact that the actual temperature interchange in the air does not obey such a

simple law as expressed by equation (7a) — neither so far as the eddy conduction, nor,
more in particular, so far as the radiative “conduction’ in the vicinity of the earth’s
surface is concerned!) — the value of 7 will not only depend upon the conductivity of

the air, but also, as we have already seen, upon the initial temperature distribution
in it.

We shall not try to give an elaborate theory of this side of our problem. In those -
nights, in which there is danger of ground frosts2), wind velocity and eddy conductivity
will be relatively small, so that the application of the quantity  has only the
significance of a correction.

For that reason we shall, in general, -be justified in restricting ourselves to an
estimate of this quantity. In order to obtain an empirical basis for such an estimate,
we need, however, a much more complete material of measurements of the energy
balance at the earth’s surface onder various circumstances, especially as to wind velocity
(see section 11).

7. Condensation.

The problem of condensation at the earth’s surface is even more difficult than that
of eddy conduction. We shall, therefore, again start here by considering some empirical
data, viz. those obtained by Franssila, l.c. In section 10, fig. 14, we haven given
a graph of some of his measurements of the energy balance at the earth’s surface
(mean hourly values of 3 days of August). As we see there, the condensation term was
about zero at the beginning of the night; it increased during the whole night, the rate
of increase diminishing in the course of it.

We may, therefore, take this term to be more or less closely proportional to the
temperature fall 7, — 7', which shows an
similar progress. In order to test this, we 7
have plotted the mean hourly values of
the condensation term C, measured by
Franssila during three nights (with clear
or very slightly clouded sky and only light e
wind or calm), against the temperature at
1 cm above the ground (which was grown
with short cut grass); see fig. 11, where C
is expressed in cal/cm?min. In this way we
obtain a set of points, which can be seen .
to lie indeed approximately on a stralght

line. We put, therefore, . 8
0= (T,—T). 52)
BN 7 L
The equation of the energy balance may
now be written as follows: el oL T8
: 0. 2. 4. 6. 8. 10. 2. 4. 6. 18.10°3
A+B=R—0=R,—(f+f)(T,—T). (53) Fig. 11

From (53) we can see, that the modification brought about by the term C (52)
amounts to the substitution of f + f' for f in the formulas, previously used.

1) Compare Brunt, 1939, ch. VI; for the same reason the computation of the radiational heat transport within
the air near the earth’s surface, presented by J. Kampé de Fériet, La Météorologie, 1942, page 137—148, should
not be accepted.

2) We confine ourselves to the seasons in which the occurrence of groundfrosts may imply an economical loss.
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In the case of fig. 11 the quantity f/ = — AC/AT is about 0,175 cal/cm?®h deg,
whereas f was 0,30 cal/cm?h deg in those nights.

We can try to set up a theory of a simplified model, in order to test the above
working hypothesis. To this end we suppose for the moment the water vapour distribution
in the air for { = 0 to be such that the specific humidity ¢ in the lower layers of the
atmosphere is independent of z:

9(2) 1= = 9o- (54)

As regards the vertical water transport, we suppose, that it can be computed by
means of an equation of the type:

og 0%

pri k e (55)

Finally, let, for z = 0, ¢ be ¢max(7"), which is a known function of temperature,

when the atmospheric pressure is given. If 7' at the earth’s surface is therefore given

as a function of the time, ¢ for z = 0 is also known as a function of that quantity:

Qom0 =9(0),  9(0) =g, | (56)
The solutlon of (55) satisfying (54) and (56) is known (see f.i. Webster-Szegd,
1930, page 201):

22Vt [o%)

—£2 2 — E2
q(z,t)zﬁqoof o §d5+%z/2{/ﬁg(t 4k§2)e £ g (57)

The water vapour stream, which we are concerned with, is determined by the derivative
of q(z,t) with respect to z:

a_ 2\ e 1 g~
A 2 glt—-2 e 8ae = — o I8 TneD ag,
o zlzékt 2hé? ( ‘”‘”"52) Vaky A/t—
g’ (t) being the first derivative of ¢ (f). For 2 =0 we obtain
oq
— = 58
(aZ)z=o \/nkf\/t—C ‘ (58)
Now we can write
dgmax 0T
7)== (59)

As a first approximation, we shall take for 7(f) Brunt’s solution, corrected,
however, in the sense of section 5, B, above (in order to prevent that o7/t should become
infinite for ¢ = 0); so that we write:

T, —T=s(Vi+t,—Vt,), (60)
oT s
= . 61
ot 2Vt + 1, (1)
Substituting (59) and (61) in (58), we obtain:
ﬂ 8 ! dgmax dac . 8 d{Zmax : d _
(62)z=o_ 2\/&/( ar )t=z: V(€ F1,) (t—0) "m/ﬂ( arT )/V(t+to)2_(c~t—to)2 -
. 2 _ 2
s {Aqmax) f—0\
_.2\/%]6( iT )(»——arcsmt -l—ﬁ) (62)
Here (dill“;x) is the Valﬁe of dgl“j‘f‘x for a certain definite wvalue of 7 between 7T,
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and 7'(t); this value of 7T decreases, when ¢ increases, and, as dfi‘;f‘x decreases with

temperature, the factor (dqm“) is not independent of time; it varies rather slowly,

. . ?
however, and we may therefore conclude (a—(i) to be approximately proportional to
ty— ¢ e

2 7 of which a graph 4

is given in fig. 12. For ¢ = 0 it is ‘zero, its first
derivative being here oo; for ¢>0 it increases mo-

the function —g — arc sin

notonously; for £—»oco it approaches asymptotically 12". - I(%)
8
the value =. As C is proportional to 7 (FZ) _, or,
in other words, : . e
aq 1 3 ] ? o
C=ly (5;) , (63) Fig. 12

fig. 12 presents also a picture of the relative variation of C with time, computed for
our specialized model. This picture is qualitatively such as we described above. An
exact proportionality to | A 7’| could not be expected, of course. We may, however,
define a proportionality factor” f' as a mean value for a certain interval of time (f):

t C
! — 1
f - tl (;/‘TO—Tdt’

where T',— T and C are given by (60), (63) and (62). :

This expression for f is dependent on fo; for convenience, in order to get rid of
this quantity, we put it equal to zero (the dependence meant is only a slight one) and
obtain in this way:

- ’ 710 { dgmax
pov)m (), | o
where [ denotes the latent heat of condensation per gram of water; the constant % in
(62) and (55) has here been put equal to z/o,. -

The deduction just given starts from a very special initial water vapour distribution (54).
Is is easy, however, to obtain a somewhat more general case by adding a term =z to
q(2,t), where n is a certain constant (pos. or neg.). This increases C (63) by a constant

term lognn = C, (pos. or neg.). In accordance herewith we can put, as our semi-
empirical ”Ansatz”, instead of (52),

v O=C,+f (To—T), ' (65)
so that the energy balance now yields:
A+ B=RB,—C,+(f +1)(Te—1T). (66)

If 'we apply formula (64) to the case mentioned above, which was studied experi-
mentally by Franssila (L. c.), we have to substitute the following values for the
constants: (dfl';‘f“‘) = 0,45.10=3/deg, t = 7h, # = 0,2 g/em sec, ¢, = 1,275 . 10—3 g/cm3;
then (64) yields: ' = 0,2 cal/cm?h deg, whereas the direct measurements (fig. 11) gave:
/' =0,175 cal/cm®h deg, as we have seen. The agreement is satisfactory.

The replacement of f by f - f implies an enlargement of the coefficient of 7, — T
in the expression for A -+ B this effect is counteracted by the drying of the air near
the ground, caused by the downward transport of water, for the latter process results
in a relative increase of the effective radiation of the earth’s surface, that is to say in
a diminution of its decrease during the night.

Finally we may mention two complicating effects, which occur when the freezing
point is attained. First, an isothermal stadium must elapse before the temperature will
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drop further — at least when the soil is wet. Secondly, from that moment we are
concerned with the heat of sublimation, set free while the deposition of water goes on,
instead of the heat of condensamon (the former being larger than the 1atter)

8.~ Complications.

In this section we shall devote a few words to two possﬂole comphcatlons, Wthh
will have to be the object of further empirical and theoretlcal 1nvest1gat10n

(A) Layered soil, vegetation.

- In the foregoing sections we have constantly : assumed homogenelty of the Soﬂ or at
least an inhomogeneity not so large as to exclude the use of mean values for the
various constants, entering into our computations.

If, at a certain depth, the inhomogeneity becomes so strong, that we should speak

of a layered soil, it is no longer permitted to use such mean values. Now, all depends
upon whether the upper layer is deeper than the range of the nocturnal cooling, ornot.
In the former case we need- not take it into account. In the latter case, however, the
problem of calculating this coohng becomes essentially ‘more difficult.
- - If we confine ourselves for the moment to the case;_of‘ two layers, each of ‘which
" may be treated as homogeneous, we have two equations of the type (7), with different
values of x, which we call x; and x;, the suffix I applying to the upper layer, the
suffix IT to the lower one.. We then  have ‘to find a solution 7 (z, t) of (7;) and a
solutlon Tz t) of (7;;) such, that o .

T, e Ty
‘TI(ZIJ)ITH(ZIJ) Ay—= ™ (Zr,t)—/tu & —H (er,1), ‘

- where — z; is the depth of the upper layer and Ap Ay are the two heat conduction’
coefficients for this case. Apart from these two internal boundary conditions 7(z, ¢)
should still have to satlsfy the boundary eondltlon for z = 0 '

lI——(o t)_R A4 0

‘We shall not enter further into this mathematlcal problem?!). As we have already seen,
we are only concerned with the oomphoatlon in question, when —z; is larger than.the
range of the nocturnal cooling. The latter is of course ‘not defmed exactly, we may
take it to be of the order of 24/%x:.

" When the ground is not bare, “but covered by a vegetation, we may often treat
the latter as the upper layer of the soil; the level z — 0 must then be-located at  its
upper boundary level and the foregoing discussion of a layered soil may be applied to
the whole of soil 4 vegetation. For this purpose we shall need sufficient mformatlon
about the thermlo properties of such layers of vegetatlon o

- (B) Fog.

The followmg is meant as an outlme of a theoretloal treatment of ‘the problem of
fog; its working-out asks for still further study. Although this problem is touched upon
here in connection with ground frosts, its importance covers a much wider field and its-
wotking out is sure to be worth while. L '

- In the preceding section we have calculated the function q (2 t) for a certain
simplified ”model” of water transport, characterized by equation (55), from a given
1n1tlal water vapour distribution (54) and . the bou‘n‘dary condition (56). We imagine

: 1) Another possﬂole way~ of - treatmg the _whole problem may be found in ‘Richardson’s. ” layer " method”
(Richardson, Le).
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that, in principle, this might qliite generally be done, even if we replaced equation (55)
by a better one, viz.
G 1 2/ @
L)
0, &% z

Analogously we have for the air temperature 7', an equation determining the
function 7T,(z, ¢), if an initial temperature dlstrlbutlon and a boundary condition at
z =0 are given; we have already discussed an example of this in section 6.

The functions q (z, ) and 7,(z, t) are not independent of each other; as we have

seen, ¢ (o,t) is determined by 7,(o,t) by the relation .
g(0,t) = gmax [Tu 0,1t ]

On the other hand, 7. (z, t) is influenced by ¢ (2, ), as in the energy balance at
z = 0 the term C, determined by ¢ (2, ?), plays a rdéle. As a first approximation,
however, we might neglect the latter dependence.

Now the function 7',(z,t) determines a function qmax (z,?) not only for z= 0, because
for a given temperature and pressure a maximum exists of the specific humidity, beyond
which condensation sets in spontaneously This maximum needs not coincide with a relative
humidity of 100 9, because it is a known fact, that spontaneous condensation in the
atmosphere often needs a relative humidity of over 100 9%,, dependent on the dust contents
of the air (condensation nuclei). If the latter are known
(qualitatively and quantitatively) we can imagine the
function @max (2,t) to be derived from the function
T.(z1). ’

At the ground the value qmax (0, t), where conden-
sation (dewing) sets in, will in general be the value
belonging to a relative humidity of 100 9,, and (when
the ground is wet) will coincide with the actual value
q (0, t) of the specific humidity.

For a set of values of ¢ we may make graphs of
the functions ¢ (z,¢) and @max (2,t) in a g¢-z-diagram
and so obtain two sets of curves, as shown in fig. 13
(full lines = ¢, dashed lines = ¢max). Now, if from a Fig. 13
certain moment the two corresponding curves ¢ and
gmax Wwould intersect at still another point than at z =0, the formation of fog will,
from that moment, set in (from this same moment the curves ¢ and ¢max, calculated
without taking the condensation into account, will begin to deviate more and more from
the actual distributions, especially as to their lower parts).

It will depend upon this moment, whether a ground frost, to be expected if no fog
were present during the whole night, is now prevented or not.
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9. Summary of results.

On account of the results of the foregoing sections, we may now write down the
following general formula to be used in computing the temperature fall at the ground
during the night:

x

T(t); T,= uo{gp(t + &) — (p(to)}, p(x)= et {1— @ <Vt—1>} . (67)

Here {, is the “rest time’’ defined in section 5 B — if it ié put equal to ‘zero we
have ¢ (t,) = ¢ (0) =1 and (67) becomes formally the same as (39) —; 7', = T (o) is the
ground temperature at the beginning of the night;

Ro + im + C, 1-4r\2 o
P Yy (T 68
i 5=(737) ©

U, =
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where the constants R, and f are defined in section 4, m is defined in section 5 A, r in
section 6, C, and f in section 7; ¢, ¢ and 21 are the soil contstants introduced in
section 1. _

A short discussion of the ways for a defermination of these various constants will
be given in section 11 (Part II).

A graph of ¢ as a function of tﬁ is found in fig. 7 (section 4). From this graph

1
the temperature fall may immediately be determined, if only w., as unit of temperature,
t,, as unit of time, and #, are fixed. :
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PART II PRACTICAL PART

The present paper does not pretend to give an exhaustive treatment of the problem
of ground frost. Some special cases are either left out of consideration (sloping land) or
treated only superficiously (e.g. layered soil).

Apart from this, certain details of the general problem are still waiting for a
thorough investigation; this applies especially to the prediction of 7', the temperature
at the beginning of the night; on the other hand, at the very end of the night, when
insolation sets in, the temperature curve will begin to deviate from the computed
curve, and the minimum will often not coincide with the astronomical sunrise (so that
the value of ¢ we should use may not always be the astronomical duration of the night).

Finally our study is rather theoretical. It should be completed by experimental and
practical investigations to make it fully efficient. -

In the sections 11 and 12 of the present part we shall make a beginning of such a
praotlcal treatment by giving some directions for the application of the results of
Part I in the practice of forecasting.

10. Numerical example.

We have applied the result of Part I (section 9) to a case which was experimentally
studied by Franssila 1. c.; to this end we have chosen a night of August (6—7 Aug.
1934) of which Franssila gives mean hourly values of the terms of the energy
balance at the ground (a short cut grass meadow) and of the temperatures at various heights
(table 23 of his paper). The variation of the terms of the energy balance is 111ustrated by
flg 14, which is a reproduction of fig. 17 of the cited paper. :

3/0/2/4/6/820222424&8
T T N |

I ] i
L Osgcalfem? rip o — frra/)/uané//anz 06 4
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; und Luft )
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0.2 ------ 0-2
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/7-’ pu . \_..‘ ‘\\ h \\ . 0
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r-a/ _\-. _0_, i
-02 ~az

Pig. 14

Most of the constants used for the evaluation of formula (67) have been borrowed
or directly derived from Franssila’s empirical data. The only exceptions are the
constants ¢, and m, as Franssila gives no temperatures in the ground (z< 0). For this
reason we have put f{, = o and have taken a value of m derived from measurements
by Peerlkamp le., performed in the same month of the year (August) for clay,
overgrown with short cut grass 1):

m = 1°/8 cm.

!) It may be emphasized here, that all constants have been fixed @ priori; we have not chosen them in such a
way that the computed curve would fit in best with the facts.
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The other constants are:

Ro=— 9,0 cal/cm?h. f = 0,15 cal/cmzh deg.. oc = 0,59 cal/om? deg._
f = 0,3 caljfem®h deg. r = 0,32. A 7,4 cal/cm h deg.

» The two fundamental qua,ntities of our formula, derived from these constants,
are now:

Uy = 220, ‘t]. = 37h.

By substituting these values in (67) we get our computed temperature curve.

» In order to compare it with Franssila’s measurements, we have derived from
this curve mean hourly values of the temperature and have plotted them against ¢. The
result is seen in fig. 15; for the
first half of an hour we had to
perform an extrapolation of. this -

~mean hourly temperature curve

(dashed part of the curve). The
empirical mean hourly values of
the temperature at 1 ecm above the
ground (the grass was cut short)

~are marked by small circles. The
initial temperature of the com-
puted curve was put equal to the
value found at 20—21 h (the
astronomical sunset being at about

- 20.45).
ol : . , . e , The agreement is rather good,
Y 23 oA 3 . 5h eXpeclally later on in the night;
Fig. 15 in the begmnmg, the computed

_ temperature fall is somewhat too
steep 1), in accordance with the fact, that we have used a linear initial temperature
distribution in the ground (fig. 9, b; see section 5A). At about 4 o’clock in the mornmg the
deviation resulting from the beginning insolation sets in (the astronomical sunrise was at
about 4.10). ,

It is clear, that the agreement of our computation with the measured temperature
variation. gives only a demonstration of the purely physical value of our formula (67).
For its use in practice the meteorologist has even to predict some of the fundamental
" constants, which for the case of this section had been measured.

11. Determination of constants.

It is impossible to compute for each piece of land, in its own special circumstances, -
the temperature variation to be expected. On the other hand, to give only one prediction
for a whole district will not suffice, in general. The meteorologist may therefore adopt
a middle course by giving a small number of ,standard” forecasts, relating to certain
definite types of soil (including the degree of wetness), both for the open field and for
wind sheltered places.

In order to apply formula (67) he should for each type know the Varlous relevant
constants. We shall shortly discuss all of-them here.

: T,. The ground temperature at the beginning of the night is strongly influenced by
local circumstances and local past weather (showers ). It will therefore be very useful,
" that thls quantlty be measured by the agriculturist, who wants to apply a forecast (the

1) This difference would have been larger, if actual values of the temperature had been plotted instead of mean,
howrly values.
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practical question of the application of the forecast will be dealt with in the next section).
Nevertheless the meteorologist for his part has still to make himself an estimate of T,
in order to predict the nocturnal minimum — not only for those agriculturists, who do
not measure 7', themselves, but also in order to be able to give his warning in good time;
moreover he needs 7', for his prediction of R (see below).

‘We have already said, that this problem has not yet been studied sufficiently. Further
empirical material should be gathered and studied theoretically (compare the treatment
by Brunt, discussed in section 5 C; this treatment should be more closely adapted to
physical reality, however, by taking into.account the eddy conduction of heat in the air).

Constants referring to radiation.

Ro. Two cases should be distinguished:

"Clear sky.
2 Partially or wholly clouded sky.

1. For a clear sky R, is determined with the a1d of the radiation chart. We shall
give a very short explanation of the use of it1). (For simplicity the réle of the CO, in
atmospheric radiation will not be considered; in reality '
it is not neglected in modern radiation charts). °_ __im : *w

_In the radiation chart a curve of state of the wa-
ter atmosphere” is plotted, so to say. Any point of the
atmosphere is characterized by (1) the mass of water
pro cm? below it, denoted by w, (2) the temperature 7'
at the point considered. Now in the radiation -chart a
w-scale is found in the abscis-direction. This w-scale is
constructed in a very special manner we shall not enter
upon here; we may only remark, that for small w this
scale is much more stretched than for large w, in such
a way that the line w = o is found at a finite distance
from the line w = 0. Besides, a set of curves 7' = const
has been drawn on the diagram; 7' = 0° (abs.) is a straight
line, forming the base line of the diagram, all other
isotherms are curved lines. The area contained between
an. isotherm. T = T, and the base line ts proportional to
ol 2, the total radiation pro cm? of a black body having a
temperature T, thereby constituting a measure of this’ @
radiation. Let 7', be the temperature of the earth’s surface.

When we have plotted the points (7, w) of the

“water atmosphere the area beneath the curve, obtained
by joining them, is a measure of the incoming atmospheric
radiation at the earth’s surface. .

In this way the effective radiation R, which is the
difference between outgoing (terrestrial) and incoming
(atmospheric) radiation, is represented by the difference-
between these two areas. When the curve of state of the

water atmosphere, expected at the beginning of the night, 4 cm
“is plotted in this way, we find E, (see fig. 16a, shaded Fig. 16
area). ' '

2. When the sky is partially or wholly clouded, we have an incoming radiation
Ry, Wthh in general may be represented by the formula

0—N., N
10 R+10

1 I3
Ry = By,

) We have used the M&ller form of radiation chart.
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- already written down in section 1. Now, if the clouds are considered to be black
radiators, R';, can easily be seen to be represented on the radiation chart by the area,
contained between the lines 7' =T, T =T, w = co and the “curve of state” of the
water atmosphere, where 7', is the temperature at the cloud base (see fig. 16b, shaded
area). When the clouds are more our less transparant, however, the matter is less
: ’ ' simple. For computing R’y

' ' ’ they may then, in principle,

) b t ivalent t tai

T, : e put equivalent to a certain
finite mass of water vapour
pro em? and thus be intercalated
on the radiation chart between
the water beneath them and
the water above them (fig. 16¢).
It is clear, that N and Ry,
should refer to a certain mean
cloudiness during the night.
(The variation of R, taken into
account for our ~computation
of the temperature fall, is the
variation caused by the cooling
of the ground and of the
atmosphere in its vicinity..
When we foresee a gradual
variation of Ry during the

Fig. 17 night, we might, of course,
v , attempt to take this into
account by means of the coefficient f...... ). We have already seen, however, that

in the season, in which the prediction of groundfrosts is of economical importance, the
cloudiness should be small throughout the night or else no groundgrost will have to be
feared, in general. ' ,

f. Fig. 17a shows a curve of state of the water atmosphere (in the following we
shall, for brevity speak of “curve of state’) at the beginning of the night (curve I)and
another one (curve II) representing the situation after a certain time, when at the
ground the temperature has fallen from 7' tot 7'= T, — A T.

" It is easily seen, that the effective radiation R has decreased by an amount A R,
represented by the shaded area. Part of the curve of state Il runs above the isotherm
of the ground temperature 7'; this part.corresponds to the strong ground inversion,
here present. The inset represents very schematically the ordinary temperature-height-
~ diagrams corresponding to these two atmospheric situations.

In fig. 176 (and also in fig. 17¢ and d) T, and T are the same as in fig. 17a; the
inversion that is established, may have the same form as in the preceding case, but R,
is smaller. As we see, A R (shaded.area) is larger, here, than in case a.

In fig. 17¢ the initial atmospheric radiation and terrestrial radiation are the same as
in case a; here, however, the inversion is supposed to be much less sharp than in the
two preceding cases (see inset). It is seen that now A R is smaller than in case a.

From the foregoing we can conclude, that, A 7T being the same, A R and therefore
also f depend upon two main factors, viz.:

(1) the water contents of the atmosphere, characterized by R,

(2)  the sharpness of the ground-inversion formed during the night;

these dependences being such as to make f the larger, the smaller E, and the
sharper the ground-inversion.

The latter factor depends upon the eddy conduction (which is principally determined
by the wind velocity) and the radiative »conduction”, on the one side, and, on the
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other side, upon the thermal properties of the soil, which may be characterized by the
quantity Aec (if the same A 7' is reached in a shorter time, owing to a smaller value
-of Agc — compare (36) —, the ground inversion will be sharper)

For the present, therefore, we may use as the three main determlmng quantities
R,, the wind velocity and Zigc. For practical purposes it would be usefulf to construct
tables or graphs, each giving, for a certain value of Agc, f as a function of R, and the
wind velocity. Such tables or graphs should be based either upon empirical data!) or
upon formulas (35), (37) and (39), the latter being, however, only a provisional one.

One might point out as a third factor influencing the variation of R during the
night, the drying of the air by condensation at the earth’s surface, as has already been
mentioned in section 7. The effect of this process can be seen in fig. 17d; curve I is
here the same as in fig. 17a, curve II, however, meets this time the w-axis in a
different point; A R is represented by the shaded area minus the hatched area and is
therefore smaller than in fig. 17a. Now the downward stream of water vapour depends
upon the water contents, present in the air, and upon the eddy conductivity, which in
its turn depends upon wind velocity. These selfsame elements, however, influence also
factors (1) and (2), already discussed, so that this third factor is automatically accounted
for, if the tables mentioned are empirically constructed.

Constants, referring to the air.

r. From the expositions of section 6 it is clear, that r depends upon the eddy
* conductivity (wind velocity) and the radiative ’conductivity” of the air and upon the
quantity Aec, referring to the soil; compare formula (49). From the deduction and discussion
of this formula, however, we have seen, that the initial temperature distribution also has
an influence upon the ratio 4/B. This question should be theoretically investigated further.
It may be expected that » will be proportional to 1/4/4gc, so that we may write:

r=r'| '\/T@c, : (69)

where 7' depends chiefly upon wind velocity and upon the humidity of the air (upon
which depends the radiative heat “’conduction’’). To begin with, therefore, the meteorologist
might use an empirically constructed table (or a set of graphs), giving 7 as a function of
wind velocity and specific humidity. For each soil type  might then be computed from (69).

f'. For the present, this quantity might be computed from formula (64). To this
purpose we must know the eddy conductivity 5 (a mean value for the whole mght) in its
dependence upon wind velocity. On the other hand, it will again be desirable to gather
and work up more empirical material, in order to make it possible to estimate f in
any practical case.

From the deduction and dlseussmn of (64) it appears that the initial distribution
of water vapour also has an influénce upon. the variation of the condensation heat
stream; it will not be easy, however, to take it into- account for the determination of f'
(with respect to C, it plays the principal réle, of course, but this is an other matter).

C,. For practical use, €, may be put equal to

0, = loan Q2e0'2—(;(;.711(13:;t(To) ,

where ¢y and g¢max (7%) are the specific humidity at a height of 200 cm at the
beginning of the night and the maximum specific humidity belonging to a temperature
T,, respectively; see section 7.

1} Directly, by way of radiation measurements, or indirectly, via calculations Wlth the radiation chart, based upon
micro-aerological research.
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Constants referring to the soil

v 2, 0, ¢: These constants should be know from measurements, for various soil types
and degrees of wetness (past weather!). ‘ _ '

m. More empirical material should be gathered. We need very systematical measure-
ments of soil temperatures at various depths for all hours of the day, throughout the year,
for various soil types and for climatologically different regions.

We may theoretically expect the part of im depending upon annual variation of
temperature — we shall call it im; — to be roughly proportional to +/gei, as can.
easily be seen. :

Indeed, let us represent the annual variation of the 24 hours mean temperature at
2 = 0 by T = asin ot, where o = 27/365 days—'. Owing to the smoothing effect of the air
on surface temperatures (as far as long-periodical variations are concerned), the amplitude
will be nearly the same for different types of soil (if not too wet),. provided the
_climatological conditions are the same. _ _

Now the corresponding temperature wave in the ground obeying equation (7) is
described by ’

: T = a " sin (wt - uz),
where :

Camle e
‘ #= VZH - VZZ )
Differentiating this with respect to 2z, we find

oT ' : T
— Uz o3
az_—a[u\/Q.e sm(wt+ﬂz+4).

The mean temperature gradients in the soil will, therefore, be proportional to u, or
to 4/ge/4, and im, turns out to be roughly proportional to 4/gel. ,

The other part of im, depending upon daily variation of temperature (section 5 A,
part 2) is more difficult to treat theoretically. In this connection we- may once more
mention Brunts harmonical analysis, discussed .in section 5 C (this treatment should
be completed, however, by taking into account eddy conduction) and Richardson’s
layer method (Richardson, L c.). '

Apart from any theoretical treatment of the matter, the practical meteorologist may
use for his calculations seasonal “normal”? values of Am for each soil type, determined
for various climatological and synoptical circumstances. o _ :

Tt should be noticed, besides, that Am. is coupled to Z, so that a different value of
Am should be used if i, is chosen different from zero (section 5 B).

t,. The above remarks, referring to im, apply also to the quantity &, except for
the part of Am depending upon the annual variation of temperature. The conclusion is
also the same. The coupling -of Am to f, makes the choice of 7 less important than
that of the other constants (to begin with, therefore, one might simply put ¢ =0).

12. Practical application of forecasts.

Any agriculturist, who wishes to use the forecasts, will first have to know, which
of the “standard” forecasts he must choose for his piece of land, considering the type
of soil, degree of wetness and wind. The wetness will depend upon local past weather;
as to the factor “wind”, the meteorologist can only forecast wind direction and wind
~velocity in the open field, whereas the “user” of the forecasts knows, whether his land
is sheltered from the wind or not, if wind direction is given. -

Secondly, however, he might moreover apply certain reductions to this standard
forecast in so far as the spe(jia,l conditions of his land deviate from the ’standard”
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conditions. These special conditions depend upon (a) local past weather, (b) soil, (c) external
conditions. ' , : '

(@) Local past weather influences (1) the wetness of the soil and, consequently, the
various soil constants, (2) the temperature 7,; for (1), the meteorologist might give
forecasts for two or three degrees of wetness, from which a choice could be made —
more the user can hardly do; as regards (2), however, he might measure T, himselj,
and so eventually correct the nocturnal minimum, predicted by the forecaster. For this
purpose it will be necessary to- mention not only the predicted minimum in the
forecasts, but also the amount of the temperature fall during the night.

It stands to reason that the placing of a thermometer for measuring temperatures at
the ground is a matter of great care, preferably supervised by some climatological service. |
On the other hand, such an inclusion of agriculture will be of great value for micro-
climatological research.

(b) Soil constants, to be used for the evaluation of formula (67) are: oci and Am.
Even when the soil is dry, these constants may, for a certain piece of land, differ from
the values used by the meteorologist for the type of soil in question. To correct for a
deviation of im from the standard value will be difficult; in general, however, the
influence of such a correction will not be very large. The influence of gci is much larger.

- It can easily be seen, that, if ¢ is not too large, the temperature fall A 7,
computed from (67), is nearly proportional to 1/4/gei (if we used Brunt’s formula in
stead of (67), it would be exactly proportional to this quantity). The user of the
forecast might, therefore, correct the predicted value of A 7' by multiplying it by a
constant factor (in general not differing much from unity); this factor should be
determined by an expert, the whole under supervision of the meteorological institute.

(¢) Haternal conditions may influence especially B — by screening part of the
sky —, r — by diminishing the wind velocity on the spot — and f+ f — also by
diminishing the wind velocity and consequently influencing the sharpness of the nocturnal
ground-inversion. The effect of a small variation of f - may safely be neglected, as,
if ¢ is not too large, A 7' is nearly proportional to w,/v/4, w, and 4/ being both
inversely proportional to f - f'. ‘ ;

For R and 7, additional corrections must be applied to A 7' in the same manner
as was exposed with respect to gcld. Indeed, it can easily be seen, that A 7T is nearly
proportional to 1/(1 4 r) and, if, compared with R,, mi is not too large, to R, It
should be borne in mind, however, that any local reduction of r will in general depend
upon wind direction and will furthermore have a larger effect on the factor (1 + 7)
when wind welocity is large than when it is small (when r = 0 there would be no effect
at all).

In concluding, we may state, that, A T being nearly proportional to for

E,
‘ (1+17)4/ ek’
each piece of land, apart from more accidental effects, caused by local past weather, a
correction factor could be determined, which would be more or less characteristic of it,
if wind conditions are given. : '

By this factor the predicted value of A 7' would have to be multiplied in order to
~ obtain a better result. ' v .
' - Its determination, in its dependence on wind conditions, should in any case be
performed by an expert (the whole again under supervision of the meteorological institute);
this might be done either indirectly, by computing or measuring separately the local
deviations, exhibited by the constants R,, r and gcl, or directly by measuring ground
temperatures on the spot. ' ’

Concluding remarks.

At first sight the expositions of the last section may seem to be of a rather
academical sort. In reality, however, any more active participation of agriculture in
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micrometeorological research will be of the greatest value, both for micrometeorology and
for agriculture, especially with respect to the problem of groundfrosts; besides it will be
‘the only way towards a solution of this problem.

As to the practical use of formula (67) it should not be forgotten that several of
the - constants, occurring in it, only play the role of correctives, so that a rather rough
estimate of such a constant will often suffice (compare the remark concerning f, at the
end of section 11). . ‘ .

Nevertheless it is clear, that a lot of experimental work is still to be done, to
make theoretical investigations like the present one fully efficient for practical use. As
we have seen, however, it will be worth while. Summarizing, therefore, we may write
" down the following list of requirements in this respect: ‘

1. Systematical information concerning the thermal properties of all types of soil,
especially with respect to the quantity 4/gci (dependence on watercontents!).

2. Systematical and exhaustive investigation of annual and daily temperature variation
in the ground, for all types of soil (temperature distribution for each hour of the day
and for each month of the year).

3. Data about eddy conductivity in depéndence on wind velocity; effect of eddy
conductivity upon the sharpness of nocturnal ground inversions and upon the ratio of
air heat stream A and _soil heat stream B.

4. Further empirical information concerning the processes of condensation under
various circumstances.

'On the other hand, theoretical investigation will have to proceed in various
directions, with a view to several questions we have already touched on shortly in
Part I and in the introductory remark of Part II of the present paper.
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