KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT No. 134

THE GEOMAGNETIC FIELD OF THE NETHERLANDS REDUCED TO 1945.0

 $\mathbf{B}\mathbf{Y}$

DR J. VELDKAMP

STAATSDRUKKERIJ-EN UITGEVERIJBEDRIJF / 'S-GRAVENHAGE 1951

Non. Ned. Meteor. Inst.

De Bilt

L. 24.

PREFACE

N publishing this report I wish to express my gratitude to all persons who have taken part in the who have taken part in the magnetic survey of the Netherlands. In the first place thanks are due to Mr. J. OLDEMAN, scientific assistant at the 5th department of the Royal Netherlands Meteorological Institute for his assistance and cooperation, to the staff of the magnetic observatory Witteveen, and to the other members of the staff of the 5th department, who undertook the troublesome work of reducing the measurements at De Bilt as well as at Witteveen, and further to Dr. C. P. HARTMANN, seismologist at the Bataafse Petroleum Maatschappij, who performed the greater part of the Z-measurements during the years 1942 to 1944. Moreover thanks are due to Messrs. Dr. P. Groen, A. Hauer, Dr. H. Ten KATE, Dr. W. F. SCHALKWIJK and C. G. C. SCHÜTTE, members of the scientific staff of the Royal Netherlands Meteorological Institute, who bestowed part of their time on the survey during wartime. I wish to acknowledge the great amount of accurate work done by them. Finally I am greatly indebted to the commander of the Netherlands Navy, Admiral J. J. L. WILLINGE, who several times put a ship at my disposal for the measurements in the Wadden Sea.

De Bilt, July 1950

J. VELDKAMP,
Director of the Geophysical Department
of the Royal Netherlands Meteorological
Institute

.44.

INTRODUCTION

THIS report contains the results of geomagnetic measurements carried out in the summers of the years 1942-1948. The idea of measuring the geomagnetic field of the Netherlands was suggested to the present author at the end of 1941 by Mr. C. P. HARTMANN, at that time cand. geol. From the first discussions a broader plan arose, which aimed at a detailed survey to be carried out by the Royal Netherlands Meteorological Institute. A number of members of the scientific staff, who could not perform their normal duties owing to war circumstances, were able to give their cooperation in making the measurements. They were Messis. Groen, Hauer, ten Kate, Schalkwijk and SCHÜTTE. The assistance of Mr. OLDEMAN of the geophysical department must be mentioned especially. Mr. HARTMANN took part as a guest. The whole survey was under the direction of the present author.

It will be evident, that the war hampered this work. In different parts of the Netherlands, especially in the coastal region, fieldwork was forbidden by the Germans. The problems connected with transport, food and lodging of the measuring party were considerable, and in the last year of the war measurements were of course impossible.

During the summer months of the years 1942, 1943 and 1944 measurements were carried out in a great part of the Netherlands, with the exception of the coastal regions, the Zuid-Hollandse islands, Zeeland, Zeeuws-Vlaanderen and the Wadden islands. The results of these measurements have been used by HARTMANN for the composition of his thesis 1).

After the liberation in 1945 the survey could be resumed, thanks to the fact, that the instruments and data had all been saved and that, moreover, the magnetic observatory at Witteveen had sustained the liberation without any damage. The measurements in the years 1945 till 1948 were carried out almost exclusively by Mr. OLDEMAN and the author. The country of Zeeland, Zeeuws-Vlaanderen and the Zuid-Hollandse islands was measured in the fall of 1945 and the summer of 1946. In the summer of 1947 measurements were made on the Wadden islands and on some sand-banks in the Wadden Sea. The Commander of the Netherlands Navy, the Admiral J. J. L. WILLINGE put a small yacht, Hr. Ms. Neptunus (RC 39) with crew under the kwartiermeester Ruijsaard at our disposal during three weeks for transporting the instruments and the observers. When it became clear that an important anomaly was present in the Wadden Sea, the desirability was felt, to localize this anomaly more exactly by a number of supplementary observations. These were carried out in the summer of 1948. Support was asked from the Commander of the Netherlands Navy, who kindly lent the naval craft Doornbosch (RQ 2) for three weeks. Captain of the craft was Schipper VAN DER MEY. With the aid of this vessel fourteen measurements were performed on sand-banks in the Wadden Sea. The outcome of these observations has been given in a separate table. They have been used for the construction of the magnetic charts of the components H, Z and ΔZ .

The geomagnetic field of the Netherlands had already been investigated previously. In the years 1889 to 1892 measurements were carried out by E. VAN RIJCKEVORSEL 1) at more than 300 places in our country. The result was laid down in a bulky report: A magnetic survey of the Netherlands, for the Epoch January 1, 1891, edited in the series "Nieuwe Verhandelingen van het Bataafs Genootschap der Proefondervindelijke Wijsbegeerte te Rotterdam". Three components of the geomagnetic field were investigated by him: the declination, the horizontal force and the inclination. For the first and the second VAN RIJCKEVORSEL used an ELLIOT unifilar magnetometer, for the determination of the dip a Dover dip-circle. All the measurements were performed by VAN RIJCKEVORSEL alone, a few times he was aided by a servant. Travelling was mostly done by train, less often by boat or carriage. Especially the travelling by train has strongly influenced the choice of many measuring-places. He writes about this matter:

"I do not at all take much care in selecting my station. As soon as I arrive at a place where I wish to observe, I put down my instruments on the first spot which looks likely to be good, without making a severe hunt for iron, or taking many informations about gaspipes or rails. Even, as many railway-stations, especially of the state-railways, have a large tract of enclosed ground, I very often observed there. I thus had the advantage of finding, without loss of time, a convenient spot, where there were no trouble-some intruders, but of course I often came dangerously near to rails or waggons. I was quite aware of this objection to my method. But it gave me the great advantage of gaining time. It will be seen that I regularly took two stations a day and in one or two cases even more than that."

Owing to this method he worked close to the rails or other large iron masses in many cases. This becomes evident from the remarks given in the description of the stations, like: "20 m of corner of station", "near a shed containing a lot of machinery", "during part of work had to suffer much from smoke of locomotive". Moreover, VAN RIJCKEVORSEL used to choose his standpoint near a building. Repeatedly we find descriptions like: "garden of inn", "garden of stationmaster", "garden of hotel", "in front of the only house near the station", "market-place", "within the town", "near front of old lighttower", "near church, within enclosure".

Very exclusive indeed was the measurement carried out at Nesserzand, a sand-bank easterly of the island of Texel: "In the sea with water nearly up to the waist. Geographical position kindly communicated to me by the commander of the torpedoboat, which had been lent to me. For the sun's observation, as I could not have the chronometer near me, the commander had it in the boat and gave the time for each single reading".

¹) PH. C. P. HARTMANN, Aardmagnetische Anomalieën in Nederland, Utrecht 1945.

¹) Dr E. VAN RIJCKEVORSEL, A magnetic survey of the Netherlands for the epoch January 1, 1891 (Rotterdam 1895).

Out of the 328 measurements about 130 have been performed at places, which decidedly must be called bad from a magnetic viewpoint, whereas about 50 more are less favorable. Only 150 places can be qualified as good, judging from the description.

As a consequence of this lack of care in choosing the place where the instruments were mounted, a great number of the measurements (about a half) have been carried out in places which are magnetically disturbed, and therefore give an untrue picture of the magnitude and direction of the magnetic field. Besides, the present author cannot throw off the impression that the accuracy of the measurements is smaller than given by VAN RIJCKEVORSEL. In his discussion about the declination measurements for example, he estimates the accuracy of determining the magnetic meridian at $\pm 3''$. Our impression is that no accuracy better than 10" can be obtained with the instrument used by VAN RIJCKEVORSEL. The exactness of the chronometer, which is determinative for the accuracy of the geographic north, is estimated at ± 2 sec, although checking the rate of the chronometer took place only at the beginning and at the end of a 14 days' travel. Our experience with similar chronometers, which were compared with wireless time-signals every day, are much worse however. Finally the determinations of the vertical force, calculated from the horizontal force and the inclination, have been affected by the use of the dip-circle. This is an inaccurate instrument, as the position of the needles is apt to be changed by the slightest irregularities of the axis of rotation. The possible error of the inclination is estimated by VAN RIJCKEVORSEL at about 1', which corresponds to an inaccuracy of about 35γ in the vertical force. It is quite certain that in many measurements the error has been larger than this figure.

The result of all is, that the geomagnetic field in the Netherlands has a highly disturbed character after VAN RIJCKEVORSEL'S measurements. The differences between values at adjacent stations are most irregular. As a result the isomagnetic lines are drawn in capricious windings on his charts. This is especially the case with the chart of the vertical force. As this chart is of great importance for a geological interpretation of the irregularities, it seemed worth while to repeat the observations with more accurate methods. Besides, the geomagnetic field has considerably altered since 1891 by the secular change, so that a new survey was desirable.

CHAPTER I

INSTRUMENTS AND METHODS OF MEASUREMENT

The members of the staff who took part in the survey, joined the magnetic party alternatingly. In the years 1942 and 1943 the party was composed mostly of three persons. Later on it turned out, that the work could be done by two persons quite as well.

If the number of participants was three, each of them was occupied with one component of the geomagnetic field. Consequently there were participants who were specialized in measuring the declination D, others who were accustomed to the determination of the horizontal component H, again others for the vertical component Z. This distribution

of work proved to be an advantage for the quality of the measurements.

When the party consisted only of two persons, that distribution of work was the best, in which one of them carried out one *D*-determination together with one *Z*-measurement, whereas the second combined the *H*-measurement with two more *Z*-determinations.

Transport of the party and the instruments took place by motorcar. The carrying out of one complete measurement D, H and Z took about two hours, and when the weather was unfavourable so that wind-screens had to be put up, three hours or more were necessary. Under favourable conditions it was possible to do three stations a day. At each station one D-measurement was carried out, H was determined at two places and Z at three places, the distances between two places being 20 to 50 m. This method had the advantage that already during the measurements an impression was got about the magnetic properties of the ground. In cases where the Z-observations differed strongly, it was supposed that a local disturbance was present and the station was moved to a better place. Such disturbances were discovered several times. In general much care was taken to avoid artificial disturbances. Minimal distances were fixed for diverse iron or iron containing objects. These minimal distances were: instrument case 5 m, motorcar 25 m, barbed wire 5 m, iron fence 30 m, iron pipe line 25 m, rails 200 m, mine shaft 500 m, buildings 100 to 500 m, ballasted roads 100 m. These distances were partly taken from "Physics of the Earth VIII", page 132, partly they were determined by experiment. Preferably the instruments

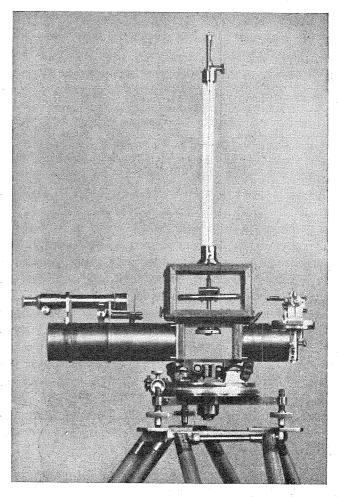


Fig. 1. Theodolite for declination measurements.

were set up in meadows, on arable ground or uncultivated sandy ground. In order to avoid mutual disturbances minimal distances of 15 m were kept between the instruments.

All measurements of the magnetic elements were made at the moment of the minute-record in the magnetic observatory Witteveen, where every minute, a one-second snapshot of the geomagnetic field is taken.

Measuring the declination.

The instrument (fig. 1) was a theodolite after Elliot left by VAN RIJCKEVORSEL, which permitted us to read directions with an accuracy of 10". With a view to the declination-measurements several changes were introduced. To enable the triangulations to be carried out, a little telescope (with an object-diameter of 25 mm) was fixed. For the astronomical measurements the mirror as well as the mirror's axis were constructed with the utmost accuracy.

First a description will be given of a declinationmeasurement by means of a sun's observation.

The theodolite is mounted on a tripod as firmly as possible. Then the axis of rotation is adjusted vertically by levelling. The axis of the mirror must then be horizontal, and this can be checked by a levelling instrument. If necessary the position of the axis is corrected. Besides, the mirror's axis has to be perpendicular to the optical axis of the telescope, and the reflecting surface of the mirror has to be parallel to the mirror's axis. These conditions cannot be checked in the field, for this requires a dark room. The checking was carried out several times a year in the observatory. The reticles of the telescope are illuminated from one side and the mirror is manipulated in such a way that the reflection of the reticles coincides with the object. It goes without saying that the vertical reticle must be vertical indeed, when the angles between objects of different altitudes like the image of the sun and church-steeples are measured.

Now an image of the sun is projected in the telescope by help of the mirror. Two small blue glasses can be placed in the ray path in order partially to absorb the sunlight. Then several times the moment is read, at which the left and right limbs of the sun touch the reticle-wire. This can be done in the most simple way by an assistant counting the seconds of the chronometer. At the same time the azimuth of the theodolite is read. This series of readings is repeated after the mirror has been lifted out of the supports, turned halfway round its vertical axis and let down in the supports again. This enables us to eliminate the error introduced by the mirror's axis and the mirror not being parallel. An eventual error in the position of the mirror's axis with respect to the axis of the telescope is removed by a determination with the sun in front of the observer as well as behind him. If it turns out that in the first case the direction of the astronomical north is read by an angle A, and in the second case by an angle B, the true azimuth N is given by 1)

$$N = \frac{A+B}{2} + \frac{A-B}{2} \cos h,$$

where h is the elevation of the sun, computed from the formula

 $\sin h = \sin \varphi \sin \delta + \cos \varphi \cos \delta \cos \tau$

or from

$$\cos h = \frac{\cos \delta}{\sin \alpha} \sin \tau.$$

In these formulas φ is the geographical latitude of the station, δ is the declination of the sun, τ is the local true hour-angle of the sun, and α is the sun's azimuth. The azimuth of the sun is computed from

$$tg \alpha = \frac{\sin \tau}{\sin \varphi \cos \tau - \cos \varphi tg \delta}$$

The hour-angle is derived from the true local time, calculated from the observed Greenwich-time, plus the longitude of the station converted in time, and minus the equation of time. The coordinates of the station are read from a topographical map, accurate to about o'.o1, and the Greenwich-time can be determined to about o.1 sec. The accuracy of the astronomical north depends in the first place on the precision of the time-readings. It is further determined by the quality of the observation, that means, by the accuracy of the levelling during the observation. The quality of the determination will appear from the scattering of the values obtained by the series of determinations A and B, and from the difference A - B. The magnitude $(A - B) \cos h$ must have the same value at different stations, as long as the instrument remains unchanged. Finally a good measurement is accurate to o'.I.

If the sky was cloudy, the direction of the astronomical north was determined by the help of triangulated points. The Government's Triangulation (Rijksdriehoeksmeting) and the other survey services have determined the coordinates of a great number of church-steeples, triangulation stones and cadastral points, with respect to a system of coordinates with origin nearly coinciding with O. L. Vrouwe-tower at Amersfoort 1). If the theodolite is placed above a triangulated point with the coordinates x_1y_1 and is aimed at a spire with the coordinates x_2y_2 , then the telescope will make an angle arc tg $(x_1 - x_2)/(y_1 - y_2)$ with the direction of the ordinate through the place of observation. At the origin of the system of coordinates the direction of the y-axis coincides with the direction of the true north; at an arbitrary point with the coordinates xy an angle p exists between the two directions found by the formula 2)

$$p = 0.04155 x + 1.1 \cdot 10^{-8} xy + \dots$$

x and y must be expressed in meters, and p is found in seconds of arc.

The direction of the ordinate must be corrected for the angle p in order to find the astronomical north.

In cases where the triangulated point cannot be used directly, owing to the surroundings being magnetically disturbed, the theodolite can be placed on the line between this point and a tower.

¹⁾ PH. C. P. HARTMANN, Thesis Utrecht 1945.

¹⁾ Rechthoekige coordinaten, Rijksdriehoeksmeting 1855—1928, Delft 1929. Militair register getrianguleerde punten, 1933.

²) Hk. J. Heuvelink, De stereografische kaartprojectie in hare toepassing, Delft, 1910.

It often happens, that no triangulated stone is present on the spot where the observation must be done. Then it is possible to determine the coordinates of the theodolite by aiming at three triangulated steeples. For this purpose we used a calculating-scheme, which gives results considerably quicker than the usual methods and is more comprehensible.

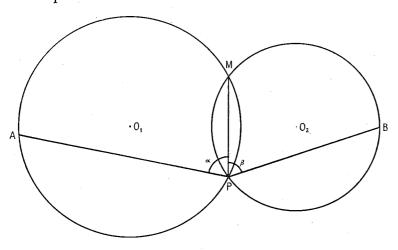


Fig. 2.

Let the triangulated points be A, M and B with coordinates $A(x_1y_1)$, $M(x_3y_3)$ and $B(x_2y_2)$. The angles α and β are measured and it is required to find the coordinates x_p and y_p of the point P. P must be found as the point of intersection of the circles through A, M, P and B, M, P with the angles α and β respectively.

The origin of the system of coordinates is translated to M. The coordinates of a point (xy) are transformed into (s, t) according to:

$$s = x - x_3$$
$$t = y - y_3$$

so that the new coordinates of A, M, B and P will be: $A(s_1t_1)$, $B(s_2t_2)$, M(o,o) and $P(s_pt_p)$.

The coordinates of the centres o₁ and o₂ are:

$$s(o_1) = \frac{1}{2}s_1 + \frac{1}{2}t_1 \cot \alpha \qquad s(o_2) = \frac{1}{2}s_2 + \frac{1}{2}t_2 \cot \beta t(o_1) = \frac{1}{2}t_1 - \frac{1}{2}s_1 \cot \alpha \qquad t(o_2) = \frac{1}{2}t_2 - \frac{1}{2}s_2 \cot \beta$$

If A, M and B have arbitrary positions with respect to the point P the signs of α and β are determined by the arcs MA and MB, which must be taken positive if their sense is clockwise with respect to P.

The equation of MP is:

$$t = -s \frac{s(O_2) - s(O_1)}{t(O_2) - t(O_1)}$$

The point of intersection P of the circles o_1 and o_2 with the line PM is given by:

$$\frac{1}{2}s_{p} = \frac{|s(o_{1})t(o_{2}) - s(o_{2})t(o_{1})|}{|s(o_{2}) - s(o_{1})|^{2} + |t(o_{2}) - t(o_{1})|^{2}}$$

$$\frac{1}{2}t_{p} = \frac{|s(o_{2})t(o_{1}) - s(o_{1})t(o_{2})|}{|s(o_{2}) - s(o_{1})|^{2}} |s(o_{2}) - s(o_{1})|^{2}}$$

whereas the coordinates of P finally are derived from:

$$x_p = s_p + x_3$$
$$y_p = t_p + y_3$$

After determining the astronomical north, either with the help of the sun or by means of a triangulation, the direction of the magnetical north must be found. For this purpose a hollow magnet is suspended in the axis of the theodolite, one end provided with a little lens and the other with a divided scale, which is fitted at the focus of the lens. A silk thread for suspending the magnet is stretched by a weight equal to that of the magnet in order to remove the torsion. This being completed the magnet is attached to the thread and the theodolite is adjusted so that the centre of the scale division coincides with the vertical wire of the telescope.

About five readings are taken, each time just at the second at which a point record is made in the magnetic observatory at Witteveen. Then the magnet is removed from the thread, the tube with the thread is rotated through 180°; the magnet is turned upside down and attached again. Five other readings are taken, which may all differ some minutes of arc from the first series. If both series are averaged, the eccentricity of the suspending-point as well as the difference between the optical axis and the magnetical one of the telescope will be eliminated. Then the magnet is replaced by a torsion-weight and the angle of torsion of the thread if present can be determined. As the torsion-coefficient of the thread is known, a correction for the value of the astronomical north can be calculated from this angle.

Examples of declination-measurements by observation of the sun as well as by means of triangulation which are worked out completely, can be seen on pages 12 and 13.

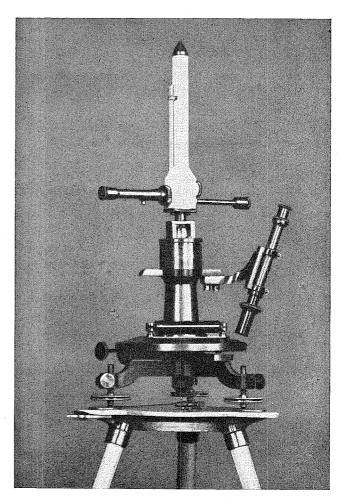


Fig. 3. QHM (quartz horizontal-intensity magnetometer).

Measuring the horizontal component. This component was determined by a QHM (quartz-horizontal-magnetometer) after the design of LA COUR (fig. 3). This instrument is fitted on a magnetic BAMBERG theodolite, left by VAN RIJCKEVORSEL. The QHM contains a little magnet 1.5 cm in length, which is suspended by a quartz-wire. A little mirror is attached to the magnet. The position of the magnet is read by means of a telescope, provided with a GAUSS ocular. When the magnet hangs with its axis in the direction of the axis of the telescope the image of the division scale coincides with the object in the ocular. This coincidence can be accurately adjusted whereupon the corresponding position of the theodolite is read.

Let the quartz-wire, with a torsion-coefficient T, be rotated through an angle β , and let this cause the magnet to make an angle δ with the magnetic meridian, then

$$MH \sin \delta = T\beta$$

In this equation M is the magnetic moment of the magnet, and H is the horizontal component of the earth's magnetic field.

Then the theodolite together with the telescope and the suspending-point of the quartz-wire is rotated through an angle $2\pi + \alpha_1$, till the reflection of the scale division coincides once more. In this case the little magnet, apart from a possible change of H, must have rotated over an angle of exactly 2π . The equation of equilibrium reads:

$$MH \sin (\delta + \alpha_1) = T(\beta + 2\pi)$$

The same process can be carried out by rotating the theodolite in the opposite sense. If this time a rotation of $2\pi + \alpha_2$ appears to be necessary for the coincidence of the reflected image and the scale division itself, it follows that:

$$MH \sin (\delta - \alpha_2) = T(\beta - 2\pi)$$

From this we get:

$$MH\cos \frac{2\delta + \alpha_1 - \alpha_2}{2} \sin \frac{\alpha_1 + \alpha_2}{2} = 2\pi T$$

The instrument is constructed in such a way that in the initial position the angle δ is very small. This angle can be derived from the first three equations.

One finds:

$$\text{tg } \delta = \frac{\sin \alpha_1 - \sin \alpha_2}{2 - (\cos \alpha_1 + \cos \alpha_2)}$$

If δ is indeed small, the angles α_1 and α_2 are almost equal, and one can write:

$$H=rac{2\pi T}{M\,\sin\,arphi}, ext{where}\,\,arphi=rac{lpha_1+lpha_2}{2}$$

 φ is the mean deviation of the magnet, caused by a torsion over an angle 2π .

The magnetic moment M and the torsion-coefficient T depend on the temperature t. Besides, the value of M depends on the induction of the magnet caused by the geomagnetic field. Consequently M and T must be written as:

$$T = T_0(\mathbf{I} - c_1 t)$$

 $M = M_0(\mathbf{I} - c_2 t)(\mathbf{I} + \mu H \cos \varphi)$

where T_0 = the torsion coefficient of the quartz-wire at a temperature of 0 °C, M_0 = the moment of the magnet at 0 °C in the absence of an external field, c_1 = the tem-

perature coefficient of the quartz-wire, c_2 = the temperature coefficient of the magnet, and μ = the induction coefficient of the magnet.

 c_1 , c_2 and μ are small constants. Therefore one can write approximately:

$$\log H = \log \frac{2\pi T_0}{M_0} - \log \sin \varphi + (c_2 - c_1) t \log e - \mu H \cos \varphi.$$

The last term is practically constant over the whole region of the Netherlands. The equation can be simplified to:

$$\log H = c + \alpha t - \log \sin \varphi$$

The constant c depends almost entirely on the torsion coefficient of the quartz-wire and on the magnetic moment of the magnet. This constant, together with the temperature coefficient α , is determined in the Danish Meteorological Institute at Copenhagen, which furnished the instruments QHM 13 and QHM 14. During the measurements the constant c was regularly checked in the magnetic observatory at Witteveen; α was supposed to remain constant, this was not checked by us.

An example of a complete determination is shown on page 14. The reduction of the measurements and the outcome of the calibrations will be described in chapter II.

Measuring the vertical component.

This was done with a BMZ (magnometric zero balance), after the design of LA COUR (fig. 4). In principle the BMZ is a magnetic balance, constructed in such a way, that the centre of gravity is exactly under the centre of rotation when the magnetic axis of the balance-magnet is

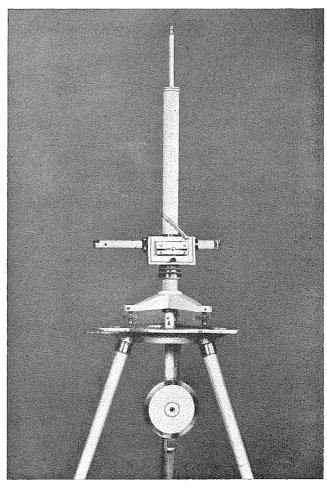


Fig. 4. BMZ (magnetometric zero balance).

horizontal. Over the balance a magnet is fitted, with a magnetic moment neutralizing the vertical component of the geomagnetic field at the place of the balance-magnet. At a distance of 30 cm below the balance a revolving auxiliary magnet is fixed for compensating completely the earth's magnetism. This once being the case, the balancemagnet will have a horizontal position, and this position will be independent of the azimuth of the balance. Whereas the position of the balance generally differs in various azimuths, the neutral position of the balance-magnet will be the same in any direction if the compensation of the vertical component is complete. This neutral position must be determined first of all.

Let the mass of the balance-magnet be P, the magnetic moment M, the distance between the centre of gravity and the rotation-axis a, the azimuth of the magnetic axis δ , the angle between the magnetic axis and the horizontal plane η , and the acceleration of gravity g, then the equation of equilibrium of the balance-magnet will be

$$ZM = (Pga + HM \cos \delta) \operatorname{tg} \eta.$$

The sensitivity of the balance measured in oersted per

$$\frac{dZ}{d\eta} = \frac{Pga + HM\cos\delta}{M\cos^2\eta}$$

Now P is about 2.5 gram, a is about 10^{-2} cm, M is about 100 c.g.s. units and in this country H is about 0.18 oersted.

Near the neutral position ($\eta = 0$) the sensitivity of the balance in the northern direction ($\delta = 0$) is

$$\frac{dZ}{d\eta} = 0.43 \text{ or } 12\gamma \text{ per minute}$$
sitivity in the southern direction (continuous)

and the sensitivity in the southern direction ($\delta = 180^{\circ}$) is

$$\frac{dZ}{d\eta} = 0.07 \text{ or } 2\gamma \text{ per minute}$$

In the south-position the sensitivity is a maximum, and in this country it is 6 times greater than in the northposition. If the reading of the balance in the south-position is x_2 , and in the north-position x_3 , the unknown neutral position being x_1 , it follows that

$$x_2 - x_1 = 6(x_3 - x_1)$$

from which

$$x_1 = x_2 + \frac{1}{5}(x_2 - x_2)$$

 $x_1 = x_3 + \frac{1}{5}(x_3 - x_2)$ The neutral position is thus found by taking a fifth part of the difference between the readings in the north- and in the south-position, and by adding this to the reading in the north-position, in a direction opposite to the south-

The neutral position being determined in this way, the vertical component Z can be derived directly from the field strenghts Z_1 and Z_2 due to the main magnet and the auxiliary magnet.

$$Z = Z_1 + Z_2$$

Let the magnetic moment of the main magnet be M'at a temperature of o $^{\circ}$ C, its temperature coefficient α_1 , the distance between the centres of the main magnet and the balance magnet a, and the coefficient of expansion of the BMZ $\alpha_2,$ then at a temperature of $\it t$ $^{\circ}C$

$$Z_1 = \frac{2 M' (I - \alpha_1 t)}{a^3 (I + \alpha_2 t)^3}$$

Approximately Z_1 can be written as:

$$Z_1 = \frac{2M'}{a^3} \{ \mathbf{I} - (\alpha_1 + 3\alpha_2)t \} = Z \ (\mathbf{I} - \beta t)$$

The field strength Z_2 depends on the angle between the magnetic axis of the auxiliary magnet and the horizontal plane in the first place, and moreover on the temperature. As the two magnets are made of the same magnetic steel

$$Z_2 = Z_p(\mathbf{I} - \beta t)$$

where Z_p can be derived from the dimensions of the auxiliary magnet, the magnetic moment of this magnet at a temperature of o °C, the distance to the balance magnet, and the angle between the auxiliary magnet and the horizontal plane, after the formulas of AD. SCHMIDT. We obtain then:

$$Z=Z_{c}+Z_{p}-(Z_{c}+Z_{p})eta t$$

which can be simplified to

$$Z = Z_c + Z_p - \alpha t$$

where α is a temperature coefficient, proportional to $Z_c + Z_p$. In this country the variations of the vertical component are small, and therefore α has practically the same value everywhere.

Finally the difference between the temperature of the thermometer and the main magnet must be taken into account, in case the temperature is rising or falling. Suppose that the temperature of the thermometer in the main magnet varies by an amount Δt per minute, a stream of heat will flow from the air via the main magnet to the thermometer or in the opposite sense, so that the temperature of the main magnet will be $t + \varepsilon \Delta t$, ε is a constant depending on the heat insulation of the main magnet. The vertical component is ultimately determined from

$$Z = Z_c + Z_p - \alpha t - \varepsilon \alpha \Delta t$$

We used the BMZ 26. The values of Z_c and a table of Z_n at different angles were determined in the Danish Meteorological Institute. The coefficients α and ε have also been determined there. At fixed times the BMZ was compared with the values of the vertical component in the magnetic observatory, which were derived from the absolute measurements of the horizontal component and the inclination. The coefficients α and ε were supposed to be invariable, and they were not checked. It will appear from the calibrations — see chapter II — that no large variations of Z_c or Z_p were observed.

In the northernmost part of the country, on the Wadden islands, the moment of the revolving auxiliary magnet was too small to compensate the field completely. In this region a fixed auxiliary magnet was used, fitted below the rotating-disc. The field strength was determined by means of the rotating-disc — see next chapter.

CHAPTER II

THE REDUCTION OF THE MEASUREMENTS

The reduction of a declination measurement depends entirely on whether the direction of the astronomical north was determined by observation of the sun or by means of triangulated points. An example of a sun's observation is printed on page 12. At the top to the right the astronomical longitude and latitude of the station are filled in, read from an accurate map. For this purpose we used the topographical map of the Netherlands, scale I: 50 000, issued by the Topographical Service. Moreover, the equation of time, valid during the sun's observation, is indicated and the longitude converted into time. The correction for the chronometer is given as well.

The first column of the astronomical part of the measurement contains 20 readings of the moment the sun touches the reticle-wire, with the right limb and with the left one alternately. After every four readings either the mirror or the whole theodolite has been turned. The read times and angles are checked graphically for possible errors. The average of each group of observation times is converted into mean local time (column 2), taking into account the correction to the chronometer and the geographical longitude of the station. The average of the circle readings is corrected in column 4 for errors in the division of the circle. In column 5 the true hour-angle of the sun is computed, belonging to the average of each group of observations. The right-hand part of the example contains the computation of the sun's azimuth α . Subtracting this from the circle reading when the measurement was carried out after true noon, and adding it to the circle reading for an observation before noon, the direction of the instrumental north is obtained. In this way we obtain six numbers, which are combined two by two to give A_1 , Band A_2 , being the values of the instrumental north with the sun in front of the observer, behind him and in front of him again. If the measurement has been carried out well A_1 and A_2 must be equal. By comparing them it can be seen immediately whether a large error has slipped into the data used for the computation. The average of A_1 and A_2 is now combined with B to obtain the value of the astronomical north, at the foot of the form to the right.

Below, the magnetical part of the measurement is shown. The columns 2 and 3 contain the times of observation with the corresponding circle readings. Column 4 contains the readings of the declination from the magnetogram in the magnetic observatory at Witteveen. It is supposed now, that the geomagnetic variations are synchronous and have the same amplitude at Witteveen as at any other place in the Netherlands. This hypothesis, a priori plausible on account of the small distances in our country compared with the distances at which the currents responsible for these variations, flow in general, has been tested by a comparison between the magnetograms of Witteveen and De Bilt. It appeared that the magnetograms are indeed identical for small variations, and that only in case of strong disturbances small differences occur.

The read positions of the theodolite are now reduced to one definite value of the declination at Witteveen, indicated as base D. The corrections, that means the differences between the declination at the moment of the measurement and this basic value, are indicated in column 5 converted into minutes of arc. Column 6 contains the reduced circle readings. The scattering of the values gives an idea of the accuracy of each individual reading. Abnormal values can then be easily rejected. Column 7 gives the mean of the readings with the magnet upright and

in the opposite position. Column 8 contains the value of the torsion of the thread, read after the observation was carried out. As the torsion amounted to o° at the beginning of the observation, half of the torsion angle is applied as a correction to the obtained values of the magnetical meridian. This is done in the lower part of column 8. Finally, column 9 contains the computation of the declination, the instrumental correction determined by calibrations in the magnetic observatory, and the definite reduced declination.

In the second place fig. 6 shows an example of a declination measurement, the direction of the astronomical north being fixed with the help of triangulated points. In column 1 the six church-steeples are mentioned, visible at the station Wognum. Column 2 contains the corresponding readings of the theodolite, column 3 the corrected readings, column 4 and 5 the coordinates of the spires. The identification of the church-steeples often gave some trouble and could not always be carried out during the measurement. The coordinates of the station can be read approximately from a topographical map, so that the church-steeples can be identified afterwards by the read direction. From a number of six church-steeples three combinations of three steeples are given, which are favourable for the determination of the coordinates of the station. Applying the formulas derived in the last chapter, three values are obtained for these coordinates, which mostly differ a few dm. The average of them is used for the computation of the azimuth of the spires, seen from the station. By adding the value of the azimuth to the circle reading the direction of the y-axis of the coordinates used is obtained. This direction is shown in the last column. Each steeple used gives a value for it. The values for the direction of the y-axis may not differ too much, provided no errors in the coordinates or in the computations have slipped in. The mean value obtained on giving different weights to the azimuth of the various spires, is used for the computation of the astronomical north. For this purpose the correction-angle p is derived (see chapter I) and is added to the direction of the y-axis, giving the value of the astronomical north. The procedure for the magnetical part of the example is the same as in the case of the measurement by observation of the sun.

The reduction of the H-measurement.

In the example of a H-measurement (fig. 7) the instrument used is mentioned in the first column. The third column contains the readings of the theodolite, the fourth column the times read from the chronometer, the fifth column the times reduced to Greenwich-time. Column 6 contains the temperatures, column 7 and 8 the readings of the declination and the horizontal component from the magnetogram of the magnetic observatory at Witteveen. Heading these columns the basic values are given, to which the individual readings are reduced. Column 9 contains the deviations of H from the basic value, column 10 the correction which must be applied to the read position of the circle in order to reduce H to the basic value. It follows namely from the equation for the QHM

 $\log H = c + \alpha t - \log \sin \varphi$

D-bepaling.

312 Plaats: Veere Chronometer: Narelin Minutteeken van de registreering op 30 sec.

Datum: Woens dag, 28 Augus his 1946.

Correctie: 12 u G.M.T. = //-59-50.8

- 59 - 50.8 Tijdsvereffening

Tijdsvereffening $\varphi = 5.7$ ° 33.69 $\lambda = 3$ ° 36.37 Tijdsvereffening $\lambda = 1.4$ m $\lambda = 1.4$ m $\lambda = 3.3$ s Basis D = Ware tijd = middelb. tijd — tijdsvereffening.

Astronomisch gedeelte.

	• .															•							
.si	+	70. 4	9 69 506	760 82.6	0.30000	0.28086		gr. 44 849	0.49033	7104 80	283 45,46"	12/40"				A. = 283 45 41"	A2 = 203 45 46	A = 263 45 45	B = 203 46 49	$\frac{1}{2}(A+B) = 263 + 6 = 32$		Astronomisch Noord = 203 o 45 48"	
9.79365	9.23661		9.89386	i.	y 0.59 303 y 0.10 722	3 0.23 581	0 9.93700	4 9.45600	260840 9	3, 21, 42, 53	3 555 20 44	₩ 183°								$\frac{1}{2}(A+B) = \frac{1}{2}(A+B) = \frac{1}$	$\frac{1}{2}(A-B) = \frac{1}{2}(A-B) = \frac{1}$	Astronomisch Noo	
B B B B	34		306 9.09386 177 9.70697	Ť	0.10 610 8.29 667 0.10 724 0.10 724	201 620 900	9.93 200 9.9340 9.93700	0h9h.6 th	13 0.46 99	1,91°14 to	35 02 4 35" 283 46'0	283° 46' 49"	•										٠
9.79368	9.23669		9.89 386 9.99 386 9.71 477	<u> </u>			9.92066 9.93	9.40741 9.43 547 9.46404 9.45600	0.44/25 0.45653 0.46996 0.4002	12 24 30 44 10	283 46 36 283 47 50" 283 46 00" 283 48' 5" 283 47'46						,	, i	٠. ا	g. g.	ا م ا	il	
1.79365 A	3 = 9.23636 B = 9.03041			A = 9.62520 9.61 746	A = 0.42189 0.41444 B = 0.10725 0.10725	$A-B = 0.31/\sqrt{6}\sqrt{0.3}$		4.6 20664.6	42775 0.4	a = 69.31'/6'' For $a = 777'/5''$	Inst. Nid = 28.3 05 46 283 46 36 283 45 60" 283 48 50" 283 48 46"	18505111		gte $h = \lambda 6 \cdot y/$ $cos h = 0.993$, II II	ie = 8 /7.0		
log cos \$==	$q + 4j.k \log tg \delta = q$ $\log tg B = q$	B .	q 43.2 log cos r = q. 73/34	A gol	A	4-43.11 A-B = 0	log sin $\tau = 9$	$\log(A - B) = \frac{2}{3}$	9 47.1 log 18 a = 0.42775	8 = 8 (Sirke)	Instr. Nrd = 2	7		Zonshoc	0,4	_ ,	Š			Declinatie Instrument correctie	e sie Herleide declinatie		of declination by man's observation
	6	_	200	•		7			. 2	~		£ 6		,47,00	<u>, </u>	- ,	etisch	Torsie	<i>y y y y y y y y y y</i>		Correctie voor torsie	40.04	of Jacilie
Berekening 7	31 / 37		£ &	`	3 22 5 15 24 7 15 24 7	15 53 09	3 58 64	6/2 es s1	57	0,0	35 45 5/ 16 00 9/	15 59 31	3 59 31	21 /0 91	11 10 91	10		Cirkel Gemiddeld	26.4	100 o 62 o		20.5 238 20.50	25.75 245 26
Berekening \$\text{3.53} \langle \langle 25"	4	<u> </u>	er er 1.2 92	353 57 69	174 30 42	174 31 42		1 xh 10 st/];	th 20 st	355 28 05	355 20 44		315 50 000	355 50 39			D AD C	6.61-	8,6' - 8,9 8,6' - 8,6 8,6' - 8,6	<u>.</u>	35.0 - 26.0	19.7 - 10.2 A 19.7
353 22 20	53 50	<u> </u>	353 59 40 3	35y // 50 3	03/0	0 %	100 les 1/2/	Ę	15 30	° £	2.) }		355 59 60 J		-	10/2+		30	5 5 6	10 of 1	2 6 3	231 45 20 1
G.M.T	15 36 40.2 14 33	50 53	36 46	15 38 552	15 41 30		15 56 20		15 44 152	15 14 33		15 46 14.2	15 60 147	15 43 45	15 43 51/2	1/2 62 23		G.M.T.		600	40		1 1 20
75 35 19	36 28		30 00	39 00			Ompediasid		43 63				Spicoel omgedrasid	15 94 04				Tijd	300	8000	46	103	15 21 43
Zon		Spiegel o			Zon		Siese				Zon		Spice					Stand					K 2372

Fig. 5. Measurement of declination by sun's observation.

· 0.47 Tijdsvereffening = m s $\lambda = m$ s s and basis D = 63.9 A.Ware tijd = middelb. tijd — tijdsvereffening. ر اا $\phi = SL \circ 4/1, \sigma L$ S S(= 6 y3.0 Witheream Datum: Donder dag, 10 Augustus 1944 Correctie: 12 u G.M.T = $/k - 00 - /\delta$, 0 sec 30 Plaats: Wagium Chronometer: Nandin Minuutteeken van de registreering op D-bepaling.

60 34 45 6034 42 60 34 43 50 34 42 60 34 45 60 34 30 2= - 17 36 60 52.3 Jui & Leld Borken + 61 10 53 - 45 05 57" + 51 53 45 es 25 5 + + 52 33 57 Ashan. 1 7.7 1. 105 40 40" 8 00 45 3 54 37 53 36 Cirker &c &c 35, 50 359 23 cos h = Zonshoogte h = log tg 3 = Instr. Nrd == log sin τ = log cos 4 = log sin 4 = A-B =log(A-B) == og tg a = log cos 7 == Astronomisch gedeelte. Magnetisch gedeelte. Cirkel 8 40 00 8 40 45 -30 600. 47 +62 634. 64 359 28 10 359 23 52 - 20687.09 + 60 439.25 8 00 45 - 30052. 98 + 62 124, 15 351 58 00 351 58 36 - 29990. 54 + 60 479.61 T (1,3 2) - 257/8.12 + 58 805.80
T (1,4,2) - 257/8.60 + 58 805.77
TT (1,6,2) - 257/7.52 + 68 805.75 105 39 30 105 40 40 70 - 23670. 40 + 60846.33 54 37 10 54 37 53 - 26 70.00 4 63 143.06 -25718.08 +50 805.77 Berekening 7 Berekening 4 +60" 00 00 0 inghis Cire 4. Zd. K. 112 gan Spiegel omgedraai Spiegel omg k. R.K. 3. R.K. S. R.K. 6. H.R. Zon Zon

= 60 52,3 = 53 42.9	6.67 4 =	1 28.4	ted noints
Torsie Astronomisch Noord = 60 57,3 Magnetisch Noord = 53 44.9	Declinatie Instrument correctie	Herleide declinatie	1.3 $ x_{\ell,\ell} = x_{\ell,\ell} = x_{\ell,\ell} $ Fig. 6. Measurement of declination by means of triangulated points
	%-	21. 5 Correctic voor torsic 21.9 233 21.7 $\frac{26}{360} \times 9' = 1$	- o.s.
Ly or Gemiddeld	233 x4.0	233 24.7	183 18.4 ment of deci
233 35 20 57.6 -14.3 233 440. Geniddeld 35 00 87.6 -14.4 23.7	24.6	e5 62	21. 8 1 23 23. Weasurement
6 - 12.3 6 - 12.2	7 -12.2	9-12.0	
Curkel D AD AD 35. 6 - 14.3 S O ST. 6 - 14.3	35 60 57.3 -12.2 35 20 51.3 -12.2 35 30 51.6 -12.2	32 30 57.9 - 12.05 32 30 57.9 - 12.0 32 50 57.9 - 17.9	233 32 40 72.0 - 11.0
Curke 233 35	60 60 60 64 64 64	4 d 4 m	233 32

A =

ganaa agass

K 2872

Stand

 $\frac{1}{2}(A+B) =$ $\frac{1}{2}(A-B)=$ Astronomisch Noord =

 $\frac{1}{4} (A-B) \cos h =$

H-bepaling

Station: 376

Datum Jun dag, 7 Sept. 1943.

9=55 46.96 x= 6° 53.62

Plasts: Slenaken

Chronometer: Alpina

Correctie: (2u G.M.T. = 14 u oo m oss kloktijd.

	ELC			9 = 6,0 16.7 7 = 24,0 C A = 79.5 hom	Erste meting: P = 81.0 km. P = 81.0 km. P = 91.0 km. Basis Corr. = 73 Tweede meting: P = 9 Tweede meting:
Witteren)	Composite Company		25.3 283 25.9	23.0 57.3 57.3 57.3 60 57.3 60 57.6 60 60 60 60 60 60 60 60 60 6	23.2 53 27.1 23.2 26.0 23.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2
= 17960 We	CLAR	E of	20.0-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
S.g ham Arger	ක්සි හේ සහ සහ ස	m AH' AD'	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2.5 -1.1 +0.3 2.5 -1.1 +0.3 2.5 -0.4 +0.5 2.5 -0.4 +0.5 2.5 +0.2 2.5 +0.2 2.5 +0.2 3.1245-10 9.21 6.15 9.21 6.15 9.21 6.15 9.34 105 1870 6 1870 6 -3 +99
o hair (= 8	N P	-	2000		2 2 0 0 8 0 4 8 8 9 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9
Basis H: 80.	T = 24,0 In =	Temp.	6.59 C 6.42 8 6.59 8 4 4 6 5.99 C 6.50 8 4 4 6 5.99 C 6.50 8 4 4 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	23.4 4 65.4 6 65.4 6 65.4 4 65.5 6 65.4 4 65.5 4 65	2, 2 2, 2, 2, 3, 4, 2, 2, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
op 30 sec.	Tide G.M.T.	M S-12 4 5	03 33 14 03 30 07 " " 08 " 09 " " 09 "		6 33 14 36 30 12 1 47 1 2 1 52 1 3 1 53 1 4 1 53 1 5 1 6 2 4 1 5 2 1 5 1 6 2 5 1 6 2 5 1 6 2 5 1 7 7 5 2 1 6 2 5 2 1 6 2 5 3 1 7 7 8 5 4 7 7 8 5 5 1 7 7 8 5 5 1 7 7 8 5 6 7 7 8 5 7 8 1 7 8 5 8 1 7 8 7 8 5 8 1 7 8 7 8 6 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8
registrering	Cirkel	<i>k</i> ²	222 8/3 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6 1/6		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Minuutteken van de	tel Stand		pHM14 rech	link	HM3 Wells 6 = 9.1.245 6 = 9.2.245 6 = 9.2.27 6 = 9.2.27 6 = 9.2.27
Minu	E-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	2 2 3 4	H)		5

Fig. 7. Measurement of the horizontal component by means of QHM 13 and 14.

4
9
٠,
60
•
Y
700

3, 1946 July July	land achter da parilpens	Minuutteeken op 30 sec.	Basis Z: 29.4 hour = 43854 BML	1 mm Z = 5.4° &	
Station Nr.: 194 Datum: Low dag, 14 July	9 = 52 48.8 x = 6 40.1 Opmerkingen: Weiland achter da harikpens	Correctie: 12 u G.M.T. = /3-00-00	Hoofdconstante H = $43401 \ \gamma$	$Z = 43401 + Zp - \alpha t - 1,5\alpha\Delta t.$	
Z-meting met B M Z 26.		Chronometer: Alpina	Nulpuntscorrectie p == 0.20	henhala postrie = 30.9	

,																					
Gemiddeld				243424						43 431			-	43430"> 43431				43433			
Herleide Z	43423	7.7	2.3	2.3	35	22	43430	32	32	32	31	43430	30	3,	32 0	43433	`££.	32,	, ELD	32,	
Z∇	-//3			,	,	,	-113	ļ				-//3	}			-1/3			,	411-	
Z Witteveen	43853				*		43853					43653				43 d 83				43 854	,
Z	43536	35	36	36	38	1/0	8/38h	45	4/3	45	<i>ħħ</i>	43543	43	44	45	-0.02 43 543	\ \frac{4}{5}	9/2	47	95	,
Δτ		-0.18	-0.42	-0.83	-0.20	70-0-	-0.13	-0.13	-0.10	0/.0-	-0.13	10.0-	10.0-	10.0-	90.0-	20.0-	43 -0.02	10.0-	/0.0-	10.01	
ħ	10,00	80	20 N		20 15	19 70	18 48	18 35	18 25	18 15	17,90	09 41	12 59	Ps 4)	12 52	13 45	17 43	17 42	17 41	17, 42 40.0	
Dp	25 23	16 91	0) 69	67 30	67 35	67 60	60 40	60 35	61 40	es es	60 80	68 95	60 95	00 89	60 95	69 90	60 90	30 04	06 P	69 90	
Draaischijf	95	, 's	30	c	7	80	09	7	99	لم	00	15/	15/	0)	رۍ (0)	0)	18/	0/	0)	
Dra	99	63	4	63	67	67	89	B	89	89	69	69	69	69	69	60	19	, 0	69	69	
G.M.T.	4 03 30	, po	, 20	90	400	, 09 ,	(7	9/	61.	, 20 ,	, 23 ,,	So	3/	32	4 33	. 39	, 1/0	, //	, 42 ,	4 43 30	
Kloktijd	03 30	70	L 0	, 90	40	09 ,	, 6/	(9)	[9]	20	23	30	3/	32	33	39	1/0	, 3	1/2	43 30	
	ls.					.			•		. }			ļ			- }			. .	i

43401					
•	4/18.+	262	547	٥	the
43401	+ 11/2	463	12/2	0	the
43401	4/1/4	1 6 9 1	2/6	3	246
43401	4/1/	463	87,8	0	4/2
143401	4/17+	262	. 9/20	0	the
43401	+ 1/1/2	268-	244	,	745
43401	4/18	2/5	444	٥	hhs
43401	411/4	4 6	543	9	143
	+, 111/2				
43401	+414+	744	ihs	ക	115
•	4197				
43401	+1776	239-	843	7	545
43401	422+	281	242	3	she
43401	42/+	283-	539	3	54/3
43401	+, 35,	302	538	مرم	240
43401	+1/4/	309-	533	2	538
43401		5 4 5 - 4 7 8 - 4 8	l	- 1	
	+3/1/0				536
43401	4/2/9+	31.00	53/	4	ر در در چې
43401	+ 452+	321	73/2	<i>)</i> //	536
= H	= dZ	at ==		$1,5\alpha\Delta t =$	= Z

Fig. 8. Measurement of the vertical component by means of BMZ 26.

that with a variation of H a variation of φ is related according to

$$dH = -H \cot \varphi d \varphi$$

Column II contains the deviations of D from the basic value. The amounts of these deviations are applied as corrections to the readings, since the magnet, even in its deflected position, will follow the slight rotations of the geomagnetic field during the measurement. Column I2 contains corrections for the reduction of the temperatures to a basic temperature, by means of the relation

$$dH = H\alpha dt$$

Column 13 contains the circle readings reduced to definite values of t, D and H. The mean values of each group of readings are given in column 14. The mean angle of deflection caused by a torsion over an angle 2π is shown in column 15. At the bottom of the example the values of H have been computed. An instrumental correction is added to them, which is determined by calibrating the instrument in the magnetic observatory viz. — 7γ for QHM 13 and + 14 γ for QHM 14. Finally a basic correction is given, obtained by reducing a provisional basic correction H in column 8 to the definitive basic value, written at the head of the example. The final results of the two measurements, which were carried out at a distance of 50 m, lead to figures differing only by 1γ .

The reduction of the Z-measurement.

Fig. 8 shows a complete Z-measurement. In the first place a few constants are given viz. the zero point correction of the rotating-disc, determined by calibration in the magnetic observatory, the neutral position determined during the measurement, the temperature coefficient α

given by the Danish Meteorological Institute, and the basic value to which all readings are reduced. Column 1 contains the time of each reading, column 2 the Greenwich time, column 3 the reading of the rotating-disc with the auxiliary magnet, column 4 the corrected reading of this disc, column 5 the temperature of the main magnet, column 6 the temperature gradient per minute, column 7 the value of the vertical component derived from the preceding data, column 8 the value of Z at Witteveen, column 9 the difference between this value and the basic value to which all measurements were reduced, column 10 the reduced Z-values, column 11 the average of the series of Z-values. The BMZ was used at four different places some tens of meters apart, so that four different values of Z are obtained. The last three of them are in good agreement with each other, whereas the first one is different. For that reason only the last three values have been used for the determination of the definitive mean value, the first one being rejected.

The determination of the time.

For reading the time during the astronomical measurements the chronometer Nardin No. 10658 was mostly used. This chronometer was compared with a radio time signal once a day at least. In the years 1942 and 1943 we used the time signals of the Deutsche Seewarte, later on mostly the six pips of the BBC.

Fig. 9 shows the rate of the Nardin No. 10658 during five successive days. It turns out that the rate is constant or nearly constant for a rather long period, so that the time correction between the time signals could be determined by interpolation, with an accuracy of 0.1 sec.

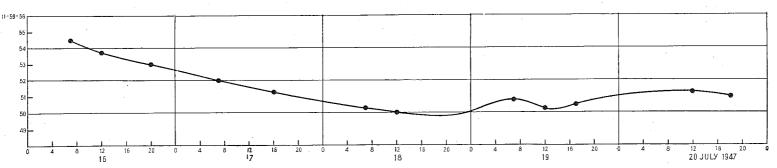


Fig. 9. Rate of the chronometer Nardin 10658 during five successive days.

The calibration of the instruments.

All measurements were reduced to the annual means for the epoch 1945.0, as determined with the absolute instruments in the magnetic observatory at Witteveen. Consequently the instruments for the field work were compared from time to time with these instruments and with the outcome of the absolute measurements performed by the officer-in-charge, who is responsible for the magnetic observatory.

In the years before 1945 the absolute measurements have been performed regularly, and therefore the calibration of the instruments, used for the magnetic survey, is known quite accurately.

The same does not hold however for the years 1945—1948. After the completion of the present publication it has become evident that the absolute measurements made by

the former officer-in-charge of the Witteveen magnetic observatory cannot be considered as trustworthy during these years ¹). Without going into details of this regrettable matter it can be said that the reduction of the measurements was based upon a more or less fictitious value, which was chosen in such a manner that the outcome of the measurements fitted the results of the years 1942—1945.

Whereas it is a matter for regret that accurate calibrations are lacking for the years 1945—1948, the method followed by the former officer-in-charge implies that the field measurements of these years are reasonably trustworthy, as part of them overlapped the measurements of former years. Moreover the greater part of the country was surveyed during the first three years, so that only the measure-

¹⁾ See Preface of Yearbook B, Geomagnetism, 1947, Royal Netherlands Meteorological Institute, De Bilt.

ments of Zeeland, Zeeuws-Vlaanderen, the Zuid-Hollandse islands and the Wadden Sea, fall into the less accurate period.

In order to clear up the uncertainty a couple of measurements was repeated in the above mentioned regions during the fall of 1949 and the spring of 1950, with the result that in the writer's opinion all values in these regions have an accuracy better than 1' and 10γ for D, H and Z resp.

The *D*-instrument was compared with the Dover instrument of the Witteveen observatory. The difference between both instruments was fairly constant. Corrections ranging from — 1'.3 to — 1'.7 were applied to all declination values found by means of the field instruments.

For the instruments QHM 13 and QHM 14 the following formulas were used:

QHM 13 :
$$\log H = 9.21245 - 10 + 0.000163 t - \log \sin \varphi$$
 QHM 14 : $\log H = 9.21276 - 10 + 0.000159 t - \log \sin \varphi$

By comparing the QHM's with the H-instrument Dover in the magnetic observatory Witteveen corrections of $+3 \gamma$ and $+2 \gamma$ were found for QHM 13 and QHM 14 respectively in the year 1942. In the beginning of 1943 the quartzwire of QHM 14 broke during transport. After that the correction was $+14 \gamma$, whereas QHM 13 remained practically constant. In the year 1944 the quartz-wire of QHM 13 broke, and after the repair the correction was -1γ . After the end of 1944 QHM 13 was no longer used for field work but was kept as a reserve instrument in the magnetic observatory at Witteveen. Calibrations during the summer of 1949 led to a correction of -12γ for QHM 14.

The formula used for BMZ 26 was

$$Z=43401+Z_p-\alpha t-1.5 \alpha \Delta t$$

 Z_p is the field-strength of the turning magnet, varying between 0 and 1160 γ .

The values of Z_p depend on the position of the turning magnet, and had been calibrated at the Meteorological Institute, Charlottenlund, Denmark. The calibration of BMZ 26 consisted of comparing the instrument with the basic values, which were derived for the vertical component of the geomagnetic field at the Witteveen observatory calcu-

lated from the H-measurement with the Dover-instrument and from the I-measurements with the earth-inductor Toepfer. The correction in the year 1942 and in the beginning of 1943 was —9 γ . After this date the behaviour of BMZ 26 was very irregular. The scattering between the individual readings was very large, the corrections amounted from —20 γ to —60 γ . The error appeared to be caused by the balance magnet touching the damping. The magnet moves between copper plates whose purpose is to damp the motion considerably. It turned out that slight displacements of the balance were possible when clamped, from which this touching now and then resulted.

In 1943 the clamping of the balance was corrected, so that it rests now in four forks. When the balance is lowered, it comes in the right position with respect to the damping. After these repairs the behaviour of the BMZ was completely regular and the corrections had once more the former value of -9γ .

New calibrations were made in the year 1949. The whole instrument was placed in a Helmholtz field, generated by three coils, diameter 100 cm, with distances of 40 cm. The outer coils had 50 windings, the middle coil 31, so that the field had a constant value of 90.56 γ per mA along the major part of the axis of the instrument.

It turned out that the magnetic moment of the rotating magnet had increased since 1942 so that all Z_p values had to be corrected by an increase of 1.5 %. The correction for the whole instrument appeared to be -25γ , which can be ascribed to a small change of the magnetic moment of the upper magnet.

The zero point correction of the rotating-disc amounted constantly to $+0^{\circ}$,20 during these years. It was determined from a comparison of the readings of the rotating-disc in the two positions of the rotating magnet in which the same angle is made with the vertical.

During the measurement in the northernmost part of the country it was necessary to use supplementary magnets for augmenting the compensating field strength. They can be screwed on below the rotating magnet. Their influence upon the balance was determined in 1947 and amounted

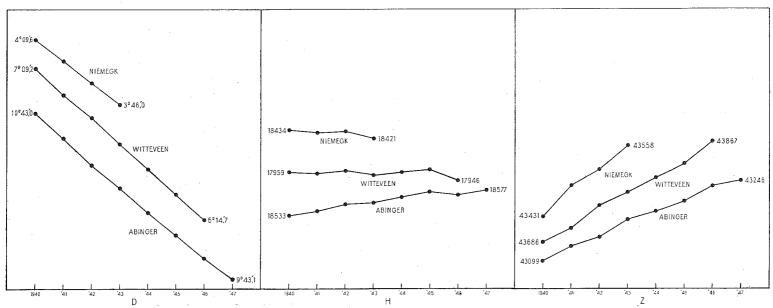


Fig. 10. Secular changes at Witteveen, Abinger and Niemegk.

to 1983 γ for the auxiliary magnet 26-1, to 1988 γ for 26-2, and to 1987 γ for 26-3.

New determinations in 1949 and 1950 gave the values 2005 γ for the auxiliary magnet 26-1 and 2020 γ for 26-3. The magnet 26-2 appeared to be loose in the casing, so that no accurate values could be obtained.

The secular change.

All determinations were reduced to the epoch 1945.0 by applying the secular changes at Witteveen. It was supposed that the secular change has the same value at Witteveen as at any place in the Netherlands. This is certainly allowed as regards the declination. The secular change of D is practically the same everywhere in NW-Europe. However the secular changes of H and Z at De Bilt—Witteveen, Greenwich—Abinger and Potsdam—Niemegk are different.

Below, the annual means of the magnetic elements at the observatories Witteveen, Abinger and Niemegk are given for the recent years. The secular changes are represented graphically in fig. 10.

Annual means of the magnetic elements at Witteveen

$(\varphi = +52^{\circ}$	$48'.8; \lambda =$	+6°40′.1)
Year	D	H	Z
1940	7° 09.2	17959	43686
1941	6° 59.8	956	711
1942	51.2	962	750
1943	42.2	954	776
1944	33.0	961	800
1945	24.3	966	827
1946	14.7	946	867

Annual means of the magnetic elements at Abinger $(\varphi = +51^{\circ}11'.1; \lambda = +0^{\circ}23'.2)$

	•	•			_		_	,
	Y	ear				D	H	Z
1940				•		10° 43.0	18533	43099
1941	٠,٠					33.8	539	128
1942						24.8	554	146
1943	٠	•				16.2	556	172
1944			٠		•	07.8	566	189
1945			•		•	9° 59.5	573	207
1946		•	•			51.1	569	235
1947						43.1	577	246

Annual means of the magnetic elements at Niemegk $(\varphi = +52^{\circ} \text{ O4'.3}; \lambda = +12^{\circ} \text{ 40'.5})$

(1)) –	-4-57	·	,
Year	D	H	Z
1940	4° 09.6	18434	43431
1941	01.4	430	484
1942	3° 53.8	433	516
1943	46.0	421	558

To reduce the measurements to 1945.0 the correction for the secular change was applied over a maximum period of 2 years. During this time the difference in the secular change between Potsdam and Witteveen and between Witteveen and Abinger amounted to about 15γ for H and to about 20γ for H and to about 20γ for H and to about 20γ for H are distance to Witteveen, it appears that in the extreme regions of this country the elements H

and Z showed a variation during the mentioned period, which differs at most 6γ and 8γ resp. from the variation at Witteveen.

It is not possible, however, to determine this correction exactly because the annual means at Potsdam are missing after 1943. Besides, for the greater part of the stations this correction is smaller than a few γ , so that it is not taken into account for the present.

The reduced results.

The results of the measurements at 392 stations, reduced to the epoch 1945.0, are tabulated on page 26 till page 30. They contain number, name and coordinates of the stations, together with the values of D, H and Z. In addition, the components in northward direction X and in eastward direction Y are given. These were computed from the formulas

$$X = H \cos D$$
 and $Y = H \sin D$

All Y-values are negative owing to the fact that in the whole country the declination is westerly.

The last columns contain the values ΔX , ΔY and ΔZ , the deviations of X, Y and Z from a normal field, which is derived in the next chapter. The formulas are:

$$X_n = 18120 - 470 \Delta \varphi + 45 \Delta \lambda$$

 $Y_n = -2315 + 30 \Delta \varphi + 150 \Delta \lambda$
 $Z_n = 43448 + 500 \Delta \varphi$
 $\Delta X = X - X_n; \ \Delta Y = Y - Y_n; \ \Delta Z = Z - Z_n.$

The last 14 measurements (A-N) were carried out after a great part of this publication had already been completed. It was not possible to insert them in the tables; therefore they are printed at the end of the list. At these stations only H and Z have been determined. The values of D, necessary for the calculation of X and Y, were read from the D-chart. These values are therefore given in parentheses.

CHAPTER III

THE CONSTRUCTION OF THE CHARTS

Charts have been constructed of the magnetic elements D, H, Z, X, Y, and of the anomalies ΔX , ΔY , ΔZ . Each chart has been printed in three colours: the numbers of the stations are grey, the values of the magnetic elements are black, and the isolines drawn through them are red.

Although some 240 years have elapsed since HALLEY published his famous isogonic chart, no clear principles for the construction of magnetic charts have been laid down. The tracing of contours is still a matter of individual judgment. A survey of methods of constructing magnetic charts has been given by BERNSTEIN ¹).

Two general procedures have been employed in the tracing of contours. They may be termed the analytic method, by which the contours are approximated by a mathematical expression, and the graphical method, consisting of free-hand smoothing. As the network of our stations is dense, and the quality of the measurements is good in general, it was possible to use the graphical method, interpolating the isomagnetic lines between the measured values

¹⁾ A. Bernstein, A survey of methods of constructing magnetic charts, Terr. Mag. 49, 169, 1944.

Fitting the isolines to the Belgian and German charts.

We have tried to continue the isolines over Belgium and Germany. For Belgium the maps of Dehalu and Marie MERKEN and Hoge 1) were used, which are reduced to 1913.0. In applying the magnetic difference 2) between De Bilt and Witteveen to the mean values of the magnetic elements in the years 1912 and 1913 at De Bilt 3), one finds for the magnetic elements at Witteveen for the epoch 1913.0: $D = 12^{\circ}$ or'.9, $H = 18266\gamma$, $Z = 43485\gamma$. The secular changes from 1913.0 to 1945.0 are: $D = -5^{\circ}$ 33'.2, $H = -303\gamma$, $Z = +328\gamma$. After applying these values to the Belgian maps the connection between the isogonics is good. Around South-Limburg, however, the network of the Belgian measurements is not dense enough, so that the isogonics could not be continued with sufficient certainty. The connection of the H-isodynamics is good, provided a reduction of -250γ in stead of -303γ is applied. Considering that the Belgian H-measurements as well as the Z-measurements are apparently only accurate to about 10y, the agreement can not be called bad. The Z-isodynamics too can be connected properly, taking into account the smaller accuracy of the Belgian values.

For the fitting in of the German declination-measurements Burmeister's chart ⁴) for the epoch 1940.0 was used. According to the annual means at Witteveen the correction for the secular change of the declination from 1940.0 to 1945.0 amounts to — 45'. After application of this correction the agreement between Burmeister's isogonics and ours is rather bad, however. Apparently the borderland of Burmeister's chart is based on VAN RIJCKE-VORSEL's measurements, which in this region are 5' or 10' too small. The isolines of our *D*-chart are therefore traced as well as possible according to the general shape of the German isogonics. Extrapolating the *H*- and *Z*-isodynamics was not possible, because the results of the German survey of the second order ⁵), which was begun in 1937, were not available.

The construction of the isanomalic chart.

For drawing the chart of anomalies of the magnetic field the knowledge of the normal field is necessary. This normal field is in a certain sense an arbitrary conception, the definition depends entirely on what one wishes to see. If one wants to investigate the continental anomalies over the whole world, one has to assume for a normal field, the field of a magnetic dipole situated in or about the centre of the earth. If, however, one intends to study the regional anomalies in a limited region, the normal field must be chosen in such a way, that it corresponds to the field in the undisturbed parts of this region. One attempts then to write down the components of this normal field as functions of latitude and longitude in an expression of the form

$$F = F_0 + a\varphi + b\lambda + c\varphi^2 + d\lambda^2 + e\varphi\lambda + \dots$$

 F_0 and the coefficients a, b, c, d, e.......... are to be determined so that the undisturbed field is represented by this expression. It would be possible to calculate these coefficients from the values of the true magnetic field by the method of least squares, if the deviations of the true field from the normal field were distributed according to the laws of chance. This method has indeed been used by SCHOTT 6) and HAZARD 7) in constructing the magnetic maps of the United States.

As however was remarked by RÜCKER en THORPE 8), the anomalies are usually not distributed according to chance. The latter authors followed therefore a much simpler procedure. In the first place they chose for the normal field the expression

$$F = F_0 + a\varphi + b\lambda + e\varphi\lambda + f\cos d(\varphi - g)$$

with a, b, d, e, f and g as unknown factors, as this function was nearly in harmony with the mean course of the isolines. The 205 stations were grouped into a number of districts, and for every district the arithmetical average of the values of latitude, longitude and magnetic element was determined. The unknown coefficients were finally determined from a number of equations, equal to the number of unknowns. This method was also used by VAN RIJCKEVORSEL ⁹). He was rightly of opinion, that for a small country as the Netherlands a linear approximation of the normal field must be sufficient. A magnetic centre was determined by taking for all the stations the arithmetical means of the longitude, the latitude and the magnetic components. In each place the deviation of the normal field from that magnetic centre is given by

$$\Delta F = a\Delta \varphi + b\Delta \lambda$$

where for ΔF is successively taken ΔX , ΔY and ΔZ ; $\Delta \varphi$ and $\Delta \lambda$ are the differences between the latitude and longitude of the place in question and the coordinates of the magnetic centre. For each component VAN RIJCKEVORSEL obtained two equations by summing up the equations for all the stations north of the magnetic centre and by doing the same for all the stations east of this centre. The stations in the southwestern quadrant were thus left out of consideration, because the disturbances here were greater than in the rest of the country. The ultimate equations were:

$$\begin{array}{l} \varDelta X = -\ 354.1\varDelta\,\varphi + 116.0\varDelta\lambda \\ \varDelta Y = -\ 73.0\varDelta\,\varphi - 143.4\varDelta\lambda \\ \varDelta Z = +\ 429.8\varDelta\,\varphi - \ 73.5\varDelta\lambda \end{array}$$

with the magnetic centre: $\varphi = 52^{\circ}$ 16' 41" N.L., $\lambda = 5^{\circ}$ 30' 43" E.L., and $X = 17706\gamma$, $Y = -4611\gamma$, $Z = 43994\gamma$.

A still simpler method for the construction of the normal field consists of drawing smooth isolines in one way or another, for example, by drawing by free hand or by

⁹⁾ E. van Rijkevorsel l.c.

¹⁾ M. Dehalu et Marie Merken, Nouvelle carte magnétique de la Belgique, 1913; E. Hoge, Nouvelle contribution à la carte magnétique de la Belgique, 1934.

²⁾ Yearbook B, Geomagnetism 1945, De Bilt.

³⁾ Annuaire B, Magnétisme Terrestre 1938, De Bilt.

⁴⁾ F. Burmeister, Karte der Erdmagnetischen Missweisung für die Epoche 1940.0.

⁵) R. Bock, Über die magnetische Reichsvermessung II. Ordnung und ihre ersten vorläufigen Ergebnisse, Z.f. Geophysik, 15, 66, 1939.

⁶) C. A. Schott, Distribution of the magnetic declination in Alaska and adjacent waters for the year 1895, U. S. Coast and Geodetic Survey Bull. 34, 129, 1895.

⁷⁾ D. L. HAZARD, United States magnetic tables and charts for 1925, U. S. Coast and Geodetic Survey, Serial 453, 1929.

⁸⁾ A. W. RÜCKER and T. E. THORPE, Magnetic survey of Great Britain and Ireland, Phil. Trans. 190 A, 53, 1890.

averaging groups of observations, the isolines being approximated by a linear or quadratic equation. This method is followed by Lewis 1) in constructing an isogonic map of South-Africa. A combination of the above described methods was used by Ljungdahl 2). From the measurements of a number as relatively undisturbed selected stations he derived by the method of least squares a set of linear equations for all the magnetic elements.

The formulas for the normal field in the Netherlands, used by HARTMANN 3), are based on the geomagnetic field at the observatories at Abinger, Eskdalemuir, Witteveen, Chambon-la-Forêt, Rude Skov and Niemegk. It is supposed that the field at these observatories is determined by the dipole-field plus the continental European anomaly and that, therefore, the regional disturbances are small. This is an arbitrary supposition, though it may be expected that a magnetic observatory is generally built in a magnetically undisturbed region. HARTMANN finds:

$$X_n = 18105 - 470 \Delta \varphi + 45 \Delta \lambda$$

 $Y_n = -2430 + 30 \Delta \varphi + 150 \Delta \lambda$
 $Z_n = 43375 + 500 \Delta \varphi$

where $\Delta \varphi = \varphi - 52^{\circ}$ and $\Delta \lambda = \lambda - 5^{\circ}$. It turned out, that these formulas gave a reasonable distribution of positive and negative regions for ΔZ , but that the horizontal disturbance-components deviated systematically from the direction, which could result from the vertical disturbance-field. A much better result was obtained by slightly altering the constant term in the formulas for X_n and Y_n . Finally HARTMANN used the following formulas:

$$X_n = 18115 - 470 \Delta \varphi + 45 \Delta \lambda$$

 $Y_n = -2380 + 30 \Delta \varphi + 150 \Delta \lambda$
 $Z_n = 43775 + 500 \Delta \varphi$

In this report the anomalies, which are reproduced in the A-chart, are computed from HARTMANN's formulas, reduced to 1945.0. They are:

$$X_n = 18120 - 470 \varDelta \varphi + 45 \varDelta \lambda$$

$$Y_n = -2315 + 30 \varDelta \varphi + 150 \varDelta \lambda$$

$$Z_n = 43448 + 500 \varDelta \varphi$$
with $\varDelta \varphi = \varphi - 52^\circ$ and $\varDelta \lambda = \lambda - 5^\circ$.

with
$$\Lambda \varphi = \varphi - 52^{\circ}$$
 and $\Lambda \lambda = \lambda - 5^{\circ}$.

The differences $X-X_n$, $Y-Y_n$ and $Z-Z_n$ between the measured values X, Y and Z and the normal values X_n , Y_n and Z_n are used for drawing the chart of anomalies. The values $X - X_n$ and $Y - Y_n$ are compounded into a resultant horizontal disturbance vector, the values of $Z-Z_n$ given in γ are printed below the stations.

On the Belgian territory the isanomalics are copied from HARTMANN's chart, they have been computed from a normal equation valid for 1913.0 viz.

$$Z_n = 43156 + 530 \Delta \varphi - 85 \Delta \lambda$$

this formula being derived by a method analogous to that used for the formulas for the Netherlands.

For Germany a formula for the normal Z-field is given by Rössiger 4). This reads:

$$Z_n=$$
 43460 $+$ 499.9 $\varDelta \varphi+$ 19.28 $\varDelta \lambda+$ 0.952 $\varDelta \varphi\varDelta \lambda+$ $-$ 10.95 $(\varDelta \varphi)^2+$ 2.21 $(\varDelta \lambda)^2$

with $\Delta \varphi = \varphi - 52^{\circ}.07$, $\Delta \lambda = \lambda - 12^{\circ}.68$ valid, for 1941.5. This normal field is constructed from the yearly means at the magnetic observatories Niemegk, San Fernando, Eskdalemuir, Lovö, Kasan and Helwan and is, therefore, applicable for the whole of Europe. The annual changes of the coefficients are: for the term with $\Delta \varphi$: — 0.60, for the term with $\Delta \lambda$: + 1.61, for the term with $\Delta \varphi \Delta \lambda$: -0.058, for the term with $(\Delta \varphi)^2$: +0.42, for the term with $(\Delta \lambda)^2$: — 0.206. Neglecting the terms of higher order, and reducing this formula to $\varphi = 52^{\circ}$, $\lambda = 5^{\circ}$ as a magnetic centre, the approximation for the epoch 1945.0 becomes:

$$Z_n = 43470 + 499\Delta \varphi + 21\Delta \lambda$$

This formula differs only slightly from the one used in this publication, apart from the term with $\Delta \lambda$, which is of little importance.

For the northeastern borderland Reich's 5) charts of the anomalies of the vertical component were available. Moreover, the isanomals of the disturbed region of Lingen have already been published by REICH 6). These isanomals show a close correspondence with ours and have been drawn in the northeastern borderland of the Δ -map. For the southeastern region no German maps were available.

CHAPTER IV

DISCUSSION OF THE CHARTS

The D-chart.

The isogonics of the declination chart have been drawn at mutual distances of 5'. As the uncertainty is greater on Belgian territory than on Dutch, they have there been drawn for every 10'. It was not possible to continue the isogonics around the province of South-Limburg. Over the North Sea the isogonics have been drawn in accordance with the general direction in NW-Europe; the accuracy of the lines is here much smaller than on land. We see that the declination varies from 6° 15' to 8° 0' between the east frontier of the Netherlands and the isle of Walcheren. A disturbed region extends from South-Limburg to Utrecht. The disturbances of the Belgian region turn out to be continued in the province of Zeeland and the west part of North Brabant. Some other important disturbances are found in the neighbourhood of the Dollart and in the Wadden Sea.

The H-chart.

The horizontal component varies from 17600y over the Wadden islands in the north to 18800y over South-Limburg. The disturbed region over the Wadden Sea and in West-Friesland is very striking. The disturbance over the Dollart becomes evident by an abnormally steep gradient of the horizontal component. The central part of the Netherlands

¹⁾ A. D. Lewis, Magnetic declination in South Africa (1936), Department of Irrigation, Pretoria.

²⁾ G. S. LJUNGDAHL, A magnetic survey of Sweden, Kungl. Sjökarteverket, Jordmagnetische Publikationer No. 9, Stockholm 1934.

⁸) PH. C. P. HARTMANN, l.c.

M. RÖSSIGER, Beitrage der angewandten Geophysik, 9, 121, 1941.

Thanks are due to Prof Dr. H. REICH for furnishing the maps.

⁶⁾ H. Reich, Zeitschr. der deutschen geologischen Gesellschaft 85,

is only slightly disturbed. The Belgian region together with South-Limburg and Zeeland show a strong irregularity as is also the case on the *D*-chart.

The Z-chart.

The vertical component increases between South-Limburg and the Wadden islands from 42850γ to 44200γ . The chart shows remarkable disturbances in the Wadden Sea and in the area of the Dollart. The disturbed region from South-Limburg to Utrecht is characterized by a downward bulging of the isolines, which means an abnormally large value of the vertical component or a positive anomaly. Just as in the case of the D-chart and the H-chart the south part of the Z-chart is strongly disturbed.

The X-chart.

The chart of the northerly component is naturally very much like the *H*-chart and, therefore, does not give rise to special remarks. The accuracy of the *X*-chart is determined by the formula

 $X = H \cos D$, from which: $dX = \cos D.dH - H \sin D.dD$ Over the whole country this formula can be simplified to

$$dX = dH - 0.5 dD$$

 $(dX \text{ and } dH \text{ in}\gamma, dD \text{ in minutes of arc})$ from which it follows that the accuracies of X and of H are practically the same.

The Y-chart.

The isodynamics of the easterly component have a nearly north-south direction. In the neighbourhood of the east frontier the value is -1950γ , over Walcheren it amounts to -3000γ . The disturbed regions of the Y-chart are essentially the same as of the other charts. The accuracy of the Y-values follows from

 $Y = H \sin D$, from which: $dY = \sin D.dH + H \cos D.dD$ This can be reduced approximately to:

$$dY = 0,1 dH + 5 dD$$

(dY and dH are expressed in γ , dD in minutes of arc). The accuracy of Y is in the first place determined by that of D, an error of I' has an influence of 5γ upon Y.

The air-earth current.

In a publication "Notes on isomagnetic charts: VI Earth-air electric currents, and the mutual consistency of the H and D isomagnetic charts "Charman 1) concludes that a non-potential part of the geomagnetic field must be attributed to errors in the values of D and H. This means, that the value of the vertical downward electric current I from the air into the earth, derived from the line integral of H along a closed curve

$$\int H ds = 4\pi I$$

must be very small or even zero. In order to investigate this three trapezia 1, 2 and 3 of 5435, 5100 and 8325 km² resp. have been drawn with their sides parallel to the circles of longitude and latitude. Along the parallel sides of these trapezia the mean value of Y was determined over intervals of 5 km and also the value of X along the slanting sides.

The integral of H along these trapezia, taken in clockwise direction, gives for 1 the value + 1045 oersted cm, for 2: -1550 oersted cm and for 3: +1415 oersted cm. From these values the following currents are calculated: in 1: +0.15 A/km², in 2: -0.24 A/km², in 3: +0.14 A/km² (+ means a downward current).

After SCHMIDT's map ²) the intensity of the air-earth current is —0.2 A/km² in NW-Europe. Chapman's ³) values differ considerably from SCHMIDT's map.

The difference between the directions of the currents in the adjoining regions I and 2 raises the surmise that these currents are not real. In order to investigate this in more detail each trapezium is subdivided into four parts and in each part the strength of the current is calculated separately. The result is:

1a: —0.43 A/km², 1b: + 0.02 A/km², 1c: +0.48 A/km², 1d: +0.64 A/km².

In 2a: —0.73 A/km², 2b: +1.75 A/km², 2c: —0.84 A/km², 2d: —0.90 A/km².

In 3a: $+3.78 \text{ A/km}^2$, 3b: -2.56 A/km^2 , 3c: -0.23 A/km^2 , 3d: -0.22 A/km^2 .

It turns out that the currents per km^2 become stronger according as the integrals enclose a smaller area, and that there is not any regularity in the direction of the currents. This points evidently to the influence of the accidental errors in X and Y, which get more important according as a smaller region is considered.

We will conclude with the remark that a periodically variable air-earth current cannot be detected by the above mentioned method. The measurements have been carried out on various days and times, and have been reduced without taking onto consideration an eventual local current. This local current could be found from simultaneous measurements along a closed line. The only statement that can be made is that a permanent air-earth current does not exist.

The Δ -chart.

The deviations from the normal field, ΔX , ΔY and ΔZ , have been collected in one chart. The horizontal anomalies ΔX and ΔY have been composed to form one vector, the value ΔZ is printed in γ . The isanomals of ΔZ are drawn for every 20γ . The regions with positive values of ΔZ are dotted red, the negative regions are white. Only a few lines have been drawn over Belgian territory, but in part of the German borderland we were able to complete the chart.

The G-chart.

The last chart is the chart of the gravity anomalies in the Netherlands, based on measurements of the Government's Commission for Geodesy, the Bataafsche Petroleum Maatschappij and the Government's Mines. This chart was kindly put at our disposal by the Bataafsche Petroleum Maatschappij. The isogams have been drawn for every 5 mgal. The regions with an abnormally large value of the gravity are dotted red, the negative regions are white.

¹) S. Chapman, Notes on isomagnetic charts, Terr. Mag. 47, 1, 1942.

²⁾ J. Bartels and S. Chapman, Geomagnetism, page 665.

S. CHAPMAN, 1. c.

The magnetic and gravimetric anomalies.

The magnetic anomalies are caused by irregular deviations from a horizontally homogeneous magnetization in the earth's crust. Our knowledge of the details and quantitative values for magnetization of rocks is still in a rather unsatisfactory state owing to the lack of experimental determinations of the magnetic properties of rocks in low magnetic fields. A factor of primary importance is the magnetic susceptibility, but this factor depends highly on the strength of the magnetic field in which it is measured. Many values given in the literature refer to a field-strength larger than that of the earth's magnetism.

A great many values of the susceptibility of various rocks are given by HAALCK ¹), HEILAND ²) and NETTLE-TON ³). It is probable that the magnetic properties of most rocks are determined by magnetite (Fe₃O₄) which is present almost everywhere in the form of an admixture.

The susceptibility and also the residual magnetism of the crystalline rocks are much larger than the corresponding values for sedimentary rocks. The ratio of the susceptibilities is of the order of 100 to 1000. This convinced Reich 4) that at least in North Germany the archaic crystalline massifs and the crystalline rocks of the Palaeozoicum cause the extensive positive regional disturbances of the magnetic field, whereas the sedimentary rocks are accompanied by negative anomalies, because the small value of the susceptibility of the sediments is compensated by the greater depths of the crystalline rocks. Nettleton concludes that the measurements may be considered as being made on a plane (i.e. the surface of the ground) which is supported on a nonmagnetic medium (i.e. the sediments) and that

the effects measured are caused by undulations of the magnetic surface (i.e. the surface of the igneous rocks) and polarization-contrasts below that surface. Generally speaking, the magnetic anomalies in sedimentary regions give an image of the tectonics of the crystalline substructure. Where the basement rock in the form of a horst or a massif is higher than in its neighbourhood, it will usually cause a positive disturbance. The magnitude of this disturbance depends on the susceptibility of the rock and on its depth.

The interpretation of magnetic anomalies is not unique. As not only the susceptibilities of the rocks but also their dimensions and depths exert an influence, a given anomaly can be explained by a variety of causes. The right interpretation can, therefore, only be obtained from additional dates (geological, gravimetric and seismic).

In fig. 11 taken from NETTLETON (page 221), the calculated profile has been drawn of a magnetic anomaly, caused by a long ridge with vertical sides, representing an uplift of one-fourth of the depth and with a width equal to the thickness of the sediment. The polarizing field is taken vertical and the susceptibilities of sediment and basement are supposed to be k=0 and $k=6.10^{-3}$ respectively, so that the magnetic polarization I

$$I = kZ$$

- 1) H. HAALCK, Der Gesteinsmagnetismus, 1942.
- 2) C. A. Heiland, Geophysical Exploration, 1946.
- 3) L. L. NETTLETON, Geophysical prospecting for oil, 1940.
- 4) H. REICH, Zur Frage der regionalen, magnetischen Anomalien Deutschlands, ins besondere derjenigen Norddeutschlands, Z.f. Geophysik, IV, 84, 1928.

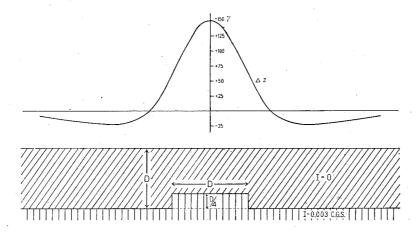


Fig. 11. Vertical magnetic anomaly caused by a long ridge (after Nettleton.)

with a field strength Z=0.5 oersted is equal to 0 for the sediment and to 0.003 c.g.s. for the basement. The calculation of the magnetic influence of the horst is carried out in the simplest way by replacing the volume-magnetization by a uniform distribution of magnetic poles with a density of I per cm² along the upper and lower sides of the horst. It turns out that the positive disturbance over the horst with a value of 150γ is accompanied on both sides by weak negative disturbances, so that the value integrated over an infinitely extended horizontal surface is zero.

The geological interpretation of the magnetic anomalies

is given for the greater part by Hartmann 5) in his doctoral thesis. We borrow from it: "The old crystalline massifs of Brabant, Stavelot, Hohe Venn and Rocroy stand out with positive anomalies against the negatively disturbed surroundings. A zone with positive maxima extends from the Yser to Maastricht. The upward curving of the Axe d'Ostende is evident from the northward deflection of the isanomals. The nose of the massif of Brabant causes a positive anomaly in ΔZ of 225 γ near Maastricht in accordance with the small depth at which the Cambro-Silur is here found

⁵⁾ PH. C. P. HARTMANN, Thesis.

directly under the Senon. The "Sillon du Rupel-Demer" is marked by a strip of negative anomalies from Hasselt to the West. North of this strip we find a positive maximum near Antwerp. The massif of Stavelot-Hohe Venn causes a strong positive disturbance. To the north of this massif the crystalline rock is covered by devon, carbon and chalk. We see therefore a strong decrease of the anomaly to the north so that even a negative value of -14γ is found near Eysden. The influence of the massif of Brabant is furthermore expressed on Dutch territory in the strong positive anomaly of Woensdrecht".

The measurements carried out later on in Zeeland show that the greater part of Zeeland is strongly disturbed by positive anomalies, from which we infer that the limit of the massif of Brabant presumably follows a line from the South-Holland islands to South-Limburg. In this region all disturbance vectors of the horizontal field are directed perpendicularly to this line.

About the magnetic anomalies on Dutch territory HART-MANN tells us: "Most striking is the Netherlands direction which dominates the tectonics of our country. Regions of positive and negative anomalies alternate and show very clearly the NW-SE direction. The Swabian direction can also clearly be seen on the chart, namely from the shifting of the isanomals along WSW-ENE directed lines.

The Central Graben can be clearly seen as a negatively disturbed region. We find the minimum in the province of North Brabant south of Eindhoven. More to the NW the zone, which is magnetically negative, seems to shift to the NE. The Peelhorst and its continuation, the horst of Erkelenz, cause a positive anomaly. To the north this anomaly is bordered by a negative disturbance, by which the troughs of Venlo and Venray are represented. The horst of Viersen deflects the isanomal of $+20\gamma$ to the NW again, where upon it curves round the horst of Mill, which is shifted to the NE with regard to the Peelhorst even in its magnetic anomaly."

Comparing now the Δ -chart with the G-chart we see that the gravimetric chart too gives a clear image of the Central Graben; the gravimetric minimum, however, is situated more to the north than the magnetic one. The strip of positive magnetic anomalies which borders the Central Graben to the east, coincides with the region of horsts, as published in the Mijnbouwkundig Jaarboek 1947 1), but is found at the limit of the gravimetric negative region. The gravimetrically deep trough of the Roer can be found on the magnetic chart too as a shallow between the maxima, but does not lead to negative values. As regards the region west of the Central Graben the two charts agree well with each other.

HARTMANN continues: "One gets the impression from the magnetic anomalies that a region of grabens extending over the Rhine is situated between the horst of Mill with its continuation to the north, and the high region of the Achterhoek. A partly broad region of horsts is sharply outlined by the magnetic anomalies in the continuation of the zone Erkelenz—Peel—Mill over "het Gooi", the

Utrecht ridge, an important part of the Gelderse Vallei and even of the Neder Veluwe to Voorthuizen. Over the horst of the Utrecht ridge the disturbance values are highest and this horst seems to extend farthest to the NW and the SE. The geomagnetic anomalies in this region support the hypothesis that the existence of the Utrecht ridge is not primarily due to the pushing of the land-ice, but that a tectonically caused higher structure accounts for the formation of a push-moraine. The horst of the Utrecht ridge is shifted to the NE relative to the horst of Mill. The same was found for the situation of the horst of Mill in relation to the Peelhorst, where the shift took place along the faultlines of the transverse graben of Venray. It is therefore possible to suppose the existence of a transverse graben following the line Tiel-Dieren. The sudden deflection of the rivers is perhaps partly caused by this graben."

We can remark in this connection that this transverse graben is still better visible in the Δ -chart than in Hart-Mann's chart. The magnetic maximum near the Utrecht ridge is not visible on the G-chart, the spur to the Neder-Veluwe, however, coincides with a slight gravimetric maximum of +5 mgal.

HARTMANN continues:

"To the east of the magnetically positive disturbed region of the Utrecht ridge lies a negative region. Probably the Rhine Graben which could be followed to the Ysel east of Arnhem is continued in the NW direction, slightly shifted to the NE. The east border of this graben may be supposed to lie near Apeldoorn. East of it the high ground of the east part of the Netherlands begin probably to rise stepwise. The west border of the graben is supposed to follow a line drawn over Voorthuizen".

The graben, supposed to exist by Hartmann, is very clear from a gravimetric viewpoint. Besides, we see that on the *G*-chart a minimum region in the province of North-Holland is visible as a continuation of this Rhine graben. Also from a magnetic viewpoint this continuation in NW-direction through the centre of North-Holland is quite evident. Hartmann remarks about the magnetic anomalies in the province of South-Holland:

"Parallel to the zone with positive magnetic anomalies in "het Gooi" and Utrecht, a zone with negative values runs SW of it through Nieuw Vennep and Vreeswijk. Further to the SW the anomalies increase first, but soon they decrease again so that a second zone of minima seems to run from Leidschendam over Zevenhuizen in the direction of Gorinchem. It is obvious to suppose a secondary horst to lie between these two more negatively disturbed regions".

Further, according to Hartmann a graben can faintly be perceived near the Nieuwe Waterweg and he attempts to connect it with the bed of the original Rhine, as constructed from the location of fossils of *Viviparus glacialis*. This graben is not visible on the complete Δ -chart; however, we see a strongly curved minimum region over the South-Holland islands, bordered in the north by a small maximum over the Waterweg. The corresponding gravimetrically negative region is situated more northward and its axis coincides with Nieuwe Waterweg. Further we see on the G-chart a maximum extending from The Hague

¹) W. J. van Riel, Geophysische metingen ten behoeve van de Kolenmijnbouw, Mijnbouwkundig Jaarboek 1947.

in SE-direction to the Lek. This sustains Hartmann's supposition of a secondary horst in the graben: the complete Δ -chart shows a positive strip between the Hague and Haarlem.

HARTMANN remarks about the province of North-Holland: "The whole of the province is negatively disturbed in a magnetic sence. Nearly the whole province shows negative anomalies of the gravity as well. We find the minimum of the magnetic anomaly near Alkmaar and Hoorn. Faber's geological profile which indicates a broad graben, is in accordance with this minimum. This whole province belonged to the small region, which was flooded by the Eemsea. On the other hand the sea of the Highterrace did not penetrate here, but did so into the graben south of the town of The Hague, which remained dry during the irruption of the Eemsea.

To the northeast the value of the anomaly of the vertical component increases again and near Staveren (station 74) a positive anomaly of $+15\gamma$ is found. The basement rock probably rises stepwise in that direction.

The NW-SE line, drawn SW along the isles of Texel and Wieringen, formed the shore of the sea of the Highterrace, the Eemsea and the sea of the Boreal-Atlanticum. In the first case the isles of Texel and Wieringen were flooded, in the two other cases they remained dry, whereas the sea flooded the province of North-Holland (TESCH 1939).

It is obvious, therefore, to suppose the existence of a faultline sowewhere near here, wich borders the Alkmaar graben to the northeast. The diluvium is situated higher in the isles of Texel and Wieringen than elsewhere in the province of North-Holland. The tectonically higher structure of Texel may at the same time explain the fact that the coast-line juts out in a northwest direction, a phenomenon which appeared on a larger scale in the situation of the original reefs. Probably Gaasterland forms also part of this zone of horsts."

Let us now have a look at the centre of East Netherland. Beyond the German frontier we see a strong magnetical and gravimetrical maximum, the maximum of Lingen, which makes its influence felt within the Netherlands. This is part of the crystalline massif of Bramsche, situated more towards the east. The high grounds of the Achterhoek are magnetically as well as gravimetrically disturbed by positive variations. The magnetic minimum in the centre of the Achterhoek nearly coincides with a saddle-region between two positive regions in the G-chart. It is obvious therefore, to suppose here the existence of a graben, as indicated already by VAN WATERSCHOOT VAN DER GRACHT between Buurse and Rekken. Northwest of it a magnetically negative strip extends through West-Overijsel and Southwest Friesland, in which all isanomals are stretched out in a northwest direction. The corresponding region in the gravimetric chart is positive and points to a maximum over South Friesland and the head of Overijsel. Here the gravimetric and the magnetic maps are contradictory. HARTMANN writes about this:

"Since the Jura the high grounds of the Achterhoek and Twente have sunk considerably less than the region north of it, where very thick mesozoic and tertiary layers were deposited. If we assume that the gravimetric horst (here the maximum over the nortwestern part of Overijsel is meant) is relatively young, its abnormal magnetic field can be explained by the great thickness of the calcareous mesozoic sediments. The susceptibility of limestone and marl is verry small, much smaller than the susceptibility of other sediments. Their density, however, is greater than the density of sands and clays. Owing to the rising of the horst these very thick mesozoic layers have come to lie higher than in their surroundings. By their greater density they cause a positive gravity anomaly. However, by their smaller susceptibility these layers can cause a negative magnetic disturbance. The crystalline basement, which is situated at a rather great depth notwithstanding the rising, has a smaller influence upon the magnetic field, so that a negative anomaly may be the result of the elevation".

It is also possible to conceive the presence of a graben in the crystalline basement, filled with sediments of great density, which are responsible for the gravity maximum. This interpretation is simpler than HARTMANN's. A decision between the two is not possible for the time being, through lack of knowledge of the deeper substructure. A negative strip runs through the provinces of Drente and Groningen in the Netherlands direction SE-NW, which it is possible to follow in the Wadden Sea north of Groningen. The G-chart too shows a negative region getting deeper in the NW direction. At the northeast side this strip is bordered by an extensive magnetic maximum, the oblong centre of which is situated over the Eems and the Dollart. Presumably a crystalline ridge can be found here, which follows the graben through the province of Groningen. HARTMANN remarks about this graben that the Eemsea-transgression has been able to penetrate here only along a narrow bay from the Lauwersea to the Lake of Zuidlaren. The region west of this graben, the greater part of the province of Friesland and the Wadden Sea show a positive magnetic anomaly. The gravity anomaly is negative here though an increase of the gravity must exist from NW-Friesland to the isles of Vlieland and Terschelling. Just as in South-Friesland a contradiction is also present in North-Friesland between the magnetic and the gravimetric maps. Most remarkable is the narrow tongue of positive magnetic anomalies penetrating from the Wadden Sea in an eastward direction into Friesland. A narrow ridge in the crystalline basement may be responsible for it. The isolated negative anomaly on the isle of Ameland is not quite certain, it may be caused by an error.

Finally we see in the Wadden Sea between the isles of Texel, Vlieland, Terschelling and the Friesian coast a very strong and steep magnetic maximum, the anomaly in the centre situated at the Inschot fairway reaching a value of more than 200y. The cause of this strong disturbance, visible in all magnetic charts, is completely unknown. Up to now neither gravimetric nor seismic investigations have been carried out in this region, but it will be very interesting to compare the results of these investigations, which we hope will not be postponed much longer, with the magnetic anomalies. The limited area of this disturbance, the steep gradient and the high value of its maximum are only comparable with the disturbances near the south

frontier of our country, where the crystalline rocks with a considerable magnetite content are found close under the surface

Magnetic anomalies and seismicity.

By J. P. Rothé ¹) attention is drawn to the fact, that in some cases a relation can be found between the epicenters of earthquakes and magnetic anomalies. It was found in Japan that the epicenters of some recent heavy earthquakes were situated in magnetically strongly disturbed regions, where moreover the geomagnetism showed an abnormally strong secular change. In France, too, centres of earthquakes are found on the axis of the magnetically Basin of Paris and here also important changes of the anomalies occurred from the year 1896 to 1924. Rothé ascribes this fact to magnatic displacements which at the same time cause the earthquakes and the changes of the geomagnetic field.

In the Netherlands earthquakes are very rare phenomena. We borrow from the surveys of VISSER ²) and VAN RUM-MELEN ³) the following. In the years 1833, 1850 and 1883 shocks have been felt in the provincies of North- and South-Holland with epicenters in the neighbourhood of Haarlem. Quakes are also mentioned near Harderwijk in the years 1781, 1824, 1859 and 1906. Furthermore in the year 1829 a shock was observed in Zwolle and in the year 1843 in Blokzijl. In the southern part of our country earthquakes are more numerous than in the northern part. Seve-

ral epicenters were found on the eastern border of the Central Graben: Tiel (1928, 1932), Uden and Veghel (1843, 1848, 1932), Dinter (1848), Vught (1932), Asten (1932), Gratem (1906), Roermond (1851). The town of Sittard situated on the western border of the Central Graben experienced a very slight earthquake in the years 1918 and 1931. Several times shocks have been observed related with movements along the Feldbiss, an important tectonical disturbance in the region of the Limburg mines: Herzogenrath (1873, 1874, 1877) and Rolduc (1928). Also related to faults are the quakes of Heerlen (1914) and Voerendaal (1930). It is evident therefore that even in recent years movements occur along the fault planes in the South of the Netherlands. The most important shocks are connected with shifts in the fault-region between the Central Graben and the Peelhorst. The epicentres, however, are not found in the axis of the magnetic anomaly as in France, but along the western border of the related magnetic maximum. To what extent sudden changes in the magnetic anomalies are caused by the tectonical movements is a question which cannot be answered as the surveys of 1892 and 1945 differ too much in accuracy. Probably, the shocks in the northern part of the Netherlands are also of tectonical origin. The epicenters of Harderwijk, Zwolle and Blokzijl are indeed situated in transition-regions between magnetic maxima and magnetic minima and are perhaps related to movements along the borders of the Alkmaar graben. The Δ -chart and the G-chart give the impression that this graben extends via the Veluwe through the province of North-Holland as a continuation of the Rhine graben, which from a seismic viewpoint is still active. It is not possible to relate the shocks in the neighbourhood of Haarlem to a gravimetric or magnetic structure.

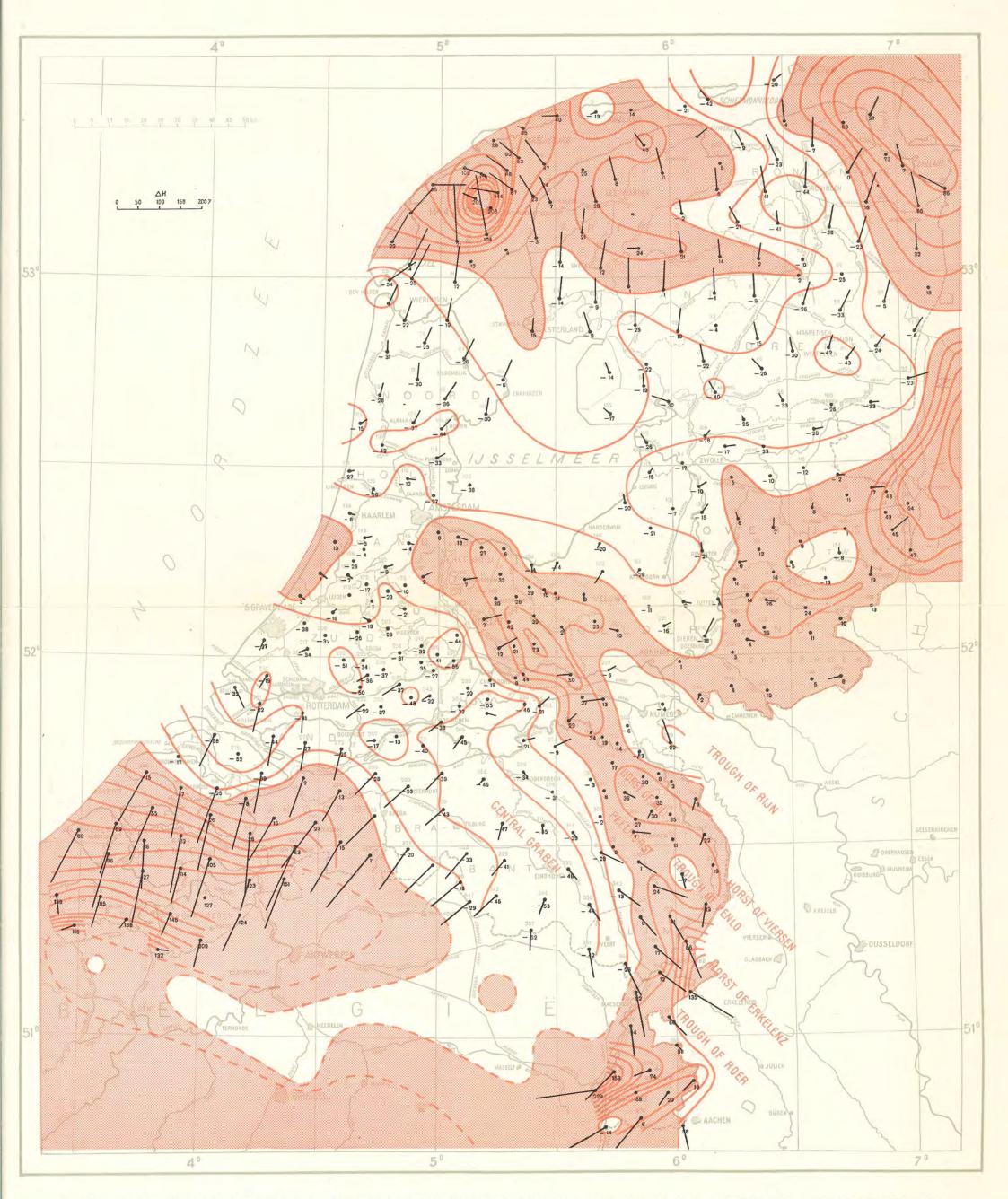
¹⁾ J. P. Rothé, Tremblements de terre et anomalies magnétiques, Geofisica pura et applicata, 12, 1, 1948; Thèses, Paris, 1937.

²) S. W. Visser, Aardbevingen in Nederland, Tijdschrift Ned. Aardr. Genootschap, 59, 494, 1942; Seismologie, Gorinchem, 1949.

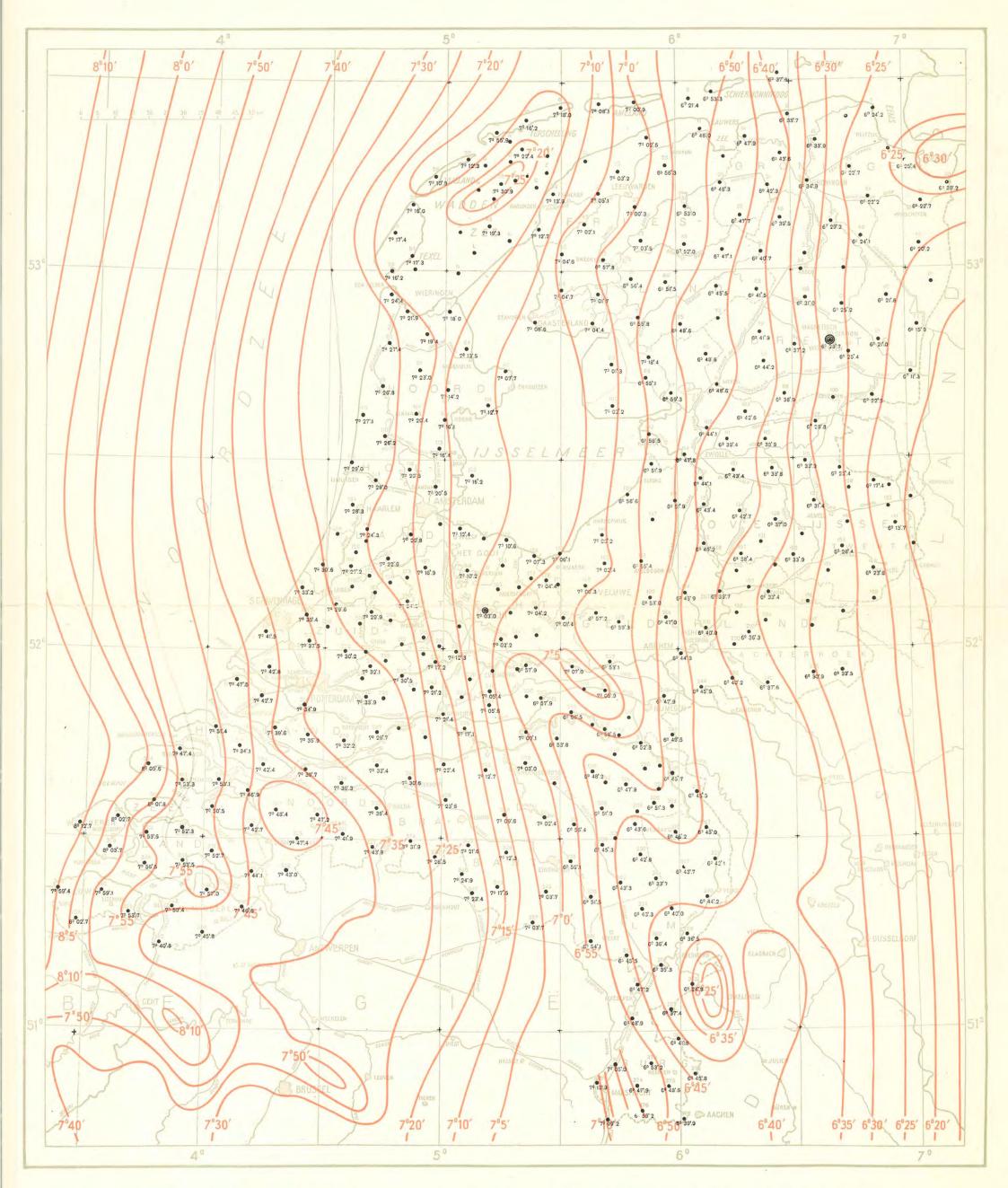
³) F. H. VAN RUMMELEN, Overzicht van aardbevingen enz. Mededelingen Jaarverslag Geologisch Bureau te Heerlen, 1945.

VALUES OF THE GEOMAGNETIC ELEMENTS AT EPOCH 1945.0

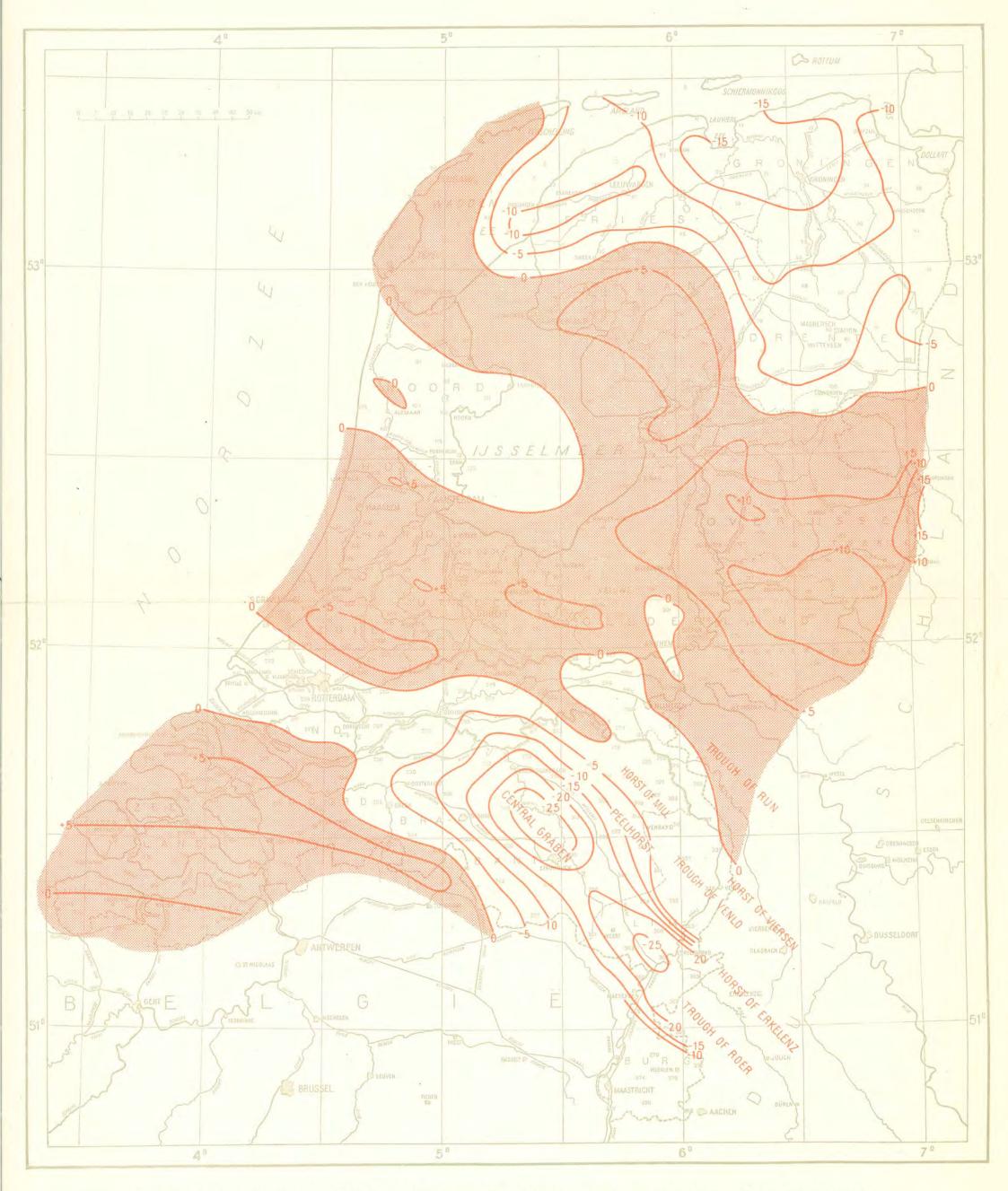
•	Name of station	φ	λ	—D	Н	X	Y	z	Δx	ДУ	ΔZ
-	Possbulant	53° 31′.59	6° 26′.85	6° 37′.6	17600γ	17482y	2031γ	 44191γ	 + 14γ	 + 21γ	20y
I 2	Boschplaat	53° 28′.52	6° 09′.74	6° 53′.3	17627γ	17402γ	2031 <i>y</i> 2114 <i>y</i>	44144y	+ 2Iγ	— 17γ	- 42γ
3	Engelsmanplaat	53° 27′.75	6° 03′.43	6° 21′.4	17637γ	17529γ	1953γ	44158y	$+\frac{1}{48\gamma}$	+159y	$-2i\gamma$
4	Burum	53° 27′.02	5° 49′.12	7° 00′.9	176042	17472γ	2150γ	441877	3γ	_ 2γ	+ 147
5	Hollum	53° 26′.83	5° 39′ 70	7° 08′.1	17598y	17462y	2186y	44158y	— 7γ	— 13γ	13γ
	Oost-Terschelling	53° 26′.63	5° 29′.43	7° 18′.0	17604γ	17462γ	2237y	44210y	Ιγ	<u> </u>	+ 40γ
7	Spijk	53° 25′.64	6° 52′.26	6° 24′.2	17684γ	17574γ	1972γ	44258γ	$+$ 42 γ	+ 20γ	+ 97γ
8	Westernieland	53° 25′.14	6° 29′.65	6° 38′.7	17695γ	17576γ	2048γ	44162γ	+ 57γ	ογ	+ 4γ
9 10	Oosternieland Den Hoorn	53° 24′.40 53° 24′.25	6° 44′.55 5° 20′.50	7° 16′.2	17618y	17477γ	2230γ	44220γ 44218γ	$+3\gamma$	— 8 _γ	+ 69γ + 68γ
11	Anjum	53° 22′.36	6° 06′.16	6° 46′.0	17668y	17545γ	2082γ	442107	+ 20y	+ 272	1 007
12	West-Terschelling	53° 22′.22	5° 12′.63	7° 55′.9	176137	174442	2430γ	44222γ	- 41y	-188 ₂	$+$ 88 γ
13	Blija	53° 21′.42	5° 52′.36	7° 02′.5	176862	17552γ	2168y	44169y	+ 312	— 25γ	+ 43γ
14	Zoutkamp	53° 21′.36	6° 18′.40	6° 47′.9	17700)	17575γ	2095γ	44117γ	+ 34 γ	— 17y	— 9γ
15	Middelstum	53° 20′.87	6° 36′.77	6° 33′.9	17745γ	17629γ	2029γ	441157	+ 70γ	+ 4 γ	<u>-</u> 7γ
16	Oostmeep	53 19 .57	5° 19′.40	7° 22′.4	17694γ	175487	227Iy	44163γ	+ 37 γ	<u> — 44γ </u>	$+$ 52 γ
17	Farmsum	53° 19′.22	6° 56′.32	60 15/6		-=600	2080	44181γ	624	224	+ 73γ
18	Ezinge	53° 18′.77 53° 18′.29	6° 27′.30 6° 12′.40	6° 43′.6	17754γ 17723γ	17632γ	2080γ	44081γ 44108γ	$+ 63\gamma$	-23γ	$\begin{array}{c c} -23\gamma \\ +8\gamma \end{array}$
19 20	Oost-Vlieland	53° 17′.91	5° 05′.30	7° 12′.3	17/237 176307	17494y	22IIy	44203y	19y	+ 56γ	+ 80γ
21	St. Jacobi-Parochie	53° 17′.64	5°.36′.15		-, 030y	~ / サンサ/		44120y		1	+ 257
22	Borgsweer	53° 17′.25	7° 00′.43	6° 25′.4	17773γ.	17661γ	1988γ	44098γ	+ 56γ	— 13y	$+$ $\frac{-37}{7\gamma}$
23	Rinsumageest	53° 16′.90	5° 57′.28	6° 56′.3	17753γ	17622γ	2145γ	44100y	+ 62γ	— 11γ	+ 11γ
24	Woltersum	53° 16′.48	6° 45′ 74	6° 22′.7	17770γ	17660γ	1974γ	44085y	+ 60γ	+ 39 γ	ογ
25	Stiens	53° 16′.00	5° 44′.63	7° 03′.2	17748γ	17613γ	2179γ	440897	+ 55γ	— 14γ	$+8\gamma$
26	West-Vlieland	53° 15′.31	4° 56′.79	7° 10′.9	17661γ	17523γ	2208γ	44162γ	- 5γ	+ 77γ	$+86\gamma$
27 28	Groningen	53° 14′.37 53° 14′.25	6° 34′.35 6° 11′.44	6° 34′.9 6° 48′.3	17785γ 17768γ	17668y 17643y	2039γ 2105γ	44023γ 44072γ	+ 59γ + 51γ	$\begin{array}{c c} + & 3\gamma \\ - & 6\gamma \end{array}$	$+$ 5γ
29	Griend	53° 14'.15	5° 13′.90	7° 30′.9	17715γ	17563y	2317γ	44210y	$+$ 14 γ	-74γ	$+144\gamma$
30	Nieuw-Statenzijl	53° 14′.06	7° 11′.71	6° 30′.2	177862	17672γ	20147	44151γ	$+33\gamma$	-65γ	+ 862
31	Zuidhorn	53° 13′.73	6° 24′.11	6° 42′.3	177917	176692	2077γ	44020y	+ 642	9y	- 41γ
32	Menaldum	53° 12′.58	5° 39′.56	7° 05′.1	17758γ	17622γ	21907	44073γ	+ 40γ	— 10γ	+ 207
33	Wijnaldum	53° 12′.35	5° 27′.59	7° 13′.9	177787	17637γ	2238y	44058γ	+ 6 3 γ	28y	+ 72
34	Noordbroek	53° 11′.65	6° 50′.51	6° 22′.2	17818γ	17708γ	1977γ	44061γ	+ 67γ	$+$ 26 γ	+ 16γ
35	De Cocksdorp	53° 11′.02	4° 50′.86	7° 16′.0 6° 22′.7	17759γ	176167	2246γ	447020	+ 60y + 80y	$+$ 56 γ	650
36 37	Beerta	53° 10′.74 53° 10′.41	7° 04′.35 5° 49′.25	7° 00′.3	17848γ	17738γ	1983γ	44103γ	+ 807	<u> — 14γ</u>	$+65\gamma$
38	Oostermeer	53° 10′.39	6° 02′.18	6° 53′.0	177797	17651γ	2131γ	44033γ	·+ 36γ	— 6 _γ	_ 2γ
39	Marum	53° 09′.08	6° 16′.47	6° 47′.7	177987	17673γ	21067	44003γ	$+38\gamma$	- 17y	— 21γ
40	Roden	53° 08′ 60	6° 27′.06	6° 39′.5	17798γ	17678γ	2064y	43979γ	+ 30γ	Iy	— 41γ
41	Noordlaren	53° 07′.85	6° 40′.72	6° 29′.2	17829γ	177157	2014γ	43975γ	$+$ 52 γ	+ 15γ	— 38γ
. 42	Wommels	53° 07′.42	5° 35′.89	7° 02′.1	17809γ	17675γ	2181γ	44031γ	$+$ 56 γ	+ 10γ	+ 21γ
43	Paardenhoek Zurich	53° 07′ 35 53° 06′ 90	5° 11′.07 5° 24′.30	7° 19′.3 7° 12′.7	17890y 17834y	17744γ 17692γ	2280γ 2239γ	44113γ 44003γ	+ 144γ + 78γ	— 27γ — 18γ	+104 <i>γ</i> - 3 <i>γ</i>
44 45	De Koog	53° 06′.29	4° 46′.09	7° 17′.4	17827y	17683y	2262y	44022y	+ 92γ	$+$ 55 γ	+ 22y
46	Wildervank	53° 05′.50	6° 48′.36	6° 24′.1	178582	177462	1991γ	439712	$+$ 58γ	+ 20γ	— 23γ
47	Grouw	53° 04′.98	5° 50′.78	7° 03′.5	177847	17650y	2185y	440147	+ Ιγ	— 29y	+ 247
48	Nieuw-Beets	53° 04′.31	6° 01′.90	6° 52′.0	17840γ	17712γ	2133γ	44005y	+ 507	- 5γ	+ 21y
49	Wedde	53° 04′.02	7° 03′.55	6° 20′.2	17880y	17771γ	1973γ	44013γ	+ 60γ	+ Ιγ	+ 32γ
50	Duurswoude Veenhuizen	53° 03′.66 53° 02′.98	6° 12′.12 6° 21′.98	6° 47′.1 6° 40′.7	17842y 17841y	177177	2108y	439937	$\begin{array}{c} + 41\gamma \\ + 32\gamma \end{array}$	$\begin{array}{cccc} - & 5\gamma \\ + & 4\gamma \end{array}$	+ 14γ + 2γ
51 52	Tjerkwerd	53° 02′.92	5° 30′.03	7° 04′.6	178602	17720y 17724y	2075γ 2200γ	43975γ 43959γ	+ 74y	$\begin{vmatrix} + & 4\gamma \\ + & 9\gamma \end{vmatrix}$	- 14γ
53	Zeijen	53° 02′.75	6° 33′.71	, - 1	, ,	., 11	'	43960γ		' '	_ 10γ
54	Oudeschild	53° 02′.63	4° 51′.01	7° 17′.3	17857γ	17712γ	2265γ	43967γ	+ 90y	+ 41γ	- 4γ
55	Sneek	53° 02′.13	5° 40′.96	6° 57′.8	17866γ	17733γ	2166γ	43978γ	+ 697	+ 16γ	+ 12γ
56	Assen	53° 00′.37	6° 32′.82		17895γ			43953γ			+ 2γ
57	Eext	53° 00′.32	6° 43′.87 4° 45′.46	7° 16′.2	17885y	17687y	2256y	43926y	+ 49y	4 600	— 25γ — 54γ
58 59	Joure	53° 00′.16 52° 58′.96	5° 48′.27	6° 56′.4	17830γ 17895γ	17087γ 17764γ	2250γ 2162γ	43895γ 43940γ	+ 49γ + 70γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54γ + 1γ
59 i 60	Heerenveen	52° 58′.35	5° 57′.27	6° 51′.5	17095γ . 17905γ	17777γ	2102y 2138y	43940γ 43936 γ	$+70\gamma$	$+$ 5 γ	$\begin{vmatrix} + & i\gamma \\ + & i\gamma \end{vmatrix}$
61	Sellingen	52° 57′.84	7° 06′.33		179137	.,,,,	-3-7	43948γ	' '-'].	+ 187
62	Nijeberkoop	52° 57′.81	6° 10′.60	6° 45′.5	17906γ	17782γ	2107γ	43929γ	+ 62γ	+ 2γ	— 1 γ
63	Appelsga	52° 57′.22	6° 20′.87	6° 41′.5	17911γ	17789γ	2087γ	43916y	+ 55γ	— 3 γ	- 9γ
64	Brandeburen	52° 57′.08	5° 30′.22	7° 04′.7	17883γ	17747γ	2204γ	43910γ	+ 51γ	$+$ 6γ	— 14γ
65	Woudsend	52° 56′.44	5° 39′.47	7° 01′.7	17899γ	17765γ	2190γ	43909γ	+ 57γ	2γ	9γ
66	Den Helder	52° 56′.43	4° 45′ 45	7° 24′.4 6° 21′.8	17863γ	177147	2303y	4207001	+ 47γ + 46γ	+ 20γ + 12γ	
67 68	Buinerveen	52° 55′.95 52° 55′.74	6° 55′.28 6° 33′.72	6° 31′.0	17925γ 17924γ	17814y 17808y	1987γ 2034γ	43910γ 43886γ	+ 46γ + 55γ	+ 12γ + 19γ	— 5γ — 26γ
69	Schoonlo	52° 54′ ·53	6° 43′.70	6° 25′.2	17930γ	178187	2005γ	43869y	$+47\gamma$	$+$ $\frac{19\gamma}{24\gamma}$	— 33γ
70	Breezand	52° 54′.01	4° 49′.71	7° 21′.9	178857	17738γ	2293γ	43876γ	$+49\gamma$	+ 21γ	-22γ
71	Den Oever	52° 53′.70	5° 00′.80	7° 18′.0	179007	17755γ	2274γ	43876γ	+ 55γ	+ 12γ	— 19γ
72	Delfstrahuizen	52° 52′.77	5° 49′.93	6° 55′.8	17936γ	17804γ	2164γ	43862y	+ 60γ	ογ	— 25γ
73	Wilhelminaoord	52° 52′.70	6° 10′.90		17929γ			43883γ		1 .	— 4γ
74	Stavoren	52° 52′.02	5° 23′.09	7° 08′.6	17904γ	17766γ	2226γ	43896γ	$+36\gamma$	$+$ 5 γ	+ 15γ
75 76	Wolvega	52° 51′.83	6° 01′.06	6° 48′.6	179457	178187	2128y	438617	+ 58γ	+ 8γ	— 19y
76	Takozijl	52° 51′.71 52° 51′.19	5° 38′.35 7° 02′.30	7° 04′.4 6° 15′.9	17930γ 17951γ	17794y 17844y	2208γ 1959γ	43871γ 43869γ	+ 50γ + 33γ	$+ 24\gamma$	$\begin{array}{c c} - & 9\gamma \\ - & 6\gamma \end{array}$
77 78	Dwingelo	52° 50′.47	6° 21′.66	6° 41′.9	17951γ	17832γ	2094γ	43854γ 43854γ	$\begin{array}{c c} + 337 \\ + 467 \end{array}$	$\begin{bmatrix} + 24\gamma \\ - 8\gamma \end{bmatrix}$	$ 0\gamma$ $ 15\gamma$
79 79	Oostwaard	52° 50′.07	4° 54′.88	7° 19′.4	17912γ	17766γ	2283γ	43840y	+ 42γ	+ 20γ	-25γ
80	Witteveen	52° 48′.79	6° 40′.09	6° 28′.7	17963γ	178487	2027γ	438137	+ 3 6γ	+ 14γ	-42γ
81	Emmen	52° 48′.75	6° 52′.27	6° 21′.0	17960γ	17850γ	1986γ	43831γ	+ 28y	+ 25γ	- 24y
82	Schagen	52° 48′.67	4° 45′.09		179107	17759γ	2324γ	43823γ	+ 31γ	+ 4γ	— 31γ
83	Wijster	52° 48′.01	6° 30′.73	6° 37′.2	17976y	17856γ	2072γ	1 43818γ	$1 + 44\gamma$	Ι 8γ	— 30γ


	Name of station	φ	λ	_D	Н	X	Y	Z	ΔX	ΔY	∆z
84	Medemblik	52° 47′.70	5° 05′.32	7° 13′.5	17937γ	17794γ	2256γ	438197	+ 447	+ 22γ	_ 26γ
85	Steenwijk	52° 46′ 90	6° 07′.79	6° 48′.6	17969γ	17843γ	2131γ	43817γ	+ 407	9γ	- 22γ
86	Benneveld	52° 46′.88	6° 44′.51	6° 25′.4	17971γ	17858γ	2010γ	43796γ	+ 28y	+ 21γ	-43γ
87 88	Blankenham	52° 46′.45 52° 44′.48	5° 52′.93 6° 22′.71	7° 18′.4 6° 44′.2	17969y 17980y	17823y 17856y	2285y 2109y	43813γ 43793γ	$\begin{array}{c c} + 27\gamma \\ + 23\gamma \end{array}$	-125γ -23γ	-22γ -26γ
89	Rutten	52° 44′.48° 52° 45′.18	5° 43′.12	7° 01′.3	17956γ	17822y	2195γ	43/93/ 43810y	$+ 24\gamma$	— 23γ — 11γ	- 14y
90	Andijk	52° 44′.64	5° 15′.67	7° 07′.7	17973γ	178342	2230γ	43814γ	$+$ 52 γ	+ 242	- 6γ
91	Nieuwe Niedorp	52° 44′.20	4° 53′.08	7° 23′.0	17954γ	17805γ	2307γ	43786γ	+ 36γ	+ 3γ	— 30γ
92	Klazienaveen	52° 43′.55	7° 00′.63	6° 11′.3	17986γ	17881y	1939γ	43788γ	+ 12γ	+ 53γ	— 23γ
93	Marknesse	52° 42′.95	5° 52′.05	6° 55′.1	17983γ	17852γ	2166γ	43787γ	+ 30γ	- 2γ	— 19γ
94	Meppel	52° 41′.92 52° 41′.70	6° 10′.53 4° 43′.73	6° 48′.6 7° 26′.8	17999γ 17958γ	17872γ 17807γ	2134γ 2327γ	43758γ 43767γ	+ 28y + 26y	— 16γ + 8γ	— 40γ — 28γ
95 96	Wognum	52° 41′.02	5° 00′.47	7° 14′.2	17980γ	17837γ	2265γ	43754γ 43754γ	$+38\gamma$	+ 282	-36γ
97	Vollenhove	52° 40′.50	5° 58′.39	6° 59′.3	179982	178642	2190γ	43753γ	+ 172	- 41y	-32γ
98	Kerkenbosch	52° 40′.47	6° 28′.03	6° 38′.9	180107	178897	2085γ	43752γ	+ 207	10γ	— 33γ
99	Oud-Schoonebeek	52° 39′.82	6° 50′.64	6° 22′.5	18004γ	17893γ	1999γ	43747γ	+ 2γ	+ 20γ	— 33γ
100	Coevorden	52° 39′.67	6° 40′.59	_0/_	18008γ	966		43753γ			— 26γ
101	Oosterleek	52° 38′.66	5° 10′.89	7° 12′.7 7° 02′.2	18008γ 18001γ	17866y 17866y	2261γ	43740γ	+ 41γ + 15γ	$+8\gamma$	30γ
102	Nagele	52° 38′.49 52° 37′.62	5° 43′.33 6° 17′.82	6° 42′.6	18001γ	17894γ	2205y 2105y	43752γ 43736γ	+ 15γ + 11γ	$-$ 17 γ $-$ 4 γ	- 17γ - 25γ
104	Ursem	52° 37′.31	4° 52′.23	7° 20′.4	17995γ	17847γ	22997	43722γ	+ 25γ	$+$ 16γ	-37γ
105	Egmond aan Zee	52° 37′.17	4° 38′.47	7° 27′.I	179782	17826γ	2332γ	437432	+ 132	+ 18γ	- 15γ
106	Schardam	52° 36′.20	4° 59′.81	7° 16′.1	180037	17858γ	2278γ	43706γ	+ 22γ	+ 19 γ	— 44γ
107	Collendoorn	52° 35′ 74	6° 36′.04	6° 28′.8	18030γ	17914γ	2035γ	43718γ	+ 2γ	+ 22γ	-28γ
108	Hasselt	52° 35′.14	6° 07′.82	6° 44′.1	18036γ	17911γ	2115γ	43713γ	+ 15γ	+ 13γ	-28γ
109	Kampen	52° 34′.41 52° 33′.76	5° 52′.76	6° 56′.5 7° 26′.2	18042γ	179107	21817	43709y	+ 20γ + 7ν	— 15γ - 7ν	-26γ
111	Akersloot	52° 33′.76 52° 33′.22	4° 44′.33 6° 13′.10	7 26 .2 6° 39′.4	18002γ 18036γ	17850y 17914y	2330γ 2091γ	43687γ 43708γ	+ 7γ ογ	+ 7γ + 24γ	- 42γ - 17γ
111	Ommen	52° 33′.20	6° 22′.72	6° 38′.9	18045γ	179147 179247	2091γ	43708γ 43702γ	+ 2γ	$\begin{array}{c c} & + & 24\gamma \\ & + & 2\gamma \end{array}$	$-\frac{1}{23}\gamma$
113	Kwadijk	52° 31′.75	4° 58′.23	7° 16′.4	18025γ	178807	2282γ	43680γ	+ 10γ	+ 21γ	-33γ
114	Zwolle	52° 30′.71	6° 01′.98	6° 47′.8	18059γ	17932γ	2137γ	43686γ	+ 7γ	$+$ 8γ	- 17γ
115	Mariënberg	52° 29′.61	6° 33′.40	6° 33′.9	18067γ	17949γ	2066γ	43683γ	- 9γ	+ 1γ	12γ
116	Wijk aan Zee	52° 29′.55	4 35 .90	7° 29′.0	18025γ	17872γ	2347γ	43667γ	+ 2γ	+ 13γ	-27γ
117	Oosterwolde	52° 29′.22	5° 53′.65	6° 51′.9	18070γ	17940γ	2160γ	43676γ	+ 9γ	+ 6γ	15γ
118	Zaandijk	52° 28′.55 52° 28′.49	4° 50′.67 6° 42′.23	7° 20′.5 6° 25′.4	18033γ 18086γ	17885γ 17972γ	2304γ 2023γ	43674γ 43683γ	— 4γ — 2γ	+ 20γ + 22γ	— 12γ — 2γ
119	Lemelerberg	52° 28′.39	6° 24′.48	6° 38′.8	18077γ	17956γ	2023γ	43675γ	-5γ	$-\frac{22\gamma}{2\gamma}$	— 10γ
121	Hoonhorst	52° 28′.23	6° 14′.70	6° 43′.4	180792	17955γ	2117γ	43688γ	ογ	$-\frac{7}{3\gamma}$	+ 5γ.
122	Marken	52° 27′.68	5° 06′ 20	7° 16′.2	18051γ	17906γ	2284y	43641γ	2γ	$+$ $i\gamma$	— 38γ
123	Wapenvelde	52° 26′.92	6° 06′.08	6° 44′.1	18098γ	17973γ	2122γ	43662γ	+ 14γ	+ 15γ	— 10 <i>γ</i>
124	Beverwijk	52° 26′.73	4° 42′.02	7° 29′.0	18035γ	17882γ	2349γ	43645γ	— 16γ	— 2γ	26γ
125	Vasse	52° 26′.18	6° 50′.91	6° 17′.4	18109γ	18000γ	1984γ	43683γ	+ 2γ	$+$ 41 γ	+ 17γ
126	Broek in Waterland Oud-Ootmarsum	52° 25′.75 52° 25′.55	4° 57′.71 6° 55′.01	7° 20′.5	18055γ	17907γ	2307γ	43636γ 43709γ	- 9γ	+ 1γ	-27y + 48y
127	Geesteren	52° 25′.23	6° 44′.51					43/697 436697		•	+ 11γ
129	Nunspeet	52° 24′.63	5° 46′.82	6° 56′.6	18110γ	17977γ	21897	43633γ	. + 15γ	— 3γ	— 20γ
130	Denekamp	52° 23′.56	7° 00′.13		181492			437087			$+$ 64 γ
131	Heerde	52° 23′.46	5° 59′.54	6° 51′.9	18113γ	17983γ	2165y	43636γ	+ 2γ	— 11γ	<u>-</u> 7γ
132	Wierden	52° 23′.20	6° 35′ 47	6 31 .4	18140γ	18023γ	2060γ	43649γ	+ 13γ	+ 4γ	$+$ 8γ
133	Veesen.	52° 22′.85	6° 07′.07 4° 36′.26	6° 43′.4 7° 28′.3	18132γ	18008γ	2123γ	436237	+ 17γ 4ν	+ 13γ	— 15γ — 8γ
134	Overveen	52° 22′.81 52° 22′.26	6° 54′.71	7 28 .3	18074γ	17920γ	2350γ	43630γ 43683γ	- 4γ	+ 13γ	$+49\gamma$
135	Raalte	52° 21′.79	6° 15′.88	6° 42′.7	18146γ	18022γ	21217	43635γ	+ 16γ	- 7γ	$+6\gamma$
137	Tepelberg	52° 20′.36	5° 53′.62		18136γ		,	43597γ	,	,,	- 21γ
138	Holterberg	52° 20′.18	6° 25′.07	6° 37′.0	18166y	18045γ	2093γ	43623γ	+ 19y	— τγ	+ 7γ
139	Waveren	52° 19′.82	4° 58′.96					43621γ			+ 8γ
140	Zenderen	52° 19′.71	6° 43′.63	69-21-	-9-00	*9096	*0 = (43613γ			+ 1γ
141	Oldenzaal	52° 19′.40 52° 19′.21	6° 56′.30 5° 04′.10	6°13′.7 7°12′.4	181937 181087	18086y 17964y	1974γ 2272γ	43655γ 43621γ	+ 31γ - 8γ	+ 40γ + 23γ	+ 45γ + 13γ
142	Hoofddorp	52° 18′.92	4° 40′.35	7° 24′.3	18113y	17962y	2334γ	43603γ	$+$ 5γ	+ 21γ	-3γ
144	Hillegom	52° 18′.26	4° 32′.52		18104γ	121	22.57	43613γ	, ,	,	$+$ 13 γ
145	Amstelveen	52° 18′.22	4 51 .38	7° 20′.8	18116y	17967γ	2316γ	43596γ	- 4γ	+ 12γ	- 4γ
146	Ermelo	52° 18′.10	5° 40′.69	7° 00′.2	181297	17994γ	2210γ	43579γ	— 15γ	6γ	— 20γ
147	Rijssen	52° 17′.98	6° 31′.90		İ			43607γ		•	$+$ 9 γ
148	Naarden	52° 17′.48	5° 10′.30	go - 2/6	181201	17000-	2267	436217	0	_L +	+ 27γ + 6γ
149	Blaricum	52° 17′.31	5° 16′.02	7° 10′.6	18130γ	17988γ	2265γ	43598γ	— 8γ	+ιγ	+ 6γ 4ν
150	Nieuw Vennep I Bofink	52° 17′.18 52° 16′.68	4° 39′.74 6° 21′.27					43587γ 43599γ			- 4γ + 12γ
152	Deventer	52° 16′.60	6° 06′.75	6° 45′.2	18177γ	180517	2138γ	43565γ	+ 11γ	+ 2γ	- 21y
153	Losser	52° 15′.98	7° 00′.86	(,,				43628γ	,	•	$+$ 47 γ
154	Delden	52° 15′.97	6° 42′.30	6° 28′.4	18197γ	18081γ	2052γ	43573γ	+ 9γ	1γ	— 8γ
155	Nijkerk	52° 15′.62	5° 29′.75	7° 06′.1	18133γ	17994γ	2242y	43574Y	— 25γ	— 9γ	— 4γ
156	Nieuw Vennep II	52° 15′.33	4° 37′.07	60 -07 -		-0-6	0.500	43550γ			— 26γ
157	Bathmen	52° 15′.03	6° 16′.03	6° 38′.4	18183γ	18061γ 18062γ	2102y	435737	+ 2γ	+ 15γ + 4ν	ογ 5γ
158	Markelo Bunschoten	52° 14′.78 52° 14′.88	6° 29′.99 5° 23′.49	6° 33′.9 7° 97′.3	18182γ 18140γ	18002y 18000y	2079γ 2249γ	43566γ 43568γ	— 9γ — 21γ	+ 4γ ογ	5γ 4γ
159	Kudelstaart.	52° 14′.38	5° 45′.38	7° 22′.6	181507	180007	2330γ	435597 435597	$+$ 4γ	+ 157	-9γ
161	Apeldoorn	52° 13′.97	5° 50′.73	6° 55′.4	18170γ	18037γ	2190γ	43536γ 43536γ	ΙΙγ	- 9γ	28γ
162	Garderen	52° 13′.55	5° 41′.39	7° 02′.4	18152γ	180167	2225γ	,	— 30γ	20γ	•
163	Voorhout	52° 13′.40	4° 28′.38	7° 30′.6	18141γ	17986γ	237Ιγ	43561γ	-5γ	+ 16γ	$+$ 1γ
164	Baarn	52° 13′.28	5° 15′.21			.		43594γ	.		+ 35 γ
(65	Verwolde	52° 13′.06	6° 25′.00	_0,	-0			43575γ	_,	,	+ 18γ
66	Abbenes	52° 13′.04	4° 36′.08	7° 27′.2	18143γ	17990γ	2353y	435497	— 10γ 10γ	+ 15γ ± 18α	$-7\gamma + 2\gamma$
67	Vinkeveen	52° 12′.97 52° 12′.50	4° 55′.00 5° 05′.85	7° 16′.9 7° 10′.2	18172γ 18172γ	18025γ 18030γ	2303γ 2268γ	43558y 43559y	+ 11γ + 4γ	+ 18γ + 26γ	+ 2γ + 7γ
68	Loosdrecht										

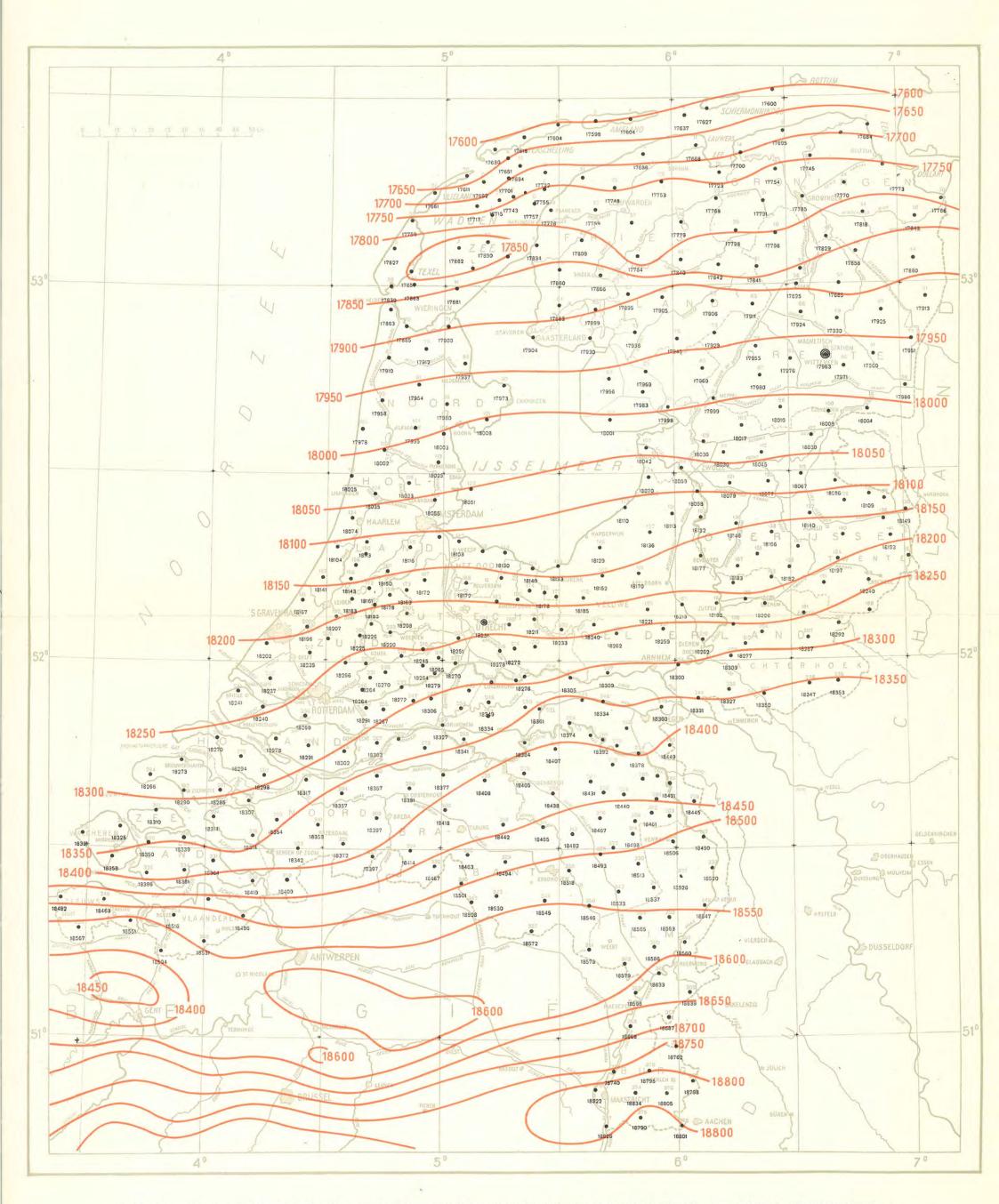
$\overline{}$				T-	TT	37	77	7	∆x	∠lY	∫⊿z
	Name of station	. φ	λ	—D	H	X	Y	Z	/JX	<u> </u>	44
169	Usselo	52° 12′.43	6° 50′.38	6° 23′.6	18240γ	18126γ	2031γ	43570γ	+ 20γ	+ 2γ	+ 19γ
170	Eesterhold	52° 12′.29	6° 15′.27					43562γ			+ 11γ
171 172	Wegdam	52° 11′.98 52° 11′.63	6° 38′.70 4° 40′.68		18161γ			43535γ 43528γ			-13γ -17γ
173	Mijdrecht	52° 11′.43	4° 50′.42		18169γ			43533γ			- 10γ
174	Ham	52° 11′.02	5° 22′.27	_0/ .	-00-		2228	43579γ	T 7		+ 39γ
175 176	Hoevelaken Zevenhoven	52° 10′.98 52° 10′.56	5° 26′.16 4° 46′.16	7° 04′.4	18178y 18178y	18039γ	2238γ	43550γ 43513γ	— 15γ	+ 7y	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
177	Klaarwater	52° 10′.22	5° 29′.29					43564γ			+ 31γ
178	Voorthuizen	52° 10′.14	5° 36′.34	7° 00′.3	18185γ	18049γ	2218γ	43541γ	— 19γ	+ 1γ	+ 9γ
179	Hoogmade	52° 10′.05 52° 09′.74	4° 36′.25 5° 19′.20		18183γ			43555γ			+ 26y
181	Wassenaar	52° 09′.68	4° 23′.64	7° 33′.2	18167γ	18010γ	2388γ	43532γ	— 7γ	+ 13γ	+ 32
182	Almen	52° 09′.57 52° 09′.51	6° 18′.12 5° 13′.94					43542γ			+ 14 <i>γ</i> + 30 <i>γ</i>
183 184	Pijnenburg Zutfen	52° 09′.06	6° 10′.75	6° 39′.7	181827	180592	21097	43557γ 43518γ	— 43γ	+ 247	- 6γ
185	Aarlanderveen	52° 08′.96	4° 42′.16		181937			435147			- 9γ
186 187	Lochem	52° 08′.92 52° 08′.84	6° 23′.15 6° 01′.80	6° 33′.4 6° 43′.9	18226γ 18219γ	18107y 18093y	2081γ 2136γ	43548γ 43519γ	$\begin{array}{cccc} - & 5\gamma \\ - & 4\gamma \end{array}$	$+$ 22 γ $+$ 20 γ	$+ 26\gamma$ $- 2\gamma$
188	Buurse	52° 08′.57	6° 50′.66		102197	100937	21307	43533γ	47	' 20'	+ 13γ
189	Hoenderloo	52° 08′.11	5° 53′.13	6° 53′.0	18221γ	180907	2184γ	43505γ	— 6γ	6γ	— 11γ
190	Zegveld	52° 07′.68 52° 07′.33	4° 50′.52 6° 33′.40	7° 24′.5	18208γ	18056γ	2348γ	43491γ 43533γ	+ 3γ	— 13γ	-21γ $+24\gamma$
191	Leiden	52° 07′.00	4° 32′.20	7° 29′.6	18207γ	18052y	23742	43490γ	+ 8γ	+ 7γ	— 16γ
193	Woudenberg	52° 06′.23	5° 23′.42	7° 04′.2	182117	18072γ	224Ιγ	43539γ	- 17γ	+ 12γ	+ 397
194	De Bilt	52° 06′.06 52° 05′.87	5° 10′.62 4° 41′.20	7° 03′.0 7° 29′.9	18231y 18226y	18093γ 18070γ	2238y 2378y	43505γ 43478γ	+ 12γ + 10γ	+ 47γ — 19γ	+ 7 <i>γ</i> 19 <i>γ</i>
195	Zeist	52° 05′.66	5° 16′.85	7 29.9	102207	100/0/	25/0/	43537γ	1 10,		$+$ 42 γ
197	Lunteren	52° 05′.65	5° 39′.03	6° 57′.2	18240γ	18106γ	2208γ	43520γ	+ 1γ	+ 7γ	+ 25γ
198	Wichmond	52° 05′.60 52° 05′.51	6° 15′.18 6° 42′.46		182927			43514y 43504y			+ 19γ + 10γ
200	Leidschendam	52° 05′ 22	4° 24′.46	7° 35′.4	18196γ	18036γ	2403γ	434547	- 17γ	- 2γ	— 38γ
201	Woeste Hoeve	52° 04′.95	5° 56′.94	6° 47′.0	18259γ	18131γ	2157γ	434757	+ 7γ	+ 14γ	- 16γ
202	Scherpenzeel	52° 04′.66 52° 04′.59	5° 30′.60 4° 45′.95	7° 01′.4	18233y 18220y	18096γ	2229γ	43508γ 43463γ	— 10 <i>γ</i>	+ 7γ	$+21\gamma$ -23γ
204	Stapelbroek	52° 04.′23	6° 22′.28					43519γ			+ 3 6γ
205	Ede	52° 04′.08	5° 44′.94	6° 59′ 3	18262γ	18126γ	2222γ	43492γ	$+4\gamma$	— 21γ	+ 10γ 26γ
206 207	Waddinxveen	52° 03′.82 52° 03′.38	4° 38′.20 6° 34′.53		18225γ 18287γ			43454γ 43487γ			+ 11y
208	Oudenrijn	52° 03′.34	5° 03′.94		18251γ			43432γ			-44γ
209	Zegwaard	52° 03′.30	4° 30′.22	6° 40′.9	T0060m	*0.000	2.72.54	434447	1 4201	300	-32γ -18γ
210 211	Dieren	52° 03′.22 52° 02′.62	6° 07′.18 4° 14′.48	7° 41′.5	18262γ 18202γ	18138y 18038y	2125y 2436y	43457γ 43444γ	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+ 20γ 9γ	$-\frac{16\gamma}{27\gamma}$
212	Hengelo (Gld.)	52° 02′.43	6° 18′.05	6° 36′.3	18277γ	18156γ	2102γ	43472γ	— 4γ	+ 16y	+ 4γ
213	Remse	52° 01′.98	5° 23′.76		T 02524			435377			+ 73γ + 210
214	Doorn	52° 01′.76 52° 01′.64	5° 18′.42 4° 54′.79		18272γ 18245γ			43484γ 43430γ			$+21\gamma$ -32γ
216	Werkhoven	52° 01′.60	5° 14′.87		182787	18140γ	2239γ	43473γ	+ 22γ	+ 38 γ	+ 12γ
217	Pijnacker	52° 01′.12	4° 25′.17 4° 49′.00	7° 37′.5	18235γ	18074γ	2420γ	43423γ	— 11 <i>γ</i>	— 19γ	— 34γ — 31γ
218	Boven-Haastrecht Benschop	52° 00′.77 52° 00′.50	4° 58′.78		182652			43423γ 43411γ			-31γ -41γ
220	Hummelo	52° 00′.44	6° 14′.26		18303γ			43454γ			+ 3γ
221	Vreeswijk	51° 59′.62	5° 03′.67 4° 35′.02	7° 12′.3 7° 30′.2	18270y 18266y	18126y 18110y	2291y 2385y	433897	$+$ 5γ	$\begin{array}{c c} + 15\gamma \\ - 8\gamma \end{array}$	-56γ -51γ
222	Zevenhuizen	51° 59′.50 51° 59′.50	4° 40′.31		182007	181107	23037	43393γ 43410γ	+ 5γ	"	-34γ
224	Westervoort	51° 59′.25	6° 00′.40	6° 44′.9	18300γ	18173γ	2150γ	43443γ	+ 2γ	+ 14γ	+ 1γ
225	Polsbroek	51° 59′.22 51° 58′.00	4° 54′.81		18264y 18270y			43407γ			-35γ -37γ
226 227	Stolwijk	51° 57′.90	4° 45′.19 5° 42′.59	6° 53′.1	18309γ	181787	2195γ	43394γ 43425γ	+ 10γ	+ 15γ	-6γ
228	Jaarsveld	51° 57′.84	4° 58′.28	7° 17′.2	18279γ	18132γ	2318γ	43393γ	— 4γ	+ 2γ	_ 27γ
229	Rijswijk	51° 57′.60 51° 57′.40	5° 21′.10 5° 33′.25	6° 57′.9 7° 07′.0	18276γ 18305γ	18141y 18164y	2216γ 2268γ	43472γ 43476γ	— 14γ — 1γ	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+ 44γ + 50γ
230 231	Berkenwoude	51° 57′.30	4° 41′.52	7° 32′.I	182647	18104γ	2395γ	434/0γ	20γ	-33γ	-36γ
232	Gaag	51° 57′.25	4° 15′.46	7° 42′.8	18237γ	18072γ	2448γ	43406γ	— 37γ	— 21γ	— 19γ
233	Zoelmond	51° 56′.87 51° 56′.79	5° 19′.09 5° 12′.78		1			43430γ 43402γ			+ 8γ - 19γ
234	Woold	51° 56′.39	6° 42′.25	6° 33′.5	18353γ	18233γ	2096γ	434027 434267	- 8γ	— 32γ	$+ 8\gamma$
236	Aalten	51° 55′.97	6° 34′.68	6° 30′.9	18347γ	18228γ	2082γ	43419γ	+ 57	— 2γ	+ 57
237	Schoonhoven	51° 55′.81 51° 55′.28	4° 49′.24 6° 14′.10	7° 30′.5 6° 40′.2	18272γ 18327γ	18116y 18203y	2388γ 2129γ	43377γ 43413γ	— 29γ — 10γ	$\begin{array}{c c} -44\gamma \\ +3\gamma \end{array}$	$\begin{array}{c c} -37\gamma \\ +4\gamma \end{array}$
238	Schoonrewoerd	51° 55′.26	5° 06′.74	0 40 .2	1034/7	102037	21297	433897	107	' 3"	_ 20γ
240	Ouderkerk	51° 55′.22	4° 39′.52		18264γ	-0-		43359γ	ļ .		— 50γ
24I 242	Oostvoorne	51° 54′.91 51° 54′.35	4° 07′.15 6° 22′.92	7° 47′.5 6° 37′.6	182417 183507	18072y 18228y	2473γ 2118γ	43374γ 43413γ	$\begin{array}{c c} -49\gamma \\ +2\gamma \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} -32\gamma \\ +12\gamma \end{array}$
242	Noordeloos	51° 53′.97	4° 57′.37	7° 21′.2	18306γ	18156γ	2343γ	434137 433667	-9γ	- 18γ	- 32γ
244	Aerdt	51° 53′.70	6° 05′.97	6° 45′.9	18331γ	18203γ	2159γ	43398γ	- 15γ	- 6γ	+ 2γ
245	Druten	51° 53′.60 51° 53′.57	5° 36′.20 5° 41′.28	7° 05.′9	18334γ	18194γ	22662	43432γ 43407γ	— 7γ	51γ	+ 37γ + 13γ
246 247	Ottoland	51 53 54	4° 52′.47		195547	10194/	22007	43467 433467	"	517	-48γ
248	Beesd I	51° 53′.24	5° 12′.10	7° 05′.4				43337γ		t .	- 55γ
249	Gent	51° 52′.60 51° 52′.52	5° 56′.29 5° 21′.28	6° 47′.9	18360γ	18230γ	2173γ	43382γ 43340γ	+ 10γ	+ 5γ	-4γ -46γ
250 251	Zwartewaal	51° 52′.50	4° 13′.70		18240y	18076γ	2448γ	43364y	68γ	— 13γ	- 22γ
		10/	4° 40′.48		1 -92074	18131γ	24082		1 - 240	1 4044	1 224
252 253	Alblasserdam Tiel	51° 52′.39 51° 52′.32	5° 25′ 12		18291γ 18361γ	182257	2226y	43363γ 43363γ	$\begin{array}{c c} -34\gamma \\ +26\gamma \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	— 22γ — 21γ


	Name of station	φ	λ	_D	Н	l x	Y	Z	Δx	ΔY	Δz
		<u> </u>			1		<u> </u>	1			1
254	Heukelum	51° 52′.28	5° 04′.81					43352γ			— 32γ
255 256	Bleskensgraaf	51° 52′.20 51° 51′.10	4° 45′.09 4° 24′.58	7° 34′.9	18287y 18269y	181092	24107	43356γ	5.404	201	— 27γ
257	Beesd II	51° 51′.05	5° 11′.79	7° 05′.6	183342	181947	22647	43333γ	-54γ -5γ	$\begin{array}{c c} - 2\gamma \\ + 26\gamma \end{array}$	— 41γ
258	Appeltern	51° 50′.05	5° 32′.99	6° 56′.5	18374γ	18240γ	222Ιγ	43394γ	+ 17γ	+ 17γ	+ 29γ
259	Dalem	51° 49′.62	5° 00′.00	7° 21′.4	18327γ	18176γ	2347γ	43324y	— 25γ	— 27γ	— 38γ
260	Hoogbroek	51° 49′.03	5° 47′.36					43351γ			-6γ
261 262	Biesbosch	51° 48′.16 51° 47′.66	5° 38′.30 4° 49′.24					43384γ 43332γ			+ 34γ - 130
263	Stellendam	51° 47′.55	4° 02′.34	7° 51′.4	18270γ	18098γ	2497γ	433327 43286y	-76γ	— 32 γ	$-\frac{13\gamma}{-58\gamma}$
264	Goudswaard	51° 47′.50	4° 17′.24	7° 51′.4 7° 39′.6	18278γ	18115γ	2436γ	43300γ	- 712	$-\frac{3-7}{8\gamma}$	— 44y
265	Aalst	51° 47′.47	5° 05′.66	7° 17′.1	18341γ	18193γ	2326γ	43299γ	— 29γ	— 19γ	— 45γ
266	Neerloon	51° 47′.27 51° 46′.84	5° 41′.45 4° 43′.43	6° 58′.5 7° 26′.7	18392γ	18256γ	2233γ	43361γ	+ 5γ	- 16γ	+ 19γ
267 268	Alem	51° 46′.74	4° 43′.43 5° 21′.33	7° 00′.I	18363y 18384y	18208y	2379y 2241y	43322γ 43317γ	$\begin{array}{c c} - & 3\gamma \\ + & 7\gamma \end{array}$	$\begin{array}{c c} - 16\gamma \\ + 28\gamma \end{array}$	- 17γ - 21γ
269	Groesbeek	51° 46′.52	5° 58′.91	6° 49′.5	184497	183182	2192γ	43314γ	$+48\gamma$	- 17γ	-22γ
270	Nederasselt	51° 46′.46	5° 45′ 16			,	'	43349γ	1 ' '	1 "	+ 142
271	Klaaswaal	51° 46′.34	4° 25′.48	7° 35′ 9	18291γ	18130γ	2418γ	43307γ	— 71 <i>γ</i>	— 10γ	— 27γ
272	Nieuwendijk	51° 46′.08	4° 55′.57	60 70/ 0	70.40	-0		43293γ			— 40γ
273 274	Oss	51° 45′.96 51° 45′.52	5° 29′.13 5° 50′.55	6° 53′.8 6° 52′.3	18407γ 18378γ	18273γ 18246γ	2210γ 2199γ	433 ²² γ 433 ¹⁵ γ	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$+39\gamma$ -3γ	— 9γ — του
275	Strijen	51° 45′-33	4° 35′.08	7° 32′.2	18302γ	18143γ	2199γ	43301γ	-73γ	-3γ -16γ	-13γ -25γ
276	Sommelsdijk	51° 44′.67	4° 08′.49	7° 34′.1	18294γ	181347	2409γ	43268γ	-67γ	$+$ 43 γ	-52γ
277	Brouwershaven	51° 43′.85	3° 53′.42	7° 47′.4	18273γ	18104γ	2477γ	43297γ	— 93γ	+ 12γ	— 17 γ
278	Lageheide	51° 43′.24 51° 41′.85	5° 44′.11 5° 21′.29	7° 03′.0	T84050	18266.	2250	43325γ			+ 17γ
279 280	Hooge Zwaluwe	51° 41′.85 51° 41′.59	5° 21° .29 4° 43′ .70	7° 03′.0	18405γ 18357γ	18266γ 18198γ	2259γ 2414γ	43263γ 43267γ	-12γ -54γ	$+$ 12 γ $-$ 49 γ	-34γ -28γ
281	Capelle	51° 41′.54	5° 00′.56	7° 22′.4	18377γ	18225γ	2358γ	43257γ 43255γ	- 34γ - 40γ	-35γ	$\frac{26\gamma}{39\gamma}$
282	Oeffelt	51° 41′.53	5° 55′ 40				'	43302γ	''	1	$+$ 8γ
283	Zuidzijde	51° 41′.53	4° 14′.56	7° 42′.4	18298γ	18132γ	2454γ	43255y	— 99γ	— <u>1</u> 6γ	— 39γ
284 285	Haamstede	51° 41′.46 51° 41′.06	3° 45′.83 5° 51′.33	8° 05′.6	18266γ	18084γ	2572γ	43309γ	—125γ	-62γ	+ 15γ
286	Willemstad	51° 40′.79	4° 25′.27	7° 39′.7	183172	181542	2442γ	43320γ 43295γ	— 90γ	— 30γ	$\begin{array}{c c} + 30\gamma \\ + 7\gamma \end{array}$
287	Uden	51° 40′.70	5° 38′.51	6° 48′.2	18431γ	18301γ	21837	43284y	- Ιγ	$+46\gamma$	-3γ
288	Nieuwkuik	51° 40′.68	5° 11′.11	7° 12′.7	18408γ	18262γ	2311γ	43242γ	— 17γ	— 14γ	— 45y
289	Gennep	51° 40′.26	5° 58′.35	6° 45′.7	18421γ	18293γ	2169γ	43287γ	— 26γ	+ 10γ	+ 3γ
290 291	Oosterhout	51° 39′.76 51° 39′.24	4° 51′.90 4° 03′.43	7° 30′.6 7° 53′.1	18381γ 18 2 85γ	18223y 18112y	2402γ 2508γ	432577	- 50γ -129γ	— 57γ — 42γ	— 23γ — 25γ
292	Zierikzee	51° 38′.93	3° 54′.29	7° 53′.3	18290γ	18117γ	2510γ	43250γ 43289γ	119y	— 42γ — 20γ	$-25\gamma + 17\gamma$
293	Oosterheide	51° 38′.82	5° 41′.85	, , ,,	,	//	-3,	432807	//	/	$+$ 8γ
294	Zevenbergen	51° 38′.71	4° 34′.78	7° 36′.3	18357γ	18196γ	2429γ	43283γ	— 72γ	40γ	+ 13γ
295	Dinther	51° 38′.63	5° 28′.66	60/ -	18438γ			43239γ			— 31γ
296	Wanroy	51° 38′ 54 51° 37′ 82	5° 46′,88 5° 55′.12	6° 47′.9	18440γ	18310γ	2183γ	43305γ	— 13γ	+ 2 6γ	$+$ 36 γ
297 298	Eckel	51° 37′.53	6° 05′.02	6° 45′.5	18445γ	18317γ	2171γ	43299γ 43270γ	— 28γ	— 8γ	$\begin{array}{c c} + 35\gamma \\ + 9\gamma \end{array}$
299	St. Philipsland	51° 37′ 36	4° 10′.84	7° 46′.9	18307γ	18138γ	2479γ	43251γ	—122γ	— 30γ	-8^{\prime}
300	Tilburg	51° 35′.81	5° 01′.28	7° 23′.6	18418γ	18265γ	2370γ	43203γ	— 45γ	— 46γ	— 43γ °
301	Wissekerke	51° 35′.69	3° 47′.54	8° 01′.8	18310γ	18131γ	2558γ	43301γ	—125γ	— 50γ	+ 55γ
302 303	Oploo	51° 35′.65 51° 35′.04	5° 53′.82 5° 58′.41	6° 51′.3	18461γ	18329γ	2203γ	43276γ 43275γ	— 22γ	— 11γ	+ 30γ + 35γ
304	Stavenisse	51° 34′.88	4° 02′.06	7° 50′.5	183147	18143γ	24992	43265y	—131γ	— 26γ	$+\frac{337}{26\gamma}$
305	Princenhage	51° 34′.79	4° 43′,56	7° 50′.5 7° 36′.4	18397γ	18235γ	2435γ	13 3,	— 71γ	66γ	
306	Gemert	51° 34′.70	5° 40′.78	6° 51′.9	18467γ	18334γ	2207γ	43235γ	— 15γ	+ 19γ	2γ
307	Steenbergen	51° 34′.62	4° 18′.10	7° 48′.4	18354γ	18184γ	2493γ	43253γ	—1047	— 60γ	+ 16γ
308	Bunthorst , Boxtel	51° 34′.38 51° 33′.82	5° 49′.37 5° 16′.12	7° 09′.6	18442y	18298γ	2299y	43262γ 43183γ	— 39γ	— 11γ	+ 27γ - 47γ
310	Roosendaal	51° 33′.80	4° 28′.52	7° 47′.2	183582	18189y	2487γ	43253γ	112γ	- 8ο _γ	$+ \frac{477}{237}$
311	St. Oedenrode	51° 33′.28	5° 26′.04	7 02 .4	18465γ	18326γ	2263γ	43180γ	— 23γ	ογ	— 45γ
312	Veere	51° 33′.09	3° 38′.37	8° 02′.7	18325γ	18145γ	2565γ	432937	124γ	— 33γ	+ 69γ
313	Mariahout De Rips	51° 32′.24 51° 32′.13	5° 33′.72 5° 49′.07	6° 56′.4 6° 43′.6	18482γ 18498γ	18346γ 18370γ	2233γ 2167γ	43178γ 43222γ	$-\begin{array}{c c} - & 17\gamma \\ - & 5\gamma \end{array}$	+ 12γ + 39γ	$-$ 39 γ $+$ 7 γ
314	West-Kapelle	51° 31′.88	3° 29′.13	8° 12′.7	18331γ	18143y	2618γ	43222γ 43303γ	$-\frac{5\gamma}{-129\gamma}$	-62γ	+ 7γ + 89γ
316	Tholen	51° 31′.86	4° 12′.09	7° 42′.7	18314γ	18148γ	2457y	432397	-156γ	$-\frac{327}{8\gamma}$	+ 26γ
317	Blitterswijk	51° 31′.81	6° 07′.18	6° 45′.0	18490γ	18362γ	2173γ	43235γ	— 29γ	— 12γ	+ 22γ
318	Goes	51° 31′.32	3° 54′.56	7° 52′.3 6° 45′.2	18339γ	18166γ	2512γ	43291γ	—130γ	— 20γ	$+$ 82 γ
319	Venray	51° 31′.08 51° 30′.54	5° 59′.49 3° 45′.53	6° 45′.2 7° 53′.5	18506γ 18350γ	18378γ 18177γ	2176y 2519y	43219γ 43288γ	— 14γ —117γ	$\begin{array}{c c} + & 4\gamma \\ \hline - & 3\gamma \end{array}$	+ 11γ + 86γ
320 321	Schijf	51° 30′.58	3 45 ·53 4° 35′.31	7° 41′.9	18372γ	18207γ	2519γ 2461γ	43200y 43218y	-117γ -125γ	$\begin{array}{c c} -3\gamma \\ -69\gamma \end{array}$	+ 30γ + 15γ
322	Bakel	51° 30′.05	5° 44′.49		- 31-1	//	1/	43200γ	57	- //	$+$ 2γ
323	Wouw	51° 29′.93	4° 23′.70 4° 52′.34	7° 47′•4	18342γ	18173γ	2486y	43261γ	—156γ	— 65γ	$+$ 63 γ
324	Chaam	51° 29′.50	4 52 .34	7° 31′.9	18414γ	18256γ	2414y	43174γ	— 97γ	— 65γ	— 20γ
325 326	Hilvarenbeek Helmond	51° 29′.01 51° 28′.96	5° 06′.98 5° 40′.56	7° 21′.6 6° 45′.3	18463γ 18493γ	18311γ 18364γ	2365γ 2175γ	43157γ 43161γ	- 57γ - 29γ	- 52γ + 55γ	— 33γ — 28γ
327	Waaijenberg	51 28 .90 51° 28′.42	4° 42′.79	7° 43′.9	18397γ	18230y	21757 24757	43195γ	— 29γ —124γ	-101γ	— 2ογ + 11γ
328	Oost-Souburg	51° 28′.25	3° 36′.69	8° 03′.7	18358γ	18177γ	2574γ	43279γ	—130γ	-35γ	$+$ 96 γ
329	Oostelbeers	51° 27′.84	5° 16′.54	7° 12′.3	18494γ	18348γ	2320γ	43139γ	— 3 6γ	— 30γ	— 41γ
330	Deurne	51° 27′.54	5° 50′.36	6° 42′.8	18513γ	18386γ	2164γ	43179γ	— 26γ	+ 41γ	+ 1γ
331	Kruiningen	51° 27′.48	4° 02′.15 4° 58′.73	7° 52′.7 7° 28′.5	183647	181917	2517γ	43282γ	—141γ — 67α	-41γ	$+105\gamma$
332 333	Houthuizen	51° 27′.05 51° 26′.69	4 58 .73 6° 09′.23	6° 42′.1	18467γ 18520γ	18310γ 18393γ	2402γ 2161γ	431892	— 67 <i>γ</i> — 40 <i>γ</i>	-68γ -2γ	+ 19 γ
334	Hoedekenskerke	51° 26′.24	3° 54′.89	7° 53′.5	18381γ	18207γ	2524γ	43189γ 43282γ	-129y	-29γ	+ 19γ +114γ
335	Geldrop	51° 26′.21	5° 32′.54	6° 55'.1	18518γ	18383γ	223Ιγ	43119γ	26γ	+ 20γ	-48γ
336	Borselen	51° 25′.65	3° 45′.56	7 56'.5	18386γ	18210γ	2540γ	43289γ	—123γ	— 22γ	$+$ 127 γ
337 338	Sevenum	51° 25′.43 51° 24′.68	6° 01′.43 4° 21′.03	6° 43′.7 7° 43′.0	18526γ 18409γ	18398γ 18242γ	2171γ 2472γ	43153γ 43305γ	— 34γ —126γ	+ 7γ — 42γ	$\phantom{00000000000000000000000000000000000$
ادرد		J	1 -22 .03	, 45.0				16~6ct	1-07	7~/	1 -5-7

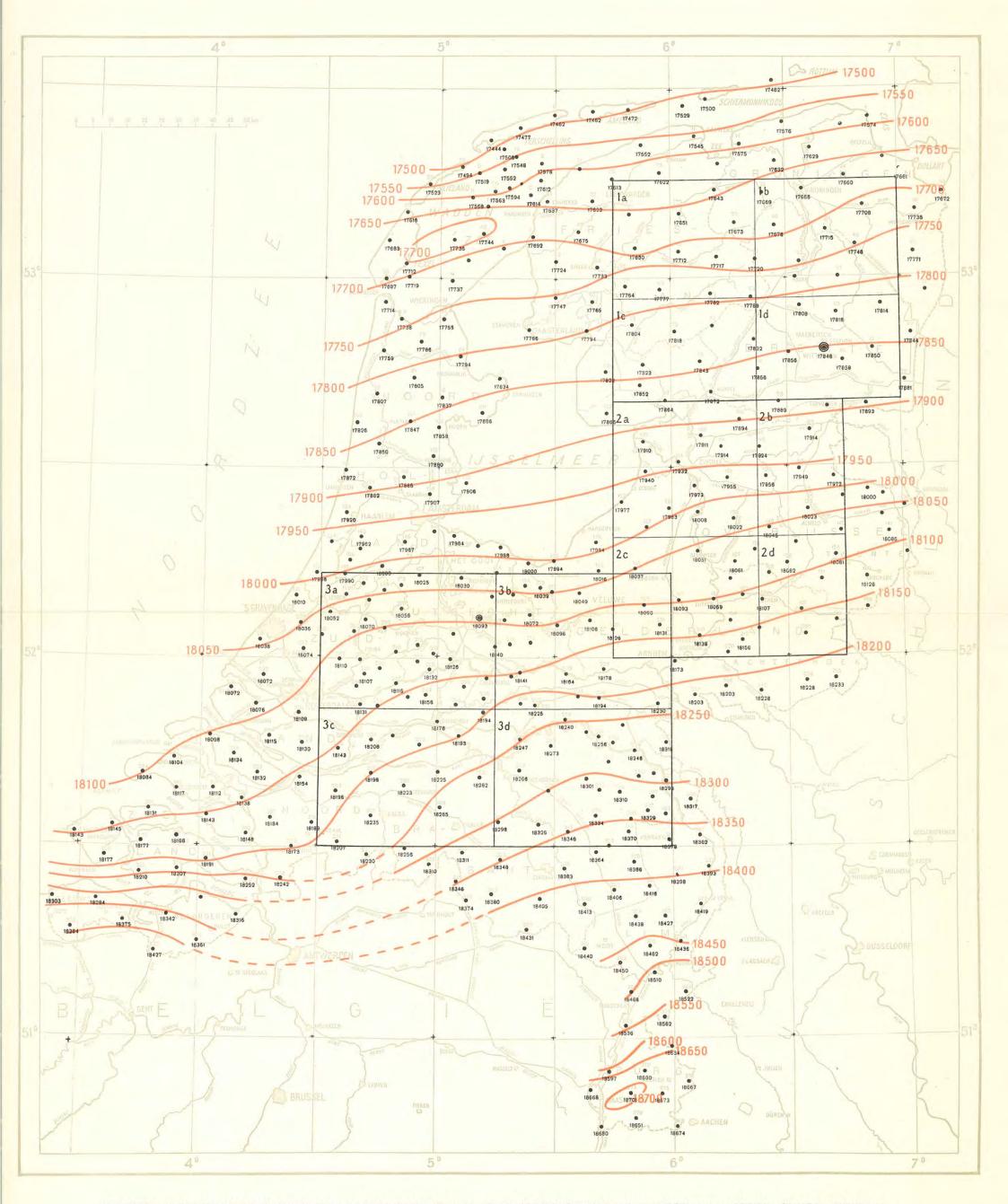
	Name of station	φ	_ λ	—D	Н	Х	—Y	Z	Δx	ΔY	∆z
339 340 341 342 343 344 345 350 351 352 353 354 355 361 362 363 364 365 367 368 369 370 371 372 373 374 375 376	Rilland-Bath De Utrecht Helenaveen Heusden Bladel Valkenswaard Cadzand Hengstdijk Reusel Schoondijke Tegelen Sterksel Nieuw-Namen Helden Zaamslag Nederweert Biervliet Aardenburg Schaft Hulst Swalmen Heythuizen Dorplein Sas van Gent Hunsel Luine Posterholt Ohé Koningsbosch Born Schinveld Nuth Geulle Kerkrade Maastricht Valkenburg Ubachsberg Slenaken Eijsden Vaals	51° 24′.58 51° 24′.31 51° 23′.52 51° 22′.97 51° 22′.91 51° 21′.62 51° 21′.62 51° 21′.62 51° 21′.75 51° 20′.70 51° 18′.65 51° 18′.65 51° 16′.62 51° 16′.62 51° 16′.62 51° 16′.62 51° 16′.63 51° 16′.65 51° 16′.96 51° 06′.96 51° 06′.96 51° 06′.96 51° 52′.82 50° 51′.52 50° 51′.52 50° 51′.53 50° 46′.96 50° 45′.84 50° 45′.84	4° 12′.48 5° 05′.22 5° 54′.23 5° 45′.38 5° 14′.27 5° 26′.73 3° 24′.05 4° 01′.18 5° 07′.88 3° 34′.79 6° 07′.28 3° 34′.79 6° 07′.28 5° 58′.24 3° 52′.38 5° 52′.38 5° 52′.38 5° 53′.33 3° 41′.39 3° 41′.39 3° 41′.39 3° 41′.76 5° 54′.23 5° 54′.23 5° 54′.23 5° 54′.23 5° 55′.39 6° 03′.40 5° 57′.72 5° 57′.72 5° 57′.72 5° 57′.72 5° 57′.72 5° 57′.73 5° 57′.73 5° 57′.74 5° 57′.75 5° 57′.72 5° 57′.72 5° 57′.72 5° 57′.72 5° 57′.73 5° 57′.74 5° 57′.74 5° 57′.75 5° 57′.71 5° 57′.71	7° 44′.1 7° 24′.9 6° 33′.7 6° 43′.3 7° 17′.7 7° 57′.4 7° 57′.4 7° 57′.4 6° 54′.2 6° 44′.5 7° 45′.8 6° 36′.4 7° 53′.7 7° 54′.8 6° 54′.8 6° 36′.4 6° 36′.4 7° 36′.4 7° 36′.4 7° 36′.4 7° 36′.4	184197 185017 185017 185377 185337 185307 185457 184827 185287 185467 185467 185537 185657 185677 185677 185677 185677 185727 185727 185317 1856947 185757 185727 1	18252y 18346y 18416y 18406y 18406y 18405y 18405y 18405y 18303y 18374y 18284y 18413y 18316y 18427y 18438y 18375y 18384y 18431y 18436y 18427y 184662y 18469y 18450y 18510y 18522y 18468y 18562y 185667y 18667y 18667y 186673y 186571y 18680y 186574y	2479y 2388y 2118y 2169y 2352y 2280y 2569y 2569y 2176y 2215y 2501y 2154y 2526y 2173y 2548y 2598y 2283y 22485y 2186y 2138y 2232y 2485y 2186y 2138y 2082y 2188y 2185y 2185y 22187y 2218y 22214y 2402y 2229y 2230y 2286y 22344y 2182y	432797 431337 431687 431687 431687 431267 430897 432867 432867 432967 431347 430767 432307 431447 432497 431607 432857 430337 430227 430337 430197 430437 430437 430437 430577 43067 429887 429087 429087 429087 429087 428457 428877 428877		- 277 - 687 + 797 + 529 - 547 - 137 + 57 - 697 - 187 - 407 + 367 - 157 - 169 + 367 - 157 - 169 + 337 + 647 + 129 + 357 + 647 + 1017 + 219 - 397 - 737 - 737 - 247 - 1507 - 49 - 237 - 49 - 49 - 49 - 49 - 49 - 407 - 157 - 169 - 159 - 169 - 159 - 169 - 169 - 17 - 17 - 17 - 18 - 18	+ 123y - 18y + 24y - 13y - 45y - 53y + 158y + 127y - 29y + 185y + 124y + 41y + 145y + 6y + 132y - 26y + 132y - 26y + 132y - 26y + 12y + 135y + 51y + 22y + 60y + 44y + 51y + 74y + 158y + 229y + 158y + 20y + 158y
A B C D E F G H I J K L M N	Oosterom N. O. Meep Franekergat Schieringhals N. O. Ballastplaat Oost v. Griend Z. Ballastplaat W. v. Inschot Lange Zand N. v. Scheurrak Einde Doove Balg Stompe Waard Harde Bollen Lutjeswaard	53° 20′.70 53° 18′.50 53° 17′.40 53° 16′.80 53° 15′.75 53° 14′.50 53° 13′.40 53° 13′.00 53° 11′.50 53° 06′.30 53° 04′.90 53° 02′.90 53° 00′.33 52° 59′.70	5° 16′.20 5° 26′.30 5° 16′.30 5° 09′.70 5° 26′.20 5° 23′.10 5° 08′.00 5° 12′.10 5° 03′.20 5° 16′.25 5° 07′.10 4° 51′.65 5° 02′.70	(7° 18') (7° 18') (7° 25') (7° 18') (7° 17') (7° 26') (7° 17') (7° 26') (7° 19')	17651y 17722y 17701y 17662y 17755y 17743y 17757y 17717y 17882y 17863y 17881y	17508y 17578y 17552y 17519y 17612y 17594y 17614y 17568y 17736y	22437 22527 22857 22447 22517 22957 22547 22927 22807	442117 441497 441817 44137 441047 441367 440837 442617 442477 440717 43937 439847 439267 439217	+ 8y + 53y + 26y - 6y + 66y + 44y + 52y + 14y + 133y + 78y + 82y	- 97 - 427 - 509 + 99 - 409 - 619 - 349 - 339 - 69 + 419 + 119	$\begin{array}{c} + \ 90\gamma \\ + \ 47\gamma \\ + \ 88\gamma \\ + \ 124\gamma \\ + \ 24\gamma \\ + \ 67\gamma \\ + \ 23\gamma \\ + \ 205\gamma \\ + \ 203\gamma \\ + \ 71\gamma \\ + \ 4\gamma \\ + \ 12\gamma \\ - \ 25\gamma \\ + \ 12\gamma \end{array}$


36806 - '49

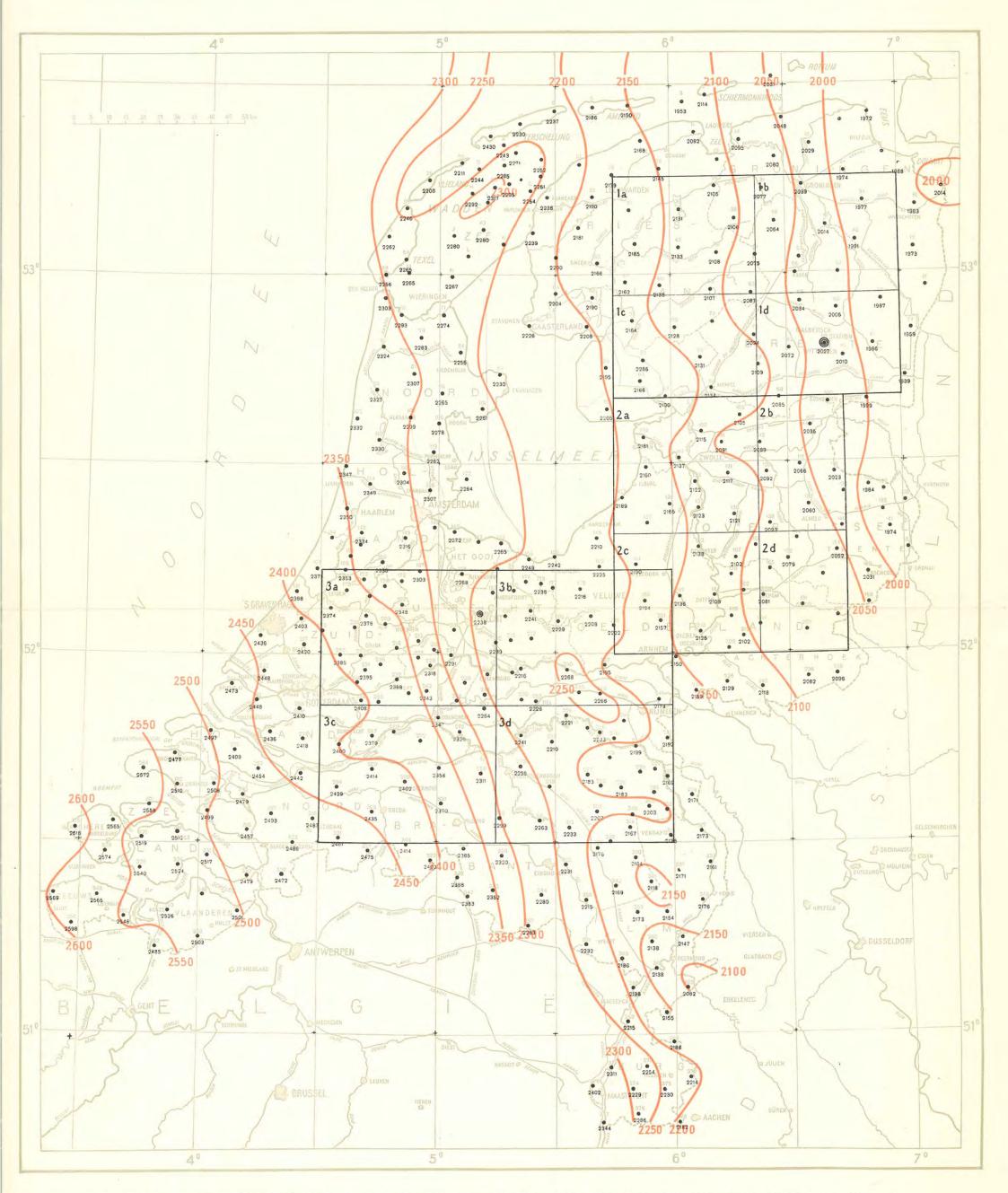
 \triangle -CHART. GEOMAGNETIC ANOMALIES IN THE NETHERLANDS. RED ARE POSITIVE REGIONS (TOO LARGE VALUE OF THE VERTICAL COMPONENT), WHITE ARE NEGATIVE REGIONS (TOO SMALL VALUE OF THE VERTICAL COMPONENT). THE FIGURES GIVE VALUES OF \triangle Z (IN γ), THE VECTORS INDICATE THE DIRECTION AND THE MAGNITUDE OF THE HORIZONTAL DEVIATIONS. THE ISANOMALS OF \triangle Z HAVE BEEN DRAWN FOR EVERY 20 γ .



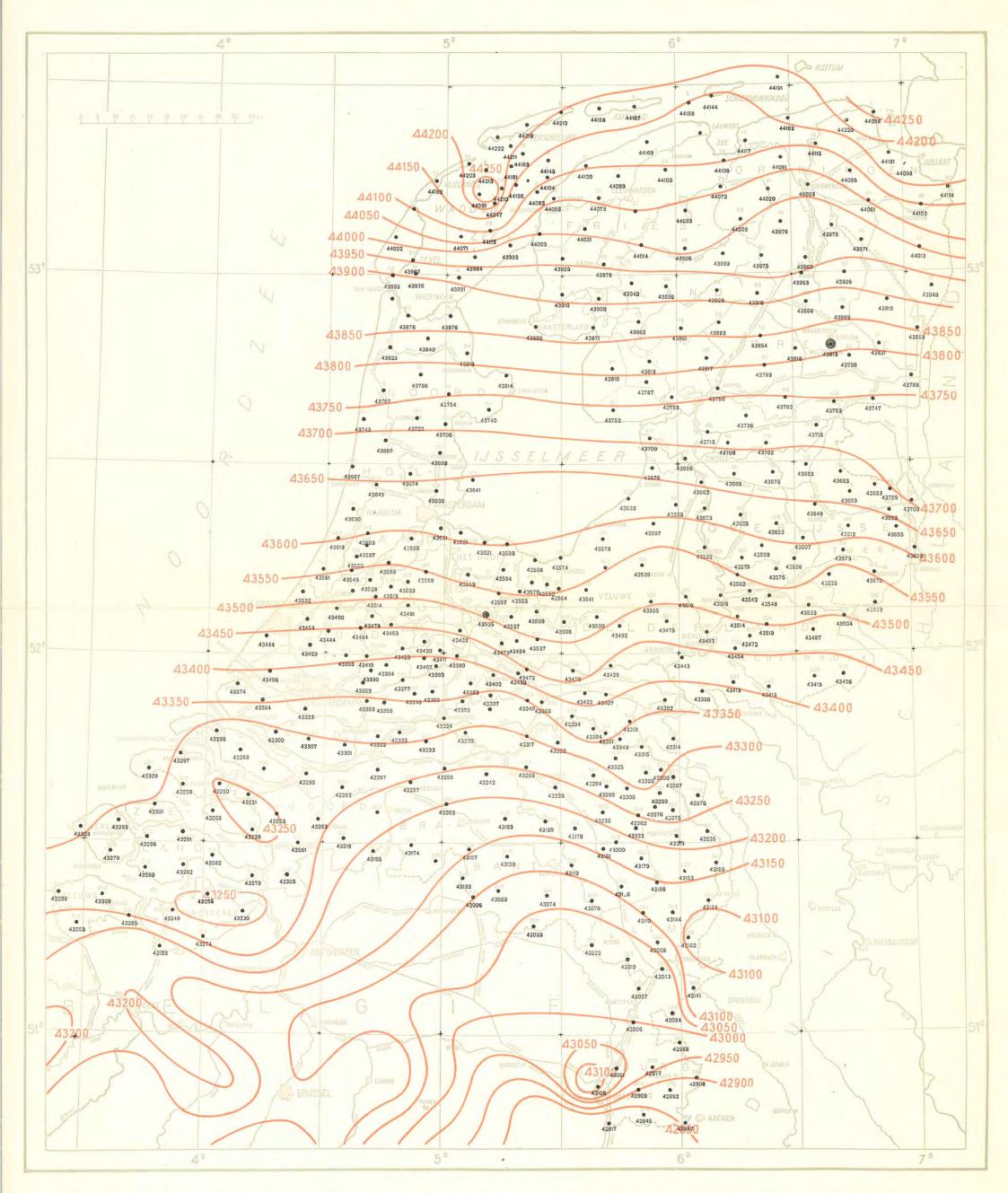
D-CHART. WESTERLY DECLINATION OF THE GEOMAGNETIC FIELD IN THE NETHERLANDS, EPOCH 1945.0. ANNUAL DECREASE ABOUT 8'.



G-CHART. GRAVITY ANOMALIES (IN MGAL) IN THE NETHERLANDS. RED ARE POSITIVE REGIONS, WHITE ARE NEGATIVE REGIONS.


THE ISOGAMS HAVE BEEN DRAWN FOR EVERY 5 MGAL.

H-CHART. HORIZONTAL INTENSITY (IN γ) OF THE GEOMAGNETIC FIELD IN THE NETHERLANDS, EPOCH 1945.0. ANNUAL CHANGE ABOUT 0 γ .



X-CHART. NORTHERLY COMPONENT (IN γ) OF THE GEOMAGNETIC FIELD IN THE NETHERLANDS, EPOCH 1945.0. ANNUAL CHANGE ABOUT 0 γ . IN THE TRAPEZIA THE AIR-EARTH CURRENTS HAVE BEEN COMPUTED.

Y-CHART. WESTERLY COMPONENT (IN γ) OF THE GEOMAGNETIC FIELD IN THE NETHERLANDS, EPOCH 1945.0. ANNUAL DECREASE ABOUT 50 γ .

IN THE TRAPEZIA THE AIR-EARTH CURRENTS HAVE BEEN COMPUTED.

Z-CHART. VERTICAL COMPONENT (IN γ) OF THE GEOMAGNETIC FIELD IN THE NETHERLANDS, EPOCH 1945.0. ANNUAL INCREASE ABOUT 25γ.