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Summary

This report presents the first phase of a project for the development of a rainfall
generator for the Rhine basin. The request for this generator arose from the need
to study the likelihood of extreme river discharges in the Netherlands, using a
hydrological/hydraulic model. This first phase deals with single-site generation
of weather variables by nearest-neighbour resampling for the stations Essen,
Kahler Asten, Trier, Frankfurt, Bamberg, Freudenstadt and Stuttgart in the
German part of the basin. Daily precipitation and temperature data for these
stations were made available for the period 1961-1990. The ultimate aim of the
project is to generate simultaneous records of daily average rainfall amounts,
together with daily temperatures, over about 30 subcatchments, each with an area
of about 5000 km’, to study the effects of unprecedented weather situations.

The essence of the nearest-neigbour resampling technique is that the variables for
a new day are sampled with replacement from a selected set of historical data
(the nearest neighbours or analogues). The method needs a feature vector D, to
find the nearest neighbours of the day of interest (day 7). For unconditional
resampling, D, contains variables that characterize the state of the weather on day
t-1, e.g., daily precipitation, temperature and atmospheric circulation indices.
Conditional simulation on the atmospheric flow is also possible with the nearest-
neighbour resampling technique. Circulation indices for day ¢ are then included
in D,. A (weighted) Euclidean distance measure is used to determine the k nearest
neighbours of D,. From the k nearest neighbours, one day is resampled with a
predefined probability. In case of unconditional simulation, the successor in the
historical record to the resampled day becomes the new day, whereas in case of
conditional simulation, precipitation and temperature are set equal to the values
of the resampled day.

The data for Stuttgart are used to study the influence of k, the composition of D,,
and some other options in the resampling procedure. For the intended application
of the rainfall generator, the most important criteria for judgement are the ability
to reproduce the autocorrelation structure and the distributions of multi-day
winter (October-March) maximum precipitation amounts of the historical
records. Additionally, cross-validation (leaving out one observation at a time and
predicting that observation from the remaining observations) is a means to
determine the composition of D, and to find an optimum value for k.

The autocorrelation for Stuttgart is most sensitive to k and the variables included
in D,. For precipitation, it is necessary to include both weather variables and
circulation indices in D, to reproduce the decay of the autocorrelation coefficients
with increasing lag. Comparison of standard deviations of monthly precipitation
sums is a sensible test for the latter. The autocorrelation of daily temperatures is
systematically underpredicted. This underprediction is strongly reduced if the
circulation indices are removed from D,. The value of k should not be too large
(usually < 20 for a historical record of 30 years). Cross-validation confirms the
choice of the variabl(_es in D,. :

The success of reproducing the multi-day winter (October-March) precipitation
maxima of Stuttgart is strongly related to that of the autocorrelation properties.
The main conclusion is, that both the weather variables and circulation indices
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must be considered in D,. Furthermore, there is no clear preference to either the
conditional or unconditional method.

For applications to the seven stations in the Rhine basin, we selected the most
promising conditional and unconditional method. The distributions of the multi-
day winter precipitation maxima are generally well reproduced. However, the
median of the N-day maxima is systematically underpredicted (up to about 8%
for the 20-day maxima) by both methods. In a similar study with data for De Bilt
(the Netherlands) over different periods, the simulated means of the six highest
maxima were lower than those observed (up to about 15% for 20-day maxima in
both methods). Systematic underprediction can have different causes. For the 10-
day and 20-day maxima it can be due to an inadequate reproduction of long-term
memory. Further, resampling techniques are in principle unable to generate larger
1-day amounts than the largest historical values.

Unlike the resampled 1-day values, the multi-day values can exceed the observed
maxima as a result of a different succession of historical days. Unprecedented
maxima were generally found in 300-year simulations for the seven stations. It is
expected that the simulations can be extended to much longer periods than the
300 years used so far. However, it is then desirable to extend the historical time
series beyond the present 30-year period, to reduce the effect of sampling
variability of observed rainfall.

The daily temperatures were used to determine snow accumulation and melt.
Despite the systematic underprediction of the autocorrelation, the distributions of

the total winter snow accumulation and the N-day snowmelt maxima were well
reproduced.

We conclude that the nearest-neigbour method is a promising technique for
simulating daily precipitation and temperature time series. The results Justify the
development of a multi-site extension. An important point in such an extension is
the composition of the feature vector. Furthermore, special attention is needed
for testing the reproduction of the spatial association of large N-day amounts.
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1. Introduction

The Rhine is the most important river in the Netherlands. The river flows through
several countries (Figure 1). Large parts of its basin are situated in Switzerland,
Germany, France and the Netherlands. Protection against flooding is a point of
continuous concern. In the Netherlands, safety standards are laid down in the Act of
Safety against flooding. The safety situation is evaluated every five years. A design
water level with a mean recurrence time of 1250 years is used for rivers in the non-
tidal area. The design water level is mainly determined by the design discharge, i.e.
the discharge that in a given year is exceeded with probability 1/1250. For the
Rhine, an important piece of information forms the discharge record at Lobith,
where the river enters the Netherlands (Figure 1). Several probability distributions
have been fitted to the discharge maxima of that record. The large return period
requires an extrapolation beyond the length of the observed record. Different
distributions then lead to quite different design discharges. The fact that the
parameters of these distributions have to be estimated from a finite record
introduces another uncertainty.

In the most recent re-evaluation of the design discharge at Lobith, the question
arose whether the uncertainties of extrapolation could be reduced by taking the
physical behaviour of the basin into account (Delft Hydraulics and EAC-RAND,
1993). For this purpose, a hydrological/hydraulic model for the whole basin has to
be developed. This model needs a statistical model to generate the spatial and
temporal distribution of precipitation over the basin to study unprecedented
extreme situations. For instance, an unfavourable succession or spatial distribution
of heavy rainfall, may lead to more extreme discharges at Lobith than those
experienced in the past century.

KNMI carried out a feasibility study into the possibilities of a rainfall generator
(Buishand and Brandsma, 1996). In that study, the statistical techniques for
generating daily rainfall sequences were reviewed. For a multi-site application in
a large catchment like the Rhine basin, two, quite different, alternatives were
discussed: (1) parametric time series modelling of the observed daily
precipitation using a transformed multivariate AR(1) process, and (2)
nonparametric resampling from historic data. Although some promising results
have been reported for the two methods, there is a serious lack of knowledge
about the reproduction of properties of extreme rainfall. Some of these
properties, like the extreme-value distributions of multi-day amounts and the
spatial association of large amounts during winter, are important for the peak
discharges of the Rhine in the Netherlands.

Both the parametric multivariate time series model and the nonparametric
resampling technique, allow for a linkage with the atmospheric circulation. This
linkage has received much interest in order to improve the reproduction of the
persistence of daily rainfall and to assess the effects of systematic changes in the
atmospheric circulation, e.g. resulting from increased atmospheric greenhouse
gas concentrations. For the Rhine basin application, it is also important to extend

- the generation of daily precipitation with that of daily temperature in order to
account for the effect of snow and frozen soils on high river discharges.
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Figure 1: Location of Lobith in the Netherlands and the seven German stations used in
this study in the drainage basin of the River Rhine.

In this report, nonparametric resampling is worked out further using data from
Essen, Kahler Asten, Trier, Frankfurt, Bamberg, Freudenstadt and Stuttgart
(Figure 1) in the German part of the Rhine basin (about 2/3 of the upstream
catchment area). The main reason for this approach was that a study of the
reproduction of relevant single-site properties already gives a good indication of
the prospects of multi-site non-parametric resampling. This in contrast with
parametric time series modelling, for which the multi-site extension requires a
rather strong assumption of multivariate normality of the transformed daily data
to use the AR(1) process. Such an additional assumption is not necessary in the
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non-parametric approach, where the spatial association between the 1-day
amounts is already automatically preserved.

The emphasis in this study, is on the reproduction of the autocorrelation structure
and the distributions of multi-day maximum precipitation amounts. Snow
accumulation and melt are also discussed. Although data for several sites are
analysed, multi-site generation is not considered in the present report.

Standard resampling methods (permutation techniques, bootstrap) assume that
the data are independent. These methods are not appropriate for resampling daily
time series of hydrological and meteorological data, because of autocorrelation.
Some mechanism is therefore needed to incorporate the dependence structure.
This can be accomplished in different ways. One can discriminate between: ¢))
Markov modelling using a classification of representative states; (2) resampling
from analogues or nearest neighbours; and (3) the moving blocks bootstrap. In
the first approach, resampling is restricted to those days with the same
representative state as the day of interest. Yakowitz (1979) followed the method
to obtain synthetic sequences of daily river flows. A more recent application is
the generation of daily precipitation conditional on the atmospheric circulation in
Hughes et al. (1993) and Conway et al.(1996). To generate the precipitation for a
given day ¢, the resampling procedure considered days with the same circulation
type as that given for day ¢ and the same wet/dry status as that generated for day ¢
— 1. The conditioning on the wet/dry status of the previous day, is done to
improve the reproduction of the autocorrelation properties of the generated
precipitation amounts. A drawback of the method is that continuous variables are
partitioned into discrete categories. Moreover, additional simulation of
temperature requires an intractable growth of the number of categories to
preserve the autocorrelation structure of the daily temperatures.

The analogue method has a long history in weather forecasting (Kruizinga and
Murphy, 1983). Its use for generating synthetic precipitation sequences is,
however, rather new. Zorita et al. (1995) used the analogue method to generate
multi-site daily precipitation in a climate change study. The generated amounts
for a given day were set equal to the observed amounts for the day in the
historical record with the most similar sea-level pressure field. In a later paper
(Cubasch et al., 1996), the conditioning was done on both sea-level pressure and
700 hPa temperature. Apart from these recent applications in climate change
studies, there is an independent development of the use of analogues in the
hydrological literature. Lall and Sharma (1996) discussed a nearest-neighbour
bootstrap for generating hydrological time series. Resampling is done from the
successors to the historic k nearest neighbours rather than taking the observed
precipitation for the closest neighbour only as in Zorita et al. (1995) and Cubasch
et al. (1996). The use of the nearest-neighbour method for generating daily
multivariate weather data (precipitation, maximum and minimum temperature,
solar radiation, humidity and wind speed) has been demonstrated in Rajagopalan
and Lall (1995). Atmospheric flow characteristics were not considered in that
study. The emphasis was on the seasonal distributions of the daily values and
their lag O and lag 1 cross-correlation coefficients (lag 1 autocorrelation,
inclusive). The reproduction of the distributions of the multi-day maximum
- precipitation amounts has, however, not been verified.

The moving blocks bootstrap is a recent extension of the bootstrap for resampling
stationary time series data (Kiinsch, 1989). The method considers all possible
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blocks of a given length L, where L should be large enough that dependence
between observations more than L time units apart can be neglected. A bootstrap
time series is formed by resampling from these blocks and pasting them together.
For L = 1, the method reduces to the standard bootstrap technique for resampling
independent data. Vogel and Shallcross (1996) studied the value of the moving
blocks bootstrap for generating annual flows in a reservoir design application.
For univariate time series, Wilks (1997) developed some useful rules for the
choice of L. The extension to multivariate data with different strengths of
autocorrelation (like daily precipitation and temperature) is, however, not
obvious. It is also unclear how the moving blocks bootstrap must be used for
conditional simulation on the observed atmospheric flow.

At the beginning of the project, the nearest-neighbour method was thought to be
the most promising nonparametric technique for generating daily precipitation
and temperature in the Rhine basin. Section 2 provides the necessary background
of the method. In Section 3 we present results for the seven German stations. The
method is evaluated in Section 4. Finally, Section 5 gives an outlook for the next
phase of the project.
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2. Nearest-neighbour method

2.1 Time series generation by resampling

The principle of the nearest-neighbour resampling method is simple. The
generation of precipitation and temperature on day ¢ requires a feature vector D,
to find analogue situations in the historic data. In the method of Rajagopalan and
Lall (1995) for generating multivariate daily weather data, D, contains the values
of the weather variables generated for day #-1 (method 1 in Figure 2). The k
nearest neighbours (k.-NN) of D,, in terms of Euclidean distance, are abstracted
from the historic record. Let #(j), j=1,...,k be the times associated with these

nearest neighbours, such that the distance of D, ;, to D, increases with increasing

Jj- The vector of weather variables following D, ;),the successor to D, is

denoted as x, ;.

One of the successors of the k-NN is sampled using a discrete probability
distribution or kernel {p;}. For the uniform kernel, p; is given by:

p;=1/k, j=1..,k ¢))
In Lall and Sharma (1996) the following decreasing kernel was recommended:
1/ j .
py=al,  j=l..k @
21/
=1

Circulation indices known

@ W eather variables known
E Circulation indices to be resampled
m W eather variables to be resampled

-

1) 1 1 T ) }
t+1

3) n ) } }
t+1 -1 t+1
ai EE CR
iq° [ c [ C |
(5) | | | 6) -+ } f }
' t-1 t t+1 -2 -1 t t+1

Figure 2: Six methods for the generation of new variables using different compositions
of the feature vector D, (open squares). The asterisks indicate that the corresponding
variables are resampled values from the previous time step(s).
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Figure 3: Resampling probability p; as a function of the index J of the sorted Euclidian
distances for k = 5 and k = 20 for both the uniform and decreasing kernels.

Figure 3 shows the two kemels for k = 5 and k = 20. The decreasing kernel gives
relatively high probability mass to the closest neighbours, whereas the uniform
kernel assigns the same probability to all neighbours.

We distinguish between conditional and unconditional simulation. Methods 2-4
in Figure 2, are examples of conditional simulation of weather variables given the
atmospheric circulation. D, then contains circulation indices on day ¢ and possibly
also the values of weather variables that were generated for previous days
(methods 3 and 4 in Figure 2). Resampling occurs from the observed precipitation
and temperatures on the days #(j) in the nearest neighbourhood. Method 1 is an
example of unconditional simulation, where D, only contains the weather
variables generated for the previous day. Methods 5 and 6 are extended versions
of unconditional resampling. In method 5, D, also includes the circulation indices

generated for the previous day and, additionally, method 6 considers resampling
of multiple days.

To account for the systematic annual cycle in the various weather variables, the
search for the k-nearest neighbours of the feature vector is restricted to days in a
specified moving window of width W,,,, days, centred at the day of interest (see
Figure 4). For example, for W, = 61 days and a historical time series of 30 years
the Euclidean distances for a specific day are calculated for 61x30 = 1830 days.

A further reduction of seasonal variation can be achieved by working with
standardised variables. In Rajagopalan and Lall (1995) standardisation was done
by subtracting the calendar day’s mean m, and dividing by the calendar day’s
sample standard deviation s,

% =(x,-m)ls;  t=l..,md=(t-1)mod365+1 3)

where x, and X, are the original and standardised variable, respectively, for day ¢,

and n is the total number of days in the time series. For variables with a normal or
almost normal distribution, X, usually takes values between —3 and +3. However,

for daily precipitation the range of ¥, is quite different. For a dry day,

. me .
—
. .
1
1 365

Figure 4: Moving window.
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X,=-m, /s, ~-05 at a lowland station in the Rhine basin, whereas for days
with heavy precipitation X, = 10.

For daily precipitation, resampling of negative standardised values from adjacent
days may result in negative precipitation amounts. Thus equation (3) does not
give the most appropriate standardisation for that variable. In hydrology, division
by the mean is a popular method to standardise non-negative variables. For daily
precipitation, we therefore considered:

;l =X / md,wel (4)

where mg .. is the calendar day’s mean precipitation for wet days. For dry days
%, =0 and for the most extreme wet days ¥, is about 10. Two alternatives to the

standardisation in equation (4) were briefly examined: (1) ¥, =x, / my; and (2)
X, =/x,/ m,. The use of m,, instead of m,,,, in the first alternative, increases the

range of X,. Precipitation will then receive more weight in the search to the
nearest neighbours. The square root transformation in the second alternative,
reduces the weight of the extreme amounts. The right tail of the resulting
distribution of X, , is rather close to that of the normal distribution.

To reduce the effect of sampling variability, we used smooth approximations of
mg, Mg e and s, instead of the raw values (see further Section 3.1).

Through the standardisation, the elements v, of the feature vector D, are
dimensionless quantities. The weighted Euclidean distance between two vectors

D, and D, is given by:
J 2
61:4 = _ZIW.-(Vu - Vui) &)

where g is the number of variables in D, and D,, and w; is the weight associated
with the ith variable. Unless stated otherwise, the weights w; will be set equal
to 1.

The final simulated value x,,, for day ¢ is obtained from the standardised
resampled value X, ;) by inverting equation (3) or (4):

Xy sim = My +8,%,( ) ©)
X¢ sim = My werXi( j) ¢))

Because X, 20 in equation (4), the simulated value X,5im in equation (7) cannot be

negative. This is not true for equation (6). Figure 5 presents a flow diagram of the
full resampling procedure for the unconditional methods 1 and 5 of Figure 2.

Now it becomes clear that there are various options in the nearest-neighbour
method, and that the results may depend on factors like:

The number & of nearest neighbours used for resampling.

The width W,,,,, of the running window.
- The type of kernel used for attaching probabilities to the k-NN.

The composition of the feature vector (Figure 2).

The use of weights in the calculation of distances.

The method used to standardise the variables in the feature vector.
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Figure 5: Flow diagram for methods 1 and 5 (see Figure 2).

Resample one successor from I

2.2 Prediction and cross-validation

Lall and Sharma (1996) suggested the use of cross-validation to determine the
number k of nearest neighbours and the variables in the feature vector. Cross-
validation works by leaving out one observation at a time and predicting that
observation from the remaining observations. The verification set thus always
consists of one observation and the calibration set is formed by the other
observations. The cross-validation score CV for a particular resampling model is
the mean-squared prediction error over all possible predictions.

The k-NN prediction of a value x, from all observations in a record is obtained as:
k

X, = zl’j":m ®)
Jj=1

The error e, of this prediction is:
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k
e =x,—%=x,-Y px, ©
j=1

However, if we derive the k-NN from all observations, the closest neighbour Dy,
of D, is D, itself. Consequently, x, () = X; and equation (9) can be rewritten as:

* e‘ *
e = =X,—- ) D:X,; (10)
] l—p] » ! ; Jp

where p; =p,/(1- p,) is the conditional probability that the value x,; is drawn
when x, (;) is left out. The sum on the right-hand side of equation (10) gives the
prediction i: of x, after deletion of x, ;). The errore,' corresponds with the
deletion or jackknife residual in multiple regression (Green and Silverman, 1994).

The cross-validation score CV is now given by:

CV——2< p=Ly

(TP Ry e (1 Pl )

11)

where / is the number of time lags in the feature vector, and n,= n — #(the total
number of possible predictions in a sequence of length n).

The CV-score in equation (11) applies to a single weather variable. A total CV-
score for all weather variables of interest can be obtained as:

1 n
CV=—Yr"Wr (12)
By =t
where r, is the vector of prediction errors at time ¢ after deletion of the
observation at that time, and W is a diagonal weight matrix.

In this study, the CV-scores are expressed in terms of the prediction errors for the
standardised variables. CV gives the proportion of unexplained variance if the
variable is standardised by equation (3). The weights on the diagonal of W should
correspond with those in equation (5) for the Euclidean distances.
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3. Results

3.1 Data

Daily precipitation and temperature data were made available by the Deutscher
Wetterdienst via the ‘International Commission for the Hydrology of the Rhine
Basin’ (CHR) for 34 synoptic stations in the German part of the Rhine basin for
the period 1961-1990. For the study described in this report, we only analysed
the data for Essen, Kahler Asten, Trier, Frankfurt, Bamberg, Freudenstadt and
Stuttgart (Figure 1). Figure 6 presents some relevant precipitation and
temperature characteristics of these stations, together with the station elevation.
Note that the mean precipitation at the two highest stations (Kahler Asten and
Freudenstadt), is about twice that at the other stations.

To incorporate atmospheric flow characteristics, we considered daily mean sea
level pressure (MSLP) data from the UK Meteorological Office on a 5° latitude
by 10° longitude grid. These data extend back to December 1880. For a grid
centred at the Rhine basin (see Figure 7), we calculated three daily air-flow
indices: (1) total shear vorticity Z; (2) strength of the westerly flow W; and (3)
strength of the southerly flow S (see also Jones et al., 1993). These three indices
form the elements of the vector C in Figure 2.

Before resampling, the data have been standardised using the smoothed values of
the calendar day’s mean, m, (mywe), and standard deviation, s,, as described in
Section 2.1. Figure 8 presents m, and s, for Z, W, S and T, and My we for P,
together with the smooth approximations (P and T values apply to Stuttgart). The
smooth curves are based on Friedman’s supersmoother (Hirdle, 1990). Before
calculating the smooths, we repeated the values for d = 336,...,365 for d < 1 and
the values for d = 1,...,30 for d > 365 to harmonize the smoothed values at the
beginning and end of the year. For most variables, Figure 8 shows a large
sampling variability. The use of the smooth approximations is, therefore,
desirable. Note further that the largest standard deviations of the flow indices
(vorticity, strength of the flow) are found in winter. The mean westerly flow is
also relatively large in that season. The largest mean wet-day precipitation
amounts are found in summer, which is due to the influence of convection
(summer showers).

3.2 Definition of test cases :

At the end of Section 2.1, we mentioned six factors that may influence the
characteristics of the simulated data. The sensitivity of the autocorrelation
properties and extreme N-day precipitation amounts to these factors were studied
for 25 test cases as defined in Table 1. The first digit of each case number
corresponds to the resampling method in Figure 2. We restricted the sensitivity
study to the data from Stuttgart only. After the sensitivity study, we decided to
use cases 4.1 and 5.2 to further explore the reproduction of extreme-value
properties for the other stations. With the exception of Section 3.6.3, the
resampled daily time series have a length of 30 years each. In Section 3.6.3 we

- . consider long duration time series with a length of 300 years.
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Figure 6: Precipitation and temperature characteristics of the seven stations (1961-1990)
together with the elevation above mean sea level. The bars and lines give the mean

monthly precipitation and mean calendar-day temperature, respectively. Pand T in the
various panels denote annual mean values for precipitation and temperature, respectively.

3.3 Autocorrelation for Stuttgart

Figure 9 compares the lag 1, 2 and 3 autocorrelation coefficients of daily
precipitation and temperature for the historical data, with those for cases 2.1, 3.5,
4.1, and 5.2 (Table 1). For the historical data the standard error is also presented.
Both the autocorrelation coefficients and their standard errors were estimated
with the jackknife method of Buishand and Beersma (1993). For temperature (all
3 lags) and precipitation (lag 1), it is immediately seen that the autocorrelation is
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calculation of the air-flow indices over the Rhine basin.

seriously underestimated in case 2.1, that uses only é, to find the nearest
neighbours. The reproduction of the autocorrelation is much improved by
including 1';,; and f,:, in D, (case 3.5), although some bias still remains. A
further improvement, for precipitation, is achieved by considering é,_, in D, as

well (case 4.1). Case 5.2, that extends Rajagopalan and Lall’s (1995) method for
unconditional simulation, has similar performance.

Because a graphical comparison of all cases is both space consuming and
difficult, we examined the mean difference (MD) and mean absolute difference
(MAD) between the estimated autocorrelation coefficients of the historic and
simulated time series:

MD =R, - R; (13)
12
MAD=%Y'R, . - Rq,, (14)
m=1

where Ry, and R;,, represent the estimated autocorrelation coefficients of a given
lag, for the historical and simulated time series, respectively, for the mth month;

R, and R; are the annual averages of Ry, and Rj,, respectively. MD checks for

a positive systematic difference between Ry, and Rg, over the year. The
possibility of systematic negative differences over the year, i.e. too much
autocorrelation in the simulated data, can be ruled out a priori for the
nonparametric resampling techniques used here. MAD is not sensitive to the sign
of the differences. It verifies whether the month-to-month fluctuations of the
differences between Ry, and R;, have the right order of magnitude for two time
series with the same autocorrelation properties.

The expected value of MAD is given in Table 2. The table also presents the
standard errors of MD and MAD. Details about the derivation of these statistical
_properties are given in Appendix A.
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m, (°C)

My e (MM)

180 240 300

Figure 8: Values of m, and s, for Z, W, S, T and mg, for P together with the smooth

approximations (P and 7 values apply to Stuttgart) as a function of calendar day d for the
period 1961-1990. The smooth curves are based on the supersmoother (Hirdle, 1990).
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case W, k w; D, kemnel E

Lo days)
11 61 20 (L1 (B5,,T) uniform B/ my .
21 61 20 o)) (€, uniform B /m,,,
31 61 20 (LLDY (C,.B’,.T) uniform B/ my .

‘32 61 40 (LLD) (C,.B.T ) uniform B/ my .
33 61 5 L.LD ,(é,,ﬁljl,ﬁil) uniform B /m,
34 61 10 (1,11 (C,P’,,T',) decreasing FB/my,,
35 61 20 1,L1) (évﬁ":l,fl:l) decreasing B /m, .
36 61 40 (1,L1) (é’j::hﬁjl) decreasing B /my .
3.7 121 20 (1.1D) ((j“ﬁ‘:hfljl) uniform B /my,
38 131 20 QLD (é‘,éihﬁ:l) uniform £/ my

39 61 20 (3,11 (,.B’.T") uniform £ /my .
310 61 20 @3L) (@ B F')  uniform  B/myu

3m 61 5 ALD  (§,B'.F) uniform  P/m,,,
312 61 5 (LLD) (C.B°.T.) uniform  (F,-m,)/s,
33 61 5 LD (@ p.F) uniform  A/m,
314 61 5 (LLD (€,.B'.T") uniform  [p7m,
315 31 10 aLD (@, F'.F)  uniform  P/mg,
316 121 40 1L (B, T") uniform  F/my .

41 61 20 (1/4,1/4,1,1) (énex-nyéihﬁil) decreasing P /my
42 61 20 (1,1,1,1) (é,,é;-l»i’;:hf:tl) uniform B imy e
43 61 20 (1,1,1,1) (éné;—pi’:vﬁ:n) decreasing B /my .
51 61 10 1,1 (é;‘_],ﬁ’i‘,f‘:]) decreasing B /my .
52 61 20 (LL1) (€., Eil»ﬁil) decreasing P/ my
53 61 40 (1,11 (é:‘_hﬁ;hf:]) decreasing F /my,
6.1 61 20 (LLLLLY) (é:‘z,i’;iz,f,:p uniform B lmy e
Cl..BL.T)
Table 1: Definition of test cases. The w; values for the circulation apply to all three

components of the vector C: Z, W and 5. The asterisks in the feature vector D,, indicate
that the corresponding variables are resampled values from the previous time step(s).

D*100 MAD*100
3 lagd  lagl Tag? lagd

e
\O
=

0 0 0 0 220 |414

T() (080 [151 [196 |049 [091 |11 |

Table 2: Mean of MD and MAD, together with their standard errors (se), for
autocorrelation of daily precipitation (P) and temperature (7) if there would be no
 differences in the autocorrelation structure of the observed and simulated data for

Stuttgart.
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Figure 9: Lag1, 2 and 3 autocorrelation coefficients of daily precipitation and
temperature at Stuttgart for each month for the cases 2.1, 3.5, 4.1 and 5.2.

Tables 3 and 4 present the values of MD and MAD for precipitation and
temperature, respectively. Despite the relatively short record length of 30 years in
each test case, the results give a good indication of the sensitivity to the factors
mentioned at the end of Section 2.1. For a one-sided test (MD) at the 5% level,
the values may not deviate more than 1.65 times the standard error from the
expected value, and for a two-sided test (MAD) not more than twice the standard
error.

Table 3 shows that the lag 1 autocorrelation for precipitation is well reproduced
for about half of the cases. For these cases, MD is not significant and the
variation of the differences between Ry, and R;,, corresponds, according to the
values of MAD, with that expected for two times series with the same
autocorrelation properties. For temperature, Table 4 shows that the lag |
autocorrelation is nearly always significantly underpredicted. To a certain extent,
this underprediction can be alleviated by making appropriate use of the results of
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the sensitivity study discussed below. The six factors mentioned at the end of
Section 2.1 are considered separately.

Sensitivity to k

The sensitivity to k becomes clear by comparing cases 3.1, 3.2 and 3.3 (uniform
kernel) and cases 3.4, 3.5 and 3.6 (decreasing kernel). For both precipitation and
temperature, smaller values of k tend to result in a better reproduction of the

autocorrelation properties. For cases 5.1, 5.2 and 5.3 (decreasing kernel) the best
results are obtained if k = 20,

Sensitivity to Winw

The sensitivity to W, is not obvious. Comparison of cases 3.1, 3.7 and 3.8
(uniform kernel) shows for precipitation a weak preference to W, = 61 days
(case 3.1), while for temperature W, = 121 days (case 3.7) yields the best
results. Because our interest is mainly in the reproduction of precipitation
properties, we chose to use W,,,, = 61 days in subsequent test cases.

Sensitivity to kernel type
The sensitivity to the type of kernel can be illustrated by comparing cases 3.1 and
3.2 (uniform kemel) with cases 3.5 and 3.6 (decreasing kernel). For the same
value of k, the decreasing kernel improves the reproduction of the autocorrelation
for temperature while the effect of the kernel type is not clear for precipitation.
However, this does not mean that the decreasing kernel is better than the uniform
kemnel. For instance, comparison of cases 3.3 and 3.5 shows that improvement
obtained by using the decreasing kernel with k = 20, can also be obtained (and
even be better) for the uniform kemel with k = 5. Therefore, if we are free to vary
. MD*00 | MAD*100

lal " " 2 £ = ™

L1 | 228] 353 202] 526] 414 393
21| 1505| 193] 1.11]1505] 464 5.02
31 | 496] 163 180 596| 453 289
32 | 697| 436| 288] 7.17| 535| 4.8
33 | 093] 012] -0.78] 480] 495 3.23
34 | 152] 0.12] 092 561 332[ si6
35 | 598 200 037 598] 423] 354
36 | 354] 197| 222 587| 482| 473
37 | 341] 355 081] 6.28] 4.64] 4.02
38 | 483 211] 049] 678| 534] 4.9
39 | 302 228] 065 592| 408 3.60
310 | 588| 148) 203| 622| 4.14]| 497
311 | 233 0.16] 008 397| 504] 337
312 | 272| 161 200 484| 387 5.6l
313 | 124] 1.64] 077| 553| 457 430
314 | 3410 152 172 6.02] 501| 330
3.15 | 7.24| 200| 081 7.42| 2.83] 394
316 | 5.44| 3.04] 087 851| 500 3.94
41 | 223| 0.5 -046] 3.70| 3.10] 3.15
42 | 321 086 076/ 4.85| 3.87| 3.85
43 | 401] -002| 092 6.71] 550, 431
51 | 276| 0.14] 055 405 400 4.82
5.2 0.13 -0.34/ -1.32| 5.50 435, 5.22
5.3 238 027, 1.06] 351 430 4.63
61 | 271| -1.41| -0.47] 3.81| 3.88] 3.86

Table 3: Values of MD and MAD for autocorrelation of daily precipitation at Stuttgart
for the cases defined in Table 1.
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k, it is relatively unimportant which type of kemnel is chosen.

Sensitivity to the use of weights w;

For the circulation indices, the sensitivity to the changes in the weights w; in
equation (5), can be seen by comparing case 3.1 with cases 3.9, 3.10 and 1.1
(uniform kernel). Note that method 3 with w; for circulation set to zero, is
identical to method 1 of Figure2. For precipitation, the results are quite

insensitive to a reduction of w;, while for temperature there is an obvious
improvement for smaller w,.

Sensitivity to the method for standardising precipitation

The sensitivity to the method for standardising precipitation can be illustrated by
comparing cases 3.11-3.14 (decreasing kernel). The autocorrelation is quite
insensitive to the standardisation method. For both precipitation and temperature,
the default method for standardising precipitation (case 3.11) performs slightly
better than the other methods.

Sensitivity to the resampling method
The six methods of Figure 2 can be compared by considering the cases 1.1, 2.1,
3.1, 4.2, 5.2, and 6.1. For conditional resampling (cases 2.1, 3.1, 4.2), method 2
(only circulation indices in D,) is inferior to methods3 and 4, for both
precipitation and temperature. Method 4 performs slightly better than method 3
for precipitation. Both methods produce daily temperatures with too little
autocorrelation. For unconditional resampling (cases 1.1, 5.2, 6.1), method 1 (no
circulation indices in D,) reproduces best the autocorrelation coefficients of daily
temperature. Methods 5 and 6 (circulation indices included in D,) work quite well
,,_,.A_‘\’ID.’TLQQ,. R M\D* 100
lagl lag L :
11 | 143] -206] -28| 191] 336| 447
21 | 51.17| 36.52| 30.4] 51.17| 36.52| 30.40
31 | 853 781 765 853] 796 7.65
32 | 12.04] 11.41] 11.45| 12.04] 11.41| 11.54
33 | 425| 273 380 425| 337 457
34 | 428] 257 252| 428 3.13] 3.38
35 | 693| 661 689 693] 679 7.40
36 | 848 7.80| 8.16| 8.48| 825 10.50]
37 | 649 431| 411] 649 594| 630
38 | 708| 606 628 7.08| 7.00| 8.1
39 | 535| 3.53| 3.86| 535 4.28) 4.96
310 | 856/ 8.19| 852 856 891 9.33
311 | 389] 246 3.8 389| 3.87 5.1
312 570| 3.96| 3.12] 570| 4.84| 4.65
303 . 546| 391| 429 5.46| 460 557
314 498) 270, 3.10, 498 3.90 5.7
315 725 553 563, 7.25| 566 6.18
316 9.43; 9.28| 9.78 943, 9.28) 9.78
41 | 467| 405 507 467) 458 554
42 . 838 794 7.51 838, 794 888
43 | 594] 5.44] 6.04 594, 6.18 7.26
|51 | 455] 630 9.17, 481 7.03 10.13,
'S2 489} 528] 7.10. 489| 557 7.96
§5.3 . 5.60; 7.66 10.56: 5.60, 7.87 10.69
6.1 | 690! 6.09 639 690, 694 7.43
Table 4: Values of MD and MAD for autocorrelation of daily temperature at Stuttgart for
the cases defined in Table 1.
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for precipitation, but, like conditional simulation on the atmospheric flow, they
have difficulties with the autocorrelation properties of daily temperature. It
further turns out that the autocorrelation coefficients of the simulated vorticity
indices are too low in these methods. The systematic departure from the observed
lag 1 autocorrelation coefficient is about 0.05, which is comparable to that for the
simulated daily temperatures. The autocorrelation coefficients of the simulated
vorticity indices also show a too rapid decay with increasing lag.

Discussion

The sensitivity study in this section shows that the autocorrelation properties of
daily precipitation and temperature are most sensitive to the value of k and the
variables included in D,. The value of k should not be too large (usually < 20 for a
historical record of 30 years) for an adequate reproduction of autocorrelation
properties. For conditional simulation on the atmospheric circulation, it is of
major importance to include the weather variables on day t—1 in D, For
unconditional simulation, the inclusion of circulation indices degrades the
reproduction of autocorrelation properties of the daily temperatures. This should
be ascribed to the smaller influence of temperature on day ¢ — 1 on the selection of
the nearest neighbours.

3.4 Standard deviation of monthly precipitation for Stuttgart

The standard deviation of monthly precipitation sums is strongly determined by the
autocorrelation structure. For an arbitrary N> 1, the following relation exists
between the variance V) of the N-day amounts and the autocorrelation coefficients:

N-1
vV, = oj{zv +23 (N - l)pxx(l)] (15)

=1

with o2 =V, the variance of the 1-day amounts and P, (1) their lag-/ autocorrelation
coefficient (I =1,...,N ~1).

From equation (15) it follows that the positive autocorrelation, as observed in daily
climate data, leads to relatively large values of Vy. Underestimation of the
autocorrelation coefficients, will then naturally result in monthly precipitation sums
with too little variation. In contrast to the comparisons for each individual lag in
Section 3.3, a test on the standard deviation of monthly precipitation sums considers

all lags simultaneously. Such a test is useful to discover a too rapid decay of p.(J)
with increasing / in the simulated data.

To compare the historical data with the simulated data, we calculated the mean
standard deviation 5 = 2:; s,, / 12 of the monthly precipitation sums, where s,, is

the standard deviation for the mth month. For the historical data 5 =30.4mm
with and estimated standard error se(s) =134 mm. The latter was obtained using

a bootstrap procedure (see Appendix B).
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| cnse  ERQUN (case EHERD
34 1262 139 | 314

35 280 310 277 1315 [243 |51 (283
36 244 311 289 316 [280 52 (212
37 262 312 2719 41

31.3 53 29.1 |
28.6

38 1275 313 [282

4.2 ; 27.4 7
Table 5: Means of the standard deviations of monthly precipitation sums at Stuttgart
for the cases defined in Table 1. For the historical data of Stuttgart: 5 = 30.40 mm and
se(s)=131 mm.

61 |27.4

Table 5 presents 5 for each case. The table shows that 15 out of the 25 cases
have values lower than the observed value of 5 minus twice' the standard error. It
is noteworthy that case 2.1 performs better than cases 1.1, 3.2, 3.6 and 3.15,
although for case 2.1 the reproduction of the lag 1 autocorrelation coefficient is
worst of all (Table 3). Clearly, the strong emphasis on circulation on day ¢ in D, in
case 2.1 results in a relatively good reproduction of higher order autocorrelation
coefficients. Nevertheless, the monthly standard deviation is significantly
underpredicted. The relatively poor performance of case 1.1, indicates that the
autocorrelation of the resampled daily precipitation is too weak if there are no
circulation indices in D,. Table 3 shows a non-significant underprediction of the
autocorrelation coefficients for the first three lags for case 1.1. This contributes to
the significant underprediction of the monthly standard deviations.

3.5 Cross-validation

Cross-validation is an objective method that can be used to find an optimum
value for the number & of nearest neighbours and to determine the composition of
the feature vector. For each of the six methods in Figure 2, we calculated the CV-
score as a function of k for W, = 61 days, w;= 1 for all i, and for a uniform
kernel. Initial calculations showed that the CV-score is relatively insensitive to
changes in Wy, and w;. Furthermore, the type of kernel only affects the value of k
for which the CV-score reaches its minimum, not the minimum itself.

Figure 10 presents the CV-scores of both P and T as a function of k for the six
methods. Note that the asterisks of Figure 2 are removed, all variables in D, are
historical. Because the conditioning on the atmospheric circulation reduces the
CV-score, it would not be fair, for simulation purposes, to directly compare the
conditional methods (2,3,4) and unconditional methods (1,5,6). Therefore, we
make a distinction between unconditional and conditional methods in the
discussion of the results.

Two general features are apparent from Figure 10. The first feature is that the CV-
score for precipitation is much larger than for temperature. On the one hand, this
can be explained by the nature of daily precipitation, which is much more random
than temperature. As a result, the CV-score for T is much more sensitive to the
variables included in D,. On the other hand, the relative prediction errors for
precipitation are relatively high through the use of a different standardisation

' The observed and simulated monthly precipitation sums are practically uncorrelated for the
unconditional method, .whilst there is a correlation coefficient of about 0.3 for the conditional

" "method. In the first case, the standard deviation of the difference between the observed and

simulated values of s should be about 1.4xse(5 ) and in the second case 1.2xse(s ). For a one-
sided test at the 5% level, these values should be multiplied by 1.65. The criterion of 2xse( ) is
then quite reasonable. The condition that 5 must be approximately normally distributed is satisfied
because it is an average of weakly skewed sample standard deviations.
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Figure 10: CV-score as a function of & for observed daily weather variables at Stuttgart
for all cases in Figure 2 (uniform kernel; W, = 61 days; w; = 1 for all i).

method. It is also seen that for temperature the CV-score has a more pronounced
minimum than for precipitation. The second feature is that for k < 25 the CV-
score decreases with increasing k as a result of the decrease of the variance of the
predicted value i,' with k (see Appendix C). Therefore, k may not be too small

for prediction purposes. However, for time series simulation it is important that
the simulated data have the correct autocorrelation structure. The decrease of

var(%;) with increasing k is then not relevant. The comparisons in Sections 3.3

and 3.4 showed that the autocorrelation properties of daily rainfall are well
preserved if k is much smaller than the optimum value k =25for prediction
purposes. These small values of k also resulted in the smallest underprediction of
the autocorrelation coefficients of the daily temperatures.

For the conditional methods, starting from method 2, the inclusion of I~’,_, and
f,_l in D, (method 3), slightly improves the CV-score of P whereas the CV-score
of T becomes much better. The inclusion of f,_, in D, is thus of major

importance. A further inclusion of 6,_, in D, has little influence on the CV-
scores.

For the unconditional methods, starting from method 1, the inclusion of C,_, in D,
(method 5) slightly improves the CV-scores of both P and T. For block

resampling (method 6), especially the CV-score of T becomes worse. This can be
explained by the relatively large prediction errors in that method for the second

~ "day of the block, day ¢+ 1 in Figure 2. In contrast to the other methods, the

prediction for that day is based on observations for days r— 2 and ¢ — 1 instead of
day ¢.
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3.6 N-day winter precipitation maxima

3.6.1 Stuttgart

For Stuttgart, we abstracted the N-day (N =1,4,10,20) winter (October-March)
precipitation maxima from the historical record and all simulated cases.
Figures 11 and 12 compare the Gumbel plots of the observed 1-day and 10-day
winter precipitation maxima with those for the cases 2.1, 3.5, 4.1 and 5.2. For
both N=1 and N = 10, cases 4.1 and 5.2 compare well with the historical data.
Case 3.5 especially underpredicts the highest 10-day maxima, whereas for
case 2.1 the underprediction of these maxima is more systematic as a result of the
systematic underprediction of the autocorrelation. For the latter case, the relative
magnitude of the underprediction of the percentiles of the 10-day winter maxima

(15 to 20%) is comparable to that for the standard deviation of the monthly
precipitation sums in winter (22%).

Although resampling techniques are in principle unable to generate larger daily
values than the largest historical value, the simulated 1-day winter maxima in
cases 4.1 and 5.2 in Figure 11 are larger than the historical maxima. This can be
due to: (1)the use of a slowly seasonally varying mean to standardise the
observations before resampling; and (2) the use of the moving window (Figure 4),

which allows for resampling of days outside the boundaries of the winter half
year.

For an objective verification of the reproduction of the N-day maxima
distributions for N = 1,4,10 and 20, we considered the following three quantities:
1. The maximum of the N-day winter maxima (highest N-day amount in the

record).
case 2.1 case 3.5
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- -Figure 11: Gumbei-plots of 1-day winter (October-March) maxima for observed

precipitation at Stuttgart (solid dots, solid lines) and simulated precipitation for cases 2.1,
3.5, 4.1 and 5.2 (open squares, dashed lines). The solid and dashed lines are probability-
weighted moment fits (Landwehr er al., 1979) to the historical and simulated data,
respectively. The winter maxima are plotted using the median plotting position.
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Figure 12: Gumbel-plots of 10-day winter (October-March) maxima for observed
precipitation at Stuttgart (solid dots, solid lines) and simulated precipitation for cases 2.1,
3.5, 4.1 and 5.2 (open squares, dashed lines). The solid and dashed lines are probability-
weighted moment fits (Landwehr et al., 1979) to the historical and simulated data,
respectively.

2. The upper quintile mean of the N-day winter maxima. For 30 years of data
this is the mean of the 6 largest winter maxima. This mean value has an
average return period of 12.5 years (Appendix D).

3. The median of the N-day winter maxima.

Table 6 presents the three quantities for the historical data of Stuttgart together
with the simulations. Standard errors are also given. These standard errors
assume that the N-day maxima follow the Gumbel distribution (see Appendix D
for details). The differences between the simulated and observed values in
Table 6 are in most cases less than twice the standard error. Surprisingly, the
strongest indication of a systematic departure is found for the median, which is
mostly lower in the simulated data. The largest discrepancies in Table 6 are
mainly the result of an inadequate resampling procedure. It is therefore useful to
study the effects of the various factors that determine the resampling procedure,
as given at the end of Section 2.1, on the properties of the N-day precipitation
maxima. This is done below for the same cases as in Section 3.3.

Sensitivity to k

Comparison of cases 3.1, 3.2 and 3.3 (uniform kernel) and cases 3.4, 3.5 and 3.6
(decreasing kernel), shows, except for case 3.2, no obvious preference to a
particular value of k. For case 3.2, especially for large N, the results are worse.
The autocorrelation coefficients and the standard deviation of monthly
precipitation were also not satisfactorily reproduced for that case. Apparently,
the combination of a uniform kernel with a large number of neighbours (k = 40)
is not appropriate.
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.:pper qnintile ile mean (mm) .
N4 N=10 N=20
584

77.6| 107.8
5.2

. median (mm)
“N=1_N=4 N=10 N=20
. 386, 564 799
| 67| 86| 18 24| 31 40
482 665, 969/ 198 353, 419] 678
,497 65.3 4907 19.5; 30.1/ 459, 70.0
554 739, 1003| 239| 375 51 8, 69.0
525| 710| 870 33.1] 49.4] 669
_51.8] 71.4| 102.0 36.6| 52.4| 69.7
(56.5| 80.6| 109.4| 18.1| 34.4| 493| 657
492 70.0| 101.3| : 35.6| 526 76.1
59.1| 72.9| 104.5| 42.1| 57.0] 742
463| 659| 90.4| 19.8| 32.1| 48.1, 68.5
65 .2| 82.1 ;1092 372 w537_, 70.3
579 80.3 107.1 40.7) 56.7, 719
59.8| 76.4| 1033| 258 389 569 76.8
592 784 996| 1 36.5| 545 733
619 858 1150 2 383, 58.1| 79.2
w5‘62 79.11 95.0 36.4, 525, 67.0
53.7| 76.7,100.8| 18.7| 345 503 71.2
447| 689, 93.0| 18.5| 29.8| 444 64.1
57.0{ 80.7 104.5| 1 357 545, 78.1
651 87.6| 1206 24.1; 36.0| 549 742
569 79. L 111.0 36.6] 48.8| 702
547 744 i 1062 | 21.5| 359| 56.0, 729
0 36.4] 543 ;753;1052_,‘ 8| 363 »510“‘72.0
383 652| 87.2| 1108| 21.0| 38.4| 541, 775
18.8} 39.5] 706 934, 1241M 369 S51.1, 76.1
90.3| 944| 39.2| 59.8{ 749 89.9 209 38.3 499 73.3
Table 6: Maximum, upper qumule mean and median of the N- day winter (October-
March) maxima for Stuttgart and for the cases defined in Table 1.

36.7
3.9
292
27.9
305
359
30.9
31.7
312
309|
306
02|
31.8)
409|
350
1364
28.6
5| 336
242
293|
457
35.4|
424
36.4

Sensitivity to Wiw
Comparison of cases 3.1, 3.7 and 3.8 (uniform kernel) shows that the results for
Wow = 121 days are inferior to those for W,,,, = 31 and 61 days.

Sensitivity to kernel type
Comparison of cases 3.1 and 3.2 (uniform kemel) with cases 3.5 and 3.6
(decreasing kernel) shows no clear preference to the type of kernel.

Sensitivity to the use of weights w;

For the circulation indices, the sensitivity to the changes in the weights w; in
equation (5), can be seen by comparing case 3.1 with cases 3.9, 3.10 and 1.1
(uniform kemel). Cases 3.9 and 3.10 with w; = 1/3 and 2/3, respectively, perform
somewhat better than case 3.1 for which w; = 1. Setting w; =0 (case 1.1)
deteriorates the reproduction of extreme rainfall amounts.

Sensitivity to the method for standardising precipitation
Comparison of cases 3.11-3.14 (decreasing kernel) shows that the results for
case 3.13 are somewhat worse than for the other cases.

' Sensmwty to the resampling method

The six methods of Figure 2 can be compared by considering the cases 1. 1,21,
3.1, 4.2, 5.2 and 6.1. Method 2 (only circulation indices in D)) is inferior to all
other methods. Method 1 (no circulation indices in D,) also performs rather
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poorly. Apparently, precipitation needs to be considered together with the
circulation variables. The results of the remaining four cases, indicate that for

conditional simulation the inclusion of E,ﬁ, in D, (case 4.2) in addition to (NI,,

P’ and T, (case3.1) leads to a slight improvement. For unconditional

simulation, there seems no advantage in resampling more than one day at a time
(compare cases 5.2 and 6.1).

Discussion

The sensitivity study in this section, shows that for the reproduction of the
statistical features of the N-day winter maxima, the resampling method is of
major importance. The best results are obtained if the search for nearest
neighbours considers the most recent resampled weather variables together with
the circulation indices. For both the conditional and unconditional method, there
is an indication that the median of the N-day maxima is underestimated
(especially for large values of N).

3.6.2 Stuttgart and the other stations

We selected the cases 4.1 and 5.2 in Table 1, to examine the behaviour of the N-
day winter precipitation maxima for all seven stations. Case 4.1 is a conditional
method that gave good results for the autocorrelation structure and N-day winter
maxima at Stuttgart. Case 5.2 is the unconditional method that best reproduces
the lag 1 autocorrelation coefficient of daily rainfall and the distribution of N-day
winter maxima. The feature vector of these cases contains both resampled
weather variables and circulation indices. For each station, we generated four
new time series of 30 years each.

Tables 7 and 8 present the results for cases 4.1 and 5.2, respectively. The bottom
line gives the percentage difference between the historical time series and the
average of the four simulations, averaged over all stations. Comparison of both
tables shows no obvious preference to one of the two cases. Both the maximum
and the upper quintile mean are well reproduced. The average percentage
difference is small for these quantities and the magnitude of the differences
between the observed and simulated values for the individual stations is generally
not more than that expected from the presented standard errors. Quite remarkable
are the extremely high 10-day and 20-day maximum amounts in the first
simulated record for Freudenstadt in Table 7 (case 4.1a), which exceed the
observed maxima by more than 200 mm. The median of the N-day winter
maxima tends to be underestimated by the simulated data, in particular for
N=20. This is consistent with the earlier discussed results for Stuttgart in
Table 6. The average percentage differences of —8.5 and —8.3% in Tables 7 and
8, respectively, are large compared with the value of 2.8% for the standard error
of the average percentage deviation of the sample median from the true median,
as derived from a bootstrap simulation in Appendix B.

To investigate whether the relatively high underprediction of the median also
occurred in other periods, we carried out the same kind of simulation for De Bilt
in the Netherlands. Three separate periods were considered: 1906-1935, 1936
1965 and 1966-1993. Table 9 presents the results for cases 4.1 and 5.2. The
values for each case are averages of 4 simulations. The bottom lines give the
percentage difference between the historical time series and the average of the
simulations, averaged over the three periods. The table shows that the
underprediction of the median is negligible for the unconditional method, but not
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Table 7: Maximum, upper quintile mean and median of the N-day winter (October-March) maxima
for seven stations for case 4.1 (historical data and four runs of 30 years each) . The bottom line
gives the percentage difference between the historical time series and the average of the four
simulations, averaged over all stations.
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for seven stations for case 5.2 (historical data and four runs of 30 years each). The bottom line gives
the percentage difference between the historical time series and the average of the four simulations,
averaged over all stations.
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Table 9: Maximum, upper quintile mean and median of the N-day winter (October-
March) maxima for De Bilt for cases 4.1 and 5.2 (historical data and averages of four
runs). Biltl, Bilt2, and Bilt3 refer to the periods 1906-1935, 1936-1965, and 1966-1993,
respectively. The bottom lines give the percentage difference between the historical time
series and the average of the four simulations, averaged over the three periods.

for the conditional method. Both methods, however, show an underprediction of
the upper quintile mean of the N-day winter maxima, up to about 15% for N = 20.
The largest differences are found for the first two periods 1906-1935 and 1936—
1965. For the third period, 1966-1993, the differences between the observed and
simulated upper quintile means are small. This is in agreement with our results
for the German stations for more or less the same years.

From the comparisons with the observed N-day precipitation amounts, we have to
conclude that the percentiles of the N-day winter maxima are too small in the
simulated time series. The fact that the departures tend to increase with increasing
N, suggests that long-term memory is inadequately reproduced by the model.

3.6.3 Long duration simulations

The ultimate goal of the rainfall generator is the simulation of unprecedented
extreme rainfall situations over the Rhine basin. An interesting question is,
therefore, how far the rainfall generator can provide higher N-day amounts than
those observed. Some 30-year runs in Tables 7 and 8 already showed larger
maxima than those observed in the historical record. To investigate this further,
we carried out a 300-year simulation for all seven stations. A conditional method
would need an additional model for generating circulation indices for that
purpose. Consequently, the results in this section refer to case 5.2 (unconditional)
only.

Figure 13 compares for Kahler Asten and Frankfurt the Gumbel plots of the 1-day

. .and 10-day winter precipitation maxima for the historical record with the 300-

year simulation for case 5.2. For reasons discussed in Section 0, the largest 1-day
winter precipitation maxima of the 300-year simulations exceed the historical
values, in particular at Frankfurt.
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Figure 13: Gumbel-plots of 1-day and 10-day winter (October-March) maxima for
observed precipitation at Kahler Asten and Frankfurt (solid dots, solid lines) and
simulated precipitation for a 300-year run for case 5.2 (open squares, dashed lines). The
solid and dashed lines are probability-weighted moment fits (Landwehr et al., 1979) to
the historical and simulated data, respectively.

For the peak discharges of the Rhine in the Netherlands, the 1-day precipitation
maxima are of minor importance than e.g. the 10-day maxima. The Gumbel plot
of the 10-day winter maxima in the 300-year simulation for Kahler Asten in
Figure 13, shows values up to 74 mm larger than the largest historical value. The
simulated 10-day maxima nicely follow the Gumbel distribution. For most of the
other stations we obtained similar results. An exception is the 300-year simulation
for Frankfurt (Figure 13), which contains no 10-day maxima larger than the
largest historical value. The fact that the three largest observed 10-day winter
maxima lie above the straight line for the Gumbel distribution in Figure 13,
contributes to this phenomenon. On the other hand, the largest 10-day values of
cases 5.2b, 5.2c and 5.2d in Table 8 for Frankfurt exceed the historic maximum.

3.7 Snowmelt

So far, we only considered the N-day winter precipitation maxima without
distinguishing between rainfall and solid precipitation. However, large winter
discharges of the Rhine may be partly influenced by snowmelt. In this section, we
therefore explore the ability of the nearest-neighbour method to reproduce
snowmelt for the seven stations in Section 3.6.2. Historical estimates and
simulated values of snowmelt are derived from daily precipitation and
temperature. :

We assume that for T < O precipitation accumulates on the surface as snow. To
calculate the N-day snowmelt maxima, we first transformed the snow into
snowmelt using the degree days method. In this method, the amount of snowmelt
on a certain day is proportional to the temperature excess (number of degrees
Celsius above freezing point on that day), of course as long as there is solid
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Figure 14: Boxplot of the accumulated winter (October-March) snowmelt for each
station for the historical data and for cases 4.1 and 5.2. Each box for the simulations
applies to a concatenated series of four 30-year runs. '

precipitation stored on the surface. The constant of proportionality is known as
the degree days factor (mm/°C). We set this factor equal to 4, which is an average
of the values found in the literature (Linsley et al., 1988; Gray and Prowse, 1993).

Figure 14 compares the historical snow accumulation in winter (October-March)
for each station with the simulations of Section 3.6.2. Each box for the
simulations applies to the concatenated four 30-year runs. The figure shows that
the correspondence between the historical and simulated values is quite good,
though for the two highest stations, Kahler Asten and Freudenstadt, there is some
tendency to underpredict the median and higher percentiles. The contrast between
these two stations and the other stations is striking. For Kahler Asten and
Freudenstadt, the mean historical snowmelt in the winter half year amounts to
26.0% and 15.7% of the mean annual precipitation, respectively. For the other
stations this ranges only between 2.6% for Essen and Frankfurt and 6.0% for
Stuttgart. Because of their higher location, Kahler Asten and Freudenstadt have
also some snowmelt outside the winter half year. This amounts to 3.1% and 1.4%
of the mean annual precipitation for these stations, respectively.

Figure 15 compares for Kahler Asten and Stuttgart the Gumbel plots of the 4-day
and 20-day snowmelt maxima for the historical record with a 30-year simulation
of case 5.2. The figure shows that the historical data are close to the straight line
of the Gumbel distribution. The agreement between the historical and simulated
snowmelt is good except for the 20-day snowmelt maxima of Kahler Asten. The
difference between the upper quintile mean of the historical and simulated 20-day
snowmelt maxima for Kahler Asten is, however, not significant.

Analogous to Section 3.6.2, we calculated the maximum, upper quintile mean and

‘median for the N-day snowmelt maxima. The mean percentage differences

between the observed and simulated upper quintile means turned out to be
negative. For N = 10 and 20, case 5.2 underpredicts the upper quintile mean by
7.1% and 1.9%, respectively, the corresponding values for case 4.1 are 7.7% and
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Figure 15: Gumbel-plots of 4-day and 20-day historical winter (October-March)
snowmelt maxima at Kahler Asten and Stuttgart (solid dots, solid lines) and simulated
snowmelt maxima for a 30 year run of case 5.2 (open squares, dashed lines). The solid
and dashed lines are probability-weighted moment fits (Landwehr et al., 1979) to the
historical and simulated data, respectively.

3.4%. In contrast to Section 3.6.2, there is no systematic underprediction of the
median.

It should be noted that underprediction of the N-day snowmelt maxima is of
minor importance compared to underprediction of N-day precipitation maxima,
because the contribution of snowmelt to the peak discharges in the Netherlands is
small compared to the contribution of rainfall.

The fact that the autocorrelation of the simulated temperatures is too low seems to
be irrelevant for the distribution of snowmelt maxima. The influence of snow and
frost on the antecedent conditions of flooding may be more sensitive to the
temperature autocorrelation. These sensitivities may require some attention in a
future stage of the project.
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4. Discussion and conclusions

The results in this report show that the nonparametric nearest-neighbour method
is a promising technique for simulating daily precipitation and temperature time
series.

The emphasis in this study for the Rhine basin, is on the reproduction of extreme
N-day precipitation amounts. This requires that not only the lag 1 autocorrelation
coefficient is preserved but also the higher order autocorrelation coefficients (see
equation (15)). The results in Section 3.3 show that the autocorrelation for
Stuttgart is most sensitive to the number k of nearest-neighbours and the variables
included in D,. The value of & should not be too large. Conditional simulation on
the atmospheric flow needs the resampled temperature and precipitation for day
t—1 in D, to reproduce the autocorrelation properties. The effect of the use of
circulation indices in D, in case of unconditional simulation is for temperature not
the same as for precipitation. For the autocorrelation of daily temperatures, it is
beneficial to leave out the circulation indices (case 1.1), while for precipitation
circulation indices have to be included to reproduce the decay of the
autocorrelation coefficients with increasing lag. Comparison of standard

deviations of monthly precipitation sums appeared to be a sensible test for the
latter.

The results for cross-validation in Section 3.5, confirm the choice of the variables
in D,. The number k of nearest neighbours that minimizes the CV-score may,
however, be too large for time series simulation. For resampling from a historical
record of 30 years, k should usually be 20 or less.

The results for the N-day winter (October-March) maxima of Stuttgart in
Section 0 are, of course, a reflection of the results for the autocorrelation
properties and the standard deviation of the monthly precipitation sums. The main
conclusion is, that both the weather variables and circulation indices must be
considered in D, Furthermore, there is no clear preference to either the
conditional or unconditional method.

The application of the two most promising methods (4 and 5 in Figure 2) to the
seven stations in the Rhine basin in Section 3.6.2, shows that the most important
properties of the N-day winter maxima are generally well reproduced. It turns out,
however, that the median of the N-day maxima is systematically underpredicted
(up to about 8% for N = 20). This holds both for the conditional method 4 and the
unconditional method 5. For data from De Bilt over different periods, the
unconditional method reproduces the median quite well. The conditional method
shows, however, a similar underprediction as for the German stations. Moreover,
the upper quintile means for De Bilt are considerably underestimated in both
methods (up to about 15% for N = 20).

There are a number of explanations for the above-mentioned systematic
underestimation of the percentiles of the distributions of the N-day winter
maxima. For N = 1 the highest winter maximum can only exceed the observed
maximum as a result of sampling of standardised values and the use of a moving
window. This explains the negative percentage difference for the highest 1-day
precipitation amount in winter in Tables 7 and 8. It may also have a slight effect
on the extremes for N > 1. However, the fact that the largest underestimation of
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extreme-value properties is found for the longest duration (N = 20 days) suggests
that the temporal dependence structure is not adequately reproduced.
Unfortunately, small departures from the observed autocorrelation properties
generally pass statistical tests. It is therefore difficult to judge whether
information for day ¢ — 2, t— 3, ... should be included in D, to improve the
reproduction of long-term persistence. Failures to reproduce extreme-value
properties may become more apparent in a multi-site extension with more data.

The results in Section 3.6.3 for the 300-year simulations show that unprecedented
extreme rainfall situations can be obtained. As for the 30-year simulations, the
multi-day maxima in the 300-year simulation generally follow the Gumbel
distribution. It should be stressed that simulated multi-day values larger than the
observed maximum are mainly the result of a different succession of historical
days. It is expected that the simulations can be extended to much longer periods
than the 300 years used so far. However, resampling from only 30 years of
observed data can become very questionable. For De Bilt, the extreme-value
statistics of observed precipitation in Table 9 show a considerable variation over
30-year periods (about 20% for the N-day median and N-day upper quintile
mean), causing also differences between the simulated values based on different
30-year periods It is therefore desirable to extend the historical time series beyond
the present 30-years period.

The results for snowmelt in 3.7, indicate that it is possible to obtain reasonable
values for the N-day snowmelt maxima and the total winter snowmelt, despite the
systematic underprediction of the autocorrelation coefficients of temperature
(Section 3.3). Besides snowmelt, it may be important to consider frozen soils as
well. Frozen soils may have a large effect on the runoff coefficient of a basin.

In the present study, no clear preference to either the conditional or unconditional
method appeared. However, for future simulations it is important to simulate time
series much longer than the length of the historical time series. As shown in
Section 3.6.3, this requirement is much easier met with the unconditional method,
because that method resamples the circulation indices along with the weather
variables. For the conditional method, we are restricted to the length of the time
series of historical MSLP (December 1880-present). To simulate longer time
periods with the conditional method, we need a separate model for the simulation
of circulation indices. It is likely that such a model better reproduces the
autocorrelation properties of these indices than the unconditional methods
presented here. In particular, a significant improvement is expected for vorticity.
Furthermore, potential climate change applications of a rainfall generator,
generally require conditional simulation on atmospheric flow patterns.
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5. Outlook for the future

The results of this study justify the development of a multi-site extension. At first,
this extension can be restricted to the German part of the Rhine basin. Rather
than using daily point rainfall data from synoptic stations, daily average rainfall
over subcatchments of about 5000 km®’ will be considered (about 20
subcatchments in Germany).

Multi-site generation by nearest-neighbour resampling is, in fact, rather
straightforward. The composition of the feature vector D, needs, however, special
attention. A considerable growth of the dimension of D, may not be desirable.
Principal component analysis offers the possibility to describe the temperature
field by a small number of amplitudes or scores, just as we used three air-flow
indices to characterise the MSLP field. The strong non-normality of daily
precipitation may hamper a principle component analysis. Daily rainfall over
large regions could be considered instead. A relatively large weight could be
attached to the most important regions for high river discharges at Lobith.

The reproduction of the spatial association of large N-day amounts in the winter
season is of particular interest. A natural test seems the reproduction of the cross-
correlation coefficients of the N-day winter maxima. However, a correlation
coefficient measures the strength of linear dependence between two variables.
Specific dependence functions, based on the number of joint exceedances of high
thresholds, may be more suitable to describe the reproduction of the spatial
association of extreme N-day amounts (Buishand and Brandsma, 1996). Regional
estimation techniques may be needed to reduce sampling variability. Because the
reproduction of properties of extreme precipitation is of main importance for the
design discharge at Lobith, temperature could be omitted in the first stage of the
multi-site extension.
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Appendices

A. Statistical properties of MD and MAD
In this appendix we derive the first two moments of MD and MAD for two

independent time series with the same autocorrelation properties. Thus, for all
lags:

E(R,,)=E(R;,) (A1)

The variance of an estimated autocorrelation coefficient R depends mainly on the
record length and the autocorrelation properties of the underlying process
(Bartlett, 1946). Therefore, for equal record lengths we may assume here that:

var(Ry ) =var(R;,,) =V, =02 (A2)

To derive the variances of MD and MAD we further assume that the estimated
autocorrelation coefficients for different calendar months are independent.

Equation (A1) implies E(MD)=0. For the variance of MD we obtain:

var(MD) = var(R,, ) + var(R) =—V +—V =¥ (A3)

12 12 6
where V is the mean of the twelve V.. values. In this study var(MD) was
estimated by replacing the V,, values by their jackknife estimates from the

historical observations (to have the same value in each comparison with the
simulated data).

To derive an expression for the mean and variance of MAD, we make use of the
fact that for large sample sizes the estimated autocorrelation coefficients are
approximately normally distributed. Therefore IRy, - Rs.l is approximately

distributed as om«/_Z- | xm| ,where X, is a standard normal variable. The absolute

value of ), is known as the half-normal variable. Its mean and variance are
given by (Leone et al., 1961):

E|Y.|= E (Ad)

T-2
varly,,|=—= (AS)
T
For the mean of MAD we then obtain
E(MAD) = _?_ o (A6)

Jr
where 0 is the mean of the twelve o, values, and the variance is given by:

var(MAD) = =2y (A7)
6rn

Analogous to the estimation of var(MD), the jackknife estimates of the V,, values
from the historical data were used to estimate E(MAD) and var(MAD).
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The assumption that the two series are independent is somewhat questionable in
case of conditional simulation, because both time series are related to the
observed atmospheric circulation. The jackknife estimate of the correlation

coefficient between Ryy and Rgy is, however, not more than 0.13 (annual
average, case 4.1).

B. Bootstrap standard errors

The bootstrap is a computer-based method to obtain distribution-free confidence
intervals and estimates of bias, standard errors and prediction errors. The method
was introduced by Bradley Efron in 1979. A standard reference is Efron (1982).
Better accessible and more up-to-date is the monograph of Efron and Tibshirani
(1993). In this appendix we restrict ourselves to the use of the bootstrap for
estimating standard errors like those given in Sections 3.4 and 3.6.2.

The bootstrap estimate of the standard error of a statistic @ is obtained by
recomputing 6 for a large number of independent bootstrap samples. Each
bootstrap sample X,,X,,...,X, is a random sample of size n drawn with
replacement from the original sample X,,X,,...,X,. A consequence of
resampling with replacement is here that some X; values will not appear in the
bootstrap sample, while others will be repeated. Let 6’ (b) denote the value of
the statistic for the bth bootstrap sample, b =1,..., B. Then the bootstrap estimate

of the standard error is the sample standard deviation of the 8" (b) values:

B 172
Se' = {2[67*(1;)-«9'(0)]Q / (3—1)} (B1)
b=1
where 6 (o) is the mean of the 8" (b) values.

In our assessments of the performance of nearest neighbour methods, each
element of the sample is a vector of the twelve monthly precipitation sums
(Section 3.4) or the seven N-day winter maxima (Section 3.6.2) of a given year. A
bootstrap sample of size n is then obtained by choosing years randomly with
replacement. Every time when a particular year is selected the twelve monthly
precipitation sums or the seven N-day winter maxima of that year are added to the
bootstrap sample. In this study B = 500 bootstrap samples were generated.

B1. Annual averages of monthly standard deviations

In Section 3.4 the annual average 0=5 of the monthly standard deviations s, m
= 1,..,12 for Stuttgart were considered. For the bth bootstrap sample we can
calculate in the same way the standard deviations s; (b), m = 1,...,12 of the

monthly precipitation sums and their annual average 6" (b). The latter is used in
equation (B1) to obtain the bootstrap standard error of 5.

~ B2. Spatial averages of relative deviations from the median
“In Section 3.6.2 the percentage differences between the sample median of the
historical winter maxima and the average sample median of four simulated
records were averaged over all stations. This spatial average is affected by the
sampling variability of the medians of the historical winter maxima. The
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e
et

s o e N w Y NS4 N =10 N =20
| Average of local standard deviations (%)

%Analytical %‘ 63 | 56 i 5.0 I 49

| Bootstrap | 81 | 58 | 48
éA(eq-average percentage difference (%) ' : ; ‘
Bootstrap ol as |34 28 | 28
Table B1: Standard deviations of the percentage differences between the sample median
of the winter maxima and the true median for the seven stations.

variability of the simulated data has much less influence because averaging over
four independent estimates reduces the standard deviation of the sample median
by a factor of two, and, in contrast to the historical data, the simulated records for
the various stations are independent. In order to investigate how far the average
percentage differences in the bottom lines of Tables 7 and 8 can be explained by

sampling variability, we therefore define the statistics 6 i = (M ; —med, )/ med,,
where M, is the sample median of the winter maxima at the ith station, i=1,...,7,
and med; is the true median. The average of the é,. values is denoted as 0:. From
the medians M;(b) in the bootstrap samples we calculate
A * A* 7 * *

6;(b)=[M;(6)-M,)/ M, and 6.(b)=7 6](b)/7. The use of the 6;(b)

values in equation (B1) results in a percentage standard deviation of the sample
median that is comparable with the analytical results for the Gumbel distribution
in Appendix D as shown in Table B1. The bootstrap standard deviation from the

6. (b) values in that table is considerably lower due to the spatial averaging of
sample medians.

C. The change of the CV-score with the number of nearest
neighbours
From equation (11) it is obvious that the expected CV-score is determined by the

variance of the deletion residuals, e; =x, —%,. For the uniform kernel

p; =1/(k-1) and X, is givenby:
o 1
TR e
k-1

Because x, = x,,,, the variance of e, can be written as:

var(ef )= var(x,(,) )— 2cov(x,(]) X, )+ var(i,‘ ) (C2)

For ease of exposition we assume that the x,; values are equi-correlated random
variables with variance ¢’ , i.e.:

var(x,(j))=02, j=1,.. .k (C3)
COV(x, 5y, X)) = PO, i# ] (C4)

For days with normal or nearly normal weather conditions, this assumption is
quite reasonable for small k. For cov(x,(l) X, ) and var(i,' ) in equation (C2) we

then obtain:
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cov(x,), %) = po’ (C5)
o 1 k-2
var(x,):——_—102+—mpaz (C6)
giving
L 2 1
var(e] )= 0%(1- p)(l +;_—1] (C7)

According to equation (C7), var(e,' ) decreases with increasing k. This must be
ascribed to a decrease of var(i,' ), which is the only term in equation (C2) that

depends on k. Changing k from 5 to 20 leads to a decrease of var(e,‘ ) of about

20%, which is in reasonable agreement with the observed drop in CV-score in
Figure 10.
In reality, cov(x,(l),i,’ ) decreases with increasing k. For large k this decrease

becomes more important than the decrease of var(i,’ ) , resulting in higher values

of var(e,' ) .

D. Properties of statistics used to compare extreme-value
distributions

The largest value Xy, , the upper quintile mean QMS, and the sample median M
are examples of order statistics or simple linear functions of order statistics. The

order statistics of a random sample X, , X, , ..., X, are obtained by arranging the
n variables in ascending order of magnitude and then written as:
X(,)SX(Z) S S Xy =X (D1)

For the winter maxima in this study n = 30. These maxima are assumed to be
statistically independent. The X ) values are then necessarily dependent because

of the inequality relations among them. For instance, the second-largest value
X (1) cannot be extraordinarily large if X, is not large.

In this appendix we assume that the random variables X; have a Gumbel

distribution with location parameter u and scale parameter 6 ( 0 > 0). The
distribution function is given by:

F(x)=Pr(X,<x)= exp{- e-“"““’}, —w<x< oo (D2)
The mean of X; depends both on gand o:
E(X;)=n+oy (D3)
where y=0.5772... is Euler’s constant. The variance of X; is given by:

var X, =n’c? /6 (D4)
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The special case 4 =0 and o= 1 is known as the standard or reduced variable ¥;.
Every Gumbel variable X; can be written as X;= p + o Y;, and because this
transformation is monotonic increasing, it also applies to the order statistics:

where ¥;) is the ith order statistic in a random sample of size n from the reduced

variable.

A well-known result for the Gumbel variable is that the maximum Xmax has also a
Gumbel distribution with the same scale parameter & but with location parameter
4 + 0 In n. Equation (D4) therefore also applies to the variance of X, . This
result, however, strongly relies on the validity of the Gumbel distribution.
Regional analyses of long-term records of N-day maxima in the United Kingdom
and the Low Countries (Dupriez and Demarée, 1988; Dales and Reed, 1989,
Buishand, 1991) show that for N = 1 the upper tail of the distribution tends to be
longer than that of the Gumbel distribution, whereas for large N(N=10or N =
20) the upper tail tends to be shorter. The former implies that the variance of X,
increases with increasing n and will be underestimated if a Gumbel distribution is
assumed. The opposite holds if the distribution has a shorter upper tail than the
Gumbel distribution. For the German stations used in this study there are,

however, no indications of systematic departures from the Gumbel distribution in
the upper tail.

To find the means and variances of QMS and M, we consider the following linear
combination of the order statistics:

L= ;a,.x(i) (D6)

For QM5 we have a, =--=a),,=0and a,=--=a, =}%,and for the sample

median a;s = a;6 = 1/2, whereas the other a; values are 0. Substituting equation
(D5) in the expression for L, and using the fact that for the two statistics
considered here the sum of the coefficients a; equals 1, we get for the mean of L:

E(L)=p+ 02,.: a,E(Y,,). (D7)
i=l1
For the variance of L we have:
varL = ZZaiajcov(X(,.),X(j)) = OZEZaiajcov(Y(,.) X ) (D8)
i=l j=I i=l j=I

The means and covariances of the order statistics of the reduced variable can be
obtained from tables in Balakrishnan and Chan (1992). For the estimation of var
(QMS) and var M, the scale parameter o in equation (D8) was replaced by its
probability-weighted moment estimate.

For the upper quintile mean QMS, equations (D7) and (D8) reduce to:

E(QMS5)= u +2.48400 (D9)

var(QMS5) = 031300 (D10)
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The return period T associated with E(QMS5) follows from
T=1/Pr{X, > E(QMS5)}. Using

Pr{X, > E(QMS)} =1~ Pr{X, <E(QMS)} =1-exp(-e2?)=00800  (D11)

we obtain T = 12.5 years.

For the sample median M , equations (D7) and (D8) reduce to:
E(M)=pu+037740 (D12)
var(M)=0.06710" (D13)

For the return period associated with E(M) it follows T = 2.02 years. Due to the
positive bias of the sample median, this return period slightly differs from the
value T = 2 years for the true median.



