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Summary 

 
This report presents the second phase of a project on the development of a rain-
fall generator for the Rhine basin. The request for this generator arose from the 
need to study the likelihood of extreme river discharges in the Netherlands, using 
a hydrological/hydraulic model. The first phase dealt with the single-site genera-
tion of weather variables by nearest-neighbour resampling for seven stations in 
the German part of the Rhine basin. The second phase is concerned with the 
multi-site extension of the first phase, using daily precipitation and temperature 
data for twenty-five stations (1961–1995) in the German part of the Rhine basin. 
Joint simulation of daily precipitation and daily temperature is necessary to ac-
count for the effect of snow and frozen soils on large river discharges.  
 
The nearest-neighbour resampling technique is a method of simulation that can 
easily handle multi-site daily precipitation and temperature data without making 
restrictive assumptions concerning the joint distribution of those data. The es-
sence of this technique is that the variables for a new day are sampled with re-
placement from a selected set of historical data (the nearest neighbours or ana-
logues). In order to generate weather variables for day t, the method needs a fea-
ture (or state) vector Dt to find nearest neighbours in the historical data. For un-
conditional simulation, Dt contains variables that characterise the state of the 
weather on day t–1, like summary statistics of the daily precipitation and tem-
perature fields and atmospheric circulation indices. Conditional simulation on the 
atmospheric flow is also possible with the nearest-neighbour resampling tech-
nique. Circulation indices for day t are then included in Dt. A (weighted) Euclid-
ean distance measure is used to determine the k nearest neighbours of Dt. From 
the k nearest neighbours, one day is sampled with a predefined probability.  
 
Different compositions of the feature vector are investigated using k = 20 nearest 
neighbours in the resampling procedure. The influence of the magnitude of k is 
further studied both for a selected case of unconditional simulation and for one of 
conditional simulation. The most important criteria used to judge the perform-
ance of a particular resampling technique are the ability to reproduce the autocor-
relation structure, the variability of monthly values, the distribution of multi-day 
winter (October-March) maximum precipitation amounts and the spatial depend-
ence of these amounts.  
 
With respect to the reproduction of the autocorrelation structure and  the variabil-
ity of monthly values, there are small, but often statistically significant, depar-
tures from the historical values for all choices of Dt. The unconditional method 
performs somewhat better than the conditional method, which may partly be as-
cribed to the fact that the former often selects successive days in the historical 
record. For unconditional multi-site simulation, it is advantageous to omit the 
circulation indices in Dt. Especially the reproduction of the temperature autocor-
relation benefits from this.  
 
The success of reproducing the distributions of the multi-day winter maximum 
precipitation amounts is strongly related to that of the autocorrelation properties. 
For all choices of Dt, there is a small systematic underprediction of the median 
and upper quantiles of these distributions. As for the reproduction of the autocor-
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relation structure and  the variability of monthly values, the unconditional 
method performs somewhat better than the conditional method. 
 
For most conditional simulations the correlation coefficients between the circula-
tion indices and the weather variables are also considered. The reproduction of 
these coefficients is important for applications to simulated atmospheric-flow in-
dices (e.g. from a general circulation model) or to observed circulation indices 
outside the period 1961–1995. For the winter half-year both precipitation and 
temperature have the strongest correlation with the westerly flow index, which is 
somewhat too low in the simulated cases. This underestimation is also found for 
the correlation between precipitation and vorticity, whereas the correlation be-
tween temperature and the southerly flow index is slightly overestimated.  
 
The reproduction of the autocorrelation structure and  the variability of monthly 
values clearly improves at small k (k ≤ 5). This is reflected in the reproduction of 
the distribution of the multi-day winter maximum precipitation amounts. In the 
conditional simulations, the correlation coefficients between the circulation indi-
ces and the weather variables are also better preserved for small k. The General-
ised Extreme Value distribution has been fitted to the N-day winter maximum 
precipitation amounts to study the reproduction of its shape parameter. For all 
values of k this parameter is adequately preserved. 
 
For the k = 5 simulations, the distributions of multi-day winter maximum precipi-
tation amounts and multi-day maximum snowmelt are analysed in more detail for 
seven stations and five large subareas of the basin. The selected stations corre-
spond to those used in the single-site simulations in the first phase of the project. 
For both the unconditional and conditional case, the results for the seven stations 
are somewhat better than those reported for the single-site simulations with 
k = 20. Especially, the reproduction of the median of the multi-day winter maxi-
mum precipitation amounts improves. The results for the maxima of area-average 
rainfall are comparable with those for the selected stations. 
 
The daily temperatures are used to determine snow accumulation and melt. De-
spite the systematic underprediction of the temperature autocorrelation, the re-
production of the distribution of the multi-day maximum snowmelt is satisfac-
tory.  
 
The spatial dependence of the multi-day winter precipitation maxima is analysed 
by counting the years that a given threshold is not exceeded at pairs of stations. 
Choosing different heights of the threshold gives a more complete description of 
the degree of spatial association than just a correlation coefficient. The depend-
ence is somewhat stronger at the median than in the upper tail of the distribution. 
The spatial dependence of the two k = 5 simulations is compared with that of the 
historical data. The results for the unconditional simulation are in good agree-
ment with the historical data, while for the conditional simulation the spatial de-
pendence is stronger, though not statistically significant, than that of the histori-
cal data.  
 
The simulation of unprecedented extreme rainfall events is illustrated with two 
unconditional simulations of 1000 years, one for k = 5 and one for k = 20. Three 
historical and six simulated events with extreme 10-day precipitation over the to-
tal area are selected from the k = 5 simulation and their space-time patterns are 
compared. There is often a clear maximum over the Black Forest in these events, 
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in agreement with that in the long-term mean rainfall over the southern part of 
Germany. Sometimes, however, the maximum 10-day amount occurs in the west-
ern part of Germany over the Mosel and the Nahe subbasins. The temporal pat-
terns of the daily amounts over large areas differ widely between the selected ex-
treme events.  
 
We conclude that with nearest-neighbour resampling a reasonable reproduction 
of autocorrelation coefficients and properties of extreme rainfall and snowmelt 
can be achieved, in particular in the unconditional simulations. In the two 1000-
year simulations, multi-day precipitation amounts were much larger than the ob-
served maxima. The space-time patterns of daily rainfall in the selected simulated 
extreme events also differed from those in historical extreme events. An impor-
tant future development is to generate circulation indices separately, which can 
then be used to obtain long-duration synthetic sequences of daily precipitation 
and temperature by conditional simulation.  
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1. Introduction 

1.1 Background 

The Rhine is the most important river in the Netherlands. The river flows through 
several countries (Figure 1). Large parts of its drainage basin are situated in Swit-
zerland, Germany, France and the Netherlands. Protection against flooding is a 
point of continuous concern. According to safety standards, laid down in the Flood 
Protection Act, measures against flooding in the non-tidal part of the Rhine in the 
Netherlands have to withstand a discharge that is exceeded on average once in 1250 
years. Traditionally this design discharge has been obtained from a statistical analy-
sis of large river discharges (data from 1901 onwards) at Lobith, where the river en-
ters the country. Several probability distributions have been fitted to the discharge 
maxima of that record. The long return period requires an extrapolation far beyond 
the length of the observed record. Different distributions then lead to quite different 
design discharges. The fact that the parameters of these distributions have to be es-
timated from a finite record introduces another uncertainty. 
 
In the most recent re-evaluation of the design discharge at Lobith, there was a 
strong feeling that the uncertainties of extrapolation could be reduced by taking the 
physical behaviour of the river basin into account (Delft Hydraulics and EAC-
RAND, 1993). For this purpose, it was suggested to develop a hydrologi-
cal/hydraulic model for the whole basin.  With such a model, it would also be pos-
sible to quantify the effects of changes in the catchment and the river bed and to 
predict the potential impacts of climate change. The Institute of Inland Water Man-
agement and Waste Water Treatment (RIZA) adopted this idea in a research plan 
for a new methodology to determine the design discharge (Bennekom and Parmet, 
1998). Besides a hydrological/hydraulic model, the development of a stochastic 
rainfall generator was also planned in order to produce long-duration daily rainfall 
series over the basin. Different spatial and temporal patterns of heavy precipitation 
in the generated series may lead to more extreme discharges at Lobith than those 
experienced in the past century. The use of such synthetic data in combination with 
a hydrological/hydraulic model does not only provide the peak discharges but also 
the duration of extreme river discharges, which may lead to a better insight into the 
shape of the design flood. 

1.2 Previous research 

At the request of RIZA, KNMI carried out a feasibility study into the possibilities 
of a rainfall generator (Buishand and Brandsma, 1996). In that study, the statisti-
cal techniques for generating daily rainfall sequences were reviewed. For a multi-
site application in a large catchment like the Rhine basin, two, quite different, al-
ternatives were discussed: (1) parametric time series modelling of the observed 
daily precipitation using a transformed multivariate AR(1) process, and (2) non-
parametric resampling from historical data. Although some promising results 
have been reported for the two methods, there is a serious lack of knowledge 
about the reproduction of properties of extreme rainfall. Some of these proper-
ties, like the extreme-value distributions of multi-day amounts and the spatial as-
sociation of large amounts during winter, are important for the peak discharges of 
the Rhine in the Netherlands. 
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The results of the feasibility study were promising enough to start the develop-
ment of a rainfall generator for the Rhine basin. For the intended application, it is 
important to extend the generation of daily precipitation with that of daily tem-
perature in order to account for the effect of snow and frozen soils on large river 
discharges. The dependence of precipitation on the atmospheric circulation has 
also been considered in the development of the rainfall generator. This linkage 
has been used by others to improve the reproduction of the persistence of daily 
rainfall (Katz and Parlage, 1993) and to assess the effects of systematic changes 
in the atmospheric circulation, e.g. resulting from increased atmospheric green-
house gas concentrations (Bárdossy and Plate, 1992; Wilby and Wigley, 1997). 
 

 
Figure 1: Location of Lobith in the Netherlands and the twenty-five German stations used 
in this study in the drainage basin of the river Rhine. A subdivision of the stations into 
five groups is also shown (see Section 3). 
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The present report is the second in a series of reports on the development of a 
rainfall generator. In the first report (Brandsma and Buishand, 1997; further de-
noted as BB97), we studied the nonparametric nearest-neighbour method for sin-
gle-site generation of daily precipitation and temperature. This method has been 
introduced in the hydrological literature by Rajagopalan and Lall (1995) and Lall 
and Sharma (1996). It is strongly related to resampling from analogues in climate 
change studies (Zorita et al., 1995). In BB97 encouraging results were obtained 
for seven stations in the German part of the Rhine basin. These results are dis-
cussed further in Brandsma and Buishand (1998). The main features of nearest-
neighbour resampling are summarised here. Further details are presented in Sec-
tion 2.1. 
 
The essence of the nearest-neighbour resampling technique is that the variables 
for a new day are sampled with replacement from a selected set of historical data 
(the nearest neighbours or analogues). In order to generate weather variables for 
day t, the method needs a feature (or state) vector Dt to find nearest neighbours in 
the historical data. Figure 2 shows compositions of Dt for an unconditional simu-
lation (A) and a conditional simulation (B). For unconditional simulation, Dt con-
tains variables that characterise the state of the weather on day t–1, e.g. daily 
precipitation, temperature and a number of atmospheric circulation indices. Cir-
culation indices for day t are included in Dt in case of conditional simulation. A 
(weighted) Euclidean distance measure is used to determine the k nearest 
neighbours of Dt. From the k nearest neighbours, one day is sampled with a pre-
defined probability.  
 
In BB97, we studied the influence of k, the composition of Dt, and some other 
options in the resampling procedure. The emphasis was on the reproduction of 
autocorrelation coefficients and extreme N-day precipitation amounts in the win-
ter half-year (October-March). With respect to the reproduction of these proper-
ties, unconditional simulation of precipitation, temperature and circulation indi-
ces turned out to be at least as good as  conditional simulation of precipitation 
and temperature on circulation indices. Furthermore, we concluded that both the 
weather variables and circulation indices must be considered in Dt. A point of 
some concern is the systematic underprediction of the median of the N-day pre-
cipitation maxima. 
 
An important objective of the rainfall generator is the simulation of unprece-
dented extreme rainfall situations over the Rhine basin. With a 300-year simula-
tion we showed in BB97 that more extreme multi-day precipitation amounts 
could be generated than the largest observed values. Unconditional simulation 

(A)
CC*

t-1 t

O* O

(B)
CO*

t-1 t

O

variables known

variables to be simulated
 

Figure 2: Two methods for the generation of new variables (solid squares) using different 
sets of known variables (open squares). O refers to weather variables like precipitation 
and temperature and C is a vector of circulation indices. The asterisks indicate that the 
corresponding variables are simulated values of the previous time steps. 
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was considered only, because conditional simulation would require a separate 
model to extend the observed record of circulation indices. The latter is, how-
ever, a point of future research.  

1.3 Scope and objectives 

The main objective of this report is the multi-site extension of BB97. The results 
in BB97 justify the development of a such an extension. At first, this extension 
can be restricted to the German part of the Rhine basin. For this part of the river 
basin we consider daily precipitation and temperature data for 25 stations (1961–
1995). The work can be regarded as the first detailed investigation and applica-
tion of the works of Rajagopalan and Lall (1995) and Lall and Sharma (1996) for 
a large river basin. Because BB97 showed no clear preference to either the condi-
tional or unconditional method, we continue to study both methods further. 
 
Multi-site generation by  nearest-neighbour resampling is, in fact, rather straight-
forward. The composition of the feature vector Dt  needs, however, special atten-
tion.  A considerable growth of the dimension of Dt  may not be desirable. There-
fore, we have to use summary statistics of the daily precipitation and temperature 
fields, just as we used three air-flow indices to characterise the mean sea-level 
pressure (MSLP) field.  
 
Although a resampling technique preserves the spatial dependence of the 1-day 
amounts, this is not necessarily true for the multi-day amounts. The reproduction 
of the spatial association of large multi-day amounts should therefore be tested. 

1.4 Outline 

The report is organised as follows. Section 2 provides the necessary background 
of the nearest-neighbour method and describes the data. Section 3 deals with the 
construction of Dt and the influence of k on the autocorrelation coefficients and 
the distribution of N-day maximum winter precipitation. We then proceed with 
one conditional and one unconditional case that gave interesting results in Sec-
tion 3. In Section 4, we present results for the distributions of N-day winter 
maximum precipitation and N-day maximum smowmelt. The spatial association 
of the precipitation maxima is dealt with in Section 5. In Section 6, we show 
some results for two 1000-year simulations. The methodology is evaluated in 
Section 7.  
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2. Methodology 

 
In the present section we first introduce the nearest-neighbour resampling method 
followed by a description of the data. The presented material is taken from BB97 
and only slightly adapted for the purpose of this report. 

2.1 Nearest-neighbour resampling 

The principle of the nearest-neighbour resampling method is simple. For the gen-
eration of precipitation and temperature on day t first a feature vector Dt is 
formed to find analogue situations in the historical data. In the method of Ra-
jagopalan and Lall (1995) for generating multivariate daily weather data at a sin-
gle site, Dt contains the values of the weather variables generated for day t–1. 
The k nearest neighbours (k-NN) of Dt, in terms of Euclidean distance, are ab-
stracted from the historical record. Let t j j k( ), , ,= 1� be the times associated 

with these nearest neighbours, such that the distance of Dt j( ) to Dt increases with 

increasing j. The vector of weather variables following Dt j( ), the successor to 

Dt j( ),  is denoted as x t j( ).   

 
One of the successors of the k-NN is sampled using a discrete probability distri-
bution or kernel { pj} . For the uniform kernel, pj is given by: 

 p k j kj = =1 1/ , , ,�    (1) 

In Lall and Sharma (1996) the following decreasing kernel was recommended: 

 p
j

i

j kj

i

k
= =

=
�

1

1

1

1

/

/

, , ,�    (2) 

 
Figure 3 shows the two kernels for k = 5 and k = 20. The decreasing kernel gives 
relatively high probability mass to the closest neighbours, whereas the uniform 
kernel assigns the same probability to all neighbours. In BB97 comparable results 
were obtained for both kernels, if k for the uniform kernel was taken relatively 
small ( )k ≈ 5 compared to the value for the decreasing kernel ( ).k ≈ 20  Besides 

j

1 3 5

p j

0.0

0.1

0.2

0.3

0.4

0.5
k = 5

j

1 3 5 7 9 11 13 15 17 19

uniform kernel 
decreasing kernel

k = 20

 
Figure 3: Resampling probability pj as a function of the index j of the sorted Euclidean 
distances for k = 5 and k = 20 for both the uniform and decreasing kernels.  
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the kernel type, the choice of k depends on the number q of variables in Dt and 
the record length. Brandsma and Buishand (1998) resampled from historical re-
cords of 30 years using a decreasing kernel with k = 20, which is somewhat lower 
than that recommended in Lall and Sharma (1996). In this report we only con-
sider the decreasing kernel and the sensitivity to k is further explored. 
 
We distinguish between unconditional and conditional simulation. Method A in 
Figure 2 is an example of unconditional simulation, where Dt contains the 
weather variables and circulation indices generated for the previous day. Resam-
pling occurs from the successors to the k nearest neighbours. Method B, is an ex-
ample of conditional simulation of weather variables given the atmospheric 
circulation. Dt then contains circulation indices on day t as well as the values of 
weather variables that were generated for the previous day. Resampling occurs 
from the observed precipitation and temperatures on the days t(j) in the nearest 
neighbourhood. In BB97 we compared six possible compositions of Dt. Here we 
consider eight compositions of Dt, adapted for multi-site generation of weather 
variables (see Section 3). 
 
To account for the systematic annual cycle in the various weather variables, the 
search for the k nearest neighbours of the feature vector is restricted to days in a 
specified moving window of width Wmw days, centred at the day of interest (see 
Figure 4). The use of a moving window, instead of fixed seasons, prevents sharp 
transitions between seasons. For Wmw = 61 days and a historical time series of 35 
years, as considered in this report, the Euclidean distances for a specific day are 
calculated for 61x35 = 2135 days. In BB97, we compared several values of Wmw 
and obtained satisfactory results for Wmw = 61 days. Consequently, only this 
value is used in the present report. 
 
A further reduction of seasonal variation can be achieved by working with stan-
dardised variables. In Rajagopalan and Lall (1995) standardisation was done by 
subtracting the calendar day’s mean md and dividing by the calendar day’s sam-
ple standard deviation sd: 

 ~ ( ) / , , , ; ( ) modx x m s t J d tt t d d= − = = − +1 365 1 365 1�    (3) 

where xt and ~xt are the original and standardised variable, respectively, for day t, 

and J is the total number of years in the time series. For variables with a normal 

1 365

1 365

1 365
year 1

year i

year J

Wmw

Calendar day
 

Figure 4: Moving window 
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or almost normal distribution, ~xt  usually takes values between –3 and +3. How-

ever, for daily precipitation the range of ~xt  is quite different. For a dry day, 
~ / .x m st d d= − ≈ −05  at a lowland station in the Rhine basin, whereas for days 

with heavy precipitation ~ .xt ≈ 10  

 
For daily precipitation, resampling of negative standardised values from adjacent 
days may result in negative precipitation amounts. Thus equation (3) does not 
give the most appropriate standardisation for that variable. In hydrology, division 
by the mean is a popular method to standardise non-negative variables. For daily 
precipitation, we therefore considered:  

 ~ / ,x x mt t d= wet    (4) 

where md,wet is the calendar day’s mean precipitation for wet days. For dry days 
~xt = 0 and for the most extreme wet days ~xt  is about 10. In BB97 we also con-

sidered some alternatives to equation (4) which, however, did not lead to an im-
provement of the results.  
 
To reduce the effect of sampling variability, we used smooth approximations of 
md, md,wet and sd instead of the raw values (see further Section 2.2). 
 
Through the standardisation, the q elements of the feature vector Dt are dimen-
sionless quantities. The weighted Euclidean distance between two vectors Dt and 
Du is given by:  

 δtu i ti ui
i

q

w v v= −
=
� ( )2

1
   (5) 

with vti and vui the elements of the vectors Dt and Du, and wi  the weight associated 
with the ith variable. In BB97 we mostly set wi equal to 1 for all elements of Dt. 
In this report, the influence of the weights wi is further explored.  
 
The final simulated value xt,sim for day t is obtained from the standardised resam-
pled value ~

( )xt j by inverting equation (3) or (4):  

 x m s xt d d t j, ( )
~

sim = +    (6) 

 x m xt d t j, , ( )
~

sim wet=    (7) 

Because ~xt ≥ 0  in equation (4), the simulated value xt,sim in equation (7) cannot 
be negative, as required for precipitation. This is clearly not true for equation (6).  
 
Figure 5 presents a flow diagram of the full resampling procedure for the uncon-
ditional method A of Figure 2. The starting day in this figure is generated by ran-
dom sampling a day within the window for 1 January. For method B, the starting 
day is generated by resampling a day from the 50 nearest neighbours of the ob-
served circulation on the first day, using a uniform kernel. 
 
From the presentation above, it is clear that there are various options in the near-
est-neighbour method. In BB97 we showed that the most important of these is the 
construction of the feature vector Dt. Here we study the composition of Dt for 
multi-site resampling. As mentioned earlier, the effects of varying k and the 
weights wi are also explored.  
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2.2 Data description 

For the research described in this report, precipitation and temperature data for 
25 stations were analysed for the period 1961–1995, which is 5 years more than 
in BB97. The stations are situated in the German part of the Rhine basin (Fig-
ure 1). The data were made available by the Deutscher Wetterdienst via the ‘ In-
ternational Commission for the Hydrology of the Rhine Basin’  (CHR/KHR). Ta-
ble 1 presents the mean annual temperature and precipitation of these stations, 
together with the station elevation. There are three stations at an altitude of about 
800 m: Kahler Asten (in Sauerland in the northern part of the basin), Freuden-
stadt (in the Black Forrest in the southern part of Germany) and Kl. Feldberg. 
The annual mean temperature is relatively low at these stations. The other sta-

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Flow diagram for method A (see Figure 2). 
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tions are below 500 m. The highest mean annual precipitation is found at Kahler 
Asten and Freudenstadt, which is caused by orographic enhancement.  
 
In a later stage of the project, we obtained daily precipitation data for 230 areas 
in Germany for the period 1961–1995, also made available by the Deutscher 
Wetterdienst. These data were derived from interpolated daily values on a 30″ 
latitude by 60″ longitude grid (B. Dietzer, pers. comm., 1998, 1999). The interpo-
lation procedure used is similar to that described in Müller-Westermeier (1995), 
except that relative daily precipitation (relative with respect to the 1961–1990 
monthly mean) was considered to account for topographic influences. The map 
of the mean precipitation in the winter half-year in Figure 6 is derived from these 
area-average data, using ArcView GIS. It shows marked variations in mean win-
ter precipitation over the German part of the Rhine basin. The largest precipita-
tion amounts (> 600 mm) are found in the Black Forest in the south and Sauer-
land in the north. The data for the 230 areas are only used further in Section 6 to 
present the space-time pattern of extreme precipitation events.   
 
To incorporate atmospheric flow characteristics, we considered daily MSLP data 
from  the UK Meteorological Office on a 5° latitude by 10° longitude grid. These 
data extend back to December 1880. For a grid centred at the Rhine basin (see 
Figure 7), we calculated three daily air-flow indices: (1) total shear vorticity Z; 
(2) strength of the westerly flow W; and (3) strength of the southerly flow S (see 
also Jones et al., 1993). These three indices form the elements of the vector C in 
Figure 2. 

No. Station Altitude (m 
 above m.s.l.) 

Mean annual 
temperature (°C) 

Mean annual pre-
cipitation (mm) 

1 Stuttgart 373 9.0 713 
2 Frankfurt 112 9.9 645 
3 Kahler Asten 839 5.0 1474 
4 Trier 265 9.2 783 
5 Essen 152 9.7 928 
6 Bamberg 239 8.6 632 
7 Freudenstadt 797 6.7 1691 
8 Düsseldorf 37 10.4 759 
9 Saarbrücken 319 9.0 867 
10 Berus 363 8.9 835 
11 Köln 92 9.9 807 
12 Geisenheim 118 10.0 542 
13 Koblenz 85 10.6 670 
14 Deuselbach 480 8.0 808 
15 Freiburg 269 10.9 944 
16 Giessen 186 9.2 655 
17 Kl. Feldberg 805 5.7 998 
18 Würzburg 268 9.2 601 
19 Oehringen 276 9.2 833 
20 Mannheim 96 10.4 664 
21 Karlsruhe 112 10.4 771 
22 Coburg 322 8.2 738 
23 Bad Kissingen 262 8.7 735 
24 Nürnberg 310 8.9 640 
25 Weissenburg 422 8.3 664 

Table 1: Characteristics of the stations that have been used in the 
study (mean annual values for the period 1961–1995). 
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Before resampling, the data have been standardised using the smoothed values of 
the calendar day’s mean, md or md,wet, and  standard deviation, sd, as described in 
Section 2.1. The smoothed values are based on Friedman’s supersmoother 
(Härdle, 1990). Before calculating the smooths, the values for d = 336,…,365 
were inserted for d < 1 and the values for d = 1,…,30 for d > 365 to harmonize 
the smoothed values at the beginning and end of the year. The largest mean wet- 

day precipitation 
amounts are found 
in summer (except 
for the high-
elevation stations 
Kahler Asten and 
Freudenstadt), 
which is due to the 
influence of convec-
tion (summer show-
ers). The mean 
westerly flow is 
relatively large in 
winter. The largest 
standard deviations 
of the circulation in-
dices (vorticity, 
strength of the flow) 
and temperature are 
also found in winter 
(BB97). 
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Figure 7: Grid points of mean sea-level pressure 
used for the calculation of the air-flow indices over 
the Rhine basin. 
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Figure 6: Spatial distribution of the mean winter (October –March) precipitation for 
the period 1961–1995 over the German part of the Rhine basin. 
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3. Construction of Dt  and influence of k 

 
In the present section we study the construction of the feature vector Dt and the 
number of nearest neighbours k. In BB97 we used the daily precipitation (P) and 
temperature (T) observations for a single station in Dt, in most cases supple-
mented with three atmospheric circulation indices. Here we have to deal with 25 
stations simultaneously. It is not feasible to incorporate the individual daily P and 
T observations from these stations in Dt. Considerable differences between the k 
nearest neighbours may then occur because of the large dimension of Dt and 
there may be too much emphasis on the differences between local precipitation 
amounts in the selection of nearest neighbours. In order to keep the dimension of 
Dt within reasonable limits, the P and T fields are described by a small number of 
statistics, just as we used the air-flow indices to characterise the MSLP field. 
These summary statistics are discussed first. Several test cases are then defined 
using different sets of the summary statistics for the MSLP, P and T fields in Dt, 
and taking a range of values for the weights wi (equation (5)) for each combina-
tion of the summary statistics. For all test cases, autocorrelation coefficients and 
properties of extreme N-day winter precipitation are compared with those in the 
historical record and the reproduction of the correlation between weather vari-
ables and circulation indices is explored. Thereafter, the influence of k on these 
quantities is studied for just two test cases.  

3.1 Summary statistics for P and T fields 

For each day we have daily P and T fields consisting of 25 stations for each field. 
An important summary statistic is the mean of these fields. Here we use the 

arithmetic means
~
P  and 

~
T of the standardised values for the 25 stations 

 
~ ~
P Pi

i

=
=
� 25

1

25

   (8) 

 
~ ~
T Ti

i

=
=
� 25

1

25

 (9) 

where 
~
Pi  and 

~
Ti  are the standardised P and T values, respectively, for the ith sta-

tion. The averaging reduces the variances. For an individual station var(
~

) .Pi ≈ 11 

and var(
~

) ,Ti = 1  whereas var(
~

) .P ≈ 060 and var(
~

) .T ≈ 089 for the area-averages.  
 
The daily field averages 

~
T  explain about 90% of the daily temperature variance. 

For precipitation, however, 
~
P  explains only 53% of the daily variance due to the 

relatively large spatial variation of this element. There is therefore some need for 
a more complete summary of the precipitation field than just 

~
.P  One possibility 

is to use the daily averages 
~

, ,
~

P PI V�  over the five areas in Figure 1. The vector 

( )~ ~
,
~

,
~

,
~

,
~

P = P P P P PI II III IV V  explains about 73% of the daily precipitation variance. 

This is almost the same as that achieved by the five leading principal components 

(≈ 74%) obtained from the sample covariance matrix of the 
~
Pi ’ s. In contrast to 

principal component scores, the area-averages have about the same variance (≈ 
0.83) and they show a rather strong correlation (ranging between 0.53 in summer 
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and 0.75 in winter). An advantage of  
~
P  is that the area-averages have an unam-

biguous interpretation. Principal component analysis is not considered further in 
this report. 
 
As an alternative summary measure of P, we used the fraction F of stations with 

precipitation (P > 0.2 mm) in combination with 
~
.P  The variable F helps to dis-

tinguish between large-scale and convective precipitation. The variance of F 
equals 0.15 and is thus much smaller than that of the other variables. It should 

further be noted that F and 
~
P  are correlated. The correlation coefficient ranges 

between 0.69 in winter and 0.77 in summer, which is comparable to that between 

the area-averages in 
~

.P  
 
Summarising, we now have the following variables that can be used in Dt: (1) the 

standardised circulation indices ( )~ ~
,

~
,
~

;C = Z W S (2) the mean 
~
T of the 25 standard-

ised T values; (3) the mean 
~
P of the 25 standardised P values; (4) the means 

( )~ ~
,
~

,
~

,
~

,
~

P = P P P P PI II III IV V  of the standardised P values for the five areas; and (5) 

the fraction F of stations with precipitation. 
 
3.2 Construction of Dt 

Table 2 shows eight feature vectors Dt that have been used in this study. A first 
division is made between unconditional and conditional methods. A second divi-
sion is made within each category according to the weather variables included in 
Dt. Note that the unconditional methods also consider two feature vectors without 
atmospheric circulation. 

Unconditional Conditional 
F* F TPT*P*

(1)
t-1 t

∼ ∼ ∼∼

 

 

(2)
T

t-1 t

T*
∼ ∼∼

P
I
*,...,P

V
* 

∼ ∼
P

I
,...,P

V

∼

 

 

(3)

P* T*
C
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t-1 t

C*

∼ ∼∼
∼

∼
∼
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t-1 t
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∼ ∼
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∼∼
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I
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T
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∼ ∼
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∼
P

I
*,...,P

V
* 

∼
∼
P

I
,...,P

V

∼

 
Table 2: Eight feature vectors for the generation of new variables (solid squares) using 
different sets of known variables (open squares). P refers to precipitation, T to tempera-
ture, F to the fraction of stations with P > 0.2 mm, C is a vector of circulation indices. 
The asterisks indicate that the corresponding variables are resampled values of the previ-
ous time step and the tilde refers to standardised values. 
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For each of the eight feature vectors Table 3 defines a number of test cases. The 
test cases are obtained by varying the weights wi (equation (5)) for the variables 
in Dt. In this section k = 20 for all cases. Case 0.1 is a reference case, in which 
new days are resampled randomly from all days in the window (35x61 days). 
 
For each case in Table 3, ten 35-year simulations were carried out. In case of un-
conditional simulation, these 35-year runs are independent through the use of dif-
ferent random number seeds. For the conditional methods, there is some correla-
tion because each run is related to the observed circulation. Unless specified oth-
erwise, the results in this report are obtained for each simulation separately and 
then averaged over all ten simulations.  

 Unconditional  Conditional 
Case Dt wi  Dt wi 
0.1      
      
1.1 ( )~

, ,
~* * *P F Tt t t− − −1 1 1  (1,2,1)    

1.2 ( )~
, ,

~* * *P F Tt t t− − −1 1 1  (2,2,2)    

      
2.1 ( )~

,
~* *Pt tT− −1 1  (1,5)    

2.2 ( )~
,
~* *Pt tT− −1 1  (1,4)    

2.3 ( )~
,
~* *Pt tT− −1 1  (1,3)    

2.4 ( )~
,
~* *Pt tT− −1 1  (1,2)    

2.5 ( )~
,
~* *Pt tT− −1 1  (1,1)    

      
3.1 ( )~

,
~

,
~* * *Ct t tP T− − −1 1 1  (1,1,1)  ( , )~ ~

,
~* *Ct t tP T− −1 1  (1,1,1) 

3.2 ( )~
,
~

,
~* * *Ct t tP T− − −1 1 1  (1,2,2)  ( , )~ ~

,
~* *Ct t tP T− −1 1  (1,2,2) 

3.3 ( )~
,
~

,
~* * *Ct t tP T− − −1 1 1  (1,3,3)  ( , )~ ~

,
~* *Ct t tP T− −1 1  (1,3,3) 

      
4.1 ( )~

,
~

, ,
~* * * *Ct t t tP F T− − − −1 1 1 1  (1,1,1,1)  ( , )~ ~

, ,
~* * *Ct t t tP F T− − −1 1 1  (1,1,1,1) 

4.2 ( )~
,
~

, ,
~* * * *Ct t t tP F T− − − −1 1 1 1  (1,1,2,1)  ( , )~ ~

, ,
~* * *Ct t t tP F T− − −1 1 1  (1,1,2,1) 

4.3 ( )~
,
~

, ,
~* * * *Ct t t tP F T− − − −1 1 1 1  (1,1.5,2.5,1)  ( , )~ ~

, ,
~* * *Ct t t tP F T− − −1 1 1  (1,1.5,2.5,1) 

4.4 ( )~
,
~

, ,
~* * * *Ct t t tP F T− − − −1 1 1 1  (1,2,2,2)  ( , )~ ~

, ,
~* * *Ct t t tP F T− − −1 1 1  (1,2,2,2) 

4.5 ( )~
,
~

, ,
~* * * *Ct t t tP F T− − − −1 1 1 1  (1,2,4,2)  ( , )~ ~

, ,
~* * *Ct t t tP F T− − −1 1 1  (1,2,4,2) 

4.6 ( )~
,
~

, ,
~* * * *Ct t t tP F T− − − −1 1 1 1  (1,3,5,2)  ( , )~ ~

, ,
~* * *Ct t t tP F T− − −1 1 1  (1,3,5,2) 

4.7 ( )~
,
~

, ,
~* * * *Ct t t tP F T− − − −1 1 1 1  (1,3,3,3)  ( , )~ ~

, ,
~* * *Ct t t tP F T− − −1 1 1  (1,3,3,3) 

4.8 ( )~
,
~

, ,
~* * * *Ct t t tP F T− − − −1 1 1 1  (1,3,6,3)  ( , )~ ~

, ,
~* * *Ct t t tP F T− − −1 1 1  (1,3,6,3) 

      
5.1 ( )~

,
~

,
~* * *Ct t tT− − −1 1 1P  (1,1/5,1)  ( , )~ ~

,
~* *Ct t tTP − −1 1  (1,1/5,1) 

5.2 ( )~
,
~

,
~* * *Ct t tT− − −1 1 1P  (1,2/5,2)  ( , )~ ~

,
~* *Ct t tTP − −1 1  (1,2/5,2) 

5.3 ( )~
,
~

,
~* * *Ct t tT− − −1 1 1P  (1,3/5,3)  ( , )~ ~

,
~* *Ct t tTP − −1 1  (1,3/5,3) 

      
Table 3: Definition of test cases for unconditional and conditional simulation. The wi 

values for the circulation apply to all three components 
~

,
~ ~

Z W Sand of the vector 
~
C , 

likewise the wi values for 
~*Pt−1 refer to its five components. The asterisks indicate that 

the corresponding variables are resampled values of the previous time step and the tilde 
refers to standardised values. 
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Although the weights wi for 
~

,P  F, and 
~
T  were taken to be the same in a number 

of cases, alternative choices of wi were also considered because of the differences 
between the variances of these summary statistics. These differences suggest that 

F should have the largest weight and 
~
T  the smallest. Alternative combinations 

of weights for these statistics are considered in cases 1.1, 4.2, 4.3, 4.5, 4.6 and 
4.8.  

3.2.1 Daily autocorrelation and variability of monthly values 

The reproduction of the occurrence of extreme multi-day precipitation amounts 
requires that not only the lag 1 autocorrelation coefficient is preserved, but also 
the higher order autocorrelation coefficients. Here the autocorrelation coeffi-
cients were estimated for each calendar month separately, using the jackknife 
method of Buishand and Beersma (1993), in order to account for the annual cy-
cles in the first and second order moments. Both for the historical and simulated 
data we calculated the mean lag 1, 2 and 3 autocorrelation coefficients for each 
station 

 r l r l l ii i m
m

( ) ( ) , , , ; , ,,= = =
=
� 12 12 3 1 25

1

12

�  (10) 

withr li m, ( )  the estimated lag l autocorrelation coefficient for the ith station and 

the mth month. We then computed the differences ∆r l( ) between the autocorrela-
tion coefficients of the simulated and historical data, averaged over all stations 

 ∆r l r l r l li i

i

( ) ( ) ( ), , ,*= − =
=
�

1
25

12 3
1

25

 (11) 

where ri
* and ri refer to the simulated and historical data, respectively.  

 
The variability of monthly values is summarised here by the mean standard devia-
tion of the monthly precipitation totals and monthly mean temperatures 

  s s ii i m
m

= =
=
� , , , ,12 1 25

1

12

�   (12) 

From these values we calculated the percentage difference ∆s  between the stan-
dard deviations of the simulated and historical monthly values, averaged over all 
stations 

 ∆s
s s

s
i i

ii

= −

=
�

1
25

100
1

25 *

   (13) 

where s si i
*  and  refer to the simulated and historical data, respectively.  

 
For the simulated data, the monthly standard deviations tend to be too small if their 
autocorrelation is not adequately reproduced. In contrast to the comparisons for 
each individual lag, a test on the monthly standard deviation considers all lags si-
multaneously. This test is useful to discover a too rapid decay of the autocorrelation 
coefficients with increasing lag in the simulated data. Such a departure has often 
been observed with unconditional simulation of daily rainfall using simple paramet-
ric models (Buishand, 1978; Katz and Parlange, 1996). 
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In order to judge the statistical significance of the differences between the auto-
correlation coefficients and standard deviations in the historical and simulated 
data, standard errors se were calculated for the 35-year historical record. The 
standard error of the mean lag l autocorrelation estimate r l( ) was obtained by the 
jackknife method in Buishand and Beersma (1993). The jackknife procedure in 
Beersma and Buishand (1999) was used to obtain the standard deviation of 

ln( ) / ,sii =� 1

25
25 which is approximately equal to the standard deviation of 

[ ]1
25 1

25
s s si i ii

−
=� E E( ) ( ) ,  using a first-order Taylor expansion of ln( )si  about 

the expected value of si  (Stuart and Ord, 1986, p.324). The latter gives an aver-

age relative deviation over all stations comparable with that in equation (13). A 
criterion of 2×se is used to indicate significant differences between historical and 
simulated values.  
 
Table 4 presents ∆r l( ) and ∆s for the cases defined in Table 3. The bottom line 
of the table gives r l( )  and the mean standard deviation s  for the historical 
monthly values, averaged over all stations.  From Table 4 the following can be 
noted: 
• The search for nearest neighbours is necessary. Random sampling from all 

days in the window (case 0.1) leads to large systematic errors. Because there 
is no correlation in that case, the underprediction of r l( )  is almost the same 
as r l( )  itself. As a consequence s  is also strongly underpredicted (27.9%  
for P and 61.7% for T).  

• There is always an underprediction of the lag 1 autocorrelation coefficient 
and the standard deviation of the monthly values, which is for most cases sta-
tistically significant. The unconditional cases perform somewhat better than 
the corresponding conditional cases. In the latter, the lag 2 and lag 3 autocor-
relation coefficients are always slightly underpredicted. 

• The omission of circulation indices in the feature vector of the unconditional 
cases 1.x and 2.x leads for temperature to a better reproduction of r l( )  
and s.  This can be seen by comparing cases with corresponding weights: 1.1 
with 4.2, 1.2 with 4.4, and 2.1 with 5.1. Furthermore, the underprediction of 
the standard deviation of the monthly temperatures is no longer statistically 
significant in cases 1.x and 2.x. For precipitation, there is little difference be-
tween cases with and without circulation indices.  

• The performance of cases 5.x and 2.x, with detailed information on the spa-
tial distribution of precipitation, is not better than that of the corresponding 
cases with less detailed information on precipitation (compare cases 5.x with 
4.x and 3.x and cases 2.x with 1.x).  

• The effect of the variation of weights for 
~
P , F and 

~
T is not clear. Compari-

son of cases 4.1, 4.2 and 4.3 shows, e.g., that the use of different weights for 
F has little effect. This may be a result of the rather large correlation between 
~
P  and F. 

 
The better performance of the unconditional method can partly be ascribed to the 
fact that this method often selects successive days in the historical data set. This 
occurs because the latest resampled day is also part of the k nearest neighbours. If 
that day is excluded in the search for nearest neighbours, the unconditional 
method still performs slightly better than the conditional method. In Section 3.3 
we will further deal with selection of successive days in the historical record. 
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 Precipitation Temperature 
Case ∆r ( )1  ∆r ( )2  ∆r ( )3  ∆s (%) ∆r ( )1  ∆r ( )2  ∆r ( )3  ∆s (%) 

Unconditional        
0.1 –0.229 –0.101 –0.057 –27.9 –0.726 –0.523 –0.389 –61.7 
         
1.1 –0.019 –0.002 –0.006 –6.7 –0.034 0.007 0.013 –4.9 
1.2 –0.020 0.001 –0.005 –7.3 –0.034 0.007 0.014 –4.4 
         
2.1 –0.010 0.000 –0.009 –7.7 –0.036 0.003 0.011 –4.0 
2.2 –0.013 0.000 –0.009 –9.4 –0.038 –0.001 0.005 –5.1 
2.3 –0.016 –0.002 –0.010 –10.7 –0.043 –0.009 –0.006 –7.2 
2.4 –0.008 –0.001 –0.009 –8.0 –0.041 –0.007 –0.003 –6.9 
2.5 –0.005 –0.001 –0.004 –6.6 –0.030 –0.004 –0.003 –6.2 
         
3.1 –0.031 0.002 –0.005 –7.5 –0.059 –0.051 –0.062 –16.3 
3.2 –0.027 –0.001 –0.007 –8.5 –0.046 –0.030 –0.035 –12.7 
3.3 –0.018 0.004 –0.005 –6.9 –0.044 –0.026 –0.032 –12.5 
         
4.1 –0.025 0.005 –0.006 –7.3 –0.057 –0.047 –0.057 –15.6 
4.2 –0.021 0.006 –0.002 –5.6 –0.056 –0.044 –0.051 –14.9 
4.3 –0.019 0.007 –0.004 –6.7 –0.060 –0.054 –0.066 –16.1 
4.4 –0.018 0.009 –0.001 –4.5 –0.044 –0.027 –0.035 –11.6 
4.5 –0.017 0.005 –0.003 –5.6 –0.047 –0.032 –0.039 –12.9 
4.6 –0.016 0.007 –0.002 –5.1 –0.048 –0.033 –0.040 –13.2 
4.7 –0.021 0.010 –0.003 –6.1 –0.041 –0.021 –0.028 –11.4 
4.8 –0.015 0.013 0.001 –4.7 –0.044 –0.024 –0.030 –12.8 
    –     
5.1 –0.024 0.001 –0.005 –9.0 –0.058 –0.049 –0.057 –14.8 
5.2 –0.020 0.005 –0.004 –7.8 –0.046 –0.030 –0.038 –11.7 
5.3 –0.015 0.008 –0.002 –8.2 –0.041 –0.021 –0.028 –10.9 
         
Conditional        
3.1 –0.065 –0.023 –0.014 –10.1 –0.091 –0.059 –0.051 –17.1 
3.2 –0.057 –0.016 –0.013 –8.7 –0.073 –0.036 –0.027 –14.4 
3.3 –0.051 –0.018 –0.012 –8.0 –0.066 –0.025 –0.015 –13.9 
    –     
4.1 –0.057 –0.020 –0.015 –8.9 –0.090 –0.061 –0.052 –18.2 
4.2 –0.056 –0.016 –0.011 –7.2 –0.091 –0.063 –0.057 –17.8 
4.3 –0.054 –0.014 –0.014 –8.1 –0.098 –0.074 –0.067 –19.3 
4.4 –0.050 –0.017 –0.012 –8.5 –0.077 –0.042 –0.034 –15.2 
4.5 –0.046 –0.015 –0.012 –8.6 –0.078 –0.043 –0.034 –15.9 
4.6 –0.048 –0.014 –0.011 –7.2 –0.079 –0.047 –0.040 –16.3 
4.7 –0.046 –0.014 –0.011 –7.9 –0.067 –0.029 –0.021 –14.9 
4.8 –0.046 –0.012 –0.010 –7.5 –0.069 –0.030 –0.020 –14.9 
    –     
5.1 –0.054 –0.025 –0.019 –10.6 –0.090 –0.060 –0.052 –17.3 
5.2 –0.046 –0.019 –0.011 –10.0 –0.075 –0.038 –0.030 –14.1 
5.3 –0.041 –0.019 –0.014 –10.4 –0.066 –0.027 –0.017 –13.4 
        
Historical   (mm)    (oC) 

 0.230 0.098 0.059 35.6  0.794 0.582 0.447 1.81 
Table 4: Differences between the mean lag 1, 2 and 3 autocorrelation coefficients 
of daily values and percentage differences between the mean standard deviations of 
monthly values for the simulated data (ten runs of 35 years for each case) and the 
historical records (1961–1995), averaged over 25 stations. The bottom line gives 
the estimates for the historical data. Estimates in italics for the simulated data indi-
cate that they differ more than 2×se from the corresponding estimate for the histori-
cal data. 
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The better reproduction of r l( )  and s for temperature in the unconditional cases 
without circulation indices, 1.x and 2.x, is in line with the results of single-site 
simulations for Stuttgart in BB97. The fact that the results for precipitation are 
not sensitive to the inclusion of circulation indices is, however, in sharp contrast 
with the results of those single-site simulations, where the use of circulation indi-
ces gave a marked improvement in the reproduction of the autocorrelation prop-
erties. Although the inclusion of large-scale features of the weather seems desir-
able to obtain a satisfactory reproduction of the autocorrelation properties of lo-
cal precipitation, this needs not to be restricted to the circulation indices as in the 
single-site simulations. The large-scale features (

~
,
~

, )T P F  in the multi-site genera-
tion may partly take over the role of the circulation indices. This is supported by 
the fact that the correlation between the vorticity and westerly flow indices and 

the area-averages 
~

,
~

T P  is stronger than that between these indices and P,T of the 
individual stations.  

3.2.2 N-day winter maximum precipitation amounts 

For the 25 stations, the N-day (N = 1,4,10,20) winter (October-March) maximum 
precipitation amounts were abstracted from the historical record and all simu-
lated cases. Like in BB97, the following three quantities are considered to verify 
the reproduction of the N-day winter maxima distributions: 
1. The maximum of the N-day winter maxima (highest N-day amount in the re-

cord). 
2. The upper quintile mean QM5 of the N-day winter maxima.  
3. The median M of the N-day winter maxima. 
 
QM5 refers to the mean of the data beyond the highest quintile (upper 20%). Be-
cause taking 20% of the 34 winters in our 35-year record does not result in a 
whole number, we obtained QM5 as the average of the mean of the 7 largest win-
ter maxima (with weight 0.8) and the mean of the 6 largest winter maxima (with 
weight 0.2). This procedure gives almost identical results as that followed in the 
UK Flood Studies Report (NERC, 1975) to derive the quartile means of annual 
maxima as summary statistics.  
 
Analogous to equation (13), we calculated for each of the three quantities the 
percentage difference between the values for the simulated and historical data, 
averaged over all stations. Table 5 presents these differences for the cases de-
fined in Table 3. The bottom line of the table gives the absolute values for the 
historical data. From Table 5 the following can be noted:  
• In general, the maximum, the upper quintile mean and the median are all 

somewhat underestimated. 
• In case 0.1 there is for N > 1 a relatively large underprediction of the maxi-

mum, the upper quintile mean and the median, ranging between 19% and 
25%. This is because there is no autocorrelation in the data in this case. For 
N = 1, the underprediction in case 0.1 is for the maximum comparable to that 
of the other cases. This underprediction is caused by the fact that the largest 
recorded amount is not always selected. The median of the 1-day amounts is, 
however, much better reproduced in case 0.1 than in the other cases. Appar-
ently, the introduction of autocorrelation by nearest-neighbour resampling re-
sults in the selection of too few extreme days.   
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• The somewhat better reproduction of the autocorrelation coefficients by the 
unconditional method in Table 4, is reflected in the reproduction of the dis-
tribution of the N-day winter maximum precipitation amounts. 

• The performance of cases 1.x and 2.x is comparable to that of the corre-
sponding unconditional cases that include circulation indices in the feature 
vector (compare e.g. cases 1.1 and 4.2). In fact, there is no clear preference to 
one of the feature vectors.  

• As in Section 3.2.1, the variation of weights for 
~
P , F, and 

~
T seems to have 

little effect.  
 

 Maximum (%) Upper quintile mean (%) Median (%) 
Case  N=1 N=4 N=10 N=20  N=1 N=4 N=10 N=20  N=1 N=4 N=10 N=20 
Unconditional          
0.1 –7.4 –23.9 –24.2 –24.7 –3.6 –23.8 –24.5 –22.2 –2.9 –21.8 –21.3 –18.6 
1.1 –6.1 –5.1 –3.8 –4.3 –3.0 –5.8 –4.8 –2.6 –4.9 –5.3 –5.0 –4.8 
1.2 –6.0 –5.8 0.1 –5.2 –3.5 –4.8 –2.6 –3.6 –4.2 –4.3 –3.4 –3.9 
             
2.1 –8.2 –7.6 –4.0 –4.4 –4.6 –6.3 –5.3 –3.5 –5.0 –5.3 –4.5 –5.3 
2.2 –6.8 –3.7 –2.8 –7.3 –3.7 –5.3 –4.9 –5.7 –6.3 –6.5 –5.7 –7.0 
2.3 –9.1 –4.2 –5.0 –7.9 –6.9 –7.4 –7.8 –7.4 –7.9 –8.2 –7.5 –9.5 
2.4 –7.5 –0.3 1.2 2.2 –4.0 –3.0 –3.3 –2.6 –4.1 –5.5 –5.3 –6.8 
2.5 –5.8 –3.7 –3.0 –0.2 –2.6 –3.3 –3.0 0.0 –4.5 –4.4 –3.9 –4.2 
             
3.1 –6.1 –8.4 –6.4 –6.9 –3.4 –6.7 –6.7 –5.7 –5.8 –6.2 –5.6 –6.4 
3.2 –7.8 –9.2 –7.2 –10.3 –5.9 –8.2 –7.2 –7.5 –7.9 –8.2 –6.8 –8.1 
3.3 –6.7 –3.9 –0.3 –2.0 –3.5 –3.9 –3.5 –2.5 –5.8 –5.2 –5.1 –6.4 
             
4.1 –6.7 –7.3 –9.0 –8.5 –2.5 –6.0 –7.3 –6.0 –4.6 –5.6 –4.4 –6.6 
4.2 –6.5 –2.7 –1.9 –5.7 –3.2 –3.1 –3.2 –2.5 –6.0 –5.2 –5.8 –5.4 
4.3 –7.7 –5.6 –3.8 –3.4 –4.8 –5.5 –4.3 –2.6 –6.3 –6.3 –4.7 –5.6 
4.4 –8.0 –3.6 –2.4 –3.2 –5.3 –4.7 –4.2 –2.7 –6.8 –5.6 –4.2 –4.4 
4.5 –8.1 –3.8 –2.1 –6.3 –4.1 –4.4 –3.6 –3.8 –5.1 –4.9 –3.0 –3.1 
4.6 –5.2 –4.9 –2.1 –2.1 –2.8 –4.7 –3.1 –1.7 –4.8 –4.9 –4.6 –5.4 
4.7 –7.6 –6.4 –4.5 –5.6 –4.5 –5.4 –4.1 –2.5 –6.2 –5.6 –4.6 –5.5 
4.8 –7.8 –6.2 –5.0 –5.4 –4.2 –5.0 –3.6 –2.6 –6.3 –4.0 –2.7 –3.3 
             
5.1 –10.1 –7.2 –5.5 –8.4 –7.1 –7.7 –6.7 –7.5 –9.1 –8.5 –7.5 –8.1 
5.2 –6.6 –6.7 –3.3 –3.8 –4.1 –5.8 –4.3 –2.5 –6.5 –5.4 –5.0 –5.9 
5.3 –9.2 –4.3 –1.2 –6.0 –5.0 –3.6 –3.2 –3.8 –5.0 –4.3 –3.8 –6.0 
             
Conditional          
3.1 –10.3 –8.4 –9.2 –8.8 –6.6 –9.3 –9.8 –7.7 –7.6 –10.1 –8.3 –7.1 
3.2 –6.3 –4.2 –3.5 –5.0 –4.4 –6.0 –5.7 –4.7 –5.8 –6.6 –5.5 –4.8 
3.3 –8.1 –7.9 –4.5 –3.9 –4.5 –6.3 –4.9 –3.0 –5.4 –6.5 –5.2 –5.0 
             
4.1 –6.6 –5.6 –3.5 –6.6 –3.7 –6.6 –6.2 –5.1 –6.0 –7.6 –6.4 –5.3 
4.2 –7.2 –8.5 –5.6 –6.1 –4.3 –8.0 –6.6 –4.3 –5.4 –7.9 –5.4 –4.4 
4.3 –9.8 –9.2 –8.6 –11.5 –5.2 –8.4 –8.3 –7.4 –5.6 –7.9 –6.1 –5.4 
4.4 –8.7 –9.1 –9.7 –9.1 –6.0 –8.2 –8.2 –6.4 –6.3 –8.6 –6.1 –5.7 
4.5 –8.3 –7.0 –6.5 –7.4 –5.8 –8.1 –7.5 –5.4 –6.9 –9.0 –7.0 –5.8 
4.6 –9.0 –5.4 –3.6 –5.3 –4.1 –7.0 –5.6 –4.2 –4.2 –6.8 –4.9 –4.3 
4.7 –8.1 –7.3 –6.8 –8.4 –5.8 –7.6 –8.0 –5.9 –6.3 –7.3 –6.8 –5.7 
4.8 –7.9 –6.0 –2.8 –3.6 –5.6 –7.0 –5.2 –4.2 –5.7 –7.3 –5.8 –5.0 
             
5.1 –9.3 –7.9 –7.6 –10.0 –6.1 –8.4 –8.5 –7.3 –5.6 –8.0 –7.0 –6.3 
5.2 –9.3 –8.5 –6.9 –9.3 –6.3 –8.7 –7.1 –6.3 –6.8 –8.6 –6.9 –6.0 
5.3 –9.3 –9.5 –7.8 –8.9 –5.9 –9.4 –7.8 –7.2 –5.2 –7.2 –5.9 –6.9 
             
Historical (mm)          
 56.5 95.9 136.8 189.8 42.3 76.2 110.8 152.3 26.9 50.8 75.1 107.0 
Table 5: Percentage differences between the maxima, upper quintile means and 
medians of the N-day winter (October-March) precipitation maxima for the simu-
lated data (ten runs of 35 years for each case) and the historical records (1961–
1995), averaged over 25 stations. The bottom line gives the estimates for the 
historical data. 
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The systematic underprediction of the N-day winter precipitation maxima may 
have different causes. The first is the systematic underprediction of the precipita-
tion autocorrelation coefficients as shown in Table 4. A second cause is the in-
ability of the resampling procedure to simulate sufficient extreme 1-day precipi-
tation amounts.  

3.2.3 Correlation with circulation indices 

While the cross-correlation coefficients between the circulation indices and the 
weather variables are more or less automatically preserved in the unconditional 
simulations, this is not necessarily so for the conditional simulations. The repro-
duction of these cross-correlation coefficients is, however, important for studies 
concerning the effects of long-term variations and potential future systematic 
changes in the atmospheric circulation. Therefore, we calculated the cross-
correlation coefficients between the standardised daily values for most condi-
tional cases in Table 3 and compared these with the historical values for the win-
ter half-year (October - March). The daily average standardised values 

~
,P  

~
,T  

~
, ,

~
P PI V�  were considered here rather than the standardised values for the indi-
vidual stations. 
 
Table 6 summarises the results. The coefficients r Z(

~
,
~

),P  r W(
~

,
~

)P and  r S(
~

,
~

)P  

refer here to the correlation coefficients for the elements of 
~

,P  averaged over the 
five areas. From the table it is seen that both precipitation and temperature show 
the strongest correlation with the westerly flow index, which is somewhat too 
low in the simulated cases. This underestimation is also found for the correlation 
between precipitation and vorticity, whereas the correlation between temperature 
and the southerly flow index is slightly overestimated. For the cases considered 
in Table 6, the reproduction of cross-correlation coefficients improves with 
increasing relative weight of the circulation indices. The best results are 
generally obtained if the total weight of the circulation indices is about the same 
as that of the weather variables (cases 3.1, 4.1 and 5.1).  
 
It should be noted that the cross-correlation coefficient only measures the 
strength of linear dependence. Especially the relationships between temperature 
and vorticity and between precipitation and the southerly flow index are non-
linear here. The non-linearity is such that the correlation coefficient is almost 
zero for these cases.  
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3.3 Influence of k 

3.3.1 The need for further study 

It was already noted in Section 2.1 that the value of k depends on the type of ker-
nel, the number n of daily values used in the search for nearest neighbours, and 
the number q of elements in Dt. For the decreasing kernel in equation (2), Lall 

and Sharma (1996) recommended to use k n= 1 2/  provided that 1 6≤ ≤q  and 

n ≥ 100. This recommendation was based partly on experience and partly on an 
asymptotic result for the mean square error of probability density estimates. In 
our case, with n = 2135 days in the moving window, it yields k = 46. 
 
Lall and Sharma (1996) also suggested to use cross-validation to determine the 
best value of k. Cross-validation considers, however, prediction errors, rather 
than time series properties as in Section 3.2. It would be a suitable technique 
when the nearest-neighbour method is used for forecasting. Nevertheless, in 
BB97 we studied cross-validation, using a uniform kernel. Both for P and T a 
value of k of about 25 turned out to be optimal in terms of the cross-validation 
score, but autocorrelation coefficients were better preserved for smaller values of 
k, e.g. k = 5. For the decreasing kernel, BB97 only presents some comparisons 
between k = 10, 20 and 40. The results for the uniform kernel, however, give rise 
to consider a broader range of k, in particular values of k less than 10.  

3.3.2 Daily autocorrelation and variability of monthly values 

Table 7 presents ∆r l( )  and ∆s  for the cases 4.4 (unconditional) and 4.1 (condi-
tional). For temperature, the table shows a clear improvement of the reproduction 

of r l( ) and s  at small k. This is also the case for precipitation in the conditional 
simulations. Despite these improvements, the underestimation of the lag 1 auto-
correlation coefficient is still statistically significant for k = 2 and k = 5. The im-
provement is less marked for precipitation in the unconditional simulations. The 

Case ∆r Z(
~

,
~

)P  ∆r Z P(
~

,
~

)  ∆r Z T(
~

,
~

)  ∆r W(
~

,
~

)P  ∆r W P(
~

,
~

)  ∆r W T(
~

,
~

)  ∆r S(
~

,
~

)P  ∆r S P(
~

,
~

)  ∆r S T(
~

,
~

)  

3.1 –0.024 –0.026 0.007 –0.023 –0.022 –0.051 0.016 0.019 0.018 
3.2 –0.031 –0.035 0.007 –0.033 –0.035 –0.067 0.018 0.021 0.013 
3.3 –0.040 –0.044 0.010 –0.043 –0.046 –0.078 0.020 0.022 0.015 
          
4.1 –0.033 –0.038 0.009 –0.027 –0.029 –0.048 0.023 0.027 0.021 
4.4 –0.041 –0.046 0.010 –0.045 –0.048 –0.066 0.028 0.032 0.014 
4.7 –0.049 –0.054 0.012 –0.053 –0.056 –0.082 0.026 0.030 0.008 
          
5.1 –0.028 –0.032 0.000 –0.029 –0.031 –0.053 0.009 0.011 0.016 
5.2 –0.041 –0.046 0.000 –0.036 –0.039 –0.071 0.017 0.020 0.014 
5.3 –0.048 –0.054 0.004 –0.053 –0.058 –0.085 0.019 0.023 0.002 
          
Hist 0.221 0.247 0.021 0.366 0.410 0.561 –0.044 –0.055 0.241 
Table 6: Differences between the cross-correlation coefficients of the standardised daily 
circulation indices and weather variables for the simulated data (ten conditional simula-
tions of 35 years for each case) and the historical records (1961–1995). The differences 
apply to the winter half-year (October - March). The bottom line gives the cross-
correlation coefficients for the historical data. 
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autocorrelation properties are already rather well preserved for k = 20 in that 
case.  
 
 

3.3.3 N-day winter maximum precipitation amounts 

Table 8 presents the results for the N-day winter precipitation maxima. For both 
the conditional and unconditional simulations, the reproduction of extreme value 
properties improves for k decreasing from 50 to 5. This is partly due to the better 
reproduction of the autocorrelation properties for k = 5. Another point is that for 
k = 5 the underprediction of the median of the 1-day winter maxima is small 
compared with that for larger values of k, indicating that more extreme days are 
resampled if k = 5. This does not improve for k = 2. The effect of selecting too 
few extreme days seems to override the slightly better reproduction of the auto-
correlation properties for k = 2. 
 
For k = 5 and k = 20, Figure 8 presents boxplots of the relative differences be-

tween the observed and simulated extreme-value properties. Each boxplot repre-
sents a sample of relative differences derived from the ten simulation runs, where 
the dots depict the minimum and maximum value, the whiskers the 10th and 90th 

 Precipitation Temperature 
Case ∆r ( )1  ∆r ( )2  ∆r ( )3  ∆s (%) ∆r ( )1  ∆r ( )2  ∆r ( )3  ∆s (%) 
Unconditional        
4.4 (k = 2) –0.006 0.006 0.002 –2.4 –0.017 –0.010 –0.012 –4.7 
4.4 (k = 5) –0.012 0.009 –0.003 –5.3 –0.031 –0.019 –0.027 –10.2 
4.4 (k = 20) –0.018 0.009 –0.001 –4.5 –0.044 –0.027 –0.035 –11.6 
4.4 (k = 50) –0.026 0.004 –0.003 –7.6 –0.057 –0.039 –0.045 –14.3 
         
Conditional        
4.1 (k = 2) –0.035 –0.006 –0.008 –4.7 –0.052 –0.027 –0.021 –12.1 
4.1 (k = 5) –0.045 –0.009 –0.010 –6.4 –0.071 –0.040 –0.033 –14.0 
4.1 (k = 20) –0.057 –0.020 –0.015 –8.9 –0.090 –0.061 –0.052 –18.2 
4.1 (k = 50) –0.063 –0.020 –0.016 –9.7 –0.108 –0.083 –0.076 –20.9 
Table 7: Differences between the mean lag 1, 2 and 3 autocorrelation coefficients of daily 
values and percentage differences between the mean standard deviations of monthly values 
for the simulated data (ten runs of 35 years for each case) and the historical records (1961–
1995), averaged over 25 stations. Estimates in italics for the simulated data indicate that 
they differ more than 2×se from the corresponding estimate for the historical data. 

 Maximum (%) Upper quintile mean (%) Median (%) 
Case  N=1 N=4 N=10 N=20  N=1 N=4 N=10 N=20  N=1 N=4 N=10 N=20 
Unconditional           
4.4 (k = 2) –5.2 –3.4 –0.5 0.7 –0.6 –2.6 –2.4 –0.9 –3.7 –3.3 –3.0 –2.4 
4.4 (k = 5) –6.4 –2.8 –1.7 –2.5 –2.1 –1.2 –1.4 –0.2 –2.4 –1.1 –0.3 –1.1 
4.4 (k = 20) –8.0 –3.6 –2.4 –3.2 –5.3 –4.7 –4.2 –2.7 –6.8 –5.6 –4.2 –4.4 
4.4 (k = 50) –7.3 –8.9 –4.8 –5.1 –6.0 –8.2 –5.3 –4.2 –8.4 –7.0 –5.3 –5.8 
             
Conditional           
4.1 (k = 2) –6.4 –3.8 0.8 –4.3 –5.8 –5.6 –3.8 –3.0 –6.7 –6.8 –4.7 –2.6 
4.1 (k = 5) –5.1 –2.9 –0.6 –3.6 –2.7 –3.9 –2.9 –2.2 –4.1 –5.8 –3.9 –3.5 
4.1 (k = 20) –8.7 –9.1 –9.7 –9.1 –6.0 –8.2 –8.2 –6.4 –6.3 –8.6 –6.1 –5.7 
4.1 (k = 50) –8.5 –9.7 –7.1 –11.0 –5.9 –9.4 –8.5 –7.3 –7.0 –8.9 –7.7 –6.0 
Table 8: Percentage differences between the maxima, upper quintile means and medians 
of the N-day winter (October-March) precipitation maxima for the simulated data (ten 
runs of 35 years for each case) and the historical records (1961–1995), averaged over 25 
stations.  
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percentiles, the upper and lower boundaries of the box the 25th and 75th percen-
tiles, and the horizontal line in the box the median. The figure gives an impres-
sion of the statistical significance of the underprediction of the maximum, QM5 
and median of the N-day winter maximum precipitation amounts in Table 8. For 
instance, the fact that in the k = 20 simulation for case 4.4 (unconditional) five of 
the eight boxplots for QM5 and the median are entirely below the 0% difference 
line indicates a significant underprediction of these quantities. For k = 5 there is 
no such evidence.  

3.3.4 Shape parameter of the GEV distribution 

The Generalised Extreme-Value (GEV) distribution is a three parameter distribu-
tion that combines into a single form the three possible types of limiting distribu-
tions for extreme values:  
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Here F(x) is the distribution function, ξ and α are location and scale parameters, 
respectively, and the shape parameter κ determines which extreme value distribu-
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Figure 8: Boxplots of the percentage differences between the maxima, upper quintile 
means and medians of the N-day winter (October-March) precipitation maxima for the 
simulated data (each boxplot represents ten runs of 35 years) and the historical records 
(1961–1995), averaged over 25 stations.  
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tion is represented: Type I or Gumbel distribution (κ = 0), Type II (κ < 0) or 
Type III (κ > 0). The Type II distribution has a thicker upper tail than the Gumbel 
distribution. The values at long return periods are therefore greater than those 
expected from the Gumbel distribution. The opposite holds for the Type III dis-
tribution. It is of interest to see: (1) whether κ of the historical maxima is repro-
duced by the simulations; and (2) which type of distribution can be fitted to the 
N-day maxima. 
 
The parameters of the GEV distribution were estimated by the method of prob-
ability-weighted moments (PWM), according to Hosking et al. (1985). This 
method requires no iteration and provides for samples of size 34 better estimates 
than the more computer-intensive maximum likelihood method. Table 9 presents 
the PWM estimate of κ for the 1, 4, 10 and 20-day winter maxima in the simu-
lated and historical data, averaged over 25 stations. For the historical data, the 
standard error of this estimate is also given. A bootstrap method, in which years 
were randomly sampled with replacement, was used to estimate the standard er-
ror (see BB97 for further details of this method). The standard errors in Table 9 
are based on 500 bootstrap samples. The table shows that κ is adequately repro-
duced in the simulations and that the quality of the reproduction does not depend 
on k. The estimates of κ increase with increasing N.  This is in agreement with 
regional analyses of long-duration records of N-day annual maximum precipita-
tion amounts in the United Kingdom and the Low Countries (Dupriez and De-
marée, 1988; Dales and Reed, 1989; Buishand, 1991). However, for the 1-day 
maxima the departures from the Gumbel distribution in these studies are gener-
ally larger than those found in Table 9. There is often a strong statistical evidence 
of a Type II distribution for these maxima. For N = 10 and N = 20,  the values of 
κ are positive in Table 9, indicating a Type III distribution. The standard error is, 
however, just as large. 

3.3.5 Correlation with circulation indices 

For the conditional simulations (case 4.1), we again calculated the cross-
correlation coefficients of the standardised daily circulation indices and weather 
variables. Table 10  shows that the reproduction of these cross-correlation coeffi-
cients improves with decreasing k. 

Case  N = 1 N = 4 N =  10 N = 20 
Unconditional    
4.4 (k = 2) -0.0415 0.0280 0.0395 0.0646 
4.4 (k = 5) -0.0054 0.0468 0.0816 0.1004 
4.4 (k = 20) -0.0210 0.0230 0.0663 0.1116 
4.4 (k = 50) -0.0464 0.0433 0.0745 0.1035 
     
Conditional    
4.1 (k = 2) -0.0426 0.0151 0.0382 0.1130 
4.1 (k = 5) -0.0238 0.0220 0.0592 0.0878 
4.1 (k = 20) -0.0387 0.0108 0.0459 0.1070 
4.1 (k = 50) -0.0258 0.0331 0.0719 0.1296 
     
Historical -0.0420 -0.019 0.0391 0.0704 
(se) (0.0391) (0.0416) (0.0442) (0.0557) 
Table 9: Shape parameter κ of the GEV distribution of N-day winter maxima for the 
simulated data (ten runs of 35 years for each case) and the historical records (1961–1995), 
averaged over 25 stations. The bottom row gives the standard error se of the estimate for 
the historical data. None of the estimates for the simulated data differs more than 2×se 
from the corresponding estimates for the historical data.  
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3.3.6 Run lengths in unconditional simulations 

In Section 3.2 we already noted that the unconditional method often selects suc-
cessive days in the historical data set. Although this is good for the reproduction 
of autocorrelation coefficients, there is a risk that large parts of the historical re-
cord are duplicated in the simulation run. It is, therefore, of interest to study the 
influence of k on properties of run lengths of successive historical days in the 
simulations. The mean run length E(R) is given by (see Appendix A):  

 E( ) ( )R p= −1 1 1   (15) 

where p1 is the probability that the closest neighbour is selected as defined in 
equation (2). This probability increases with decreasing k (see also Figure 3) and 
E(R) will thus be large for small k. For the mean of the longest run Rmax in a 
simulation of J years the following approximation can be derived (see Appen-
dix A): 

 E max( )
ln[ ( )]

ln
R

J p

p
≈ − + − +γ 365 1

1 21

1

  (16) 

where γ = 0.5772… is Euler’s constant. Table 11 presents p1, E(R) and, for J = 35 
and 1000 years, E(Rmax) for several values of k. The table shows that considerable 
changes in p1 and run length properties occur at small k. For k as small as 2, runs 
of consecutive historical days can be quite long for the number of simulated 
years considered in this report.  
 
The question remains how far it is allowable that large parts of the historical data 
set are duplicated in a simulation run. This depends, of course, on the desired ap-
plication of the simulated data. Here it is important that e.g. more extreme 10-day 
precipitation amounts can be simulated than  those observed. There is no indica-
tion that a simulation with k = 2 performs worse than a simulation with k = 5, in 
this respect.  
 
 

 
 
 
 
 
 
 

Table 11: Relation between k and the expected run length E(R) and the expected longest 
run length E(Rmax) in simulations of J = 35 and 1000 years for the decreasing kernel in 
equation (2). The variable p1 denotes the probability that a successive historical day is re-
sampled. 
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2 –0.019 –0.021 0.005 –0.013 –0.011 –0.029 0.006 0.006 0.014 
5 –0.030 –0.033 0.005 –0.022 –0.023 –0.033 0.018 0.020 0.018 
20 –0.033 –0.038 0.009 –0.027 –0.029 –0.048 0.023 0.027 0.021 
50 –0.040 –0.044 0.002 –0.034 –0.036 –0.050 0.019 0.022 0.024 

Table 10: Differences between the cross-correlation coefficients of the standardised 
daily circulation indices and weather variables for the simulated data (ten conditional 
simulations of 35 years for each value of k) and the historical records (1961–1995) for 
case 4.1. The differences apply to the winter half-year (October - March). 

   E(Rmax) 
k p1 E(R) J = 35 J = 1000 
2 0.6667 3.000 22.5 30.8 
5 0.4380 1.779 12.0 16.0 

20 0.2780 1.358 8.1 10.7 
50 0.2223 1.286 7.0 9.2 
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4. Further analysis of the distribution of extremes 

 
In the previous section, we compared the performance of various resampling 
schemes using the percentage differences between observed and simulated prop-
erties of N-day winter maximum precipitation amounts, averaged over the 25 sta-
tions. Here we look at these extreme-value properties in more detail for the sta-
tions Essen, Kahler Asten, Trier, Frankfurt Bamberg, Freudenstadt and Stuttgart 
and the five areas shown in Figure 1. The selected stations correspond to those in 
BB97 for the single-site simulations. As in BB97 we also study the distribution 
of the snowmelt maxima.  

4.1 N-day winter maximum precipitation amounts 

Table 12 presents for cases 4.4 (unconditional; k = 5) and 4.1 (conditional; k = 5) 
the results for the N-day winter maximum precipitation amounts. It should be 
noted that the mean in the left column of the table refers to the mean percentage 
difference for the seven stations between the observed and simulated properties 
of the single-site N-day maxima. In contrast, for the five areas and the total area 
the N-day maxima of the mean daily precipitation of the corresponding stations 
in those areas are considered.     
 
As in Section 3, the differences in Table 12 for the unconditional case are smaller 
than those for the conditional case. For both cases the results for the seven sta-
tions are somewhat better than the corresponding cases reported in BB97 for the 
single-site simulations with k = 20. As could be expected, the mean percentage 
differences of the seven stations are comparable to those of the 25 stations for the 
corresponding cases in Table 8, in particular at QM5 and the median. For some 
stations percentage differences between 10% and 20% are found in Table 12. 
These large differences can still be explained by natural variability (Appen-
dix B). 
 
In BB97 the underprediction of the median was a point of concern. Compared to 
BB97, the median for the conditional simulations in Table 12 remains somewhat 
underpredicted for N = 1 and N = 4. On the other hand, for N = 10 and N = 20 the 
reproduction of the median is improved. For the unconditional simulations, it is 
noteworthy that the underprediction of the median for k = 5 becomes small (on 
average only 0.8% for N = 10 and not more than 4.7% for N = 1). In BB97 we 
found an average systematic underprediction of the median up to about 8% for 
N = 20 using k = 20. Especially for Freudenstadt the improvement is striking, 
ranging between a 5% less underprediction for N = 1 and an 11% less underpre-
diction for N = 20.  
 
Because the selection of nearest neighbours uses large-scale features of precipita-
tion rather than local precipitation, one may expect that the extreme-value prop-
erties of area-average rainfall are better preserved than those of point rainfall. 
This is, however, not so. The percentage differences for the five areas and the to-
tal area are comparable to those for individual stations. 
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Figure 9 compares for three stations and three areas Gumbel plots of the ob-
served 10-day winter maxima with those of the ten conditional 35-year simula-
tions. For Freudenstadt the large underprediction of the median (9.4% in 
Table 12) is clearly visible, all ten simulated medians (Tr = 2 yr) are below the 
observed median. The large underprediction of QM5 for area II (10.3% in Ta-
ble 12) is also apparent. 

 Maximum (%) Upper quintile mean (%) Median (%) 
Station/Area  N=1 N=4 N=10 N=20  N=1 N=4 N=10 N=20  N=1 N=4 N=10 N=20 
Unconditional (4.4; k = 5)          
Essen 6.9 –3.3 15.3 10.8 1.9 –1.3 9.1 7.2 1.1 3.4 –1.2 1.2 
Kahler Asten 1.3 –6.4 1.7 2.2 –0.5 –1.4 –1.2 0.0 –7.0 –2.1 7.0 –0.1 
Trier –1.6 –4.3 –17.5 –1.2 0.6 –1.6 –6.7 2.5 –6.6 –0.6 –2.2 1.5 
Frankfurt –3.9 –16.8 –5.9 –2.2 –0.9 –1.3 –4.8 –3.9 –0.3 –5.2 –2.8 0.4 
Bamberg –9.4 9.2 13.0 –5.9 –0.4 2.1 3.4 –1.3 –6.1 0.6 –0.7 –1.3 
Freudenstadt 7.1 9.0 5.4 –4.4 –0.8 –0.3 8.1 1.3 –9.0 –8.0 –3.2 –6.8 
Stuttgart –6.0 7.3 –0.7 –1.3 –0.3 0.6 5.4 1.4 –4.7 –2.3 –2.7 –4.6 
             
Mean –0.8 –0.8 1.6 –0.3 –0.1 –0.5 1.9 1.0 –4.7 –2.0 –0.8 –1.4 
             
Area I –0.4 –14.8 17.7 18.8 –1.0 0.0 8.4 6.5 0.5 2.5 1.4 –3.3 
Area II 0.5 –3.2 –12.3 –7.4 0.2 –1.9 –9.3 –1.0 –2.1 –6.8 2.1 2.9 
Area III 
 

–13.6 –10.0 –17.1 –14.5 –4.9 –1.7 –2.3 –0.7 –4.4 –5.2 –3.1 2.2 
Area IV –10.4 –1.9 4.3 3.9 0.5 2.9 1.9 2.1 –1.3 –2.4 –0.9 –2.4 
Area V –4.8 3.8 7.9 4.1 –0.5 –0.6 –0.1 1.0 –3.6 –2.2 2.1 –3.2 
Total area –7.0 –7.8 2.1 –1.7 –4.3 –1.5 –3.0 3.7 –4.4 0.0 –1.8 –4.3 
             
Conditional (4.1; k = 5)          
Essen 13.2 –6.8 4.1 0.7 4.5 –4.0 2.9 1.1 –2.4 –0.2 –3.6 –1.7 
Kahler Asten 4.6 –8.5 –7.3 –6.4 2.5 –3.3 –9.4 –5.7 –5.6 –8.3 –0.9 –3.9 
Trier –13.2 9.1 –7.1 –0.2 –3.7 –2.9 –5.2 1.5 –8.1 –8.5 –4.2 –0.3 
Frankfurt –1.6 –16.6 1.9 3.4 –2.4 –3.9 –2.9 –0.9 –4.4 –7.3 –5.6 –1.3 
Bamberg –5.7 –0.5 8.1 –11.9 –0.3 –7.5 –1.7 –5.3 –9.0 –1.3 –0.3 –4.2 
Freudenstadt 4.0 1.0 –2.7 –9.6 –3.9 –6.4 –1.6 –8.3 –11.6 –16.1 –9.4 –12.6 
Stuttgart –0.9 8.2 1.9 1.4 –0.7 4.1 3.7 –2.1 –4.6 –7.8 –7.7 –8.1 
             
Mean 0.1 –2.0 –0.2 –3.2 –0.6 –3.4 –2.0 –2.8 –6.5 –7.1 –4.5 –4.6 
             
Area I 1.9 –17.9 8.8 10.7 1.9 –3.5 2.1 0.5 –2.7 –0.6 –2.6 –5.3 
Area II –6.5 –4.8 –8.7 –12.3 –6.0 –8.7 –10.3 –3.5 –4.5 –12.0 0.2 –0.1 
Area III –11.3 –8.1 –11.8 –10.3 –5.1 –1.4 2.3 1.7 –3.9 –6.8 –7.1 0.1 
Area IV –16.2 –10.0 4.0 –0.5 –7.4 –5.3 –3.4 –2.1 –1.5 –6.5 –4.8 –4.5 
Area V –3.1 9.7 11.9 0.2 –3.4 –0.6 –2.6 –5.1 –5.6 –10 –3.5 –5.2 
Total area –10.6 –5.5 4.5 –4.2 –5.1 –5.7 –6.2 –1.5 –7.8 –5.1 –2.4 –6.2 
             
Historical (mm)          
Essen 38.3 83.8 114.8 180.6 36.5 70.4 102.8 155.2 28.3 50.3 83.2 118.6 
Kahler Asten 66.4 147.0 232.9 352.3 59.8 122.7 207.4 304.2 45.3 94.4 142.7 218.0 
Trier 51.3 87.6 151.9 176.9 38.9 73.0 113.0 144.4 26.8 49.3 75.3 103.1 
Frankfurt 38.4 94.9 112.9 140.5 32.9 63.6 91.9 121.2 23.4 41.6 60.6 81.9 
Bamberg 54.0 66.5 87.9 145.9 36.6 59.3 78.7 112.7 21.6 36.2 55.8 79.6 
Freudenstadt 112.6 246.4 355.4 547.3 104.4 215.7 289.5 429.7 76.0 155.4 211.4 303.5 
Stuttgart 50.8 69.8 97.2 128.4 35.7 57.6 76.2 106.4 22.0 38.4 55.2 77.8 
             
Area I 40.2 87.1 107.6 160.9 34.6 66.3 100.2 150.4 24.0 48.0 78.0 121.1 
Area II 49.8 96.5 150.8 207.9 40.9 79.7 124.7 158.5 25.8 54.2 75.9 107.7 
Area III 40.2 79.7 119.5 153.9 30.8 56.8 83.4 114.5 19.5 38.0 58.8 80.4 
Area IV 47.8 72.3 94.8 136.2 30.9 55.2 81.1 112.3 18.2 37.4 57.0 82.0 
Area V 50.3 95.0 137.3 203.7 41.7 84.4 125.6 176.7 30.0 60.8 87.1 127.9 
Total area 37.2 75.2 105.9 162.8 29.3 61.3 96.8 131.2 20.9 42.7 67.9 101.6 
Table 12: Percentage differences between the maxima, upper quintile means and medi-
ans of the N-day winter (October-March) precipitation maxima for the simulated data 
(ten runs of 35 years for each case) and the historical records (1961–1995) for seven 
stations in the Rhine basin, for the five areas (Figure 1) and for the total area. The lower 
part of the table gives the values for the historical data. 
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4.2 N-day maximum snowmelt amounts 

Large river discharges may be partly caused by snowmelt. Therefore, the repro-
duction of snowmelt is also considered.  
 
As in BB97, historical estimates and simulated values of snowmelt were derived 
from daily precipitation and temperature. It was assumed that for T < 0 precipita-
tion accumulates on the surface as snow. To calculate the N-day maximum 
snowmelt, snow was transformed into snowmelt using the degree days method. In 
that method, the amount of snowmelt on a certain day is proportional to the tem-
perature excess (number of degrees Celsius above freezing point on that day), of 
course as long as there is solid precipitation stored on the surface. The constant 
of proportionality is known as the degree days factor (mm/oC). This factor was 
set equal to 4, which is an average of the values found in the literature (Linsley et 
al., 1988; Gray and Prowse, 1993).  
 
Analogous to Table 12, Table 13 shows the results for the N-day maximum 
snowmelt in the winter half-year. The contrast between the historical values of 
the two highest stations, Kahler Asten and Freudenstadt, and the other stations is 
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Figure 9: Gumbel plots of the 10-day winter (October-March) maxima for the observed 
precipitation (1961–1995) at Essen, Frankfurt, Freudenstadt, area II, area IV and the total 
area (solid lines) and the corresponding simulated data for case 4.1 using k = 5 (ten con-
ditional simulations of 35 years, represented by  plusses). Tr denotes the return period. 
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even more striking for snowmelt than for precipitation. For Kahler Asten and 
Freudenstadt, the maximum of the 10-day snowmelt is for instance of the same 
order of magnitude as the corresponding maximum precipitation amount in Ta-
ble 12, whereas for the other stations it is on average a third of that value. 
 
Despite the systematic underprediction of the autocorrelation of daily tempera-
tures, the correspondence between the historical and simulated values is satisfac-
tory in Table 13. The large percentage differences for, e.g., the median in the un-
conditional simulations for Essen and Frankfurt are not alarming. Because there 
is little snow at these stations, the percentage differences are rather sensitive to 
small departures in the simulations. Furthermore, the relative variation of the 
median is large for such stations (Appendix B). The relatively large underpredic-
tion of the extreme-value properties of 10-day snowmelt at Freudenstadt for both 
the unconditional and conditional simulations in Table 13, is for all cases less 
than twice the standard error of the estimate from the historical data (Appen-
dix B). The underprediction for Freudenstadt is also smaller than that in the sin-
gle-site simulations (Brandsma and Buishand, 1998).  
 

 Maximum (%) Upper quintile mean (%) Median (%) 
Station/Area  N=1 N=4 N=10 N=20  N=1 N=4 N=10 N=20  N=1 N=4 N=10 N=20 
Unconditional (4.4; k = 5)          
Essen 3.2 10.9 17.8 8.2 –3.8 0.0 –0.1 5.6 18.8 40.5 49.3 28.0 
Kahler Asten –14.1 –15.7 –14.2 1.4 8.4 8.1 1.3 2.9 17.6 15.3 21.7 6.0 
Trier 8.2 20.5 10.1 26.3 11.1 2.1 –6.7 5.1 7.5 22.3 17.7 16.8 
Frankfurt –1.6 13.9 27.2 39.3 16.7 14.3 14.8 19.8 24.9 30.9 29.8 44.9 
Bamberg 5.5 9.3 16.1 17.0 7.4 0.7 3.0 0.3 7.9 14.2 7.1 4.6 
Freudenstadt 6.2 2.1 –17.4 4.2 4.8 –5.0 –16.1 –11.3 4.7 –5.2 –14.1 –13.5 
Stuttgart 0.8 12.1 21.8 11.3 –7.6 2.8 7.2 10.8 6.6 –1.7 –14.7 –11.8 
             
Mean 1.2 7.6 8.8 15.4 5.3 3.3 0.5 4.7 12.6 16.6 13.8 10.7 
             
Conditional (4.1; k = 5)          
Essen –2.7 –15.6 –0.7 –5.9 –11.5 –12.7 –7.4 –2.8 14.9 28.1 38.0 22.0 
Kahler Asten –9.8 –14.9 –8.6 6.5 7.0 1.1 –5.5 –0.4 14.7 8.2 14.7 5.0 
Trier 13.5 16.7 18.1 18.8 10.6 –10.2 –13.0 –3.1 3.4 6.7 3.2 –1.3 
Frankfurt 3.9 7.0 17.3 28.2 14.1 –2.6 –2.1 4.8 9.0 9.4 10.9 25.7 
Bamberg –1.1 –7.2 5.4 18.9 0.9 –6.9 –1.9 2.5 –3.3 2.7 –2.7 –4.4 
Freudenstadt 2.4 –5.6 –20.3 –7.6 –0.9 –13.1 –20.9 –18.0 6.7 –10.3 –13.8 –12.0 
Stuttgart –5.9 0.3 13.6 12.5 –6.9 –5.7 –1.1 6.6 7.3 –1.1 –8.2 –7.7 
             
Mean 0.0 –2.8 3.5 10.2 1.9 –7.2 –7.4 –1.5 7.5 6.2 6.0 3.9 
             
Historical (mm)          
Essen 20.4 30.6 32.2 38.7 16.5 22.8 25.6 28.6 6.9 7.8 8.2 10.8 
Kahler Asten 51.2 164.0 287.2 314.0 35.1 104.8 184.6 236.2 22.9 62.0 86.6 134.6 
Trier 21.6 30.3 34.8 37.2 15.2 25.2 30.7 31.8 7.7 8.7 10.5 12.6 
Frankfurt 18.7 24.6 24.6 24.6 11.2 17.2 18.7 19.7 5.4 6.3 7.0 7.2 
Bamberg 21.4 30.9 30.9 33.9 14.9 23.2 25.1 28.8 7.8 9.7 11.8 14.0 
Freudenstadt 42.4 126.8 234.7 243.1 36.4 108.2 180.4 212.3 24.8 64.0 93.7 118.7 
Stuttgart 26.4 42.7 42.7 51.8 20.1 32.0 34.6 38.1 9.6 14.4 18.6 20.8 
Table 13: Percentage differences between the maxima, upper quintile means and medi-
ans of the N-day snowmelt maxima for the simulated data (ten runs of 35 years for each 
case) and the historical records (1961–1995) for seven stations in the Rhine basin. The 
lower part of the table gives the values for the historical data. 
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5. Spatial association of N-day precipitation maxima 

 
Extreme rainfall over a large area is needed to obtain exceptional river discharges 
at Lobith. A correct simulation of such events requires that the spatial depend-
ence of multi-day amounts is preserved. We first present some theory about the 
spatial dependence of extremes. Thereafter, we discuss the dependence structure 
of the observed N-day winter maximum precipitation amounts and its reproduc-
tion in the two simulations used in Section 4. 

5.1 Theoretical Background 

There are various measures to compare the spatial dependence of large N-day 
winter precipitation amounts in the observed and simulated data. A natural meas-
ure is the cross-correlation coefficient between the N-day winter maxima at dif-
ferent sites. However, a correlation coefficient only measures the strength of lin-
ear dependence between two variables. Counting the number of joint ex-
ceedances (or non-exceedances) of various thresholds gives a more complete de-
scription of spatial association. These counts characterise the structure of the 
joint distribution of the winter maxima  X1j, X2j at two sites: 

 ( ) ( )F x x X x X xj j1 2 1 1 2 2, ,= ≤ ≤Pr  (17) 

where j is a year index. It should be noted that X1j and X2j need not necessarily re-
late to the same N-day period in the jth winter. This is a standard situation in the 
mathematical theory of bivariate extremes (Tiago de Oliveira, 1984; Tawn, 
1988). The  marginal distributions are denoted as F1(x1) = Pr(X1j ≤ x1) and F2(x2) 
= Pr(X2j ≤ x1). 
 
In this section, particular attention is given to the case where x1 and x2 correspond 
to the p-quantiles x1p and x2p of the marginal distributions, i.e. F1(x1p) = p and 
F2(x2p) = p. Then, if X1j and X2j are independent: 

 ( ) ( ) ( )F x x F x F x pp p p p1 2 1 1 2 2
2, = =  (18) 

whereas, in case of complete positive dependence: 

 ( ) ( )F x x F x pp p p1 2 1 1, = =  (19) 

More general, for the joint distribution at the p-quantiles we may write: 

 ( ) ( )F x x pp p
h p

1 2, =  (20) 

where 

 ( ) ( )
h p

F x x

p

p p
=

ln ,

ln

1 2
 (21) 

The quantity h(p) determines the degree of association at the p-quantile. There is 
little association if h(p) is close to 2. If this holds for large p, then the probability 
is small that both X1j and X2j  are extreme. The extremes tend to occur simultane-
ously when there is strong association in the upper tail, i.e. when h(p) is close to 
1 for large p. 
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For bivariate normal variables with correlation coefficient < 1 the function h(p) 
tends to 2 as p → 1. Theoretical limiting distributions of bivariate maxima have 
the property that h(p) is constant. For these distributions h(p) is known as the ex-
tremal coefficient (Coles, 1993). As an example, we consider the logistic model 
for bivariate Gumbel variables (Tiago de Oliveira, 1984): 

( ) ( ) ( )[ ]( )
Pr e eX x X xj j

x x
1 1 2 2

1 1 1
1 2≤ ≤ = − +

�
�
�

�
�
�

− − − − −
, exp / /θ θ θ

,        0 ≤ θ ≤ 1 (22) 

For ease of exposition we have assumed here that the location parameter is 0 at 
both sites and that the scale parameter is 1. The parameter θ controls the depend-
ence, θ = 0 implies independence and θ = 1 complete dependence. It is easily 

verified that h p( ) ( )= −2 1 θ  for this bivariate extreme-value distribution. For the 

case that X1j and X2j have a correlation coefficient of 0.6 (θ = 0.3675), which is 
found for inter-station distances of about 50 km, Table 14 compares the value of 
h(p) with those obtained for the bivariate normal distribution. The table shows 
that around the median the two bivariate distributions have about the same value 
of h(p). For the bivariate normal distribution h(p) increases with increasing p. 
However, even at the 0.99-quantile, h(p) still differs considerably from the limit-
ing value 2 for this distribution. 
 
Joe et al. (1992) considered as an alternative dependence measure Kendall’ s τb: 

 τb
p pp

F x x p

p p
( )

( , )

( )
=

−
−

1 2
2

1
  (23) 

Like a correlation coefficient τb(p) = 0 for independent data and τb(p) = 1 in case 
of complete positive dependence. The quantity τb(p) is, however, not constant for 
the theoretical limiting distributions of bivariate maxima. 
 
To estimate F(x1p, x2p) from a sequence of paired winter maxima (X11, X21),…, 
(X1K , X2K), we first replace the unknown p-quantiles by their sample equivalents 
� , �x xp p1 2  and then count the number Kjoint of pairs for which both X xj p1 1≤ �  and 

X xj p2 2≤ � , giving: 

 ( )� , /F x x K Kp p1 2 = joint  (24) 

The estimate ( )�h p  follows then by substituting ( )� ,F x xp p1 2 in the right-hand side 

of equation (21).  
 
A slight modification is necessary to estimate h(p) at the upper quintile mean 
QM5, introduced in Section 3. The probability associated with QM5 weakly var-

 h(p) 
p Gumbel Normal 
   0.5 1.55 1.50 

0.8 1.55 1.60 
0.9 1.55 1.67 
0.95 1.55 1.72 
0.99 1.55 1.82 

   
Table 14: Variation of h(p) with p for the bivariate Gumbel distribution in equation (22) 
and the bivariate normal distribution, each with correlation coefficient 0.6. 
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ies with K and depends on the type of distribution as well. We therefore also re-
place p in equation (21) by an estimate from the paired winter maxima. This es-
timate is obtained as: 

 ( ) ( )� /p K K K= +1 2 2  (25) 

with K1 the number of winter maxima at gauge 1 for which X1j  ≤  x1 and K2 the 
corresponding number for gauge 2. The final estimate of h(p) then becomes: 

 ( ) ( )�
ln � ,

ln �
h p

F x x

p
p p= 1 2

 (26) 

Unfortunately, the estimates of h(p) at different quantiles tend to be rather erratic 
for single gauge pairs. Buishand (1984) therefore recommended to pool the bi-
variate maxima of all gauge pairs within comparable inter-station distances.  

5.2 Application to the Rhine basin 

Table 15 presents the distances between the 25 German stations in Table 1. For 
these stations we defined distance intervals of 30 km. Table 16 shows that the 
number ns of gauge pairs in a distance interval then typically ranges between 20 
and 40 for inter-station distances between 50 and 350 km and ns ≈ 10 outside this 
range. For each distance interval, equations (24) and (25) were used with K = nsJ, 
where J is the number of years (J = 34). 
 

Figure 10 shows the values of ( )�h p for the upper quintile mean (p = 0.91) and the 

median (p = 0.5) of the 1, 4, 10 and 20-day winter maximum precipitation 

amounts. It is seen that ( )�h p increases with increasing distance. This demon-

strates that dependence is relatively strong at short distances and relatively weak 
at long distances. The strength of spatial association further increases with in-
creasing duration and the dependence is also somewhat stronger at the median 
than at the upper quintile mean. The latter is at variance with Buishand (1984) 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
1 0 159 283 221 343 182 64 331 165 197 285 171 218 199 127 215 180 133 64 105 74 219 180 164 134 
2 - 0 126 143 189 167 178 183 141 163 136 47 78 116 234 59 22 103 114 59 115 172 107 189 206 
3 - - 0 204 108 225 304 121 239 248 98 139 113 187 356 68 107 189 230 185 239 203 157 263 299 
4 - - - 0 185 306 193 161 67 53 130 95 93 27 213 172 138 238 215 138 147 314 250 320 322 
5 - - - - 0 326 344 27 243 238 61 172 127 181 383 152 168 279 303 237 282 308 257 360 389 
6 - - - - - 0 242 330 284 314 288 213 243 279 307 176 181 69 125 176 208 45 70 44 96 
7 - - - - - - 0 328 128 157 284 174 217 178 66 238 197 185 118 119 65 276 229 227 198 
8 - - - - - - - 0 222 215 47 160 114 160 365 153 162 278 296 226 268 315 260 361 387 
9 - - - - - - - - 0 33 183 104 128 61 146 189 147 215 175 109 94 302 240 289 282 

10 - - - - - - - - - 0 181 121 135 62 165 205 166 245 207 139 126 329 266 320 314 
11 - - - - - - - - - - 0 113 67 123 323 113 116 234 249 180 222 278 219 318 341 
12 - - - - - - - - - - - 0 46 69 220 85 45 147 141 67 110 219 154 232 243 
13 - - - - - - - - - - - - 0 74 260 83 62 181 185 113 155 241 177 266 283 
14 - - - - - - - - - - - - - 0 205 148 112 210 189 112 126 287 222 293 296 
15 - - - - - - - - - - - - - - 0 293 251 251 183 177 121 341 294 290 257 
16 - - - - - - - - - - - - - - - 0 44 128 162 118 174 165 107 208 238 
17 - - - - - - - - - - - - - - - - 0 120 135 78 132 180 116 205 226 
18 - - - - - - - - - - - - - - - - - 0 69 106 142 92 48 86 111 
19 - - - - - - - - - - - - - - - - - - 0 78 87 158 116 117 108 
20 - - - - - - - - - - - - - - - - - - - 0 56 194 133 183 185 
21 - - - - - - - - - - - - - - - - - - - - 0 234 179 204 190 
22 - - - - - - - - - - - - - - - - - - - - - 0 65 87 140 
23 - - - - - - - - - - - - - - - - - - - - - - 0 106 146 
24 - - - - - - - - - - - - - - - - - - - - - - - 0 54 
25 - - - - - - - - - - - - - - - - - - - - - - - - 0 

Table 15: Distances (km) between the stations in Table 1. 
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who found  for 1-day winter maximum precipitation in the Netherlands a de-

crease of ( )�h p  with increasing p. The observed differences at the median and the 

upper quintile mean are also not in agreement with the constancy of h(p) for 
theoretical limiting distributions of bivariate maxima. The validity of such a lim-
iting distribution is in fact a very strong assumption, which is often not met for 
observed extreme-value data (Ledford and Tawn, 1996) 
 
For case 4.4 (unconditional) and k = 5, Figure 11 compares the simulated and his-

torical values of ( )�h p for the upper quintile mean and the median of the 1 and 10-

day winter maximum precipitation amounts. The figure shows that the historical 

values of ( )�h p  are generally well reproduced by the simulations. This could be 

expected for the 1-day maxima because we resample daily precipitation fields. 
For the median of the 10-day maxima, the simulations show on average some-

what more dependence (underprediction of ( )�h p ) than the historical data. There 

is, however, no statistical evidence that the differences are significant because 

the observed values of ( )�h p  fall well within the boxplots.  

 

class class boundaries  
(km) 

pairs avdist 
(km) 

1 distance ≤ 50 12 39.5 
2 50 < distance ≤ 80 27 65.9 
3 80 < distance ≤ 110 23 98.9 
4 110 < distance ≤ 140 44 123.5 
5 140 < distance ≤ 170 32 155.1 
6 170 < distance ≤ 200 45 183.0 
7 200 < distance ≤ 230 32 215.1 
8 230 < distance ≤ 260 27 242.5 
9 260 < distance ≤ 290 20 278.0 

10 290 < distance ≤ 320 19 304.5 
11 320 < distance ≤ 350 12 331.7 
12  distance > 350 7 371.7 

Table 16: Definition of class boundaries, number of station pairs and average distance 
(avdist) for each distance interval.  
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Figure 10: Estimates of h for the upper quintile mean QM5 and the median of the histori-
cal (1961–1995) 1, 4, 10 and 20-day winter maximum precipitation amounts as a function 
of inter-station distance. 
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Figure 12 presents the corresponding estimates of h(p) for case 4.1 (conditional). 
These results are similar to those for the unconditional simulations in Figure 11, 
except for N = 10 at the upper quintile mean. In the latter case,  four out of the 
twelve boxplots are entirely below the historical values indicating a strong ten-

dency to underpredict ( )�h p . To investigate this further, we calculated bootstrap 

standard errors se of ( )�h p  for N = 10 using 500 bootstrap samples. Figure 13 

shows the 2×se bands for the historical data together with the mean for the simu-
lations. For  inter-station distances ranging between 170 and 260 km the under-
prediction is larger than 2×se. This is, however, not sufficient to suspect a sys-
tematic departure of the simulated data. It is quite natural that a small number of 
the differences between the observed and simulated values will be declared as 
statistically significant if one makes several comparisons. 
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Figure 11: Boxplots of the estimates of h for the upper quintile mean QM5 and the me-
dian of the 1 and 10-day winter maximum precipitation amounts for case 4.4 (uncondi-
tional; k = 5). Each boxplot represents ten runs of 35 years. The estimates for the histori-
cal (1961–1995) data are represented by the solid lines. 
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Figure 13: Bootstrap 2×se bands (dashed lines) for the estimates of h for the upper quin-
tile mean of the10-day winter maximum precipitation amounts of the historical (1961–
1995) data (solid line through dots). The triangles represent the mean estimate of h for 
case 4.1 (conditional; k = 5). 
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Figure 12: Boxplots of the estimates of h for the upper quintile mean QM5 and the median 
of the 1 and 10-day winter maximum precipitation amounts for case 4.1 (conditional; k = 5). 
Each box represents ten runs of 35 years. The estimates for the historical (1961–1995) data 
are represented by the solid lines. 
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6. Long-duration simulations 

 
The most important objective of the rainfall generator is the simulation of un-
precedented extreme rainfall events. Figures 8 and 9, for instance, already 
showed that more extreme multi-day precipitation amounts occurred in simulated 
runs of 35 years than the largest observed values. In the present section we study 
long-duration simulations with a length of 1000 years. First the distributions of 
the N-day winter precipitation maxima in two different simulation runs are con-
sidered. Thereafter, three historical and six simulated events with extreme 10-day 
precipitation over the total area are selected from one of these runs and their 
space-time patterns are discussed. Large river discharges at Lobith in the past 
were often accompanied by extensive precipitation over a period of about ten 
days. This section only deals with unconditional simulations, because the condi-
tional methods would need an additional model for generating circulation indices 
to obtain long-duration simulations. 

6.1 Distribution of the N-day winter maxima 

For case 4.4 two unconditional 1000-year simulations were performed, one for 
k = 5 and one for k = 20. Table 17 compares the N-day winter maximum precipi-
tation amounts in both simulations with the historical N-day winter maximum. 
The table clearly shows that the objective of generating unprecedented extreme 
rainfall sequences is met. For area V, the 10-day maximum is in the k = 20 simu-
lation even 69.6% larger than the historical maximum. The largest 10 and 20-day 
amounts in the k = 5 simulations are on average greater than those in the k = 20 
simulation. Furthermore, both simulations show a large variability  in the per-
centage differences for the five areas. This illustrates that there is little depend-
ence between the largest N-day precipitation amounts over the various areas, as 
expected from the results for the spatial dependence of the maxima at the indi-

 Maximum (%) 
 N = 1 N = 4 N = 10 N = 20 
Case 4.4 (k = 5)     
Mean 25 stations 8.5 24.7 33.0 24.3 
Area I 12.2 3.9 39.5 43.9 
Area II 12.2 15.6 12.7 8.1 
Area III 2.5 40.2 40.5 14.2 
Area IV 2.5 12.0 38.7 24.9 
Area V 0.2 26.1 48.3 34.1 
Total area 2.7 5.9 34.4 13.6 
     
Case 4.4 (k = 20)     
Mean 25 stations 8.5 26.2 24.6 18.7 
Area I 12.2 11.3 23.2 37.1 
Area II 11.8 22.8 6.7 13.6 
Area III 2.0 30.0 0.4 6.1 
Area IV 2.5 23.4 33.4 16.5 
Area V 1.2 22.6 69.6 36.6 
Total area 2.4 25.5 24.8 10.0 
Table 17: Percentage differences between the largest N-day winter (October-March) 
precipitation maxima in the 1000-year simulations and the historical records (1961–
1995) for point precipitation (mean N-day maximum of 25 stations), for each of the five 
areas and for the total area. 
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vidual stations in Section 5. It is also noteworthy that the simulated  1-day 
maxima are greater than the largest historical values. This may be due to: (1) the 
use of a slowly seasonally varying mean to standardise the observations before 
resampling; and (2) the use of the moving window, which allows for resampling 
of days outside the boundaries of the winter half-year. 
 
To study the differences between the two simulations further, the sorted N-day 
winter maximum precipitation amounts, averaged over the 25 stations, for k = 20 
are plotted against those for k = 5 in Figure 14. The figure clearly shows that the 
1 and 4-day maxima are comparable for the two simulations, but for the k = 5 
simulation the 10 and 20-day maxima are more extreme than those in the k = 20 
simulation. Although the variability of the most extreme order statistics is large, 
a systematic effect of the choice of k also may play a role (Appendix B). Because 
of the results in Section 3.3, the k = 5 simulation should be regarded as more 
realistic than the k = 20 simulation. 
 
Figure 15 compares for k = 5 the Gumbel plots of the 10-day winter maxima of 
the historical data with those of the 1000-year simulation for Essen, Frankfurt, 
Freudenstadt, area II, area IV and the total area. There is a reasonable correspon-
dence between the historical and simulated distributions. The plot for the simu-
lated values shows some tendency to flatten at long return periods, in agreement 
with the positive value of the GEV shape parameter for the 10-day winter 
maxima (Table 9). 
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Figure 14:  Comparison of the sorted N-day winter precipitation maxima for the two 
unconditional 1000-year simulations (case 4.4: k = 5 and k = 20), averaged over 25 sta-
tions.    
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6.2 Space-time pattern of selected 10-day events 

Together with the antecedent conditions, the spatial and temporal pattern of ex-
treme precipitation events strongly influences the magnitude of floods. There-
fore, it may be of  interest to compare the space-time pattern of some extreme 
historical precipitation events with simulated extreme precipitation events.  
In this section, extreme precipitation events are defined as events where the win-
ter maximum of the average 10-day precipitation over the total area exceeds 
100 mm. For the historical 1961–1995 period, three events are found: (1) 6 Octo-
ber - 15 October 1982; (2) 12 December - 21 December 1993; and (3) 20 January 
- 29 January 1995. The area-average 10-day amounts of these events equal 105.9, 
105.7 and 101.6 mm, respectively. Although the October 1982 event has the larg-
est area-average 10-day amount, it did not result in a large river discharge be-
cause at the end of the summer the Rhine basin can normally store much water. 
The second event led to the Christmas 1993 floods in Germany. Only the January 
1995 event caused a threatening situation in the Netherlands, giving rise to the 
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Figure 15: Gumbel plots of the 10-day winter (October-March) maxima for the observed 
precipitation (1961–1995) at Essen, Frankfurt, Freudenstadt, area II, area IV and the total 
area (solid dots and lines) and the corresponding simulated data for case 4.4 using k = 5 
(one unconditional simulation of 1000-years, represented by open triangles). Tr denotes 
the return period. 
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evacuation of more than 200 000 people. A special law was issued to complete 
the most urgent dike reconstructions in 1995 and 1996. The meteorological and 
hydrological aspects of the January 1995 floods in Germany have been described 
by Fink et al. (1996). Upstream of Köln (Cologne), the peak discharges of the 
Rhine were less extreme than in the December 1993 event. 
 
For the 1000-year simulation of case 4.4 (k = 5), Figure 16 shows all 10-day win-
ter maximum events with area-average precipitation exceeding 100 mm. The 
horizontal dashed line represents the largest recorded area-average 10-day winter 
amount of October 1982. The encircled events in Figure 16 are selected for com-
parison with the historical events of October 1982, December 1993 and January 
1995. Table 18 presents some details of these historical and simulated events. In 
a number of cases the average temperature over the 30-day period preceding the 
extreme 10-day event is negative or slightly above zero, indicating that snowmelt 
and frozen soils may significantly contribute to large river discharges at Lobith. 
The antecedent precipitation of 131.8 mm in the Sim3 case (year 473) is much 
larger than that of the other selected cases. 
 
Figures 17, 18 and 19 present the spatial and temporal distribution of the selected 
10-day events. For each event the spatial distribution of the 10-day precipitation 
amounts is shown on the left, together with the temporal distribution of the daily 
precipitation over the total area in the lower left corner. The temporal distribution 
for the five areas in Figure 1 is presented on the right.  
 
The spatial variation of the long-term mean winter precipitation in Figure 6 is, to 
a certain extent, reflected in Figures 17, 18 and 19.  There is often a maximum 
over the Black Forest. Two exceptions are the January 1995 event and the simu-
lated 10-day precipitation amounts in year 473, which show a clear maximum 
over the Eifel and Hunsrück along the Mosel tributary in the western part of 
Germany. In the 1995 event there is a second maximum over the Sauerland re-
gion in the north of the basin.  The coincidence of runoff from that area with the 
flood wave from the south was an important factor contributing to the peak dis-
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Figure 16: Events with a 10-day winter maximum precipitation (for the total area) > 
100 mm in a 1000-year simulation (case 4.4, k = 5). The dashed line indicates the largest 
historical event in the period 1961–1995. The encircled events are selected for further 
analysis. 
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charges at Lobith during that event (Fink et al., 1996). The average 10-day rain-
fall over the total area and the antecedent average temperature and precipitation 
of the 1995 event are comparable with that of the Sim1 case (Table 18), but the 
spatial and temporal distribution of the precipitation is somewhat less favourable 
for the 1995 event.  
  
The most extreme selected event (Sim6, year 356) is characterised by excessive 
precipitation over the northern part (Sauerland), the eastern part (Main tributary) 
and the southern part (Black Forest) of the area. The 30-day period preceding 
that event is rather cold (Table 18). 
 
The examples in Figures 17, 18 and 19 show that excessive precipitation over a 
large part of the area is generally needed to obtain extreme area-average precipi-
tation. These examples may therefore wrongly suggest that the degree of depend-
ence between the extremes over the subareas is rather strong. In fact, in this 
1000-year simulation, the largest 10-day precipitation amounts over the five areas 
are found in different years, which is in line with earlier conclusions about spa-
tial dependence between extremes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Antecedent (30d) 
Case Month Year Σ P (mm) P (mm) T (oC) 
Hist1 October  1982 105.9 36.4 15.8 
Hist2 December  1993 105.7 54.9 0.5 
Hist3 January 1995 101.6 85.6 0.1 
      
Sim1 January 861 104.4 84.9 0.3 
Sim2 February 864 100.8 45.6 –3.2 
Sim3 December 473 105.9 131.8 3.1 
      
Sim4 January 338 124.7 86.7 4.1 
Sim5 February 239 124.3 76.4 2.3 
Sim6 February 396 140.8 53.8 –2.8 
Table 18: Characteristics of the selected historical and simulated 10-
day precipitation events (see Figure 16). The values for precipitation 
and temperature are for the total area.  
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Figure 17: Spatial and temporal distribution of historical (1961–1995) 10-day maximum precipitation events: (a)  6–15 
October 1982;  (b) 12–21 December 1993; and (c) 20–29 January 1995.  
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Figure 18: Spatial and temporal distribution of 10-day maximum precipitation events in a 1000-year simulation: (a)  5–
14 January 861;  (b) 16–25 February 864; and (c) 22–31 December 473.  
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Figure 19: Spatial and temporal distribution of 10-day maximum precipitation events in a 1000-year simulation: (a)  6–
15 January 338;  (b) 2–11 February 239; and (c) 11–20 February 396.  
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7. Discussion and conclusions 

 
In this report the multi-site simulation of daily precipitation and temperature was 
explored. Twenty-five stations with daily precipitation and temperature data in 
the German part of the Rhine basin were considered. 
 
For multi-site simulations, the dimension of Dt should be kept within reasonable 
limits. Therefore, we used summary statistics of the P and T fields in Dt, in most 
cases supplemented with circulation indices. It is noteworthy that several combi-
nations of these summary statistics produced comparable results. Also the use of 
weights in the calculation of the Euclidean distance has only a marginal influ-
ence.  
 
The choice of k proved to be rather crucial. Autocorrelation coefficients and dis-
tributions of N-day winter maximum precipitation amounts were better repro-
duced by taking k as small as 2 or 5 instead of k = 20 as in the single-site simula-
tions in Brandsma and Buishand (1998). For k = 2, the simulated data will con-
tain runs of more than 20 consecutive historical days. This may, however, not be 
detrimental for the present application. The method e.g. still produces more ex-
treme 10-day precipitation amounts than those observed in the past. The  choices 
of k = 2 and k = 5 need further attention in subsequent phases of the project.  
 
It is striking that the reproduction of the distribution of multi-day winter maxi-
mum precipitation amounts in Section 4 is at least as good as in BB97 for the 
single-site simulations. The large underprediction of the median in BB97 disap-
peared in the present study. With respect to snowmelt, the results are comparable 
to those reported for the single-site simulations in Brandsma and Buishand 
(1998). Although the autocorrelation of the daily temperatures is not fully repro-
duced, the distributions of the N-day maximum snowmelt derived from the simu-
lated temperature and precipitation data were close to those derived from the ob-
served data. 
 
In order to generate realistic events causing large river discharges at Lobith, it is 
necessary that the spatial association of large multi-day precipitation amounts is 
preserved. Although the conditional k = 5 simulation showed a somewhat 
stronger dependence in the N-day winter maximum precipitation amounts than 
the historical data, it can be concluded that both the unconditional and condi-
tional method are able to reproduce the spatial association of large multi-day 
amounts.  
 
It turned out in this study that unconditional simulation of precipitation, tempera-
ture and circulation indices performed somewhat better than conditional simula-
tion of precipitation and temperature on circulation indices. For  unconditional 
simulation of daily precipitation and temperature the need to incorporate circula-
tion indices in Dt is, however, questionable. In contrast with the single-site simu-
lations in BB97, the use of these indices does not lead to a better reproduction of 
the autocorrelation properties of daily precipitation. Generating daily precipita-
tion and temperature conditional on circulation indices remains, however, an im-
portant topic. A separate stochastic model for generating circulation indices is 
now being developed at KNMI to make it possible to produce simulation runs 
that can exceed the length of the MSLP data set (about 120 years). Such  a model 
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may better reproduce the autocorrelation properties of  these indices than in the 
unconditional simulations presented here. Furthermore, conditional simulation 
has potential applications for downscaling the output of general circulation mod-
els. 
 
A difficult question is, how far the length of the observed record may put limita-
tions on the length of  a simulation run. For N = 4, 10 and 20 a repetition of large 
N-day precipitation amounts was not found in the 1000-year unconditional simu-
lations in Section 6. The most extreme simulated values were generally found to 
be well above the observed winter maxima. 
 
Despite some shortcomings, the multi-site extension of the nearest-neighbour 
method looks promising. The selected extreme events in the 1000-year k = 5 
simulation have different antecedent conditions and show a large variation in the 
temporal and spatial patterns of the daily amounts. 
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Appendices 

A. Statistical properties of run lengths 

The method followed here for unconditional simulation of weather variables re-
peatedly generates successive days in the historical data set. This occurs because 
the closest neighbour of the most recent generated value (with Euclidean distance 
0) is the day in the historical data set that has been resampled. Let this be day τ.  
Then the probability that day τ +1 is resampled in the next step equals 

{ }p i
i

k

1 1

1

1=
=

−

� / . This probability does not depend on the actual values of the 

weather variables. 
 
Let Zt be the binary variable that takes the value 1 if the successor to the closest 
neighbour is selected at day t, and 0 if this is not the case. We further specify that 
the event ε occurs at day t if Zt = 0. The time R between two successive occur-
rences of ε is known as the recurrence time.  
 
For the distribution of R we obtain: 

 ( ) ( )Pr  | R Z Z pt t= = = = = −+1 0 0 11 1Pr  (A1) 

and for r > 1: 

 ( ) ( ) ( )Pr Pr  | R r Z Z Z Z p pt+r t r t t
r= = = = = = = −+ − +

−0 1 1 0 11 1 1 1
1, , ,�  (A2) 

In the latter case we have a sequence of  r consecutive historical days in the 
simulation run, beginning at day t. R = 1 at day t implies that the resampled val-
ues for days t and t + 1 do not form a pair of consecutive historical days. Equa-
tions (A1) and (A2) can be combined into: 

 ( )Pr R r q pr= = −
1 1

1 ,   r = 1,2,… (A3) 

where q1 = 1 – p1. This distribution is known as the geometric distribution. The 
mean of R is given by: 
 ( )E R q= 1 1/  (A4) 

Let L denote the length of a run of ones in the binary sequence { Zt} . A remark-
able point is that the geometric distribution in equation (A3) also applies to these 
run lengths: 

( ) ( ) ( )
( )Pr  |  

Pr

Pr
L k R k R

R k

R

q p

p
q p

k
k= = = + > =

= +
>

= = −Pr 1 1
1

1
1 1

1
1 1

1,    k=1,2…  

  (A5) 

Let Lmax and Rmax be the maximum values of L and R  in a sequence of n trials. In 
general, Rmax = Lmax + 1, except when Zt = 0 for all t or if Lmax  occurs in the first 
or the last Lmax trials. The probability of these exceptions can, however, be ne-
glected if n is sufficiently large. Therefore: 

 ( ) ( )E Emax maxR L≈ +1 (A6) 
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An elegant approximation to the distribution of Lmax is presented in Feller (1968, 
pp. 322-326): 

 ( ) ( )
Pr maxL k

p x

q k kx xn< ≈
−

+ − +
1

1
1

1
1  (A7) 

where 

 ( )x q p k q p k q pk k k= + + + + + +1 1 11 1 1
2

1
2 2

1
3

1
3( ) �  (A8) 

Feller demonstrates that this approximation works well, even for very small n. 
For both k and n  sufficiently large, equation (A7) can be simplified as 
(Cramér,1946, p. 258): 

 ( ) ( )Pr maxL k nq pk< ≈ −exp 1 1  (A9) 

Equation (A9) can be rewritten as: 

 Pr( ) exp exp ln( )maxL k k nq< ≈ − − −	


�

�


�

�

�
�

�

�
�

�
�
�

�
�
�

λ
λ
1

1  (A10) 

where λ = –ln(p1). The right-hand side of equation (A10) represents the distribu-

tion function of a Gumbel variable X with location parameter ξ
λ

= 1
1ln( )nq  and 

scale parameter α λ= 1 . In contrast to the Gumbel variate, Lmax can only take in-
teger values. In fact, the distribution of Lmax converges to that of the integer part 
of X. The mean of Lmax can then be approximated as (Gordon et al., 1986):  

 ( )E EmaxL X nq≈ − = + −( ) [ ln( )]1 2
1

1 21λ
γ  (A11) 

where γ is Euler’s constant. The term ½ is a continuity correction. Substitution in 
equation (A6) finally gives: 

 ( )E maxR nq≈ + +1
1 21λ

γ[ ln( )]  (A12) 

B. Relative variability of statistics used to compare extreme-value 
properties 

In order to get an impression of the statistical significance of the percentage dif-
ferences between simulated and observed extreme-value properties (largest value 
Xmax, upper quintile mean QM5 and median M), we determine the coefficient of 
variation CV of these properties. We assume that  the N-day maximum precipita-
tion amount  X  in a winter half-year follows the GEV distribution in equation 
(14) and that the maxima for different winters are stochastically independent. 
The largest value Xmax  in a sequence of J years  is then also a GEV variable with 
the same shape parameter κ and scale and location parameters (Dales and Reed, 
1989): 

 α α κ
J J= −  (B1) 

 ( )ξ ξ α
κ

κ
J J= + − −1  (B2) 

which for κ = 0 should be interpreted as the limit κ → 0, that is: 
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 α αJ =  (B3) 

 ξ ξ αJ J= + ln  (B4) 

The CV of Xmax can therefore be obtained from the expression for CV of the GEV 
variable X.  
 
The mean and variance of  the GEV variable X are given by (Stedinger et al., 
1993): 

 ( ) ( )[ ]E X = + − +ξ α
κ

κ1 1Γ ,    κ > –1 and κ ≠  0 (B5) 

 ( ) ( ) ( )[ ]var X = + − +α
κ

κ κ
2

2
21 2 1Γ Γ ,    κ > –0.5 and κ ≠ 0 (B6) 

where Γ( . ) denotes the gamma function. For κ = 0, the mean and variance of X 
can be derived from the above equations by approximating  Γ(1+ κ) for small κ 
as (Gradshteyn and Ryzhik, 1980, p. 935): 

 ( )Γ 1 1
1

2

1

12
2 2 2+ ≈ − + +	



�

�


�κ γκ γ π κ  (B7) 

where γ  is Euler’s constant.  This results in: 

 ( )E X = +ξ αγ  (B8) 

 var /X = π α2 2 6  (B9) 

The coefficient of variation then becomes: 

 
( ) ( ) ( )[ ]

( ) ( )[ ]CV =
+ − +

+ − +

α ξ κ κ κ

α ξ κ κ

/ /

/ /

Γ Γ

Γ

1 2 1

1 1 1

2 2

 (B10) 

which for κ = 0 reduces to: 

 
( )

CV =
+

α ξ π
γα ξ

/ /

/

6

1
 (B11) 

The value of CV is thus determined by κ and α/ξ. For the N-day winter maximum 
precipitation amounts in this study, a representative value of α/ξ is 0.25 (the av-
erage of α/ξ  is 0.26 for the 25 stations and 0.23 for the 5 subareas), which results 
in CV = 0.280 for the Gumbel variable (κ = 0). Table B1 shows that CV is 
somewhat larger for the relatively thick-tailed Type II distribution with κ = – 0.1 
and is somewhat smaller if κ = 0.1. The table also presents CV of Xmax for J = 34 
and J = 999. For the values of κ considered in Table B1, CV decreases with in-
creasing J because of the increase of E(Xmax) with increasing J. The fastest de-
crease is found for the Type III distribution because for this distribution the vari-
ance of  Xmax decreases with increasing J. The observed percentage differences of 

 κ = – 0.1 κ = 0 κ = 0.1 
X 0.318 0.280 0.255 
Xmax , J = 34 0.231 0.158 0.110 
Xmax , J = 999 0.194 0.112 0.062 
Table B1: Coefficient of variation (CV) of the 
GEV variable X and the maximum Xmax of J inde-
pendent GEV variables with α/ξ = 0.25 and κ = – 
0.1, 0 or 0.1. 
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10% to 20% between the historical N-day winter maximum and the average val-
ues of Xmax  in the 35-year simulation runs in Table 12 are in line with the values 
of CV in Table  B1 for J = 34 (CV ≈ 0.15 for κ near 0). 
 
The average difference between the largest 10-day precipitation amounts in the k 
= 5 simulation and the k = 20 simulation in Figure 14 is about 7%, whereas the 
coefficient of variation of Xmax for J = 999 is about 0.10. Despite the relatively 
large influence of a few mountain stations, it may be expected that the average 
Xmax of 25 stations has a much smaller CV because of the weak dependence in the 
upper tail of the bivariate distributions of the 10-day maxima (Section 5).  The 
observed difference between the values of Xmax in Figure 14 should therefore be 
regarded as considerable compared with that expected from pure random varia-
tion. It is, however, impossible to specify random and systematic effects further. 
This would require many repetitions of the k = 5 and k = 20 long-duration simu-
lations. 
 
The CVs of QM5 and M were determined by simulation using the method pre-
sented by Lynn and Beran (1979) to generate ordered samples of random num-
bers from the GEV distribution.  Table B2 shows the results. Each value in the 
table is based on 10 000 repetitions. Samples of size J = 34 were considered to 
judge the statistical significance of the percentage differences between the simu-
lated and observed values of QM5 and M in Section 4. The shape parameter κ 
has little effect on the CV of the median. The CV of both QM5 and M strongly 
depends on α/ξ. For the winter maxima in Section 4, representative values of α/ξ  
are: 0.25 for precipitation, 0.50 for multi-day snowmelt at high-elevation stations 
(Kahler Asten, Freudenstadt and Kl. Feldberg), and 0.25 - 1.50 for multi-day 
snowmelt at the other stations. Thus for the precipitation maxima, CV is about 
0.09 for QM5 and 0.06 for M. Only for the conditional simulations in Table 12, 
there are a number of cases where the relative differences are 2 × CV or more 
(Freudenstadt, area II). The observed relative differences between the multi-day 
snowmelt maxima at Freudendstadt in Table 13 are less than 2 × CV (CV ≈ 0.12 
for QM5 and  CV ≈ 0.10 for M). 
 
The largest values of α/ξ (up to about 1.5) occur at lowland stations with little 
snow. For some of these stations the computed N-day maximum snowmelt is zero 
in about 10% of the years. The fit of an extreme-value distribution to such data 

 α/ξ κ = – 0.1 κ = 0 κ = 0.1 
QM5 0.25 0.110 0.085 0.066 
 0.50 0.154 0.121 0.097 
 0.75 0.177 0.142 0.115 
 1.00 0.191 0.155 0.126 
 1.25 0.201 0.164 0.135 
 1.50 0.209 0.170 0.141 
     
M 0.25 0.057 0.055 0.053 
 0.50 0.105 0.101 0.098 
 0.75 0.146 0.141 0.136 
 1.00 0.181 0.175 0.169 
 1.25 0.211 0.204 0.198 
 1.50 0.238 0.230 0.224 
Table B2: Coefficient of variation (CV) of the upper quintile mean QM5 and the median 
M in samples of size J = 34 for a GEV distribution with α/ξ = 0.25, 0.50, 0.75, 1.00, 1.25 
or 1.50 and κ = – 0.1, 0 or 0.1. 
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needs special care. One possibility is to treat zeros as left-censored values. Buis-
hand (1986) fitted the Gumbel distribution to censored samples of annual maxi-
mum snow cover depths at lowland stations around the Netherlands using the 
maximum likelihood method. Wang (1996) discusses the use of partial PWMs to 
fit extreme-value distributions to censored samples. A notable point in Table B2 
is that the CV of M exceeds that of QM5 at large α/ξ. The relatively large per-
centage differences for the medians at Essen and Frankfurt can partly be ex-
plained by the large CV of M for these stations. 

 


