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Summary

This is the third progress report of a project on the development of a rainfall generator
for the Rhine basin. The need for such a rainfall generator arose from the wish to study
the likelihood of extreme river discharges in the Netherlands, using a hydrological/hydraulic
model. The first progress report dealt with the single-site generation of weather variables by
nearest-neighbour resampling for seven stations in the German part of the Rhine basin. In
the second progress report a multi-site extension was presented, using daily precipitation and
temperature data for 25 stations (1961-1995) in the German part of the basin. The present
report deals with a number of relevant issues for long-duration (∼ 1000-years) simulations
of precipitation and temperature. Such long-duration simulations are needed as input for
the hydrological/hydraulic model.

The nearest-neighbour resampling technique is a simulation method that can easily gen-
erate multi-site daily precipitation and temperature data without making restrictive assump-
tions about the underlying joint distribution of those data. The essence of this technique is
that the variables for a new day are sampled with replacement from a selected set of histor-
ical data (the nearest neighbours or analogues). In order to generate weather variables for
day t, the method needs a feature vector Dt to find the nearest neighbours in the historical
data. In the popular first-order model Dt contains variables that characterise the weather
on day t − 1. A finite number k of nearest neighbours in terms of a weighted Euclidean
distance is selected from the historical record. One of these k nearest neighbours is finally
“resampled” using a discrete probability kernel.

The report addresses two major topics. The first topic covers the generation of “syn-
thetic” daily circulation indices needed for long-duration conditional simulations. Time
series of synthetic daily circulation indices are simulated using the nearest-neighbour re-
sampling technique. In contrast to nearest-neighbour resampling models for the simulation
of precipitation and temperature discussed in the previous progress reports, those for the
simulation of circulation indices should be of higher order, i.e. Dt should not only contain
the circulation indices for day t − 1 but also those for day t − 2. The best reproduction of
the autocorrelation properties and the run lengths of circulation indices is achieved using a
second-order model with a relatively small value of k (k = 5).

The time series of the circulation indices used for resampling (1961–1995) is not entirely
homogeneous. During five of the 35 years the mean sea level pressure fields, from which the
circulation indices are derived, show excessive artificial smoothing. The inclusion of these
five “oversmoothed” years in the resampling procedure does, however, not affect the model
choice.

The second progress report already revealed that unconditional simulations of precip-
itation and temperature perform slightly better than simulations conditional on historical
(1961–1995) circulation indices. The results for the conditional simulation of precipitation
and temperature get worse if simulated circulation indices are used instead of the histori-
cal ones. In these simulations it makes little difference whether the circulation indices are
simulated with a first or a second-order model. At best the underestimation of the extreme
value properties of precipitation is as large as 10%. Attempts to remedy this shortcoming
remained without success.

The second topic in this report concerns the influence that “natural variations” of the
precipitation, temperature and circulation climate may have on the simulated results. Daily
precipitation and temperature observations were only available for the period 1961–1995,
but daily circulation indices were available for 1881–1995. Conditional simulations are used
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to reconstruct precipitation statistics for the period 1891–1995. These simulations explain
on average slightly more than 50% of the trends in the mean winter precipitation at five
stations for which monthly data during this century were available. Reconstructed extreme
winter precipitation for the two 35-year periods 1891–1925 and 1926–1960 is compared with
that simulated for 1961–1995. The median and upper quintile mean of the simulated N -day
precipitation maxima are for both earlier 35-year periods about 6% smaller than those for
1961–1995. Since the winters in the period 1961–1995 are relatively wet compared to the
winters before 1961, long-duration simulations based on precipitation and temperature data
for this period should be interpreted with care.

The sensitivity of simulated precipitation to changes in circulation indices is studied by
performing three simulations conditional on the 1961–1995 circulation indices, in which in
each simulation only one of the three circulation indices is systematically changed. These
simulations show that the simulated precipitation is most sensitive to changes in the westerly
flow index W , followed by changes in the vorticity index Z. The mean precipitation is
typically much more sensitive to systematic changes in W and Z than the precipitation
extremes. This is because a large part of the change in the mean precipitation is due to a
change in the number of wet days, which has less influence on the extremes.
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1 Introduction

1.1 Background

The Rhine, which is the most important river in the Netherlands, flows through several
countries (Fig. 1). Large parts of its drainage basin are situated in Switzerland, Germany
France and the Netherlands. Protection against flooding is a point of continuous concern.
According to safety standards, laid down in the Flood Protection Act, measures against
flooding in the non-tidal part of the Rhine in the Netherlands have to withstand a discharge
that is exceeded on average once in 1250 years. Traditionally this design discharge has been
obtained from a statistical analysis of large river discharges (data from 1901 onwards) at
Lobith, where the river enters the country. Several probability distributions have been fitted
to the discharge maxima of that record. The long return period requires an extrapolation
far beyond the length of the observed record. Different distributions then lead to quite
different design discharges. The fact that the parameters of these distributions have to be
estimated from a finite record introduces another uncertainty.
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Figure 1: Location of Lobith in the Netherlands and the 25 German stations in the drainage
basin of the river Rhine used in this study. A subdivision of the stations into five areas is
also shown.
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In the most recent re-evaluation of the design discharge at Lobith, there was a strong
feeling that the uncertainties of extrapolation could be reduced by taking the physical be-
haviour of the river basin into account (Delft Hydraulics and EAC-RAND, 1993). For this
purpose, it was suggested to develop a hydrological/hydraulic model for the whole basin.
With such a model, it would also be possible to quantify the effects of changes in the catch-
ment and the river bed and to predict the potential impacts of climate change. The Institute
for Inland Water Management and Waste Water Treatment (RIZA) adopted this idea in
a research plan for a new methodology to determine the design discharge (Bennekom and
Parmet, 1998). Besides a hydrological/hydraulic model, the development of a stochastic
rainfall generator was also planned in order to produce long-duration daily rainfall series
over the basin. Unprecedented extreme rainfall situations are likely to occur if the simulation
run is considerably longer (300–1000 years) than the observed record. Such unprecedented
extreme rainfall events in turn, may lead to more extreme discharges at Lobith than those
experienced in the past century. The use of synthetic rainfall data in combination with a
hydrological/hydraulic model does not only provide the peak discharges but also the dura-
tion of extreme river discharges, which may lead to a better insight into the shape of the
design flood.

1.2 Previous research

At the request of RIZA, KNMI carried out a feasibility study (Buishand and Brandsma,
1996). The generation of daily rainfall sequences was reviewed with emphasis on multi-site
applications in large catchments and methods were discussed to make use of the influence
of the atmospheric circulation on precipitation. The prospects were promising enough to
start the development of a rainfall generator for the Rhine basin. In the first instance,
the joint simulation of daily precipitation and temperature at single sites was considered,
using a non-parametric nearest-neighbour method (Brandsma and Buishand, 1997, 1998;
hereafter BB97 and BB98, respectively). The simulation of daily temperature is necessary
to account for the effect of snow and frozen soils on large river discharges. The reproduction
of the precipitation and temperature autocorrelation coefficients and the N -day maximum
rainfall and snowmelt distributions was sufficiently encouraging to proceed with a multi-site
extension (Brandsma and Buishand, 1999; further denoted as BB99).

In the hydrological literature the method of nearest-neighbour resampling has been in-
troduced by Rajagopalan and Lall (1995) and Lall and Sharma (1996). Resampling is
restricted to nearest neighbours or analogues in the historical record. In the present project
the search for nearest neighbours has been based on precipitation and temperature of the
last generated day and atmospheric circulation indices. Both unconditional simulation and
conditional simulation on atmospheric circulation indices have been considered. In the
multi-site study (BB99), the unconditional simulations performed slightly better than the
conditional simulations with respect to the reproduction of autocorrelation properties and
the distributions of N -day maximum precipitation amounts during the winter season.

An advantage of unconditional simulation is that the length of a simulation run is not
restricted by that of the observed record. Unconditional 300-year single-site, 1000-year
single-site and 1000-year multi-site simulations are discussed in BB97, BB98 and BB99
respectively. These long-duration simulations contained multi-day precipitation amounts
that were much larger than the largest recorded values. In a single-site 1000-year simula-
tion 10-day annual maxima up to 40% larger than the largest historical values were found
(BB98). For one particular area, in a multi-site 1000-year simulation, a 10-day precipitation
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maximum almost 70% larger than the historical maximum was simulated (BB99).
The conditional simulation of daily preciptation and temperature in earlier phases of

the project considered the observed circulation indices for the period 1961–1990 (BB97,
BB98) or 1961–1995 (BB99). For long-duration conditional simulations, a separate model
which extends the historical record of these circulation indices is required. An important
advantage of conditional simulation is its ability to study the effect of past or future changes
in the circulation on extreme precipitation. Unconditional simulation by means of nearest-
neighbour resampling is, in principle, unable to deal with changes in atmospheric circulation
and can therefore only be applied under present climate conditions.

1.3 Scope and objectives

The present report is the third in a series of reports on the development of the rainfall gen-
erator. The first objective of this report is the simulation of (long-duration) series of daily
circulation indices. Such series of daily circulation indices are required for long-duration sim-
ulations of precipitation and temperature conditional on circulation indices. In selecting the
nearest neighbours, particular attention will be given to the reproduction of autocorrelation
coefficients of the circulation indices and to the reproduction of average run lengths1.

The second objective is to compare the simulations of precipitation and temperature
conditional on the observed circulation indices from the period 1961–1995, which were pre-
viously also presented in BB99, with simulated precipitation and temperature conditional on:
1) observed circulation indices from 35-year periods before 1961; 2) systematically changed
circulation indices from 1961–1995 (sensitivity experiment); and 3) simulated circulation
indices for the period 1961–1995. Finally, a few long-duration conditional simulations and
a long-duration unconditional simulation are analysed and compared.

Although conditional simulations of precipitation and temperature can in principle deal
with anthropogenic climate change this topic is postponed to a future project.

1A run is a group of consecutive exceedances of a specified threshold, preceeded and followed by values
below that threshold. The corresponding run length is defined as the number of exceedances (days) within
the run. For a low threshold the definition of a run can be extended to a group of observations below the
threshold.
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2 Simulation of daily circulation indices

2.1 Model choice

A typical feature of air pressure is that the day-to-day variability is relatively small during
periods of high pressure and generally large during periods of low pressure. Such state
dependent behaviour can not be reproduced by classical autoregressive (AR) processes. Al-
Awadhi and Jolliffe (1998) therefore studied the use of “threshold autoregressive (TAR)
models” to describe time series of surface pressure in the UK. Zwiers and von Storch (1990)
have applied this class of models, which they call “regime dependent autoregressive models”,
to time series of the Southern Oscillation index. It seems reasonable to suspect that the
statistical properties of the circulation indices (which are based on air pressure maps) are also
state dependent. In contrast to the univariate applications of the TAR models mentioned
above we typically have to deal with three indices in case of atmospheric circulation.

Lall and Sharma (1996) showed that nearest-neighbour resampling is able to reproduce
the nonlinear behaviour of a TAR model. In a later paper Sharma et al. (1997) demonstrated
that this is also true for time series simulation based on non-parametric kernel estimates of
the underlying probability densities. In contrast to nearest-neighbour resampling, the latter
method is capable to generate values that differ from those in the historical series.

It is, a priori, not clear that threshold autoregressive modelling or kernel density esti-
mations will produce better results than nearest-neighbour resampling. Considerable expe-
rience has been obtained with nearest-neighbour resampling in earlier phases of the project
which is the main reason to study the suitablilty of this technique for (long-duration) sim-
ulations of circulation indices.

2.2 Nearest-neighbour resampling

The application of the method closely follows BB97, BB98 and BB99. For the simulation
of circulation indices on day t a feature or state vector Dt is defined to find analogues in
the historical record. This vector contains the values of the circulation indices simulated for
day t − 1 and optionally those for days t − 2 and t − 3. The k nearest neighbours (k-NN)
are selected from the historical record, using the weighted Euclidean distance, which for two
q-dimensional vectors Dt and Du is defined as

δtu =

[ q
∑

i=1

wi(υti − υui)
2

]1/2

(1)

where υti and υui are the ith components of Dt and Du respectively, and the wi are scaling
weights. The vector containing the circulation indices for day t is denoted as Ct.

Let t′(j), j = 1, . . . , k be the times (days) associated with the k-NN, such that the
distance between Dt′(j) and Dt increases with increasing j. One of these k-NN is sampled
using a discrete probability distribution or kernel {pj}. If the jth nearest neighbour is
sampled, then the vector of simulated values C∗

t is taken as:

C∗
t = Ct′(j). (2)

Lall and Sharma (1996) recommended a decreasing kernel:

pj =
1/j

∑k
i=1 1/i

, j = 1, . . . , k. (3)



10 Rainfall Generator for the Rhine Basin

Brandsma and Buishand obtained satisfactory results with decreasing kernels using k = 20
in the single-site simulations (BB98). A further study for the multi-site simulations showed
that the autocorrelation coefficients and the distributions of N -day maximum precipitation
amounts were better reproduced by taking k as small as 5 or even 2 (BB99). Besides
decreasing kernels with different k, also kernels in which pj is inversely proportional to the
Euclidean distance δtt′(j) are studied in the present report.

Brandsma and Buishand (1997) noted that there is too little autocorrelation in the
simulated vorticity index if the circulation indices are simultaneously resampled with pre-
cipitation and temperature. In these unconditional simulations the selection of nearest
neighbours was based on the simulated vector for day t− 1, disregarding earlier days. Time
series analyses of daily surface pressure (Beersma 1992, Al-Awadhi and Jolliffe 1998) show
that first-order AR processes are insufficient to describe the temporal correlation. In order
to improve the autocorrelation of simulated circulation indices the effect of including the
circulation indices up to day t − 3 in the feature vector Dt is studied.

To account for the seasonal variation in the vector of circulation indices the search for
the nearest neighbours (analogues) is restricted to days within a specified moving window
of width Wmw days, centred at the day of interest. The use of a moving window, instead of
fixed seasons, prevents sharp transitions between seasons. Brandsma and Buishand (1997)
found comparable results for Wmw = 61 and Wmw = 121. The results in this section were
based on Wmw = 121 days. In correspondence with BB99 Wmw = 61 was used for the
precipitation and temperature simulations in section 3.

2.3 Data description

The atmospheric circulation indices used are derived from daily mean sea level pressure
(MSLP) data from the UK Meteorological Office on a 5◦ latitude by 10◦ longitude grid. For
a grid centred at the Rhine basin three circulation indices were calculated: 1) total shear
vorticity Z; 2) strength of the westerly flow W ; and 3) strength of the southerly flow S (for
details see Jones et al. 1993). These three indices form the elements of the circulation vector
C. Complete calendar years were obtained for the period 1881–1995. For the 35-year period
1961–1995 daily precipitation and temperature data were made available by the Deutscher
Wetterdienst (DWD) for 25 stations in the German part of the Rhine basin.

It is known that there are discontinuities in the daily MSLP data set, partly because of
changes in the procedure used for gridding MSLP from surface analyses. As a result the
data are smoother (both in the spatial and temporal domain) in some periods than in other
periods, in particular over the North Atlantic Ocean. In a study of the number of gales
over the British Isles, Hulme and Jones (1991) found that the data are particularly smooth
in the period 1960–1965. The grid used here is shifted 10◦ east and 5◦ south compared
to theirs and therefore contains less data over the ocean. Nevertheless the pressure fields
are too smooth over the study area during the period 1961–1965. The effect of smoothing
on the estimated number of gales is, however, somewhat smaller than in Hulme and Jones
(1991). The effects of the use of these “oversmoothed” data in the resampling procedure
will be discussed in section 2.5.

Before resampling, the data were standardised by subtracting the calendar day’s mean
md and dividing by the calendar day’s sample standard deviation sd:

x̃t = (xt − md)/sd, t = 1, . . . , 365J ; d = (t − 1) mod 365 + 1 (4)

where xt and x̃t are the original and the standardised variable, respectively, for day t, and
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Figure 2: Elements of the feature vector (solid boxes) for unconditional simulation of circu-
lation indices Z, W, S (dashed boxes). An asterisk indicates that a value was resampled in
a previous time step and a tilde denotes standardised values. First-order a); second-order
b); and third-order models c).

J is the total number of years in the record. Here smoothed values of md and sd were
used based on Friedman’s supersmoother (Härdle 1990). Before calculating the smooths the
values for d = 336, . . . , 365 were inserted for d < 1 and the values for d = 1, . . . , 30 were
inserted for d > 365 to harmonize the smoothed values at changes of years.

2.4 Model construction

Various resampling models are presented in this section. Differences between models are
the result of variations in the composition of the feature vector, the scaling weights or the
resampling kernel. The feature vectors are schematically presented in Fig. 2. An overview
of the different models is given in Table 1.

In the first model (circ1.k) the feature vector contains the three circulation indices on day
t− 1 with equal weights wi. This model is therefore called a first-order model. Resampling
with this model is based on a decreasing kernel with k = 20 (circ1.20) or k = 2 (circ1.2).

Five second-order models are presented. In these models the feature vector does not
only contain the standardised circulation indices for day t − 1 but also those for day t − 2.
The weights for Z̃t−1, W̃t−1, S̃t−1, Z̃t−2, W̃t−2 and S̃t−2 are 1,2,1,1,0 and 1 respectively.
The weight for W̃t−2 is taken to be zero here because the autocorrelation structure of the
W index closely resembles that of a first-order AR process. Three of the second-order mod-
els (circ2.20, circ2.5 and circ2.2) have a decreasing kernel with k = 20, 5 and 2 respectively.
In the fourth second-order model (circ2.var) the distances between the feature vector and
its nearest neighbours are included in the discrete kernel for generating a new value. The
probability pj is inversely proportional to the volume Vj , of a q-dimensional ball with ra-
dius δtt′(j) as suggested by Lall and Sharma (1996), where δtt′(j) is the weighted Euclidean
distance between the feature vector for the day of interest and its jth nearest neighbour,
and q is the dimension of these vectors:

pj =
1/Vj

∑k
i=1 1/Vi

, j = 1, . . . , k. (5)
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In contrast to the fixed decreasing kernel, a separate kernel is calculated for each day. There
is often a singularity at j = 1 due to the possibility that Dt′(1) = Dt (in a first-order model
this occurs every day), giving δtt′(1) = 0 and V1 = 0. This singularity is circumvented by
setting the volume V1 equal to V1 = V2(V3 − V2)/V3. Note, that V1 can take values between
0 and V2. Alternative variable kernels did not produce better results.

The last of the second-order models (circ2.5 fp) resembles the model with k = 5 but
for finding the nearest neighbours we also compare the Euclidean distance between the
previously simulated vector C∗

t−1 and the new vector C∗
t = Ct′(j) with the Euclidean distance

between this new vector and its historical predecessor Ct′(j)−1. The absolute value of the
difference of these two distances:

| ‖C∗
t−1 − C∗

t ‖ − ‖Ct′(j)−1 − Ct′(j)‖ | (6)

is added to δtt′(j) with a weight of 0.02. Compared to the weights of the feature vector
elements this weight is relatively low because the average Euclidean distance between two
consecutive days, in the historical and in the simulated series, is generally much larger
than that between two analogues. Equation 6 compares the forward persistence (fp) in the
simulated series with that in the historical series and therefore this model is referred to as
second-order fp model (circ2.5 fp).

Finally, there are two third-order models (circ3.5 and circ3.2 with k = 5 and k = 2
respectively) for which Z̃t−3 and S̃t−3 are included in the feature vector both with unit
weight.

2.5 Model results

To make an objective comparison between different choices of Dt and pj some relevant
characteristics of the simulated circulation indices are compared with their historical values.
First, the reproduction of their autocorrelation coefficients is studied. Then the duration
or persistence of particular circulation types is examined. The latter is usually expressed in
terms of run lengths, i.e. the number of consecutive days that a particular circulation index
exceeds a prescribed threshold without interruption. For high thresholds the average run
length is a measure of the mean duration of extreme events. A consequence of resampling

Table 1: Definition of models for unconditional simulation of circulation indices (Z, W, S).
An asterisk indicates that a value was resampled in a previous time step; the tilde refers to
standardised values.

Model Dt wi

First-order

circ1.k (Z̃∗
t−1,W̃

∗
t−1,S̃

∗
t−1) (1,1,1)

Second-order

circ2.k

circ2.var (Z̃∗
t−1,W̃

∗
t−1,S̃

∗
t−1, Z̃∗

t−2,W̃
∗
t−2,S̃

∗
t−2) (1,2,1,1,0,1)

circ2.5 fp
Third-order

circ3.k (Z̃∗
t−1,W̃

∗
t−1,S̃

∗
t−1, Z̃∗

t−2,W̃
∗
t−2,S̃

∗
t−2, Z̃∗

t−3,W̃
∗
t−3,S̃

∗
t−3) (1,3,1,1,0,1,1,0,1)
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Table 2: Differences between the lag 1 and lag 3 autocorrelation coefficients of daily circu-
lation indices in 350-year simulations and the historical record (1961–1995). The bottom
lines give the values of r(1) and r(3) in the historical record with their standard errors.
Estimates in italics differ more than 2 × std. err. from the historical values. Z, W and S
denote the vorticity, the west component and the south component of the flow respectively.

r(1) r(3)
Model Z W S Z W S

circ1.20 -0.015 -0.016 -0.013 -0.111 0.009 -0.107
circ1.2 -0.010 -0.007 -0.009 -0.062 0.005 -0.060

circ2.20 -0.036 -0.021 -0.046 -0.028 0.012 -0.027
circ2.5 -0.014 -0.010 -0.022 -0.015 0.012 -0.014
circ2.2 -0.013 -0.003 -0.007 -0.012 0.012 -0.012
circ2.var -0.018 -0.006 -0.014 -0.019 0.011 -0.014
circ2.5 fp -0.007 -0.004 -0.011 -0.015 0.024 -0.017

circ3.5 -0.031 -0.011 -0.031 -0.022 0.013 -0.022
circ3.2 -0.010 -0.002 -0.013 -0.022 0.005 -0.017

Historical record 0.498 0.755 0.521 0.182 0.393 0.190
std. err. 0.012 0.006 0.011 0.010 0.012 0.011

is that some historical days will not be resampled at all while others will be resampled
quite frequently. The influence of the model choice on the strength of this selection effect
is also investigated. The results presented in this section are based on 350-year simulations
in which the circulation indices were resampled from the period 1961–1995.

2.5.1 Autocorrelation of circulation indices

Table 2 presents the differences between the lag 1 and lag 3 autocorrelation coefficients of the
simulated circulation indices and those of the historical record (1961–1995). The historical
estimates and their standard errors are also given. The standard errors were obtained with
the jackknife method in Buishand and Beersma (1993). When the autocorrelation coeffi-
cients of the simulated data deviate more than twice the standard error from the historical
data they are referred to as being significantly different from the historical estimates.

The lag 1 autocorrelation coefficient of the three indices is underestimated in both first-
order models. This underestimation is significant only for the W index of the model with
k = 20. The lag 3 autocorrelation coefficients of the Z and S indices are significantly
underestimated. The largest underestimation is found for k = 20. The lag 3 autocorrelation
coefficient of the W index, finally, is slightly overestimated in both models. Note that for
small k quite large parts of the historical record are resampled. From Eq. (A12) in BB99
it follows that the expected largest historical part in a 350-year simulation is 28.2 days for
k = 2 and 9.9 days for k = 20.

Three second-order models using the standard decreasing kernel are presented in Ta-
ble 2. The second-order model with k = 20, significantly underestimates all three lag 1
autocorrelation coefficients. Again the lag 3 autocorrelation coefficients of the Z and S
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Table 3: Historical lag 1 and lag 3 autocorrelation coefficients of daily circulation indices
and their standard errors for different historical periods. Estimates in italics differ more
than 2 × std. err. from the 1961–1965 values. Z, W and S denote the vorticity, the west
component and the south component of the flow respectively.

r(1) r(3)
Period Z W S Z W S

1891–1925 0.507 0.761 0.563 0.174 0.391 0.234
std. err. 0.009 0.005 0.010 0.010 0.013 0.014

1926–1960 0.493 0.758 0.564 0.187 0.378 0.233
std. err. 0.012 0.007 0.010 0.016 0.013 0.012

1961–1995 0.498 0.755 0.521 0.182 0.393 0.190
std. err. 0.012 0.006 0.011 0.010 0.012 0.011

1966–1995 0.484 0.749 0.510 0.175 0.387 0.188
std. err. 0.012 0.005 0.010 0.011 0.012 0.012

1961–1965 0.612 0.778 0.606 0.227 0.398 0.180
std. err. 0.033 0.017 0.030 0.032 0.033 0.024

indices are significantly underestimated but the differences are much smaller than for the
first-order model. For the two models with k = 5 and k = 2 none of the autocorrelation
coefficients differs significantly from the historical ones. The model with k = 2 seems to
perform slightly better. The performance of the second-order model with variable kernel
(circ2.var) is comparable to that of the second-order model with a decreasing kernel with
k = 5 (circ2.5). In the second-order forward persistence model (circ2.5 fp) the systematic
errors in the lag 1 autocorrelation coefficients are somewhat further reduced compared to
those for the other second-order models. On the other hand, the lag 3 autocorrelation
coefficient of the W index is significantly overestimated in that model.

The third-order models are no improvement compared to the second-order models. In
fact, some of the autocorrelation coefficients, in particular those for the Z index (vorticity),
are significantly different from the historical ones.

In Table 3 the autocorrelation coefficients for the period 1961–1965 are compared with
the three 35-year periods used in this study and those for the 30-year period 1966–1995. The
only case in which the 1961–1965 period significantly differs (difference larger than twice the
1961–1965 standard error) from the other periods is for the lag 1 autocorrelation coefficient
of the Z index. The larger autocorrelation is in agreement with the oversmoothed data in
this period.

With two resampling models (circ1.20 and circ2.5) 350-year simulations were performed
based on the period 1966–1995. This period does not contain any oversmoothed data.
Table 4 compares the autocorrelation coefficients of the simulations with those for the period
from which is resampled (1966–1995). The results are very similar to those of the same
models for the period 1961–1995 presented in Table 2. From this it may be concluded that
the inclusion of the oversmoothed data (1961–1965) in the resampling procedure does not
influence the conclusions concerning the model choice.
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Table 4: Differences between the lag 1 and lag 3 autocorrelation coefficients of daily circu-
lation indices in 350-year simulations and the historical record (1966–1995). The bottom
lines give the values of r(1) and r(3) in the historical record with their standard errors.
Estimates in italics differ more than 2 × std. err. from the historical values. Z, W and S
denote the vorticity, the west component and the south component of the flow respectively.

r(1) r(3)
Model Z W S Z W S

circ1.20 -0.019 -0.018 -0.019 -0.118 0.002 -0.117
circ2.5 -0.016 -0.010 -0.017 -0.017 0.017 -0.010

1966–1995 0.484 0.749 0.510 0.175 0.387 0.188
std. err. 0.012 0.005 0.010 0.011 0.012 0.012

2.5.2 Run lengths of circulation indices

The run length refers to the number of consecutive days that a particular circulation index
is continuously above or below a certain threshold. The thresholds that are considered in
the first instance are the average of a circulation index plus one standard deviation and
the average of that circulation index minus one standard deviation. Since the data are
standardised the thresholds correspond to 1.0 and −1.0 respectively. For the standardised
indices of Z, W and S, values larger than 1.0 correspond to cyclonic, strong westerly and
southerly flow respectively while values smaller than −1.0 correspond to anticyclonic, east-
erly and northerly flow. Table 5 presents the average run lengths of the historical circulation
indices for 1961–1995 as well as the relative differences between the average run lengths of
the simulated circulation indices and those of the historical indices.

The first-order models underestimate the average run lengths, in particular those for
strong westerly flows (W̃ > 1.0) and easterly flows (W̃ < −1.0). In the second-order model
with k = 20 all average run lengths are significantly underestimated (i.e. the differences are
larger than twice the standard error of the average run length in the historical record). In
general, the reproduction of the mean run lengths improves with decreasing k. The reproduc-
tion of run lengths of the second-order forward persistence model (circ2.5 fp) is comparable
to that of the second-order model with variable kernel (circ2.var). Their performance lies
between that of the second-order models with k = 5 and k = 2. The third-order model with
k = 5 significantly underestimates the average run lengths for the cyclonic (Z̃ > 1.0) and
anticyclonic (Z̃ < −1.0) flows as well as the southerly (S̃ > 1.0) and northerly (S̃ < −1.0)
flows.

Note that in the historical record the average run length for easterly flows (W̃ < −1.0) is
about 25% larger than for strong westerly flows (W̃ > 1.0). All models are able to reproduce
this asymmetry between the average duration of strong westerly and easterly flows.

For each circulation component also the average durations corresponding to the 2.0 and
−2.0 thresholds are considered. In only 2.5% of the cases the values are > 2.0, respectively
< −2.0. Table 6 presents the relative differences between the average run lengths of the
simulated circulation indices and those of the 1961–1995 indices. The results for these larger
thresholds are comparable to those in Table 5. Although the same models show the largest
differences compared to the observations, the number of significant differences is smaller.
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Table 5: Relative differences (%) between average run lengths (see text for details) of cir-
culation indices in 350-year simulations and the historical record (1961–1995) for the 1.0
and -1.0 thresholds. The bottom lines give the average run lengths (days) in the historical
record with their relative standard errors (%). Estimates in italics differ more than 2 × std.
err. from the historical values. Z, W and S denote the vorticity, the west component and
the south component of the flow respectively.

Standardised Standardised
index > 1.0 index < -1.0

Model Z W S Z W S

circ1.20 -1.78 -3.96 -0.61 -1.35 -4.70 -3.12
circ1.2 -0.32 -0.89 -0.26 -1.27 -2.00 -1.76

circ2.20 -4.52 -5.26 -4.84 -4.68 -5.82 -7.80
circ2.5 -2.67 -3.63 -3.22 -2.26 -3.60 -4.00
circ2.2 2.72 -1.68 -1.73 -2.53 -0.63 -0.94
circ2.var -3.53 -2.68 -1.65 -2.00 -1.32 -3.13
circ2.5 fp -1.83 -3.15 -2.24 -2.34 -1.80 -3.01

circ3.5 -4.45 -4.28 -3.85 -4.46 -2.40 -5.89
circ3.2 -1.23 -1.47 -1.25 -2.51 -0.83 -2.92

Historical record 1.74 2.14 1.69 1.62 2.70 1.81
std. err. (%) 1.97 2.32 1.83 1.74 2.86 2.10

This is mainly due to the larger relative standard error of the average run length.

2.5.3 Selection effects

As a result of the resampling procedure some days from the historical record may not be
present in the resampled series while other days will be resampled more frequently than
expected. Here we will have a closer look into this so called selection effect.

Assume we have a random series X1, X2, . . . , Xn. The probability that Xi does not occur
in a sample of n independent drawings with replacement (the standard bootstrap) is

Pn = (1 − 1/n)n = enln(1−1/n) ≈ e−1 ≈ 0.368. (7)

Similarly we find for Ln independent drawings that

PLn ≈ e−L. (8)

Let us now consider the number Ki of times that Xi occurs in Ln drawings. The probability
that Ki = r is given by:

Pr(Ki = r) =

(

Ln
r

)

(1/n)r(1 − 1/n)Ln−r. (9)

This binomial distribution can be approximated by a Poisson distribution with parameter
L:

Pr(Ki = r) =
Lre−L

r!
. (10)
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Table 6: Relative differences (%) between average run lengths (see text for details) of cir-
culation indices in 350-year simulations and the historical record (1961–1995) for the 2.0
and -2.0 thresholds. The bottom lines give the average run lengths (days) in the historical
record with their relative standard errors (%). Estimates in italics differ more than 2 × std.
err. from the historical values. Z, W and S denote the vorticity, the west component and
the south component of the flow respectively.

Standardised Standardised
index > 2.0 index < -2.0

Model Z W S Z W S

circ1.20 -1.44 -3.77 -2.27 -0.63 -7.01 -3.08
circ1.2 0.02 -2.44 -0.68 1.28 2.50 0.53

circ2.20 -7.12 -4.98 -4.03 -1.91 -8.02 -6.37
circ2.5 -2.77 -1.93 -2.39 -0.65 -7.00 -3.35
circ2.2 -1.86 -2.10 -0.49 0.82 -1.36 -2.21
circ2.var -3.91 -3.87 -1.14 -1.59 -2.91 -4.05
circ2.5 fp -4.18 -2.89 -1.19 -1.46 -4.85 -3.53

circ3.5 -4.94 -3.39 -3.86 -1.67 -3.91 -3.05
circ3.2 -2.64 -2.63 -1.88 -1.83 -1.77 -0.81

Historical record 1.34 1.23 1.17 1.05 1.44 1.24
std. err.(%) 2.68 2.90 2.45 2.18 4.12 2.69

For r = 0 this equation reduces to Eq. (8). Equations (8) and (10) remain valid if resampling
is restricted to the data within a moving window of width Wmw. The expected number of
Xi’s drawn r times in Ln drawings equals nPr(Ki = r). For nearest-neighbour resampling
the number of historical days that is drawn r times can be compared with the number
expected from the Poisson distribution with parameter L.

When the frequency distribution of the number of historical days in a simulation run
becomes wider compared to the one for independent resampling (typically when the number
of days that is never or seldomly resampled increases), it becomes more likely that certain
important characteristics of the historical data are not well reproduced. In Table 7 the
frequency distributions of the 350-year simulations are compared with the values for the
Poisson distribution with L = 10. The frequency distributions from the simulations are
wider than the theoretical frequency distribution for independent resampling with replace-
ment, because resampling is restricted to nearest-neighbours. The table shows that the
selection effect becomes somewhat stronger (wider frequency distribution) with increasing
order of the resampling model. The kernel size k has only little influence on the width of
the frequency distribution. Remember, however, that k has a considerable influence on the
expected largest historical part in a 350-year simulation (28.2, 14.7 and 9.9 days for k = 2,
k = 5 and k = 20 respectively).
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Table 7: Number of historical days drawn r times in 350-year simulations compared with the
number expected for the standard bootstrap. The largest number of times that a historical
day is drawn is given in the last column.

r
Model 0 1-5 6-10 11-15 16-20 21-25 >25 rmax

bootstrap 1 856 6591 4704 602 20 <1

circ1.20 9 1201 6200 4493 813 57 2 27
circ1.2 11 1741 5703 4039 1066 196 19 33

circ2.20 49 1954 5120 4284 1240 120 8 29
circ2.5 15 1714 5620 4165 1114 139 8 28
circ2.2 21 1753 5665 3991 1137 182 26 33

circ2.var 22 1728 5571 4203 1093 142 16 37
circ2.5 fp 26 1745 5590 4079 1148 169 18 30

circ3.5 65 2415 4810 3727 1358 337 63 36
circ3.2 40 2080 5358 3733 1252 266 46 38
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3 Conditional resampling of precipitation and temperature

The previous section was devoted to the simulation of circulation indices. In this section
simulations of precipitation P and temperature T conditional on the atmospheric circula-
tion are discussed. The resampling models from BB99 as well as some alternatives are used.
Much attention is given to the influence of the atmospheric circulation on the simulated
precipitation and temperature characteristics. This influence is investigated by: 1) compar-
ing the precipitation statistics from simulations that are based on different 35-year periods
of historical circulation indices; and 2) performing sensitivity simulations with systematic
changes in the 1961–1995 circulation indices. In addition, 35-year as well as long-duration
simulations are presented conditional on the simulated circulation indices obtained with the
resampling models described in the previous section.

3.1 Simulations conditional on the historical circulation

3.1.1 Summary statistics for P and T

Daily P and T observations were available for 25 German stations for the period 1961–1995
(Fig. 1). To keep the dimension of the feature vector low, a small number of summary
statistics of P and T were selected as elements of this vector. Both for P and T the
arithmetic mean of the standardised daily values of the 25 stations was considered. The T
data were standardised, similar to the circulation indices, by subtracting the calendar day’s
mean and dividing by the calendar day’s standard deviation, according to Eq. (4). To avoid
negative standardised P values, the precipitation data were standardised by dividing by the
calendar day’s mean precipitation md,wet for wet days:

x̃t = xt/md,wet. (11)

The values of md,wet were smoothed using Friedman’s supersmoother (Härdle 1990). After
resampling, the final simulated values of T and P were obtained from the standardised
resampled values by inverting, respectively Eq. (4) and (11).

The fraction F of stations with precipitation (P > 0.2 mm) was used as an additional
summary statistic. F helps to distinguish between large-scale and convective precipitation.
The feature vector further contained standardised circulation indices.

3.1.2 Simulated precipitation and temperature for 1961–1995

Initially, a large number of test cases was compared in BB99 for the simulation of P and
T using a decreasing kernel with k = 20. Regarding the choice of k they explored two
cases further: their case 4.4 for unconditional simulation and their case 4.1 for conditional
simulation. Their simulations with k = 5 (and for conditional simulation also k = 2) are
repeated here. In an attempt to improve the reproduction of the autocorrelation structure
of daily precipitation, several new cases for conditional simulation are also investigated.
The model details are given in Table 8. The composition of some of the feature vectors is
presented schematically in Fig. 3.

Table 9 shows for the winter (October–March) the deviations of some relevant statistics
from the historical (1961–1995) values averaged over the 25 stations for the unconditional
model (case 4.1 with k = 5) and several conditional models. Besides the reproduction of
mean values, Table 9 also presents that of the standard deviation s of daily values, the lag 1
autocorrelation coefficient r(1), the standard deviation sm of monthly values, and three
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Table 8: Definition of cases for unconditional and conditional simulation. The wi values for
the circulation apply to all three components of C̃ = (Z̃, W̃ , S̃). P̃ and T̃ denote respectively
the standardised precipitation and standardised temperature averaged over the 25 German
stations, and F denotes the fraction of these stations with P > 0.2 mm. An asterisk indicates
that a value was resampled in a previous time step.

Case Dt wi

unconditional

4.4 (C̃∗
t−1, P̃ ∗

t−1, F ∗
t−1, T̃ ∗

t−1) (1,2,2,2)
conditional

4.1 (C̃t, P̃ ∗
t−1, F ∗

t−1, T̃ ∗
t−1) (1,1,1,1)

6.1 (C̃t, C̃t−1, P̃ ∗
t−1, F ∗

t−1, T̃ ∗
t−1) (1,1,1,1,1)

6.2 (C̃t, C̃t−1, P̃ ∗
t−1, F ∗

t−1, T̃ ∗
t−1) (1,1,2,2,2)

7.1 (C̃t, P̃ ∗
t−1, F ∗

t−1, T̃ ∗
t−1, P̃ ∗

t−2) (1,1,1,1,1)

7.2 (C̃t, P̃ ∗
t−1, F ∗

t−1, T̃ ∗
t−1, P̃ ∗

t−2, F ∗
t−2, T̃ ∗

t−2) (1,1,1,1,1,1,1)

8.1 as case 4.1 with fp P and F terms and weights (1,1)
8.2 as case 4.1 with fp P and T terms and weights (1,1)
8.3 as case 4.1 with fp P and T terms and weights (0.1,0.1)

unconditional conditional

a) |
t-1

P̃ ∗ F ∗ T̃ ∗

C̃∗

|
t

P̃ F T̃

C̃

b) |
t-1

P̃ ∗ F ∗ T̃ ∗

|
t

P̃ F T̃

C̃

c) |
t-1

P̃ ∗ F ∗ T̃ ∗

C̃

|
t

P̃ F T̃

C̃

d) |
t-2

P̃ ∗ F ∗ T̃ ∗

|
t-1

P̃ ∗ F ∗ T̃ ∗

|
t

P̃ F T̃

C̃

Figure 3: Elements of the feature vector (solid boxes) for unconditional simulation a (case
4.4); and conditional simulations b (case 4.1); c (cases 6.1 and 6.2); and d (case 7.2) of
new variables (dashed boxes). The asterisks indicate that the corresponding variables are
resampled values of the previous time step, and the tilde refers to standardised values.
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Table 9: Performance of the 1961–1995 simulations (ten runs of 35 years for each case)
for the winter (October–March). For each characteristic the differences (mean temperature
in ◦C and lag 1 autocorrelation coefficient) or percentage differences (other characteristics)
are given between the simulated and historical data (1961–1995), averaged over 25 stations.
The same units apply to the standard errors from the historical data in the bottom line.
Estimates in italics differ more than 2 × std. err. from the historical values.

mean s r(1) sm 10-day P
Case P T P T P T P T Max QM5 Med

unconditional

4.4 (k = 5)1 -3.6 0.12 -2.5 -2.0 -0.021 -0.032 -3.5 -9.2 -4.8 -4.1 -2.4
4.4 (k = 5)1 -4.4 0.08 -1.9 -2.4 -0.016 -0.035 -2.1 -10.4 1.1 -1.2 -2.9
4.4 (k = 5)2 -2.1 0.12 -0.5 -3.3 -0.013 -0.041 -3.8 -13.2 -1.7 -1.4 -0.3

conditional

4.1 (k = 5)1 -0.3 0.19 -1.1 -6.9 -0.046 -0.090 -3.8 -19.2 1.6 -1.8 -3.3
4.1 (k = 5)1 -2.3 0.14 -2.9 -6.0 -0.057 -0.084 -4.8 -17.0 -3.8 -4.9 -4.9
4.1 (k = 5)2 -1.6 0.12 -1.5 -5.6 -0.053 -0.082 -3.9 -17.2 -0.6 -2.9 -3.9

6.1 (k = 5) -5.0 0.16 -4.2 -5.6 -0.051 -0.101 -7.2 -17.5 -6.2 -7.0 -6.7
6.2 (k = 5) -4.1 0.22 -3.1 -5.6 -0.041 -0.082 -6.4 -15.4 -6.1 -6.5 -4.7

7.1 (k = 5) -2.3 0.21 -3.5 -7.1 -0.058 -0.094 -4.8 -20.2 -4.6 -5.6 -5.4
7.2 (k = 5) -3.7 0.20 -3.2 -7.4 -0.062 -0.102 -5.3 -18.0 -4.5 -5.5 -5.3

8.1 (k = 5) -22.7 0.19 -20.8 -7.1 0.039 -0.083 -15.8 -17.9 -8.4 -13.4 -19.3
8.2 (k = 5) -24.1 0.23 -22.2 -13.9 0.026 -0.043 -19.6 -15.4 -14.5 -18.0 -20.7
8.3 (k = 5) -7.5 0.18 -7.9 -8.0 -0.035 -0.075 -10.2 -18.1 -2.4 -6.6 -8.8

4.1 (k = 2) -0.6 0.11 -1.6 -4.6 -0.044 -0.063 -3.5 -13.8 -1.8 -3.3 -4.2
4.1 {0.8,0.2} -1.9 0.07 -2.3 -3.4 -0.036 -0.048 -3.5 -9.9 -1.0 -3.5 -3.2

std. err. 3.8 0.17 2.6 2.5 0.009 0.007 4.8 6.2 – – –

1 simulations with different random number seeds
2 simulations from BB99

properties of 10-day maximum precipitation, namely the largest value (Max), the upper
quintile mean (QM5), and the median value (Med). It should be noted that the success
of reproducing sm and the extreme-value properties depends on the reproduction of s and
r(1). As for the standard errors of r(1), the standard errors of s and sm in Table 9 were
based on a jackknife procedure (see Appendix).

First, the unconditional case 4.4 and conditional case 4.1 both with k = 5 from BB99
are compared. The unconditional model shows a smaller bias of the lag 1 autocorrelation
coefficients of both daily precipitation and temperature, and a smaller underestimation of the
daily standard deviations of temperature. As a result the unconditional model slightly better
reproduces the monthly standard deviations of P and T and the extreme-value properties.
Note that the results for the unconditional case 4.4 and conditional case 4.1 in Table 9 differ
somewhat from those in BB99 due to a different random number seed. The simulations for
case 4.1 were repeated using the data for the period 1966–1995 only. Like in section 2.5.1
removal of the years with oversmoothed data had little effect on the differences between the
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observed and simulated values.
The results of the new conditional simulations, are discussed next. With the inclusion

of Ct−1 in the feature vector Dt (cases 6.1 and 6.2) the autocorrelation of P and T in
the simulated data remains more or less the same as in case 4.1 but the daily standard
deviation of precipitation is smaller which has a negative effect on the reproduction of the
monthly standard deviation and the 10-day precipitation maxima. Stronger persistence of
precipitation is expected with the inclusion of values at t − 2 (cases 7.1 and 7.2) in the
feature vector. The results show, however, that second order P, F and T terms in the model
slightly deteriorate the reproduction of the lag 1 autocorrelation coefficient and the standard
deviations of the daily and monthly values. The lag 1 autocorrelation can be enhanced by
considering the next value that will be resampled in the search for nearest neighbours.
For unconditional simulation of circulation indices such a model was already introduced
in section 2.4 and referred to as forward persistence (fp) model. Case 8.1 represents a
conditional simulation based on case 4.1 but with fp terms in both P and F . This simulation
shows indeed an enhancement of the precipitation lag 1 autocorrelation. However, it is
overestimated with about the same amount as it is underestimated in the original model
(conditional case 4.1). The model also underestimates the average winter precipitation by
more than 20% and the underestimation of the standard deviation of the daily and monthly
precipitation values is of the same order. This turns out to be caused by a strong selection
effect (see section 3.3). A second forward persistence model with fp terms in P and T
(case 8.2) shows similar behaviour. When the weights for the fp terms in P and T are
considerably reduced (case 8.3), the systematic underestimations reduce as well, but the
lag 1 precipitation autocorrelation is again significantly underestimated.

A slight improvement of conditional case 4.1 can be obtained by reducing the size k of the
kernel {pj}. For k = 2 there is some improvement of the reproduction of the temperature
statistics but not for precipitation. A final simulation using a kernel with probabilities
p1 = 0.8 and p2 = 0.2 gives sligthly better results, comparable to those of the unconditional
model. It should be noted, however, that for kernels with a high probability p1 (small k)
the number of times that the resampled values of P and T for the day of interest equal the
observed values for that day becomes large as well. The resampled time series becomes thus
more similar to the historical time series for larger values of p1. For the simulation with
k = 2 (p1 = 0.67) and the one with p1 = 0.8, the percentage of days in the resampled series
that is unchanged compared to the historical series is respectively 32% and 47%.

3.1.3 Reconstructed and observed trends in winter precipitation

Several authors have reported on precipitation trends during the past 100 years in Europe.
Rapp and Schönwiese (1996) fitted a linear trend to precipitation data from Germany for the
period 1891–1990. For the winter (November–April) the slope turned out to be statistically
significant over large parts of the country, corresponding to an increase in the mean of 10–
15% in the second half of the period compared to the first half. A strong increase has been
observed in the number of days with a zonal circulation type during December, January
(Bárdossy and Caspary, 1990) and in the number of days with a west-cyclonic circulation
during December–February (Caspary and Bárdossy, 1995) since the early 1970s, which may
(partly) be responsible for the observed trend in winter precipitation. On the other hand,
Widmann and Schär (1997) demonstrated that the observed trends in winter (December–
February) precipitation in Switzerland during the period 1961–1990 were primarily due to
an increase in the mean precipitation amounts of the most rain-producing weather types
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Table 10: Average precipitation amounts (mm) in winter (October–March). The observed
values are obtained from monthly precipitation data. The simulated values are the average
of ten simulation runs with conditional case 4.1 (k = 5). Note that in the simulations the
precipitation is resampled from the period 1961-1995.

1901–1960 1961–1990 rel. diff. (%)
Station obs. sim. obs. sim. obs. sim.

Stuttgart 245.9 248.7 261.2 263.4 6.2 5.9
Frankfurt 297.9 284.8 315.6 295.0 5.9 3.6
Trier 347.6† 369.6 393.4 384.0 13.2 3.9
Bamberg 264.9 267.8 277.1 278.9 4.6 4.1
Karlsruhe 312.6 331.3 354.0 346.6 13.2 4.6

† 1908–1960

rather than to changes in the frequency of weather types.
For five stations, for which monthly data were available at KNMI, Table 10 compares

the winter precipitation in the period 1901–1960 with that in the period 1961–1990 for
both the observations and the simulations with a conditional model (case 4.1; k = 5). The
simulated average winter precipitation amounts are in general close to the observed values.
For two stations, Stuttgart and Bamberg, the simulated increase in precipitation is in good
agreement with the observations. For the other stations, in particular Trier and Karlsruhe,
the increase is underestimated. On average the simulations explain slightly more than 50%
of the observed trends.

3.1.4 Reconstructed extreme winter precipitation for 1891–1925 and 1926–

1960

In this section properties of the extreme N -day winter amounts in simulations conditional on
the atmospheric circulation indices for the periods 1891–1925 and 1926–1960 are compared
with those simulated and observed for the period 1961–1995. For seven individual stations
Table 11 shows that the simulated largest values, upper quintile means and medians for
the periods 1891–1925 and 1926–1960 are smaller than those for the period 1961–1995
(respectively 79 and 78 out of the 84 values are smaller). This also holds for the average
relative differences of all 25 stations. On average the median and the upper quintile mean of
the simulated N -day precipitation maxima in these two periods are about 6% smaller than
those simulated for 1961–1995.

Figure 4 presents, for three stations and the average of the 25 stations, Gumbel plots
of the 10-day winter precipitation maxima for conditional simulations on the observed cir-
culation of the three historical 35-year periods and for the historical 1961-1995 data. The
graphs of the simulations for the periods 1891–1925 and 1926–1960 are systematically be-
low those of the simulations and observations for 1961–1995. The panel for the 25 station
average suggests that these differences are “significant” since the largest values in the ten
simulation runs for the periods 1891–1925 and 1926–1960 (plusses) are almost always below
the historical values.
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Table 11: Relative differences (%) between the largest value (Max), the upper quintile mean
(QM5) and the median value of the N -day winter (October-March) precipitation maxima for
the simulated data (ten runs of 35 years with conditional case 4.1; k = 5) and the historical
data (1961–1995) for seven stations in the three 35-year periods. Avg denotes the average
relative difference of all 25 stations.

Max QM5 Median
Station N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20

1961-1995

Essen 10.1 -8.2 5.4 0.0 3.2 -3.7 4.8 3.5 -1.6 1.4 -1.0 1.7
Kahler Asten 2.8 -5.8 -5.8 -3.9 0.3 -2.0 -6.5 -3.5 -4.8 -5.1 0.3 -0.5
Trier -10.4 7.3 -12.4 1.6 -8.4 -4.5 -7.8 0.8 -10.8 -8.1 -6.3 -3.1
Frankfurt -3.0 -11.3 7.4 10.9 -4.4 -4.0 -3.5 0.5 -8.5 -6.9 -6.8 -2.8
Bamberg -5.3 6.8 18.7 -9.6 -1.1 -5.3 4.9 0.1 -6.8 2.4 -3.1 -0.2
Freudenstadt -0.6 -4.4 0.3 -9.7 -3.1 -7.9 0.8 -5.8 -13.8 -16.9 -6.2 -7.7
Stuttgart -0.3 1.6 2.1 0.2 0.1 0.2 3.4 -0.8 -4.9 -6.5 -7.9 -7.2

Avg -6.0 -2.5 1.6 -1.0 -3.6 -4.2 -1.8 -0.4 -5.2 -5.1 -3.3 -2.2

1926-1960

Essen 7.7 -2.9 -0.3 -5.4 2.7 -5.9 -1.0 -4.4 -3.4 -3.2 -9.6 -7.0
Kahler Asten 6.3 -9.8 -11.9 -13.6 1.5 -8.3 -15.0 -14.1 -3.7 -10.8 -8.4 -13.7
Trier -20.1 -7.7 -24.6 -12.6 -10.5 -11.4 -14.7 -6.7 -15.4 -12.1 -10.9 -6.6
Frankfurt -7.5 -23.8 -11.6 -2.1 -5.5 -10.0 -11.3 -5.6 -8.0 -10.5 -9.7 -6.9
Bamberg -17.1 2.5 6.3 -10.8 -7.0 -8.6 -3.6 -7.0 -9.4 -5.8 -8.8 -11.4
Freudenstadt -0.3 -8.3 -8.5 -22.2 -8.7 -15.2 -10.5 -17.0 -17.7 -23.4 -20.1 -21.9
Stuttgart -12.2 -0.2 -8.5 -10.0 -14.5 -10.4 -7.1 -9.2 -10.7 -13.4 -15.3 -15.1

Avg -10.5 -9.5 -9.4 -10.1 -8.1 -9.8 -10.3 -8.1 -7.7 -9.2 -10.1 -9.7

1891-1925

Essen 3.1 -7.7 4.3 -8.3 -0.6 -6.4 -0.9 -4.8 -3.6 -5.6 -9.2 -5.5
Kahler Asten 2.6 -13.5 -14.6 -19.0 -2.7 -12.2 -17.1 -17.0 -12.3 -14.6 -9.2 -12.0
Trier -24.2 -11.6 -22.2 -11.6 -12.6 -9.3 -13.3 -6.6 -12.1 -10.4 -10.8 -6.1
Frankfurt -7.5 -24.0 -5.5 -5.4 -7.0 -8.6 -9.6 -8.7 -8.7 -10.5 -10.1 -5.4
Bamberg -4.3 7.4 6.9 -15.8 4.5 -5.1 -3.3 -7.8 -10.4 -4.5 -8.8 -8.8
Freudenstadt -3.7 -9.2 -10.7 -23.3 -10.8 -16.7 -11.9 -20.3 -19.0 -25.5 -19.0 -21.3
Stuttgart -13.1 -2.2 -8.2 -8.4 -9.0 -7.2 -3.9 -6.3 -10.1 -12.9 -11.4 -12.6

Avg -10.6 -8.6 -7.5 -12.3 -8.1 -8.9 -9.8 -9.5 -8.5 -10.4 -10.4 -9.5

Table 12 (Part I) finally, compares some more characteristics of the simulated precipita-
tion and temperature for the periods 1926–1960 and 1891–1925 with those for the 1961–1995
simulations. It can be seen that not only the simulated precipitation amounts are relatively
low for the two earlier periods but also their standard errors, in particular those for the
monthly precipitation amounts.

3.1.5 Sensitivity of simulated precipitation to systematic changes in the circu-

lation

Besides the reconstruction of precipitation trends and properties of N -day extremes for the
years before 1961, it is interesting to study for conditional resampling the sensitivity of
the simulated precipitation to systematic changes in the individual circulation indices. A
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Figure 4: Gumbel plots of the 10-day winter precipitation maxima for conditional simula-
tions on the observed circulation of three historical 35-year periods (average of ten 35-year
simulation runs; case 4.1; k = 5) and for the historical 1961-1995 data. The plusses denote
the largest and smallest values in the ten simulation runs.

sensitivity study was performed consisting of three simulations conditional on the 1961–1995
circulation indices in which in each simulation one of the three indices was systematically
increased by half of its standard deviation. For the W index this means more and stronger
west circulations, for the S index more and stronger southerly flow and for the Z index more
and stronger cyclonic activity.

The results of this sensitivity study are presented in Part II of Table 12. The simulation
with a systematic increase in the W index gives, averaged over all 25 stations, a 27%
increase in mean winter precipitation and an increase in mean winter temperature of about
1 ◦C. The average increase in the 10-day winter precipitation maxima (almost 10%) is much
smaller than that in the mean. This is because a large part of the increase in mean winter
precipitation is due to an increase of 19% in the number of wet days, which has less influence
on the extremes. The temperature increase is consistent with an enhanced advection of
relatively warm maritime air during winter. A systematic increase in the S index results on
average in a 6% decrease in mean winter precipitation and a small decrease in the extreme
value properties. Systematically increasing the Z index gives an average increase of 15%
in mean winter precipitation without an accompanying temperature change. Because the
increase in mean precipitation is mainly due to an increase in the number of wet days, the
change in the average 10-day precipitation maxima is relatively small. For the individual
stations the precipitation change due to the systematic increases in the W and S indices
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Table 12: Sensitivity of simulated precipitation and temperature characteristics to the cir-
culation indices used in the resampling procedure (ten runs of 35 years with case 4.1) for
the winter (October–March). For each characteristic the differences (mean temperature in
◦C and lag 1 autocorrelation coefficients) or percentage differences (other characteristics)
are given between the simulated and the historical data (1961–1995). Apart from Kahler
Asten, Freudenstadt and Köln the values are averaged over 25 stations.

Case or Circ. mean s r(1) sm 10-day P
station indices P T P T P T P T Max QM5 Med

Part I. Historical indices

4.1 (k=5) 1961-1995 -0.3 0.19 -1.1 -6.9 -0.046 -0.090 -3.8 -19.2 1.6 -1.8 -3.3
4.1 (k=5) 1926-1960 -7.6 -0.03 -5.8 -4.5 -0.060 -0.074 -11.9 -15.8 -9.4 -10.3 -10.1
4.1 (k=5) 1891-1925 -4.2 0.15 -5.1 -7.3 -0.069 -0.089 -15.3 -23.5 -7.5 -9.8 -10.4

Part II. Changed 1961–1995 indices

4.1 (k=5) Z̃ + 0.5 14.6 0.05 3.3 -10.0 -0.082 -0.100 -5.5 -23.5 0.2 -1.2 0.9

4.1 (k=5) W̃ + 0.5 26.8 1.27 10.7 -12.7 -0.075 -0.126 2.7 -27.2 9.3 7.1 9.3

4.1 (k=5) S̃ + 0.5 -6.0 0.82 -2.6 -4.0 -0.045 -0.088 -7.7 -17.7 -2.1 -4.3 -5.8

Kahler A. Z̃ + 0.5 7.2 -0.22 -2.5 -9.7 -0.135 -0.168 -10.4 -25.4 -10.1 -11.5 -0.4

Freudenst. Z̃ + 0.5 12.1 -0.05 -1.6 -10.8 -0.106 -0.149 -13.7 -22.6 -6.5 -2.2 -6.1

Köln Z̃ + 0.5 10.8 -0.04 0.2 -9.4 -0.079 -0.106 -3.6 -22.5 -1.8 -2.8 -10.2

Part III. Simulated indices

4.1 (k=5) circ1.20 -2.7 0.10 -2.8 -7.4 -0.065 -0.096 -11.5 -24.2 -7.9 -9.1 -9.0

4.1 (k=5) circ2.5 -4.8 0.11 -3.8 -7.7 -0.060 -0.096 -10.9 -25.4 -6.9 -7.9 -7.2
4.1 {.8, .2} circ2.5 -2.7 0.06 -3.1 -6.1 -0.059 -0.078 -8.3 -20.2 -4.7 -5.2 -6.4
4.1 (k=1) circ2.5 -2.7 0.03 -3.0 -5.6 -0.059 -0.074 -9.5 -20.0 -9.0 -7.4 -6.4

has always the same sign. This is, however, not the case for a systematic increase in the
Z index. Even though, for individual stations a systematic increase in the Z index leads
to enhanced mean winter precipitation, for some stations (Kahler Asten, Freudenstadt and
Köln), the median and the upper quintile mean of the 10-day winter precipitation maxima
are reduced.

3.2 Simulations conditional on simulated circulation

The main objective of the project is to produce long-duration precipitation and tempera-
ture simulations. Long-duration conditional simulations can only be based on “synthetic”
circulation time series. Synthetic time series of circulation indices can be obtained from
an unconditional resampling model (as discussed in section 2) or from GCM experiments,
although the latter usually have limited length. Here, precipitation and temperature were
generated conditional on simulated circulation indices. These indices were simulated with
the unconditional resampling models discussed in section 2. First, two simulations are com-
pared that are based on the indices from respectively the first-order model with k = 20
(circ1.20) and the second-order model with k = 5 (circ2.5). With respect to the reproduc-
tion of the characteristics of the circulation indices circ2.5 is considered the “best” model
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while circ1.20 is more or less the “worst” model. The results (Table 12, Part III) show
that there is little difference between the two simulations. The simulation conditional on
the circ2.5 indices slightly better reproduces the properties of the 10-day precipitation max-
ima. For both simulations the reproduction of these characteristics, however, has become
worse compared to the simulation of the same model conditional on the historical circulation
indices (Top of Table 12).

Table 12 (Part III) gives the results of two more simulations, one using a discrete kernel
with probabilities 0.8 and 0.2, and another with k = 1. Note that for k = 1 only one
conditional realisation exists, but since the simulated indices consist of 350 years there still
are 10 independent 35-year simulations available. The slight improvement for these two
simulations is mainly seen in the reproduction of the temperature characteristics.

3.3 Selection effects

Table 13 compares the frequency distributions of the number of times that the various
historical observations occur in the simulation runs discussed in the previous sections. The
simulations of P and T conditional on the circulation indices for the periods 1926–1960 and
1891–1925 show much stronger selection effects than those conditional on the circulation for
the period 1961–1995. In the last case, the pool of days from which is resampled (1961–1995)
contains the same circulation vectors as the series on which is conditioned (also 1961–1995).
This correspondence makes that for each day in the period 1961–1995 the day with the same
C in the pool from which is resampled becomes one of the neighbours with a small Euclidean
distance (because the contribution of C to the Euclidean distance is zero), and therefore
this day has a relatively large probability of being resampled. As a consequence, almost
every day in the pool from which is resampled has a finite probability of being resampled.
This situation does not hold for the other two periods since the circulation indices for the
period 1961–1995 differ in some respects from the two earlier periods.

The strongest selection effect is found for the simulations in which the 1961–1995 indices
are systematically increased. It is most pronounced in the simulations with a systematic
increase in the Z index. For the simulations with a systematic increase in the W or S index
it is weaker but still considerable. The simulations conditional on resampled circulation
indices from the period 1961–1995 have a slightly wider frequency distribution than those
conditional on the historical 1961–1995 indices.

The forward persistence models (cases 8.1 and 8.2) show a strong selection effect. This
may explain the large systematic deviations in the mean and the standard deviations of the
simulated data from these models.

3.4 Long-duration simulations

A few long-duration conditional simulations were performed. These are compared with a
long-duration unconditional simulation and the historical data. Figure 5 shows Gumbel
plots of the 10-day winter precipitation maxima for three stations and the average of the 25
stations. Three different simulation experiments are presented. The points for the simulated
data refer to average ordered 10-day maxima in three runs of 1000 years each. As expected
the points for the conditional 1000-year simulations are below those for the unconditional
1000-year simulation. It can be seen that the differences between the conditional and un-
conditional simulations do not increase at long return periods (Tr). Table 14 presents some
properties of the N -day winter maxima. The relative differences between the conditional
and unconditional 1000-year simulations are for the 200-year event somewhat smaller than
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Table 13: Number of historical days drawn r times in ten 35-year simulation runs compared
with the number expected for the standard bootstrap. The largest number of times that a
historical day is drawn is given in the last column.

Circulation r
Case indices 0 1-5 6-10 11-15 16-20 21-25 >25 rmax

bootstrap 1 856 6591 4704 602 20 <1

conditional

4.1 (k = 5) 1961–1995 30 2049 5280 3923 1217 229 47 29
4.1 (k = 5) 1926–1960 271 2903 4393 2984 1455 526 243 44
4.1 (k = 5) 1891–1925 261 3036 4194 3081 1402 561 240 55

4.1 (k = 5) Z̃ + 0.5 552 3776 3358 2386 1396 735 572 51

4.1 (k = 5) W̃ + 0.5 414 3489 3769 2598 1416 614 475 61

4.1 (k = 5) S̃ + 0.5 291 3679 4013 2433 1199 571 589 62

4.1 (k = 5) circ1.20 64 2294 5064 3684 1289 301 79 41
4.1 (k = 5) circ2.5 79 2262 5029 3735 1299 302 69 38
4.1 {0.8,0.2} circ2.5 54 2456 4990 3487 1315 362 111 54
4.1 (k = 1) circ2.5 66 2542 4994 3329 1290 409 145 55

8.1 (k = 5) 1961–1995 161 3278 4172 2909 1368 590 297 55
8.2 (k = 5) 1961–1995 227 3515 3994 2588 1414 631 406 59

unconditional

4.4 (k = 5) 29 2028 5327 3884 1259 209 39 34

for the 50-year event2. The values for the conditional simulation based on the circulation
indices simulated with circ2.5 (the second order model with k = 5) are closer to the un-
conditional simulation than those based on circ1.20 indices. For the simulation with circ2.5
indices the average difference with the unconditional model for 50-year and higher events of
N -day winter precipitation is about −4%.

From the results in section 3.1.3 it follows that the average precipitation amounts in
winter in the period 1961–1995 are 5–10% larger than those for the first 60 years of this
century. The long-term average precipitation (representative of the period 1891–1995) is
therefore 3–7% smaller than that for the period 1961–1995 from which is resampled. From
the conditional simulations in section 3.1.4 it may be concluded that the differences in the
Tr-year events of the N -day precipitation amounts are of the same size.

Let us now assume that the long-term average precipitation as well as the 50-year events
are 5% smaller than those for 1961–1995. The unconditional simulation then overestimates
the 50-year events on average by about 1% and the conditional simulations underestimate
it by 3–4%.

2For the 200-year and 50-year events, respectively the 5th and 20th highest values out of 999 simulated
winters were used.
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Figure 5: Gumbel plots of 10-day precipitation maxima in winter for observed and simulated
data (average of three runs of 1000 years).

Table 14: The largest value (Max), the 200-year and 50-year events of N -day winter
(October-March) precipitation (mm) in the 1000-year simulations (averages of three runs of
1000 years each), averaged over all 25 stations. The bottom part of the table gives the rel-
ative differences (%) between the conditional simulations and the unconditional simulation,
averaged over the 25 stations.

Max 200-year event 50-year event
Case N=4 N=10 N=20 N=4 N=10 N=20 N=4 N=10 N=20

unconditional

4.4 (k=5) 121.0 183.6 239.5 102.6 152.7 205.9 89.1 130.8 180.0

conditional

4.1 (k=5); circ1.20 117.1 167.0 225.6 99.5 142.5 191.9 85.5 121.9 167.4
4.1 (k=5); circ2.5 120.4 171.1 228.1 101.2 143.2 193.2 85.9 123.1 168.2

avg. relative differences (%)
4.1 (k=5); circ1.20 -1.8 -7.8 -4.9 -2.0 -5.7 -6.2 -3.3 -5.9 -6.3
4.1 (k=5); circ2.5 1.1 -5.8 -3.9 -0.3 -4.9 -5.2 -2.6 -5.1 -5.8
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4 Discussion and conclusions

It was demonstrated that nearest-neighbour resampling is a useful method for the simulation
of daily circulation indices. To satisfactorily reproduce the autocorrelation, in particular that
of higher order, and the average run lengths of the circulation indices the resampling model
should be of second order. Best results are obtained with a decreasing kernel with k as
small as 5 (or even 2). The use of the oversmoothed data from the period 1961–1965 in the
resampling procedure is, as expected, reflected in the statistics of the simulated circulation
indices but it does not have any influence on the model choice.

Compared to unconditional simulation of P and T (case 4.4) conditional simulation
(case 4.1) lags behind. In the conditional simulations the daily standard deviation of T
and the lag 1 autocorrelation coefficients of P and T are underestimated somewhat stronger
than in the unconditional simulations. As a result the monthly standard deviations and
the properties of the 10-day precipitation maxima are also underestimated stronger in the
conditional simulations. In simulations conditional on simulated circulation indices instead
of historical indices, the underestimation of the extreme value properties of precipitation
increases further and becomes as large as 10%. To make long-duration conditional simu-
lations we consider such an underestimation undesirable. Several attempts to improve the
conditional simulation, in particular to improve the reproduction of the lag 1 autocorrela-
tion coefficient of P were without success. Model changes leading to small improvements
of the simulations conditional on the historical indices are without effect when applied to
simulations conditional on simulated indices. A relatively quick (and dirty) way to improve
conditional simulation could be the introduction of correlated noise to enhance the daily
standard deviations and the lag 1 autocorrelation.

The choice of the variables on which is conditioned could be questioned. Work in the
EC funded POPSICLE project suggests that the area-average MSLP could be a better
predictor for precipitation than Z (Kilsby et al. 1998). Later work in the framework of
the WRINCLE project demonstrates that atmospheric moisture is a crucial predictor for
precipitation. Further, daily averages of four 6-hourly observations seem to perform better
as predictor variables than an instantaneous observation each day as used here. A lot of
these observations are, however, not available for the first half of the 20th century, which is
essential for the present application.

In BB99 long-duration unconditional simulations were performed based on C, P and T
from the 35-year period 1961–1995. In this period the average precipitation in large parts
of the Rhine basin is 5–10% larger in comparison with observations earlier this century.
The conditional simulations in section 3.1.4 show that the median and the upper quintile
mean of the N -day precipitation maxima for the same period can be about 6% larger.
In addition, changes in the circulation have been observed (decreased vorticity; enhanced
strength of westerly flow related to the North Atlantic Oscillation) in particular in the
most recent 20 years. Structures protecting the country against flooding have a design life
of 50–100 years. Because of the observed non-stationarity of the (precipitation) climate
during a period comparable to the design life, long-duration simulations based on the short,
relatively wet, 1961–1995 period, as those presented in section 3.4, should be interpreted
with care. It would therefore be extremely useful if daily P and T values would be available
for the 25 German stations before 1961 (e.g. 1931–1960). The generation of the area-average
precipitation for all ∼ 150 subcatchments, required as input for the hydrological/hydraulic
model, needs additional research if the time series of these area-averages are shorter than
those of the point values at the individual stations.
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APPENDIX

Variability of estimated standard deviations

The standard deviations s and sm in Table 9 refer to the average of six monthly values of
these statistics for the winter half-year. Let τi be the average of s or sm at the ith site.
The average relative differences between the simulated and observed standard deviations in
Table 9 can then be written as:

∆(τ, τ∗) =
1

25

25
∑

i=1

[

τ∗
i − τi

τi

]

(A1)

where τ ∗
i is the average simulated standard deviation for the ith site (averaged over ten

simulation runs). The standard errors in the bottom line of that table refer to the standard
deviation of the average relative differences,

∆[τ, E(τ)] =
1

25

25
∑

i=1

[

τi − E(τi)

E(τi)

]

. (A2)

In order to estimate the variance of ∆[τ, E(τ)], we consider the logarithms θi = ln τi rather
than the τi values themselves. The average over the θi values over the region is denoted as
θ̄. From a first-order Taylor expansion of the τi values about their mean (Stuart and Ord
1987, p.324), it follows that:

varθ̄ ≈ var∆[τ, E(τ)] (A3)

The jackknife estimates var θ̄ by recomputing the θi values for all subsamples wherein one
year is deleted from the complete sample (Buishand and Beersma 1996; Beersma and Buis-
hand 1999).


