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Summary

This is the final report of a project on the development of a rainfall generator for the
Rhine basin. The request for this generator arose from the need to study the likelihood
of extreme river discharges in the Netherlands, using a hydrological/hydraulic model.
Long-duration, multi-site simulations of daily precipitation and temperature time series
for the entire Rhine basin are needed for this purpose. Temperature is included to
determine snow accumulation and snowmelt. Daily precipitation and temperature data
from 36 stations in Germany, Luxemburg, France and Switzerland for the period 1961-
1995 are considered. Studies in earlier reports dealt with the German part of the basin
only.

Time series simulation is done by nearest-neighbour resampling. The method does
not make restrictive assumptions about the underlying joint distribution of the multi-site
precipitation and temperature data. In order to generate weather variables for day t, a
feature vector Dt is formed to find the nearest neighbours of this day, or the previous day,
in the historical data. For unconditional simulations Dt contains variables that charac-
terize the weather on the previous day t− 1 (first order model) or a number of previous
days (higher order model). Circulation indices for day t are included in Dt in the case
of conditional simulation on the atmospheric circulation. A finite number k of nearest
neighbours in terms of a weighted Euclidean or the Mahalanobis distance is selected from
the historical record. One of these k nearest neighbours is finally “resampled” using a
discrete probability kernel.

The criteria used to assess the performance of different simulation methods are the
ability to reproduce the second-order moment statistics of daily and monthly values of
precipitation and temperature and the distribution of multi-day winter (October-March)
precipitation amounts. For the high-elevation stations in Germany and Switzerland the
snowmelt simulation is also evaluated. First-order conditional and unconditional models
for the generation of daily precipitation and temperature are considered. Conditional
simulations were done with simulated circulation indices produced by a separate second-
order resampling model.

With respect to the reproduction of the above mentioned precipitation and temper-
ature statistics unconditional simulations perform better than conditional simulations.
Inclusion of circulation indices in the feature vector for unconditional simulations wors-
ens the reproduction of the temperature statistics. Due to minor modifications in the
resampling model the second-order moment statistics of precipitation were somewhat
better preserved in the conditional simulations than in those for the German part of the
Rhine basin in earlier reports. As a result the reproduction of multi-day winter maxi-
mum precipitation also compares favourably with the conditional simulations in earlier
studies.
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For the unconditional models the reproduction of multi-day maximum snowmelt was
satisfactory despite the slight underprediction of the temperature autocorrelation. The
conditional simulations showed a significant underestimation (up to 20-30%) of the me-
dian and the upper quintile mean of multi-day snowmelt amounts at four of the six
high-elevation stations.

Realistic multi-day precipitation amounts much larger than the largest historical
precipitation amounts were generated in simulation runs of 1000 years. The largest
events in such runs are subject to large sampling variability. This variability can be
reduced by averaging over several simulation runs.

Unlike the weighted Euclidean metric the use of the Mahalanobis metric does not
require the specification of scaling weights and thus reduces the number of parameters
involved in the resampling algorithm. The results obtained in this report show that
the simulations with the Mahalanobis metric compare well to those with the weighted
Euclidean metric.



1. Introduction

1.1. Background

The Rhine is the most important river in the Netherlands. The river originates in the
Swiss Alps. Large parts of its catchment area are situated in Switzerland, Germany,
France and the Netherlands. Small parts of Austria, Belgium and almost the whole
country of Luxemburg also drain to the river. Protection against flooding is a point of
continuous concern. According to safety standards, laid down in the Flood Protection
Act, measures against flooding in the non-tidal part of the Rhine in the Netherlands have

Figure 1.1: Location of Lobith in the Netherlands and the 36 stations in the drainage
area of the river Rhine used in this study.
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to withstand a discharge that is exceeded on average once in 1250 years. Traditionally
this design discharge has been obtained from a statistical analysis of peak discharges
(data from 1901 onwards) at Lobith, where the river enters the country. Several prob-
ability distributions have been fitted to the discharge maxima of that record. The long
return period requires an extrapolation far beyond the length of the observed discharge
record. Different distributions then usually lead to quite different design discharges. The
fact that the parameters of these distributions have to be estimated from a finite sample
introduces yet another uncertainty.

In the most recent re-evaluation of the design discharge at Lobith, there was a strong
feeling that the uncertainties of extrapolation could be reduced by taking the physical
behaviour of the river basin into account [Delft Hydraulics and EAC-RAND, 1993]. For
this purpose, it was suggested to develop a hydrological/hydraulic model for the whole
basin. With such a model, it would also be possible to quantify the effects of changes
in the catchment and the river geometry and to predict the potential impact of cli-
mate change. The Institute for Inland Water Management and Waste Water Treatment
(RIZA) adopted this idea in a research plan for a new methodology to determine the de-
sign discharge [Bennekom and Parmet, 1998]. Besides the hydrological/hydraulic model,
the development of a stochastic rainfall generator was also planned in order to produce
long-duration rainfall series over the basin. Unprecedented extreme rainfall events are
expected if the simulation run is considerably longer (300-1000 years) than the observed
rainfall record. Such rainfall events in turn, may lead to more extreme river discharges
at Lobith than those experienced in the past century. The use of synthetic rainfall series
in combination with a hydrological/hydraulic model does not only provide the peak dis-
charges but also the durations of these extreme events. This may lead to a better insight
into the profile of the design flood.

1.2. Previous research

Before the project started a feasibility study had been carried out by KNMI [Buishand
and Brandsma, 1996]. Several techniques for the simulation of daily rainfall time series
were considered with respect to multi-site applications in large river basins. One possible
option was to describe the sequences of daily rainfall by a truncated multivariate first-
order autoregressive process. Truncation is necessary to avoid the generation of negative
rainfall amounts. Further, a power transformation is usually applied to achieve that
the normal distribution can be used [Bárdossy and Plate, 1992]. These modifications
complicate parameter estimation for the underlying multivariate autoregressive process.
It is also not clear whether the generation of this process from a multivariate normal
distribution is capable to reproduce the dependence of extreme values. The alternative to
parametric time-series modelling is to use a non-parametric resampling technique. Non-
parametric techniques are much more computationally intensive. Multi-site extensions
are, however, rather straightforward. Partly because of the good results of the non-
parametric nearest-neighbour resampling technique for generating weather variables of a
single site in a draft of the paper of Rajagopalan and Lall [1999], it was decided to give
priority to that approach.

In a first attempt towards the practical application of nearest-neighbour resampling
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for the Rhine basin, the joint simulation of daily precipitation and temperature at single
sites situated in the German part of the basin was investigated [Brandsma and Buishand,
1997, 1998]. The simulation of temperature is neccesary to account for the effect of snow
and frozen soils on large river discharges. Much attention was given to the conditional
simulation of the weather variables on atmospheric flow indices. This kind of simulation
is particularly relevant to study the impact of past or future changes in the atmospheric
circulation on precipitation and river discharges. The performance of nearest-neighbour
resampling was evaluated with respect to the reproduction of temperature and rainfall
autocorrelation coefficients and the N -day maximum rainfall and snowmelt distributions.
The results were encouraging enough to proceed with a multi-site extension [Brandsma
and Buishand, 1999]. Despite the emphasis on large-scale features in that extension,
the reproduction of autocorrelation coefficients and extremes at single sites remained
satisfactory. For the multi-site version it further turned out that unconditional simulation
of precipitation, temperature and circulation indices performed somewhat better than
conditional simulation of precipitation and temperature on circulation indices.

Both in the single-site and multi-site studies, a number of long-duration uncondi-
tional simulations were performed to show that much higher multi-day precipitation
amounts can be generated than ever observed in the past. For example, for one partic-
ular area in the south of Germany a 10-day precipitation maximum almost 70% larger
than the historical maximum was found in a multi-site 1000-year simulation [Brandsma
and Buishand, 1999].

Initially, simulation of daily precipitation and temperature conditional on circulation
indices was restricted to the length of the historic record of circulation indices. Several
separate stochastic models for generating these indices were then developed [Beersma
and Buishand, 1999a] to make long-duration conditional simulations possible. It was
shown that the persistence of the atmospheric circulation was quite well preserved by
the simulated indices. The performance of the precipitation and temperature simulations
conditional on these indices fell, however, behind that for the unconditional ones. At
best an underestimation of extreme value properties of precipitation of 10% could be
achieved. Attempts to surpass this shortcoming remained without success.

1.3. Scope and objectives

The present report is the final report on the development of the rainfall generator for
the river Rhine. The report deals with multi-site simulations of daily precipitation and
temperature time series for the whole Rhine basin. Besides the data from Germany used
in earlier studies, data from Luxemburgian, French and Swiss stations in the basin are
included. The main objectives of this study are to:

• perform simulations for the whole Rhine basin and to compare the results with
those for the German part

• evaluate snowmelt simulations for high Alpine stations situated in Switzerland

Three resampling models are considered: two for unconditional simulation and one
for conditional simulation. The reproduction of second-order moment statistics of tem-
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perature and precipitation and properties of extreme winter precipitation and snowmelt
is examined. Additionally, an alternative metric is introduced in the nearest-neighbour
resampling technique.



2. Data description

Daily temperature and precipitation data from 36 stations were used. The stations are
distributed all over the Rhine basin: 25 stations in Germany, 1 station in Luxemburg, 4
stations in France and 6 stations in Switzerland (see Figure 1.1). For the 35-year study
period (1961-1995) the data were provided, via the “International Commission for the
Hydrology of the Rhine Basin”, by the following institutions:

• Deutscher Wetterdienst

• Service de la météorologie et de l’hydrologie de Luxembourg

• Météo France

• Swiss Meteorological Institute

Some relevant characteristics of the above mentioned data set are displayed in Ta-
ble 2.1. Most stations in Germany, Luxemburg and France are lowland stations with
mean annual rainfall ranging from 500 to 900 mm. There are, however, two stations
in Germany, Kahler Asten and Freudenstadt, with a much larger mean annual rainfall
(≈1500 mm). This is due to orographic enhancement. The Swiss station Säntis lying at
an altitude of 2500 m is the only station which has a higher mean annual rainfall than
Kahler Asten and Freudenstadt. It is further obvious from Table 2.1 that high-elevation
stations have a relatively low mean annual temperature.

Figure 2.1 shows the annual cycle of precipitation and temperature at a number of
stations. At lowland stations the monthly mean temperature is always greater than 0oC.
Mean monthly rainfall is more or less evenly distributed over the year for stations in
the northern part of the basin. Exceptions are Kahler Asten and Freudenstadt which
have much precipitation in winter. For stations in the southern part of the basin mean
monthly rainfall in summer exceeds that in winter, which is mainly due to convection.
More details on climate characteristics of the Rhine basin can be found in CHR [1978].

Because precipitation P and temperature T depend on the atmospheric flow, three
daily circulation indices are also considered: 1) relative vorticity Z; 2) strength of the
westerly flow W and 3) strength of the southerly flow S. These circulation indices
were computed from daily mean sea-level pressure data on a regular 5o latitude and 10o

longitude grid. The derivation of the circulation indices is similar to that in Jones et al.
[1993], except that the grid was centered at the Rhine basin instead of the British Isles.
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Table 2.1: Characteristics of the stations that have been used in this study ( annual
mean values are for the period 1961-1995)

Nr Station Altitude Mean annual Mean annual

[meters above m.s.l] temperature [
o
C] precipitation [mm]

GERMANY

1 Stuttgart (Echterdingen) 373 9.0 713

2 Frankfurt 112 9.9 645

3 Kahler Asten 839 5.0 1474

4 Trier (Petrisberg) 265 9.2 783

5 Essen (Bredeney) 152 9.7 928

6 Bamberg 239 8.6 632

7 Freudenstadt 797 6.8 1691

8 Düsseldorf 37 10.4 759

9 Saarbrücken 319 9.0 867

10 Berus 363 8.9 835

11 Köln (Wahn) 92 9.9 807

12 Geisenheim 118 10.0 542

13 Koblenz (Horchheim) 85 10.6 670

14 Deuselbach 480 8.0 808

15 Freiburg 269 10.9 944

16 Giessen (Liebigshöhe) 186 9.2 655

17 Kl.Feldberg 805 5.7 998

18 Würzburg 268 9.2 601

19 Oehringen 276 9.2 833

20 Mannheim 96 10.4 664

21 Karlsruhe 112 10.4 771

22 Coburg 322 8.2 738

23 Bad Kissingen 262 8.7 735

24 Nürnberg 310 8.9 640

25 Weissenburg 422 8.3 664

LUXEMBURG

26 Luxembourg (Findel) 380 8.5 862

FRANCE

27 Colmar (Meyenheim) 220 10.0 575

28 Metz (Augny) 190 9.8 756

29 Nancy (Tomblaine, Essey) 212 9.6 752

30 Strasbourg (Entzheim) 150 10.0 612

SWITZERLAND

31 Basel (Binningen) 316 9.8 787

32 Bern (Liebefeld) 572 8.8 1030

33 Disentis 1190 6.4 1116

34 St. Gallen 779 7.8 1283

35 Davos (Dorf) 1590 3.2 1022

36 Säntis 2490 -1.7 2385
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Figure 2.1: Precipitation and temperature characteristics of eight stations (1961-1990)
together with their elevation above mean sea level. The bars and lines give the mean
monthly precipitation and mean calendar-day temperature, respectively. Additionally,
the annual mean temperature and precipitation are given.



3. Methods

3.1. Nearest-neighbour resampling

3.1.1. A historical note

Nearest-neighbour resampling was originally proposed by Young [1994] to simulate daily
minimum and maximum temperatures and precipitation. Independently, Lall and Sharma
[1996] discussed a nearest-neighbour bootstrap to generate hydrological time series. An
application of their algorithm to daily precipitation and five other weather variables was
presented in Rajagopalan and Lall [1999]. The ability of nearest-neighbour resampling
to reproduce several sample statistics, precipitation spell structure and amount, was
demonstrated. The method used for generating daily precipitation and temperature in
the Rhine basin is basically the same as that in Rajagopalan and Lall [1999]. Especially
for multi-site simulations summary statistics are needed to avoid problems with the high
dimensional data space [Buishand and Brandsma, 2000].

3.1.2. The nearest-neighbour technique

In the nearest-neighbour method weather variables like precipitation and temperature
are sampled simultaneously with replacement from the historical data. To generate
weather variables for a new day t, one first abstracts the days from the historical record
with similar characteristics as those simulated for the previous day. One of these nearest
neighbours is randomly selected and the observed values for the day subsequent to that
nearest neighbour are adopted as the simulated values for day t. A feature (or state)
vector Dt is used to find the nearest neighbours in the historical record. In Rajagopalan
and Lall [1999] Dt was formed out of the standardized weather variables generated for
day t−1. The k nearest neighbours of Dt were selected in terms of a weighted Euclidean
distance. For two q-dimensional vectors Dt and Du the latter is defined as:

δ(Dt,Du) =

(
q∑

j=1

wj (vtj − vuj)
2

) 1
2

(3.1)

where vtj and vuj are the jth components of Dt and Du respectively and the wj’s are
scaling weights. In matrix notation, equation (3.1) can be rewritten as :

δ(Dt,Du) =
(
(Dt − Du)

T
W (Dt − Du)

) 1
2

(3.2)

13
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where W is a q × q diagonal matrix with the weights wj on the main diagonal, and T
stands for the transpose of a vector or matrix.

A discrete probability distribution or kernel is required for resampling from the k
nearest neighbours. Lall and Sharma [1996] recommended a kernel that gives higher
weight to the closer neighbours. For this decreasing kernel the probability pn that the
nth closest neighbour is resampled is given by:

pn =
1/n

∑k

i=1 1/i
, n = 1, ..., k (3.3)

From the above description it is clear that apart from creating a feature vector (for a
detailed discussion see Section 3.3), the user has to set the values of the number k of
nearest neighbours and the weights wj. A sensitivity analysis in Brandsma and Buishand
[1999] showed that k = 5 usually works well. In this study we also use this value of k. A
more difficult issue is the optimal choice of the weights wj. A sensitivity analysis with
some theoretical hints (see next section) is again a way to select those parameters. It
might be very time consuming to make this selection, however, especially if the dimension
of the feature vector is high. An alternative approach is to avoid specification of the
weights at all (and thus reduce the number of free parameters involved in the resampling
algorithm) by introducing the Mahalanobis distance function [see, e.g., Kendall et al.,
1983, p.290]. This metric incorporates the weights automatically in a data-adaptive
manner.

3.1.3. Mahalanobis distance

In searching for a particular set of weights one should take the following into account :

• proper scaling in each direction of the feature space so that the feature vector
components have comparable variances

• intercorrelations between feature vector components (it is pointless to give equal
weights to variables which are highly correlated as to those which are uncorrelated)

The first point can be met by the weighted Euclidean distance by choosing the weights
wj inversly proportional to the variances of the feature vector components vtj :

wj =
1

V ar(vtj)
, j = 1, ..., q (3.4)

To meet the second point one should consider the covariance matrix of the feature vector.
A commonly used metric that directly incorporates these two points is the Mahalanobis
metric :

δMh(Dt,Du) =
(
(Dt − Du)

TB−1(Dt − Du)
) 1

2 (3.5)
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Figure 3.1: An intuitive approach to weighted Euclidean and Mahalanobis distance

where B is the covariance matrix of the feature vector Dt. The elements of this matrix
are the covariances between the components of Dt:

Bij = Cov(vti, vtj) , i, j = 1, ..., q (3.6)

To build an intuition of what the difference is between the Mahalanobis metric and the
weighted Euclidean metric let us consider a simple example. Figure 3.1 shows points in
a two-dimensional plane. Points for which the distance to point A equals δ(A,B) in the
weighted Euclidean metric, lie on the red ellipse. The axes of this ellipse are aligned
parallel to the coordinate axes and their lengths are inversly proportional to the square
root of the weights w1 and w2. The situation is different for the Mahalanobis distance.
Points for which the distance to point A equals δMh(A,B) in the Mahalanobis metric
lie on the blue ellipse. The axes of the blue ellipse are not necceserily parallel to the
coordinate axes and their lengths are proportional to the square root of the eigenvalues
λ1 and λ2 of the matrix B. So in comparison to the weighted Euclidean metric one has
an extra possibility of rotating the “equidistance” ellipse. The angle of this rotation is
determined by the correlation coefficient between the variables (yellow squares represent
the values of x and y) in the feature space and the ratio of their standard deviations.

3.2. Standardization procedure

Before resampling the data were deseasonalized through standardization. The daily tem-
peratures and circulation indices were standardized by subtracting an estimate md of the
mean and dividing by an estimate sd of the standard deviation for the calendar day d of
interest:
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x̃t = (xt − md) /sd, t = 1, ..., 365J ; d = (t − 1) mod 365 + 1 (3.7)

where xt and x̃t are the original and standardized variables, respectively, for day t, and
J is the total number of years in the record. The estimates md and sd were obtained
by smoothing the sample mean and standard deviation of the successive calendar days
using the Nadaraya-Watson smoother [for more details see, e.g., Hastie and Tibshirani,
1990, p.19]. The smoothed statistic g(d) for day d is given by:

g(d) =

∑d+σ

τ=d−σ κ(d−τ
σ

)zτ∑d+σ

τ=d−σ κ(d−τ
σ

)
, d = 1, ..., 365 (3.8)

where zτ is the raw value of the statistic for calendar day τ, κ(·) is the kernel function
and σ is the bandwidth1. In this study the Epanechnikov kernel was applied:

κ(a) =

{
3
4
(1 − a2) , for |a| ≤ 1
0 otherwise

(3.9)

with a bandwidth σ = 30 days for temperature and circulation indices and σ = 45 days
for precipitation.

Daily precipitation was standardized by dividing by a smooth estimate md,wet of the
mean wet-day precipitation amount:

x̃t = xt/md,wet, t = 1, ..., 365J ; d = (t − 1) mod 365 + 1 (3.10)

A wet day was defined here as a day with P ≥ 0.1 mm.
Figure 3.2 shows examples of seasonal variation. Values of md and sd for Z,W, S

and T and md,wet for P are presented together with their smoothed approximations (P
and T refer to Bern). Due to sampling effects there are large day-to-day fluctuations in
the statistics presented in Fig. 3.2. The largest standard deviations of the flow indices
are found in winter. The mean westerly flow is also relatively large in that season. The
largest mean wet-day precipitation amounts are found in summer, which is due to the
influence of convection (summer showers). The annual cycle is here stronger than that
of the monthly mean precipitation amounts in Fig. 2.1.

To reduce the effect of seasonal variation further, the search for nearest neighbours
was restricted to days within a moving window, centered on the calendar day of interest.
The width of this window (Wmw) was 61 days as in Brandsma and Buishand [1999] for
rainfall and temperature simulations and 121 days as in Beersma and Buishand [1999a]
for simulations of circulation indices.

1To apply equation (3.8) the values zτ for τ = 365 − σ, ..., 365 were inserted for τ = 1 − σ, ..., 0 and
the values zτ for τ = 1, ..., σ were inserted for τ = 366, ..., 365 + σ.
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Figure 3.2: Values of md and sd for vorticity (Z), westerly flow (W ), southerly flow
(S), temperature (T ) and md,wet for precipitation (P ) together with their smoothed
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3.3. Model identification

3.3.1. The feature vector

Daily P and T observations were available for the 36 stations listed in Table 2.1. Because
of their rather extreme weather characteristics, the two Swiss mountain stations Davos
and Säntis are not included in the feature vector. It is, however, still possible to simulate
values for these stations passively (see Section 3.4).

To keep the dimension of the feature vector low, a small number of summary statistics
was calculated for the remaining 34 stations. Both for P and T the arithmetic mean
of the standardized daily values was used. In addition, the fraction F of stations with
P ≥ 0.1 mm was considered. F helps to distinguish between large-scale and convective
precipitation. To keep the notation compact, the above components of the feature vector
will be referred to as a sub-vector V = [P̃ , F, T̃ ]T where the tilde indicates standardized
values. In some cases, the feature vector also contains the standardized circulation indices
C̃ = [Z̃, W̃ , S̃]T .

3.3.2. The test cases

Basically two different kinds of simulations can be distinguished: unconditional simula-
tions and conditional simulations on the atmospheric flow indices. In the unconditional
simulation of Young [1994] and Rajagopalan and Lall [1999] the feature vector Dt com-
prises generated variables for the previous day as shown in Fig. 3.3 (cases 1 and 2).

Figure 3.3: Components of the feature vector (solid boxes) for unconditional simulations
1), 2) and conditional simulation 3). The dashed boxes relate to variables to be resam-
pled. The asterisks indicate that the corresponding variables are resampled values of the
previous time steps.
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Table 3.1: Definition of models for unconditional and conditional simulation The weights
for the circulation (printed in bold) apply to all three components of C̃. P̃ and T̃ denote
respectively the standardized precipitation and standardized temperature averaged over
34 stations, and F denotes the fraction of these stations with P ≥ 0.1 mm. An asterisk
indicates that a value was resampled in a previous time step.

Case elements of Dt weights

unconditional

UE P̃ ∗

t−1, F
∗

t−1, T̃
∗

t−1 2, 4, 1
UM as case UE but with the Mahalanobis distance –

UEc C̃∗

t−1, P̃
∗

t−1, F
∗

t−1, T̃
∗

t−1 1,3, 5, 2
UMc as case UEc but with the Mahalanobis distance –
conditional

CE C̃t, P̃
∗

t−1, F
∗

t−1, T̃
∗

t−1 1,3, 5, 2
CM as case CE but with the Mahalanobis distance –
CMs as case CM but with the Mahalanobis distance –

computed using the splitted covariance matrix

For the simulation of circulation indices Beersma and Buishand [1999a] also studied the
inclusion of the simulated indices for two or three previous days in the feature vector.
These resampling schemes are indicated as second-order and third-order models, respec-
tively (see lower panel of case 3 in Fig. 3.3). Conditional simulation on the atmospheric
flow requires that the circulation indices for day t are included in the feature vector as
schematically represented in the upper panel of case 3 in Fig. 3.3. Nearest-neighbour
resampling is then closely related to the analogue method used in climate change studies
[Zorita and von Storch, 1999].

The resampling models for precipitation and temperature in this paper resemble those
in Brandsma and Buishand [1999] for the German part of the basin. The differences in
the model architecture originate from the composition of the feature vector, the choice of
the scaling weights and the distance function used. Additionally, all conditional models
are based on simulated circulation indices obtained with the second-order model (circ2.5)
described in Beersma and Buishand [1999a]. The details of various cases are given in
Table 3.1. In simulations which incorporated the Mahalanobis distance, the covariance
matrix B was estimated locally, i.e., using only the values of the standardized weather
variables lying within the moving data window. So, instead of having one global B

matrix we computed 365 matrices to take the seasonal variation in the covariances into
account. Moreover, in the conditional model CMs the Mahalanobis distance was applied
with a new twist. Rather than using the full covariance matrix we only considered its
two minors:

B(1) = Cov[C̃] (3.11)

B(2) = Cov[V] (3.12)

Observing that for model CMs Dt = [C̃t,V
∗

t−1]
T and Du = [C̃u,Vu−1]

T , the modified
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Mahalanobis distance is given by the following expression:

δMh(Dt,Du) =
(
(C̃t − C̃u)

TB−1
(1)(C̃t − C̃u) + (V∗

t−1 − Vu−1)
TB−1

(2)(V
∗

t−1 − Vu−1)
) 1

2

(3.13)

The reason for this is that in conditional resampling the circulation indices are fed into
the model from an external source (in this study the second-order model for the indices).

On the other hand, the matrix B describes the covariance between C̃ and V within the
historical record. The use of this covariance in the Mahalanobis distance is questionable,
since the feature vector contains combinations of C̃ and V that are generally not found
in the historical record. Equation (3.13) therefore neglects the covariance between C̃

and V.

3.4. Resampling algorithm

To complete the discussion about nearest-neighbour resampling, the scheme for uncon-
ditional simulation of a multi-site precipitation and temperature record of J ∗ years is
listed below:

1. Calculate raw values of md, sd and md,wet statistics and smooth them using (3.8).

2. Standardize P and T data using (3.7) and (3.10) respectively.

3. Calculate the fraction F of “wet” stations and spatial averages of standardized P
and T data.

4a. Choose one of the following distance functions:

• weighted Euclidean metric (3.2)

• Mahalanobis metric (3.5)

4b. Choose k and Wmw.

5. Generate data for t = 1, e.g. by randomly sampling a day within the window for
the 1st of January.

6. Repeat steps 7-9 for t = 2, 3, ..., 365J ∗.

7. Create a feature vector Dt from :

• the fraction F of wet stations and spatial averages of standardized P and T
data generated for day t − 1 (cases UE and UM in Table 3.1), or

• the fraction F of wet stations, spatial averages of standardized P and T data
and circulation indices generated for day t − 1 (cases UEc and UMc in Table
3.1).
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8. Determine the k nearest neighbours of Dt within the window for day t − 1, using
the distance function from step 4a.

9. Sample one of the k nearest neighbours using the decreasing kernel (3.3) and deliver
the values of the historical successor to the selected nearest neighbour as the values
for day t.

10. Backtransform the resampled standardized variables to their original scale using
the inverse of (3.7) and (3.10).

The algorithm above describes only unconditional simulation. For the conditional
simulation on the atmospheric flow the following adjustments apply:

• In step 4a the Mahalanobis metric with the splitted covariance matrix may be
considered as an additional option.

• The feature vector Dt in step 7 is created from the fraction F of wet stations and
spatial averages of standardized P and T data generated for day t − 1 and the
observed or simulated (by another model) circulation indices for day t (cases CE,
CM and CMs in Table 3.1).

• Sampling in step 5 should be restricted to days with circulation similar to that for
t = 1.

• The nearest neighbour selected in step 9 straightforwardly provides (no successors
needed) the P and T values for day t.

It should finally be noted that the values delivered in step 9 may include data from
stations that were not used in the feature vector (Davos and Säntis) or area-average
precipitation over subcatchments for the selected day. Henceforth the simulation of such
additional data is designated as passive simulation. Daily area-average precipitation data
for 230 subcatchments in Germany were passively generated in Brandsma and Buishand
[1999] to compare the space-time patterns of simulated and historical extreme 10-day
precipitation events.



4. Results

4.1. Reproduction of standard deviations and autocorrelation

Extreme river discharges in the lower part of the Rhine basin are mostly caused by
prolonged heavy rainfall in winter. The reproduction of the standard deviation and au-
tocorrelation coefficients was therefore only studied for the winter half-year (October -
March). To reduce the influence of the annual cycle these second-order moment statis-
tics were first calculated for each calendar month separately. The estimates were then
averaged over the six calendar months October,...,March:

sDi =
1

6

6∑

k=1

sDi,k , i = 1, ..., 34 (4.1)

ri(l) =
1

6

6∑

k=1

ri,k(l) , l = 1, 2; i = 1, ..., 34 (4.2)

where sDi,k and ri,k(l) are the sample standard deviation of the daily values and lag l
autocorrelation coefficient of the daily values respectively, calculated for the ith station
and the kth calendar month (k = 1 corresponds to October). Besides, the reproduction
of the standard deviations of the monthly values was considered as an additional perfor-
mance measure. These were also averaged over the winter half-year:

sMi =
1

6

6∑

k=1

sMi,k , i = 1, ..., 34 (4.3)

where sMi,k is the sample standard deviation of the monthly values for the ith station
and the kth calendar month. The reproduction of the monthly standard deviations
depends on that of the daily standard deviations and the autocorrelation coefficients. In
particular, the monthly standard deviation tends to be too small if the autocorrelation
coefficients decrease too rapidly with increasing lag. The statistics in (4.1),(4.2) and
(4.3) were further averaged over all stations (except Davos and Säntis) to obtain the
values 〈sD〉 , 〈r(l)〉 and 〈sM〉 respectively.

Twenty-eight runs of 35 years were generated to investigate the performance of the
resampling procedure. The standard deviations and autocorrelation coefficients were
first estimated for each simulation run separately and then averaged over the 28 runs.

22
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Table 4.1: Percentage differences between the mean standard deviations of monthly
and daily values, and absolute differences between the mean lag 1,2 autocorrelation
coefficients of daily values in the simulated time series (twenty-eight runs of 35 years for
each case) and the historical records (1961-1995), averaged over 34 stations. In the lower
part of the table the estimates for the historical data are listed (standard deviations
of precipitation are in mm and those of temperature in oC) . Values in bold refer to
differences more than 2 × se from the estimate for the historical data. Note that cases
2, 18 and 4.1(circ2.5) relate to the German part of the Rhine basin only.

〈∆sM〉 〈∆sD〉 〈∆r(1)〉 〈∆r(2)〉
Case P T P T P T P T

UE 0.3 -1.1 0.2 0.2 -0.019 -0.032 -0.001 0.006

2
1

-2.3 -4.2 -0.3 -0.5 -0.017 -0.030 -0.007 0.002

UM -0.9 -2.5 0.2 -0.5 -0.020 -0.035 -0.005 0.000

UEc -1.7 -8.2 -1.2 -1.9 -0.018 -0.036 0.001 -0.020

18
1

-3.6 -11.4 -1.2 -2.8 -0.017 -0.035 0.004 -0.020

UMc -0.6 -13.8 -0.6 -3.5 -0.016 -0.054 -0.003 -0.045

CE -6.4 -18.8 -2.3 -7.0 -0.052 -0.087 -0.022 -0.050

4.1(circ 2.5)
2

-10.9 -25.4 -3.8 -7.7 -0.060 -0.096 -0.038 -0.069

CM -9.1 -27.7 -2.1 -9.2 -0.068 -0.134 -0.037 -0.115

CMs -8.9 -24.2 -2.4 -8.1 -0.063 -0.110 -0.031 -0.086

Historical 35.7 2.1 4.2 4.2 0.283 0.826 0.144 0.639

se 4.53 6.16 2.45 2.49 0.008 0.007 0.009 0.015

1
simulations from Buishand and Brandsma (2000)

2
from simulations in Beersma and Buishand (1999a)

Afterwards, these average estimates sD
∗

i , sM
∗

i , r∗i (l) were compared with the estimates
sDi, sMi, ri(l) for the historical data using:

〈∆sD〉 =
1

34

34∑

i=1

(sD
∗

i − sDi)

sDi

100% (4.4)

〈∆sM〉 =
1

34

34∑

i=1

(sM
∗

i − sMi)

sMi

100% (4.5)

〈∆r(l)〉 =
1

34

34∑

i=1

(r∗i (l) − ri(l)) (4.6)

In order to evaluate the statistical significance of 〈∆sD〉 , 〈∆sM〉 and 〈∆r(l)〉 standard
errors se were calculated for the historical record. The standard error of the mean lag l
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autocorrelation estimate 〈r(l)〉 was obtained by the jackknife method in Buishand and
Beersma [1993]. Likewise, the jackknife procedures in Buishand and Beersma [1996]
and Beersma and Buishand [1999b] were used to compute the standard errors of 〈sD〉
and 〈sM〉 respectively. A criterion of 2 × se was used to indicate significant differences
between the historical and simulated values. This corresponds to a two-sided test at 5%
level [Brandsma and Buishand, 1998].

Table 4.1 presents 〈∆sM〉 , 〈∆sD〉 and 〈∆r(l)〉 for the models defined in Table 3.1. To
make a comparison with the earlier unconditional simulations for the German part of the
Rhine basin, the results for the cases 2 and 18 in Buishand and Brandsma [2000] are also
listed in Table 4.1. These cases are similar1 to UE and UEc respectively. Analogously,
conditional simulations performed in the present report can be compared2 with the
results of model 4.1(circ2.5) for the German part of the Rhine basin in Beersma and
Buishand [1999a].

For the unconditional models which incorporate only the large-scale features of the
P and T fields Table 4.1 shows that the precipitation statistics are well reproduced. A
slight, but statistically significant, bias is present in the lag 1 autocorrelation coefficient.
The performance of model UE is more or less the same as that of model 2 in Buishand
and Brandsma [2000]. The largest differences are found for the standard deviations of
monthly temperatures. Model UM with Mahalanobis metric performs equally well as its
twinning case UE. Incorporation of the circulation indices into the feature vector (cases
UEc, UMc and 18) generally worsens the reproduction of daily temperature statistics
in particular if the Mahalanobis metric (UMc) is used. The results for precipitation
are, however, similar to those obtained in the unconditional models without circulation
indices. This insensitivity of the quality of the reproduction of precipitation statistics
to the inclusion of the circulation indices is in line with the results in Buishand and
Brandsma [2000].

Conditional resampling of P and T on simulated circulation indices (cases CE, CM,
CMs) lags behind. In Beersma and Buishand [1999a] it was also shown that this oc-
curs for conditional simulations on historical circulation indices. All statistics of daily
and monthly temperatures and the lag 1 and 2 autocorrelation coefficients for precip-
itation are significantly underestimated. In general, the quality of the reproduction of
〈sM〉 , 〈r(1)〉 , 〈r(2)〉 for T is similar to that obtained from the conditional simulation
4.1(circ2.5) in Beersma and Buishand [1999a]. Model CM with the “classical” Ma-
halanobis distance shows the strongest underestimation of the standard deviations of
monthly and daily temperatures. The reproduction of these statistics is improved us-
ing the splitted covariance matrix (see Section 3.3.2) in the Mahalanobis distance. The
resulting model CMs performs still poorer than model CE with the weighted Euclidean
distance. The second-order moment statistics of daily precipitation are better repro-

1The similarity refers to the feature vector composition and the choice of the number k of nearest
neighbours. In Buishand and Brandsma (2000) twenty-five runs of 35-years were conducted instead of
28 runs. Moreover, the fraction F of wet stations in the feature vector was based on a wet-day threshold
of 0.3 mm instead of 0.1 mm.

2Note that in Beersma and Buishand [1999a] ten runs of 35-years were performed, and the fraction
F of wet stations in the feature vector had a relatively low weight. Moreover, F was based on a wet-day
threshold of 0.3 mm instead of 0.1 mm.
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duced by the conditional model CE than by model 4.1(circ2.5) for the German part of
the Rhine basin in Beersma and Buishand [1999a]. The improvement is due to the use
of a higher weight of the fraction F of wet stations (this reduces the bias in the lag 2
autocorrelation coefficient) and the use of a lower threshold for the definition of wet days
(this reduces the bias in the daily standard deviation) in the present study.

4.2. Reproduction of N -day winter maximum precipitation amounts

For the 34 stations, the N -day (N = 1, 4, 10, 20) winter (October-March) precipitation
amounts were abstracted from the historical record and all simulated cases. Like in
previous studies for the German part of the basin, the following three quantities are
considered to verify the reproduction of the N -day winter maxima distributions:

1. The maximum MAX of the N -day winter maxima (highest N -day precipitation
amount in the record).

2. The upper quintile mean QM5 of the N -day winter maxima.

3. The median M of the N -day winter maxima.

QM5 refers to the mean of the data beyond the highest quintile (upper 20%). Because
taking 20% of the 34 winters in our 35-year record does not result in a whole number, we

Table 4.2: Percentage differences between the maxima (MAX), upper quintile means
(QM5) and medians (M) of the N -day winter (October-March) precipitation maxima in
the simulated data (twenty-eight 35-year runs for each case) and the historical records
(1961-1995), averaged over 34 stations. In the lower part of the table the estimates for
the historical data are listed. Note that cases 2, 18 and 4.1(circ2.5) are related to the
German part of the Rhine basin only.

MAX (%) QM5 (%) M (%)

Case N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20

UE -3.4 -1.8 -1.4 -0.4 0.6 -1.0 -0.6 0.2 -1.3 -2.1 -0.2 -1.7

2
1

-4.9 -1.5 0.1 -2.9 -1.0 -1.3 -0.6 -0.1 -3.0 -3.1 -1.3 -1.4

UM -4.0 -0.8 -0.9 -0.8 -0.2 -1.0 -1.0 -0.4 -1.8 -2.7 -0.7 -1.5

UEc -5.6 -3.1 -0.9 -0.7 -2.3 -3.7 -2.0 -0.6 -2.8 -3.3 -1.9 -2.6

18
1

-7.8 -5.1 -3.3 -4.5 -3.8 -3.9 -2.8 -1.9 -4.3 -3.5 -1.5 -2.0

UMc -5.6 -2.1 -0.4 0.2 -1.5 -2.0 -1.4 0.1 -2.8 -2.6 -1.3 -2.2

CE -7.4 -5.1 -5.5 -6.6 -3.5 -5.7 -5.3 -5.0 -4.0 -6.4 -4.5 -5.4

4.1(circ 2.5)
2

-9.1 -7.1 -6.9 -8.4 -5.5 -7.2 -7.9 -8.2 -5.9 -8.0 -7.2 -7.7

CM -7.3 -6.4 -8.2 -6.3 -3.4 -6.6 -7.3 -5.8 -3.5 -7.5 -6.9 -6.9

CMs -6.4 -5.9 -6.7 -5.6 -2.9 -6.5 -6.9 -5.4 -3.5 -6.8 -6.1 -6.4

Historical [mm] 56.6 95.7 138.5 189.4 42.7 76.7 111.1 152.6 27.2 51.1 75.2 106.9

1
from simulations in Buishand and Brandsma (2000)

2
from simulations in Beersma and Buishand (1999a)
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obtained QM5 as the average of the mean of the 7 largest winter maxima (with weight
0.8) and the mean of the 6 largest winter maxima (with weight 0.2). This procedure
gives almost identical results as that followed in the UK Flood Studies Report [NERC,
1975] to derive the quartile means of annual maxima as summary statistics.

Analogous to equations (4.4) and (4.5), we calculated for each of the three quanti-
ties the percentage differences between the values for the simulated and historical data
averaged over all stations. Table 4.2 presents the results for the cases discussed in the
previous section. The unconditional model UE, which did not use circulation indices in
the search for the nearest neighbours, reproduces the extreme-value statistics virtually
as well as the corresponding model 2 for the German part of the Rhine basin. Model UM
with Mahalanobis metric performs equally well. Furthermore, in line with the results
from the previous section, the quality of the reproduction of the extreme-value properties
of precipitation remains more or less the same if circulation indices are included in the
feature vector. Especially, cases UEc and UMc give results comparable to cases UE and
UM. Model 18 from Buishand and Brandsma [2000] shows, however, a somewhat larger
underprediction of the maximum and the upper quintile mean.

Conditioning the resampling procedure on circulation indices (cases CE, CM ,CMs),
results in a bit larger underestimation of the extreme-value statistics than in the un-
conditional cases. This is in agreement with the poorer reproduction of second-order
moment statistics for conditional simulations as observed in Table 4.1. It may further
be noted that the results obtained with model CE are slightly better than those for the
two conditional models CM and CMs using the Mahalanobis distance. Model CE also
performs better than model 4.1(circ2.5) for the German part of the Rhine basin, which
is in line with the results for the second-order moment statistics in the previous section.

4.3. Reproduction of N -day maximum snowmelt amounts

Snowmelt generally, contributes to extreme river discharges in the lower part of the
Rhine basin. It is, however, only for the highest stations Kahler Asten, Freudenstadt, Kl.
Feldberg , Disentis, Davos and Säntis in this study that a considerable part of the winter
precipitation falls in the form of snow. For these six stations the reproduction of extreme-
value properties of N -day snowmelt has been analyzed. The results for Kahler Asten,
Freudenstadt and Kl. Feldberg are compared with those in Brandsma and Buishand
[1999]3 and Buishand and Brandsma [2000].

Historical estimates and simulated values of snowmelt were derived from the historical
and generated daily precipitation and temperature4, respectively. It was assumed that
precipitation accumulates on the ground as snow if T < 0 oC and that the melt on
days with T > 0 oC is proportional to T as long as there is snow on the ground. The
constant of proportionality (degree-day-factor) was set equal to 4 mm/oC which is an
average value from the literature [Linsey et al., 1988, Gray and Prowse, 1993]. The
N -day winter maxima (N=1, 4, 10 or 20) were abstracted from the calculated snowmelt

3Only the simulations for Kahler Asten and Freudenstadt are compared with the simulations in this
report.

4For Davos and Säntis precipitation and temperature time series were simulated passively (see Section
3.4).
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Table 4.3: Percentage differences between the maxima (MAX), upper quintile means
(QM5) and medians (M) of the N -day snowmelt extremes for the simulated data (28
runs of 35 years for each case) and the historical records (1961-1995) for six stations in
the Rhine basin. In the lower part of the table the values of MAX, QM5 and M for the
historical data are listed.

MAX (%) QM5 (%) M (%)

Station N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20 N=1 N=4 N=10 N=20

UE

Kahler Asten -15.5 -15.7 -12.1 3.1 6.4 8.6 2.6 5.6 15.9 12.3 20.7 3.6

Freudenstadt 5.1 1.5 -10.0 5.4 4.8 -2.8 -11.2 -5.8 8.7 -0.6 -6.7 -6.6

Kl. Feldberg -1.1 -0.4 5.6 -10.5 6.1 -3.0 -1.7 -12.5 11.2 6.6 -6.5 -3.4

Disentis 17.2 10.9 -13.6 -1.8 13.8 -4.7 -7.0 -6.0 5.9 -1.6 -7.6 -10.7

Davos 24.5 5.9 -6.7 -18.2 20.0 4.2 -4.8 1.1 14.3 13.3 11.0 0.9

Säntis -0.8 4.4 1.1 -8.7 2.1 -3.2 -13.6 -12.0 6.1 -9.7 -0.5 5.2

UEc

Kahler Asten -13.9 -14.5 -12.8 0.4 6.9 8.3 2.8 3.8 15.1 14.3 20.3 5.2

Freudenstadt 7.3 6.0 -6.4 14.3 4.1 -2.1 -10.5 -4.0 5.6 -2.3 -8.8 -9.0

Kl. Feldberg 1.4 4.1 2.2 -10.8 8.6 -2.5 -6.0 -15.0 8.9 3.7 -11.0 -7.4

Disentis 19.1 14.7 -3.4 6.9 12.7 -1.6 -3.3 -1.8 3.3 -1.2 -8.6 -10.1

Davos 22.0 8.1 -4.9 -17.6 18.5 7.4 -3.7 2.0 11.4 12.7 14.5 2.4

Säntis -0.4 7.8 -5.8 -24.1 1.8 -4.1 -16.2 -18.2 4.3 -9.6 -1.9 0.9

CE

Kahler Asten -16.4 -20.9 -20.9 -8.5 3.4 0.0 -7.3 -6.5 12.9 3.9 9.2 -2.8

Freudenstadt 1.6 -11.3 -31.6 -18.5 -1.4 -18.7 -30.2 -24.6 0.2 -15.8 -22.5 -21.0

Kl. Feldberg -4.0 -14.0 -18.4 -34.1 0.9 -17.0 -22.3 -30.8 4.2 -11.1 -23.0 -18.3

Disentis 13.1 -8.1 -34.2 -24.9 7.7 -19.0 -25.2 -23.6 -2.4 -17.7 -23.0 -24.0

Davos 20.9 1.7 -15.1 -24.7 16.0 -1.9 -12.8 -6.9 13.3 8.5 8.7 0.0

Säntis -6.6 -11.2 -22.0 -36.2 -3.3 -17.9 -29.2 -30.1 3.7 -19.5 -11.7 -5.8

Historical [mm]

Kahler Asten 51.2 164.0 287.2 314.0 35.1 104.8 184.6 236.2 22.9 62.0 86.6 134.6

Freudenstadt 42.4 126.8 234.7 243.1 36.4 108.2 180.4 212.3 24.8 64.0 93.7 118.7

Kl. Feldberg 38.0 105.9 151.6 212.2 29.8 85.7 121.7 165.1 20.0 46.6 71.3 86.1

Disentis 29.2 87.0 171.8 191.4 26.3 79.3 119.1 149.0 20.4 47.4 67.8 87.6

Davos 26.9 85.6 176.4 285.9 22.7 71.6 137.8 180.8 16.6 41.0 63.6 98.6

Säntis 40.0 109.6 198.0 326.0 32.8 90.9 157.0 211.5 20.6 50.9 63.9 79.2
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amounts. As in the previous section, the statistics MAX,QM5 and M of these extremes
were used to assess the reproduction of N -day maximum snowmelt in the simulated data.

Analogous to Table 4.2, Table 4.3 presents the average percentage differences between
the values of MAX,QM5 and M for 28 simulation runs and the values of these statistics
for the historical data of the six stations of interest. For Kahler Asten, Freudenstadt and
Kl. Feldberg the results obtained with model UE are very similar to those of model 2 for
the German part of the Rhine basin in Buishand and Brandsma [2000]. The extremes are
satisfactorily reproduced by model UE. The largest discrepancies are found for Kahler
Asten and Davos (overestimation of the median of the 1, 4 and 10-day maxima).

On comparing the results of the unconditional experiment UEc with case 4.4 in
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Figure 4.1: Boxplots of the percentage differences between the maxima, upper quintile
means and medians of the N -day winter (October-March) snowmelt maxima for the
simulated data and the historical records (1961-1995), for two mountain stations in
Switzerland. A box represents a sample of twenty-eight runs of 35 years. The lower and
upper lines of the box identify the 25th and 75th percentiles of the sample. The line in
the middle of the box is the sample median. The “whiskers” at either end extend to the
extreme values, i.e., the minimum and the maximum of the sample.
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Brandsma and Buishand [1999] the reproduction of the median and upper quintile mean
of the calculated multi-day maximum snowmelt for Freudenstadt is much improved. As
in case UE the medians of the 1,4 and 10-day maxima remain overestimated for Kahler
Asten and Davos.

Conditional simulation (case CE) exhibits, for most stations, a relatively large under-
prediction of the extreme-value properties of 10 and 20-day snowmelt. This phenomenon
can partly be explained by the considerable negative bias in the daily temperature au-
tocorrelation coefficients, which reduces the likelihood that snow accumulates over long
periods and thus the probability of extreme multi-day snowmelt.

Figure 4.1 shows boxplots of the percentage differences for Disentis and Säntis. The
extreme-value characteristics are rather well reproduced in experiment UE. The repro-
duction of these characteristics turns out to be less successful in the conditional case CE.
In almost all simulations in that experiment, the upper quintile mean QM5 of the calcu-
lated multi-day maximum snowmelt is lower than the values derived from the historical
data (for Disentis this holds also for the median M).

The historical winter snowmelt maxima at the Swiss stations are not higher than
those at Kahler Asten and Freudenstadt. In particular for Säntis there is, however, a
lot of snowmelt outside the winter period. For example, the maximum (MAX) 10-day
snowmelt amount calculated for the whole year at this station is as high as 444.8 mm,
while for the winter period it is only 198.0 mm.

In comparison to the models with the weighted Euclidean metric discussed above,
the quality of the reproduction of the statistics of N -day snowmelt extremes turns out
to be more or less the same for the models with the Mahalanobis metric. This is a
somewhat surprising result, taking into account that for conditional simulations with
the Mahalanobis metric relatively large negative biases in the second-order moment
statistics for temperature were found (Table 4.1).

4.4. Long-duration simulations

A number of 1000-year conditional and unconditional simulations were performed. For
three of these simulations Figure 4.2 shows Gumbel plots of the 10-day winter precipita-
tion maxima for five stations and the average of the 34 stations used in the feature vector.
The reason why the 10-day winter precipitation maxima for observed and simulated data
were chosen here is that large river discharges at Lobith in the past were often the re-
sult of extensive precipitation over a period of about ten days. There is a reasonable
correspondence between the historical and simulated distributions. The figure clearly
shows the underestimation of the extreme-value properties for the conditional model
CE, discussed in Section 4.2. Furthermore, in all cases displayed in Fig. 4.2, a large
part of the curve for the conditional 1000-year simulation lies below the curves for the
unconditional 1000-year simulations. Realistic multi-day precipitation much larger than
the largest historical precipitation amounts are generated in all simulation experiments
shown in Fig. 4.2.

Table 4.4 presents some properties of the N -day winter maxima. The results for mod-
els with the Mahalanobis metric are comparable to those with the weighted Euclidean
metric. For both models the extreme-value statistics in the conditional simulations tend
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Figure 4.2: Gumbel plots of 10-day winter precipitation maxima for observed and sim-
ulated data (runs of 1000 years)
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Table 4.4: The largest value (MAX), the 200-year and 50-year events1 of N -day winter
(October-March) precipitation [mm] in 1000-year simulations, averaged over 34 stations.
The bottom part of the table gives the relative differences between some of the conditional
and unconditional simulations, averaged over 34 stations

MAX 200-year event 50-year event

Case N=4 N=10 N=20 N=4 N=10 N=20 N=4 N=10 N=20

UE 121.6 180.7 241.5 106.1 153.2 210.0 92.6 132.4 181.0

UM 129.1 184.0 242.2 107.3 156.4 211.5 92.8 133.4 182.1

UEc 122.2 191.1 252.8 105.1 156.8 210.2 90.7 132.1 181.1

UMc 124.0 187.2 249.0 106.2 153.6 207.1 92.1 133.1 182.7

CE 122.7 177.4 225.7 102.0 145.1 192.5 87.6 125.8 170.0

CM 120.5 166.9 233.3 101.8 142.4 194.8 87.0 123.0 170.5

CMs 130.4 169.3 235.2 102.2 144.4 196.7 87.3 124.4 171.1

Avg. relative differences [%]

CE vs. UEc 0.9 -10.6 -11.0 -2.4 -6.7 -7.5 -2.6 -4.1 -5.6

CM vs. UMc -2.1 -10.3 -5.6 -3.7 -6.7 -6.2 -4.6 -6.9 -6.4

1
For the 200-year and 50-year events, respectively the 5th and the 20th highest values out of 999 simulated winters were used.

to be smaller than those in the unconditional simulations. The average relative dif-
ferences given in the bottom part of Table 4.4 are, however, quite uncertain because
they are based on only one simulation run. To demonstrate this uncertainty, five ad-
ditional 1000-year simulations were performed with the conditional model CE and the
unconditional model UEc. The results of these simulations are displayed in Table 4.5.
Especially for MAX they are quite different from those in the bottom part of Table 4.4.
The uncertainty can be reduced by taking the average (or the median) of the relative
differences from the five simulation runs. The relative differences between conditional

Table 4.5: The relative differences between the conditional simulation CE and uncon-
ditional simulation UEc, averaged over 34 stations (results of five runs of 1000 years
each).

MAX 200-year event 50-year event

N=4 N=10 N=20 N=4 N=10 N=20 N=4 N=10 N=20

CE vs. UEc Avg. relative differences [%]

run nr 1 4.1 1.4 -1.2 1.0 -2.4 -1.5 -2.0 -1.3 -2.0

run nr 2 5.4 -2.4 -4.1 1.0 -3.0 -4.0 -1.8 -3.0 -3.8

run nr 3 3.4 0.7 -2.5 1.1 -2.4 -2.1 -2.6 -2.3 -1.0

run nr 4 3.2 0.6 -6.2 1.4 -2.1 -5.3 -1.3 -2.5 –3.8

run nr 5 -2.1 -4.4 -1.6 -1.3 -2.7 -2.4 -3.1 -3.3 -3.4

Average 2.8 -0.8 -3.1 0.6 -2.5 -3.1 -2.1 -2.5 -2.8

Median 3.4 0.6 -2.5 1.0 -2.4 -2.4 -2.0 -2.5 -3.4
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and unconditional simulations do not increase with increasing return period in Table 4.5.
Another noticeable point in that table is that the 4-day precipitation amounts at long
return periods for the conditional model exceed those for the unconditional one.



5. Conclusions

In this report the multi-site simulation of daily precipitation and temperature for the
entire Rhine basin was explored. Besides the data from Germany used in earlier studies,
data from Luxemburgian, French and Swiss stations in the basin were included. Both
unconditional and conditional simulations were performed. To reduce the number of
parameters involved in these simulations, the Mahalanobis metric was applied as an
alternative to the weighted Euclidean metric.

The unconditional simulations preserved the second-order moment statistics of daily
and monthly precipitation and N -day maximum precipitation well. The lag 1 autocorre-
lation coefficient for daily temperature was, however, significantly underestimated. The
reproduction of the second order moments of temperature became worse in simulations
where atmospheric circulation indices were added to the feature vector. Despite this
deficiency the reproduction of N -day maximum snowmelt was satisfactory.

Multi-site simulations of P and T conditional on simulated atmospheric circulation
indices performed somewhat poorer than the unconditional simulations. Especially for
temperature the reproduction of second-order moment statistics became worse. As a
result a significant underestimation (up to 20-30%) of the median and the upper quin-
tile mean of multi-day snowmelt amounts was observed for four high-elevation stations
(Freudenstadt, Kl. Feldberg, Disentis, Säntis). For daily precipitation the second-order
moment statistics were somewhat better preserved than in similar conditional simula-
tions for the German part of the Rhine basin in Beersma and Buishand [1999a] due
to minor modifications in the resampling model. As a consequence, the results for the
extreme N -day precipitation amounts for the whole basin compare favourably to those
for the German part in earlier studies.

The ability of both unconditional and conditional models to generate realistic un-
precedented multi-day rainfall events was demonstrated with simulation runs of 1000
years. Especially those extreme events may cause large peak discharges of the river
Rhine in the Netherlands. A single simulation run of 1000 years does not provide, how-
ever, an accurate estimate of a 1000-year event. More simulations are needed for that
purpose and even then a considerable uncertainty remains due to the use of a relatively
short 35-year historical record for resampling.

The unconditional models with the Mahalanobis metric generated results comparable
to those with the weighted Euclidean metric. For the conditional ones a large bias was
found in the second-order moment statistics of daily temperature. This bias could be
somewhat reduced by using a splitted covariance matrix in the Mahalanobis distance
computation. On the other hand, the above shortcoming had no effect on the quality
of reproduction of N -day snowmelt maxima. Furthermore, the magnitude of extreme
rainfall events in long-duration simulations was not influenced by the metric used.
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6. Recommendations

A number of resampling models for multi-site generation of daily precipitation and tem-
perature for the entire drainage area of the Rhine basin have been developed. The
statistical properties of observed precipitation and temperature were best preserved by a
resampling model with a 3-dimensional feature vector containing only the area-averages
of the standardized daily temperature and precipitation values and the fraction of sta-
tions with precipitation. These models should therefore be considered first for design
discharge estimation under present-day climate conditions.

Future work on the application of a resampling model for design discharge estimation
should include a further validation using extreme-value characteristics of river discharges
rather than those of precipitation and calculated snowmelt. In order to discriminate
deficiencies in the resampling model from those in hydraulic and hydrological modelling,
such a validation should comprise a comparison of observed discharges at Lobith over
the period 1961-1995 with,

• computed discharges at Lobith from observed precipitation and temperature over
the period 1961-1995, and

• computed discharges at Lobith from 35-year simulations of precipitation and tem-
perature.

Several 35-year simulations should be done to obtain accurate estimates of the extreme-
value characteristics for the resampling model used and to get some idea of the uncer-
tainty of these estimates. The required daily average precipitation over subcatchments
can be passively simulated.

The final application to the design discharge requires long-duration simulations and
a method to estimate the 1250-year discharge event from these simulations. The esti-
mated design discharge is subject to random errors resulting from the finite length of
the simulation runs and the use of a relatively short historical record for resampling.
Especially the latter uncertainty is difficult to quantify. One possibility is to repeat the
long-duration simulations with subsamples of the 1961-1995 period.

Conditional simulations show a relatively large bias in extreme-value properties of
N -day precipitation and snowmelt. Regarding applications for future climate conditions,
it is expedient to investigate how far these biases influence the distribution of extreme
river discharges. Such an investigation requires an extension of the validation procedure
above with a number of 35-year simulations from a conditional model.
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A. Bárdossy and E.J. Plate. Space-time model for daily rainfall using atmospheric
circulation patterns. Water Resour. Res., 28:1247–1259, 1992.

J.J. Beersma and T.A. Buishand. Rainfall generator for the Rhine basin: Nearest-
neighbour resampling of daily circulation indices and conditional generation of weather
variables. KNMI-publication 186-III, KNMI, De Bilt, 1999a.

J.J. Beersma and T.A. Buishand. A simple test for equality of monthly variances in
climate time series. J. Climate, 12:1770–1779, 1999b.

A.R. van Bennekom and B.W.A.H. Parmet. Bemessungsabfluß in den Niederlanden;
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