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1. Introduction 
 
Since the mid 1990s rainfall generators for the Rhine and Meuse basins have been developed. 
These rainfall generators form part of the GRADE instrument for the Generation of Rainfall 
and Discharge Extremes (de Wit and Buishand, 2007). This report focuses on some 
developments of the Rainfall generator for the Rhine basin during the period June 2009 to 
November 2010 as part of the KNMI contribution to the Waterdienst-Deltares-KNMI 
collaboration regarding GRADE. Three topics are considered: i) sensitivity of the temporal 
pattern correlation for the composition of the feature vector, ii) Rainfall simulations for the 
Rhine basin based on catchment average data rather than station data and, iii) passive 
simulation of precipitation and temperature in the Meuse basin based on simulations for the 
Rhine basin. This last topic may seem a bit of an off-topic in a report on the Rainfall generator 
for the Rhine basin. However, this work gives a first indication of the possibility to develop a 
unified Rhine-Meuse rainfall generator. 
 
 
2. Sensitivity of the temporal pattern correlation for the composition of the 

feature vector 
 

 
2.1 Introduction 
 
The pattern correlation is a measure of the dependence between the spatial fields of two 
variables or the spatial fields of one variable at two different times (temporal pattern 
correlation). This section investigates the sensitivity of the temporal pattern correlations of the 
simulated precipitation and temperature fields for the composition of the feature vector. The 
earlier simulations which are used in GRADE and which are described in Beersma (2002) 
serve as a reference. These simulations were based on daily precipitation and temperature 
series of 34 stations for the period 1961–1995. The average (standardized) precipitation of 

these stations *~
P , the fraction of stations with precipitation *F , and the average 

(standardized) temperature *~
T , were used in the feature vector. In earlier simulations by 

Brandsma and Buishand (1999), that were restricted to the German part of the Rhine basin, 
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the average precipitation for 5 different regions was used, instead of **  and ~ FP . Based on this 

concept 6 regions are introduced here for the whole Rhine basin upstream of the Netherlands, 
including the stations in Luxembourg, France and Switzerland (see Figure 2.1). Note that the 
first 5 regions closely resemble those in Brandsma and Buishand (1999). In the simulations 
presented here the average precipitation for each of these 6 regions is used in the feature 
vector, combined with or without the 34-station-average temperature *~T . In addition two 

simulations are performed in which the precipitation of all 34 stations is included in the 
feature vector (again with and without the 34-station-average temperature). 
 

 
Figure 2.1. Location of 36 stations in the Rhine basin and the subdivision into 6 regions. Note that the stations 
Davos and Säntis are not used.  
 
 
2.2 Results 
 
All simulations are performed with the same settings as the 1000-yr reference simulation 
ue241_k=10_1000_ran1.1_leapyear_chck.log except for the composition of the feature 
vector. In these simulations ‘u’ stands for unconditional (i.e. not conditional on the 
atmospheric circulation indices), ‘e’ stands for Euclidean distance (i.e. the metric used to 
determine and order the nearest neighbours), ‘241’ denote the weights for the feature vector 
elements *** ~,,~ TFP , ‘k=10’ refers to the number of nearest neighbours and ‘ran1.1’ refers to 

the type of the random number generator and the random seed used. Table 2.1 presents the 
simulation names and the corresponding feature vector composition. Note that 
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Table 2.1. Composition of the feature vector and corresponding weights for different simulations. Note that a 
weight 1 refers to a vector of ones (with 6 or 34 elements). 

Simulation Feature vector Weights 

ue241 *** ~,,~ TFP 2, 4, 1 

ue001R6 
*

6
* ~,~ PT  1, 1 

ue000R6 
*

6
~P  1 

ue001 *~T  1 

ue001P34 
*

34
* ~,~ PT  17, 1 

ue000P34 
*

34
~P  1 

 
 
The resampling technique used preserves the spatial patterns of the daily precipitation and 
temperature fields, but it does not necessarily reproduce the dependence between the patterns 
of successive days. The temporal dependence between two spatial patterns that lie l days apart 
can be characterized by a  pattern correlation coefficient. The lag l pattern correlation (centred 
statistic) correlates the spatial patterns, and is averaged over all pairs of patterns that lie l days 
apart (for precipitation, days with no rainfall were excluded).  
 
Tables 2.2 – 2.5 present the lag 1 and lag 2 pattern correlations for the historical data (1961 – 
1995) together with the standard statistics presented earlier (Beersma, 2002) and the biases in 
these quantities for the various simulations. The pattern correlation is calculated in two 
different ways: i) from the patterns defined by the 34 stations and, ii) from the patterns 
defined by the 6 regions. Separate tables are given for precipitation and temperature and for 
winter and summer. In these tables the following colour-coding is adopted: a red value is 
unacceptably different1 from the historical value; an orange value is relatively the worst value 
in a column (but if a column contains a red value it cannot contain an orange value) and a 
green value is relatively the best value in a column (but no green value possible in a column if 
all values in the column differ significantly from the historical value – i.e. differ more than 
twice their standard error se from the historical estimate). 
 
The biases in the pattern correlations (derived from the patterns of the 34 stations) for 
precipitation and temperature for the ‘ue241’ reference simulation are of comparable size as 
those for simulations conditional on the atmospheric circulation presented in Beersma (2007; 
see Chapter 3, Table 3.3). In those simulations the lag 1 and 2 pattern correlation biases for 
winter precipitation were respectively about -0.09 and -0.12 and for winter temperature 
respectively -0.04 and -0.07. 
 
Incorporation of the average precipitation for the 6 regions, or all 34 precipitation stations in 
the feature vector leads to a better reproduction of the lag 1 and 2 pattern correlations of 
precipitation (see Tables 2.2 and 2.3) but the other statistics typically suffer from this 
improvement. The largest improvement in pattern correlation is found for the simulations with 
all 34 precipitation stations in the feature vector (the ‘P34’ simulations) but in these 
simulations significant biases are found in the mean precipitation and in the daily and monthly 
standard deviations of precipitation. In the ‘R6’ simulations the reduction of the bias in the 
precipitation pattern correlation is smaller but some additional bias in the daily standard 

                                                 
1 This is clearly a subjective judgment but first of all the difference should be larger than 2 × se from the 
historical estimate (i.e. statistically significant, roughly at about the 5%-level) and in addition, the difference 
should be considerably larger than in the alternative simulations in the table. 
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deviation is found (both in winter and in summer), but at the same time the bias in the lag 1 
autocorrelation is reduced (both in winter and in summer). A similar reduction of bias in the 
the lag 1 autocorrelation for precipitation was already identified by Brandsma and Buishand 
(1999) with the use of precipitation of 5 regions in the feature vector. 
 
Table 2.2. Differences between statistical properties of the simulated time series and the historical records 
(1961–1995) for winter precipitation (October–March). For the lag 1 and 2 pattern correlation coefficients (rp), 
mean precipitation (monthly totals), and the mean lag 1 and 2 autocorrelation coefficients ( r ) the absolute 
differences are given, and for the mean standard deviations of monthly and daily values ( Ms  and Ds ) the 
percentage differences. Values between  denote averages over the 34 stations (details in Beersma, 2002). 
Bottom lines: average historical estimates (mean and standard deviations in mm) and their standard error se 
(standard errors for the mean in mm, for standard deviations in % and for the autocorrelation coefficients 
dimensionless). Values in bold refer to differences more than 2 × se from the historical estimate, where se is 
calculated as in Beersma and Buishand (1999). 

 34 stations 6 regions 

Simulation )1(pr  )2(pr )1(pr )2(pr Mean MsΔ DsΔ )1(rΔ )2(rΔ
ue241 -0.086 -0.044 -0.096 -0.049 -0.8 -3.4 -0.7 -0.036 -0.009

ue001R6 -0.055 -0.034 -0.033 -0.030 -3.1 -7.3 -2.7 -0.015 -0.010

ue000R6 -0.040 -0.030 -0.001 -0.017 -4.1 -5.0 -2.9 -0.011 -0.003

ue001 -0.096 -0.053 -0.099 -0.053 -0.8 -19.6 -0.7 -0.156 -0.099
ue001P34 -0.043 -0.029 -0.034 -0.028 -7.2 -6.6 -4.5 -0.003 0.001

ue000P34 -0.005 -0.013 0.009 -0.010 -7.5 -7.3 -5.6 0.003 0.004

Historical 0.253 0.161 0.234 0.133 64.1 35.8 4.2 0.285 0.144

Se 0.005 0.005 0.008 0.008 2.47 4.53 2.46 0.008 0.009

 
 
Table 2.3. As Table 2.2 but for the summer precipitation (April—September). 

 34 stations 6 regions 

Simulation )1(pr  )2(pr )1(pr )2(pr Mean MsΔ DsΔ )1(rΔ )2(rΔ
ue241 -0.061 -0.014 -0.083 -0.022 -0.7 -8.9 -1.3 -0.029 0.008

ue001R6 -0.032 -0.005 -0.017 -0.002 -3.2 -9.1 -3.4 -0.015 -0.008

ue000R6 -0.024 -0.002 0.004 0.004 -5.0 -6.6 -5.3 -0.013 0.017

ue001 -0.059 -0.014 -0.078 -0.019 0.3 -16.7 -0.3 -0.111 -0.037
ue001P34 -0.020 0.000 -0.016 -0.002 -8.9 -12.4 -8.0 -0.009 -0.014

ue000P34 0.004 0.009 0.009 0.005 -10.6 -11.3 -11.3 0.004 0.025
Historical 0.158 0.073 0.193 0.084 73.9 36.7 5.3 0.178 0.044

Se 0.005 0.005 0.008 0.008 2.53 3.91 1.92 0.009 0.010

 
 
 
The simulation with only temperature in the feature vector (‘ue001’) leads to undesirable 
large biases in relevant precipitation statistics (name in red in Tables 2.2 and 2.3) while the 
simulations with only precipitation in the feature vector (‘ue000R6’ and ‘ue000P34’) lead to 
undesirable biases in relevant temperature statistics (names in red in Tables 2.4 and 2.5). In 
these three simulations a severe underestimation of the autocorrelation structure leads to a 
severe underestimation of the monthly standard deviation. This again demonstrates the 
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importance of including both precipitation and temperature characteristics in the feature 
vector. 
 
As expected, the influence of the composition of the feature vector on the reproduction of the 
pattern correlation of temperature is relatively small (see Tables 2.4 and 2.5). Also here some 
additional bias in the daily and monthly standard deviations is introduced in the ‘R6’ 
simulations, but in contrast to precipitation the bias in the autocorrelation is not reduced but 
enhanced. 
 
 
Table 2.4. Differences between statistical properties of the simulated time series and the historical records 
(1961–1995) for winter temperature (October–March). For the lag 1 and 2 pattern correlation coefficients (rp), 
mean temperature, and the mean lag 1 and 2 autocorrelation coefficients ( r ) the absolute differences are given, 
and for the mean standard deviations of monthly and daily values ( Ms and Ds ) the percentage differences. 
Values between  denote averages over the 34 stations (details in Beersma, 2002). Bottom lines: average 
historical estimates (mean and standard deviations in °C) and their standard error se (standard errors for the mean 
in °C, for standard deviations in % and for the autocorrelation coefficients dimensionless). Values in bold refer 
to differences more than 2 × se from the historical estimate, where se is calculated as in Beersma and Buishand 
(1999). 

 34 stations 6 regions 

Simulation )1(pr  )2(pr )1(pr )2(pr Mean MsΔ DsΔ )1(rΔ )2(rΔ
ue241 -0.129 -0.088 -0.182 -0.122 0.04 -5.8 -2.4 -0.045 -0.006

ue001R6 -0.129 -0.094 -0.165 -0.114 0.20 -13.5 -4.0 -0.064 -0.044
ue000R6 -0.131 -0.098 -0.165 -0.111 0.20 -43.1 -3.6 -0.360 -0.400
ue001 -0.153 -0.110 -0.208 -0.146 0.00 -2.3 -1.3 -0.044 -0.002

ue001P34 -0.143 -0.114 -0.157 -0.106 0.51 -11.2 -4.1 -0.055 -0.030

ue000P34 -0.131 -0.107 -0.146 -0.100 0.16 -41.3 4.4 -0.334 -0.376
Historical 0.742 0.620 0.584 0.413 3.6 2.1 4.2 0.826 0.639

se 0.004 0.007 0.006 0.009 0.17 6.16 2.49 0.007 0.015

 
 
Table 2.5. As Table 2.4 but for the summer temperature (April—September). 

 34 stations 6 regions 

Simulation )1(pr  )2(pr )1(pr )2(pr Mean MsΔ DsΔ )1(rΔ )2(rΔ
ue241 -0.076 -0.056 -0.170 -0.122 0.11 -3.2 0.1 -0.025 0.009

ue001R6 -0.074 -0.058 -0.157 -0.116 0.25 -2.7 1.3 -0.035 -0.013

ue000R6 -0.077 -0.060 -0.165 -0.121 0.12 -33.3 1.6 -0.339 -0.272
ue001 -0.086 -0.061 -0.189 -0.133 -0.03 5.6 -0.5 -0.029 0.027
ue001P34 -0.083 -0.071 -0.156 -0.119 0.65 2.8 4.0 -0.027 -0.003

ue000P34 -0.077 -0.062 -0.163 -0.119 0.15 -30.3 3.0 -0.318 -0.321
Historical 0.785 0.713 0.577 0.418 14.3 1.5 3.6 0.771 0.533

se 0.003 0.004 0.011 0.013 0.12 4.34 1.20 0.006 0.011
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2.3 Conclusions 
 
In this section the influence of the composition of the feature vector on the reproduction of the 
pattern correlation is assessed. Compared to the reference simulation (ue241), both the ‘R6’ 
and ‘P34’ type simulations reduce the biases in the precipitation pattern correlation 
coefficients but they do generally enhance the biases in the daily standard deviations, both for 
precipitation and temperature. Three simulations: ue000R6, ue001 and ue000P34 largely fail 
on either one or more relevant statistics. That leaves two candidates that are serious 
alternatives for the reference simulation: ue001R6 and ue001P34. Of these two simulations, 
ue001R6 performs best overall, i.e. in terms of the relevant statistics for precipitation and 
temperature and for winter and summer. With ue001R6 therefore a 10 000-year simulation is 
performed for comparison with the earlier 10 times 1000-year simulation with ue241. 
Figure 2.2 presents the maxima of basin-average 10-day precipitation in the historical 1961 - 
1995 series and those in the 10 000-year simulated series for the hydrological winter. It can be 
seen that the maxima in the ue001R6 simulation are slightly smaller than in the ue241 
simulation. It would be interesting to investigate the effect of the ue001R6 simulation (with a 
smaller bias in the precipitation pattern correlations) on the (extreme) discharge simulation 
with GRADE. 
 
 

 
Figure 2.2. Gumbel plot of the maxima of basin-average 10-day precipitation in the historical 1961 - 1995 series 
and those in two 10 000-year simulated series for the winter (October to March). 
 
 
For comparison Figure 2.3 shows a similar plot as Figure 2.2 but where the basin average is 
not obtained by averaging the 34 stations but as the area weighted average of the passively 
simulated 134 HBV sub-basins (see Section 3 for details). The basin-average obtained from 
the 134 sub-basins is systematically larger than that from the 34 stations, but again the 
ue001R6 simulation gives somewhat smaller basin-averages than the ue241 simulation. 
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Figure 2.3. As figure 2.2 but basin average determined as the area weighted average of the passively simulated 
134 HBV sub-basins (see Section 3 for details). 
 
 
 
3. Rainfall simulations for the Rhine basin based on catchment average 

data rather than station data 
 
 
In the simulations with the Rainfall generator for the Rhine basin described in Beersma 
(2002) and in the previous section the resampling procedure is ‘driven’ by the precipitation 
and temperature data of the 34 stations that are used in the feature vector. However for 
coupling with the hydrological model in GRADE simulated time series of precipitation and 
temperature for 134 HBV sub-basins rather than 34 stations are required. These time series for 
the 134 HBV sub-basins can easily be obtained from the simulation based on the 34 stations. 
In the simulated series each simulated day corresponds with a historical date. So, if for every 
historical date in the simulation also the precipitation and temperature data for the 134 sub-
basins are available, the 34 station data can simply be replaced by the 134 HBV sub-basin 
data. This type of simulation is referred to as passive simulation. Passive refers to the fact that 
the 134 sub-basins are not directly represented in the feature vector and therefore do not 
directly or actively ‘drive’ the simulation. This distinction between active simulation of the 
station data and passive simulation of the sub-basin data has a historical background. At the 
start of the development of the Rainfall generator for the Rhine basin no sub-basin data were 
available at all, only station data. For the development of the first multi-site version of the 
rainfall generator use was made of 25 stations in German part of the Rhine basin (Brandsma 
and Buishand, 1999). Later, the area was extended to the whole upstream area of Lobith using 
the 34 stations (Wójcik et al.,2000, Beersma et al., 2001) but still no sub-basin data were 
included. In June 2002 the BfG made the HBV_134 sub-basin data for precipitation and 
temperature covering the period 1961 to 1995 available. These data became later known as 
the CHR-OBS data.  
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Up to now the performance of the resampling method for the Rhine basin has been assessed 
by comparing statistics from the historical series of station data with those from simulated 
series of station data. However no comparisons were performed between the statistics from 
the historical series of sub-basin data and those from passively simulated series of sub-basin 
data, despite the fact that the time series of sub-basin data are most relevant for coupling with 
the hydrological part in GRADE. In this paragraph this comparison is made. In Figure 3.1 the 
winter and summer maxima of basin-average 10-day precipitation in the historical 1961 – 
1995 series and those in the 10 000 (10 x 1000) year series simulated with the rainfall 
generator are presented. For ease of comparison, the basin-average precipitation is determined 
in two different ways: i) as the average of the 34 stations (in red) and ii) as the area weighted 
average of the 134 sub-basins (in black). The colored numbers represent the historical year of 
the hydrological seasons (minus 1900) in the 1961 – 1995 period. The basin-average 10-day 
precipitation determined as the area weighted average of the 134 sub-basins (black numbers) 
is systematically larger than that determined as the average of the 34 stations (red numbers). It 
is expected that the sub-basin-average better represents the real basin-average than the station-
average simply because the sub-basin data makes use of a much larger number of stations. 
This is also confirmed by the two most extreme 10-day events in the hydrological winters of 
1994 and 1995 (which correspond to the December 1993 and January 1995 floods 
respectively) and which are known to be the largest in the past 50 years. More importantly 
from Figure 3.1 is that (in terms of reproducing the distribution of the seasonal maxima of the 
basin-average 10-day precipitation) the passive simulation of sub-basin data (black-red 
dashed line) performs as well as the active simulation of station data (solid red line)2. 
 
Now the sub-basin data are available it is also possible to drive the rainfall generator actively 
with the sub-basin data (by using the sub-basin data in the feature vector rather than the 
station data). This is exactly the configuration of the rainfall generator that has been used 
when the rainfall generator methodology is applied to (regional) climate model data, because 
gridded data rather than station data are available. In the RheinBlick2050 project (Görgen et 
al., 2010) the rainfall generator methodology was applied to a number of RCM simulations 
where the RCM grid-data was interpolated to the 134 HBV sub-basins first and these sub-
basin data were used in the feature vector. As a reference also a 3000-yr simulation was 
performed using the 1961 – 1995 CHR-OBS sub-basin data in the feature vector of the 
rainfall generator, i.e. a simulation in which the sub-basin data is actively simulated. The 
composition of the feature vector for this simulation was ‘as similar as possible’ to the 
simulations described in Beersma (2002) and the ue241 simulation in the previous section, i.e. 
the average (standardized) precipitation of the 134 sub-basins, the fraction of the sub-basins 
with precipitation and the average (standardized) temperature of the sub-basins3. The results 
of this active simulation of sub-basin data, again in terms of the seasonal maxima of basin-
average 10-day precipitation, are presented in Figure 3.1 as the solid black lines. Compared 
with the standard passive simulation of the sub-basin data (black-red dashed lines) the active 
simulation of the sub-basin data looks very similar. Only for the hydrological summer and for 
return periods longer than about 200 years the two types of simulations start to deviate 
                                                 
2 Note that in the top panel of Figure 3.1 the solid red line is identical to the solid red line in Figure 2.2 and that 
the black-red dashed line is identical to the red line in Figure 2.3. 
3 In the ue241 simulations the weights for the feature vector elements were set manually to W(P,F,T) = (2, 4, 1) 
while in this simulation they are set automatically, and are inversely proportional to the variance of the feature 
vector element which resulted in W(P,F,T) ≈ (2, 6.5, 1), i.e. a slightly larger weight for the fraction of wet sub-
basins. Note that since the fraction F is determined from a much larger number when using sub-basins (rather 
than only 34 stations), it might be expected that its variance becomes smaller, which may at least partly justify 
the larger weight. 
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systematically. Apart from this deviation, this is another indication that the passive simulation 
of the sub-basin data works satisfactorily. 
 

 
Figure 3.1. Gumbel plots of winter and summer maxima of the 10-day Rhine-basin-average precipitation amount 
for actively and passively resampled series (respectively solid and dashed lines) and for averaging over 34 
precipitation stations (station-average) and averaging over 134 sub-basins (basin-average). The colored numbers 
refer to the seasonal maxima in the historical data for the period 1961 – 1995; i.e. year minus 1900. In red: 34 
station average (station-average); in black: 134 sub-basin average (basin-average). Winter (top panel) refers to 
the hydrological winter (October to March) and summer to the hydrological summer (April to September). 
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Table 3.1 compares for winter and summer precipitation, in a similar way as in Tables 2.2 and 
2.3, the reproduction of the pattern correlation and the standard statistics for the active 
simulation of the sub-basin data, which is denoted as ueHBV134, with the reproduction of 
these quantities for the reference ue241 simulation. In terms of these statistics the results for 
both types of simulations are quite similar. 
 
Tabel 3.1. Differences between statistical properties of the simulated time series and the historical records 
(1961–1995) for winter (October–March) and summer (April–September) precipitation. For the lag 1 and 2 
pattern correlation coefficients (rp), mean precipitation (monthly totals), and the mean lag 1 and 2 autocorrelation 
coefficients ( r ) the absolute differences are given, and for the mean standard deviations of monthly and daily 
values ( Ms and Ds ) the percentage differences. Values between  denote averages over the 34 stations (details in 
Beersma, 2002). ‘Historical’ and ‘se’: average historical estimates (mean and standard deviations in mm) and 
their standard error se (standard errors for the mean in mm, for standard deviations in % and for the 
autocorrelation coefficients dimensionless). Values in bold refer to differences more than 2 × se from the 
historical estimate, where se is calculated as in Beersma and Buishand (1999). 

 34 stations 6 regions 

Simulation )1(pr  )2(pr )1(pr )2(pr Mean MsΔ DsΔ )1(rΔ )2(rΔ
Hydrological winter 

ue241 -0.086 -0.044 -0.096 -0.049 -0.8 -3.4 -0.7 -0.036 -0.009

ueHBV134 -0.093 -0.050 -0.103 -0.051 -1.6 -4.6 -1.1 -0.035 -0.010

Historical 0.253 0.161 0.234 0.133 64.1 35.8 4.2 0.285 0.144

se 0.005 0.005 0.008 0.008 2.47 4.53 2.46 0.008 0.009

Hydrological summer 

ue241 -0.061 -0.014 -0.083 -0.022 -0.7 -8.9 -1.3 -0.029 0.008

ueHBV134 -0.064 -0.016 -0.089 -0.026 -0.6 -6.7 -0.7 -0.014 0.016

Historical 0.158 0.073 0.193 0.084 73.9 36.7 5.3 0.178 0.044

se 0.005 0.005 0.008 0.008 2.53 3.91 1.92 0.009 0.010

 
 
 
 
4. Passive simulation of precipitation and temperature in the Meuse basin 

based on simulations for the Rhine basin 
 
 
So far two different rainfall generators were developed, one for the Rhine basin and one for 
the Meuse basin. Both rainfall generators are based on a resampling technique known as 
Nearest-Neighbour resampling. In both cases the rainfall generators are ‘fitted’ to the basin of 
interest, i.e. the Rainfall generator for the Rhine basin only uses data in the Rhine basin in the 
feature vector and similarly the Rainfall generator for the Meuse uses data in the Meuse basin 
or close to the Meuse basin in the feature vector. Methodologically, both rainfall generators 
are the same but there are a few differences of which the most important are: 1) the 
composition of the feature vector is somewhat different, i.e. the Rainfall generator for the 
Meuse basin uses a 4-day memory term in the feature vector and the Rainfall generator for the 
Rhine does not, 2) the Rainfall generator for the Rhine basin uses station data from the 
historical period 1961 – 1995 to drive the simulations while the Rainfall generator for the 
Meuse basin uses station data from either the historical period 1961 – 1998 (denoted as 
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sim61) or the period 1930 – 1998 (denoted as sim30)4, and 3) for the Rainfall generator for 
the Rhine basin the 134 sub-basin data are available for exactly the same period as the driving 
station data so there is a one-to-one correspondence between actively simulated station data 
and the passively simulated sub-basin data. However, for the Rainfall generator for the Meuse 
basin the 15 sub-basin data were available for precipitation for 1961 – 1998 and for 
temperature only for 1967 – 1998. Leander and Buishand (2004) applied a second nearest-
neighbour search to cope with incomplete sequences for the base period.  
 
Using simulations with the Rainfall generator for the Rhine basin, it is possible to passively 
simulate the 15 sub-basin data for the Meuse basin (in the same way that the 134 sub-basin 
data for the Rhine basin are passively simulated). It is expected that such a simulation makes 
sense since the Meuse basin is similar in size as the Mosel basin (which is part of the Rhine 
basin) and that the Meuse basin is located just west of the Mosel basin. The only extra thing 
that is needed is an additional nearest-neighbour search to simulate the sub-basin temperature 
for simulated dates in the 1961 – 1968 period5. An advantage of such a simulation is that the 
generated time series for the Rhine and Meuse basins are spatially and temporally coherent. 
This coherence is not possible when the Rainfall generators for the Rhine and Meuse basins 
are run separately. For some applications, e.g. when the simultaneous occurrence of floods in 
both the Rhine and Meuse basin is relevant this spatial-temporal coherence is an important 
characteristic.  
 
In this section the performance of the passive simulation of the Meuse sub-basin data based 
on the ten 1000-year simulations for the Rhine basin is compared with the passive simulation 
of the Mosel sub-basin data (which is part of the Rhine basin) based on the same ten 1000-
year simulations. For this purpose Figure 4.1 presents the hydrological winter and summer 
maxima of the 4-day, 10-day and 20-day basin-average precipitation for the Mosel basin for 
the historical data (1961 – 1995) and the ten 1000-year simulations. Figure 4.2 presents 
similar results for the Meuse basin. Overall the performance for the Meuse basin is not much 
worse than for the Mosel basin. For the 10- and 20-day sums in the Meuse basin in the 
hydrological winter there seems to be a discrepancy between the most extreme historical 
events (December 1993, in the figure presented as ‘94’, and January 1995) and the simulated 
maxima. A similar difference was also found in the simulations with the Rainfall generator for 
the Meuse basin regarding the 10- and 30 day sums (Leander and Buishand, 2004). However, 
the 10-day winter amounts for return periods between 2 and 20 years in those simulations 
correspond better with the historical data than those in Figure 4.2. For the Meuse basin the 
maxima of the 20-day amounts in the hydrological summer seem to be systematically 
underestimated in these passive simulations, a discrepancy that is not found in the 30-day 
amounts presented in Leander and Buishand (2004). This result may be related to the absence 
of a memory term in the feature vector of the Rainfall generator for the Rhine basin or 
alternatively to a lower spatial dependence of summer precipitation. Further research is 
needed to assess this.  
 
 

                                                 
4 Note, that since early 2011 also Rainfall simulations for the Meuse basin using station data from the period 
1930 – 2008 (denoted as sim30-08) are available (Buishand and Leander, 2011). 
5 In this case the additional nearest-neighbour search was based on the four temperature stations (Aachen, 
Langres, Reims and Uccle) for which the data were made available for the full base period of the Rainfall 
generator for the Rhine basin (1961 – 1995). Note that this additional nearest-neighbour search somewhat differs 
from that applied by Leander and Buishand (2004) and that the sub-basin temperature data for 1967 and 1968 
were not used in the present study. 
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Figure 4.1. Gumbel plots of maxima of 4-day, 10-day and 20-day basin-average precipitation for the Mosel basin 
for the historical data (1961 – 1995) and for passive simulations based on the ten 1000-year simulations for the 
Rhine basin, both for the hydrological winter (October to March) and the hydrological summer (April to 
September). Note, the Mosel-basin-average corresponds with the area weighted average of the corresponding 25 
HBV-Rhine sub-basins. 
 
 
 
 
 
 



 15

 
Figure 4.2. As Figure 4.1 but for passive simulations for the Meuse basin based on the ten 1000-year simulations 
for the Rhine basin. Note, the Meuse-basin-average corresponds with the area weighted average of the 15 HBV-
Meuse sub-basins.  
 
 
 
Figures 4.3 and 4.4 show for the Mosel and Meuse basins the basin-average autocorrelation 
coefficients (i.e. an area-weighted average of the coefficients for each individual sub-basin) in 
the winter (October to March) for the historical (1961 – 1995) data and the passive 
simulations based on the ten 1000-year simulations for the Rhine basin. Though for both river 
basins the N-day winter maxima (in Figures 4.1 and 4.2) are realistically simulated, the basin-
average lag 1 autocorrelation coefficients are underestimated. For the Meuse basin the  
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Figure 4.3. Basin-average autocorrelation coefficients for the Mosel basin for the hydrological winter (October 
to march) for ten 1000-year simulations compared with those for the historical (1961 – 1995) data. The error bars 
correspond with 2 × se-intervals. The standards errors se were calculated using a jackknife technique (Buishand 
and Beersma, 1993). 
 
 

 
Figure 4.4. As Figure 4.3 but for passive simulations for the Meuse basin based on the ten 1000-year simulations 
for the Rhine basin. Note, the Meuse-basin-average corresponds with the area weighted average of the 15 HBV-
Meuse sub-basins. 
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underestimation is somewhat larger than for the Mosel basin. This underestimation is also 
worse in comparison to the (slight) underestimation of the basin-average lag-1 autocorrelation 
in simulations with the Rainfall generator for the Meuse basin (see Figure 2.2 in Leander, 
2009). Leander (2009) presents in his figure two types of simulations one with and one 
without a 4-day memory term in the feature vector. For higher lags (5-8 days) the results 
presented here are somewhat better than the results for the simulation without memory term in 
Leander (2009) but not as good as the results for the simulation with the memory term. This 
indicates that for the winter the memory term is a relevant element which is by definition 
‘omitted’ in the passive simulations for the Meuse basin based on the simulations for the 
Rhine basin.  
 
For the Mosel basin, finally, the basin-average autocorrelation coefficients were also 
calculated for the ue001R6 simulation introduced in Section 2. For this simulation the 
underestimation of the lag-1 autocorrelation is about half that for the ue241 simulations 
presented in Figure 4.3 (not shown). 
 
The results of the passive simulations for the Meuse basin are satisfactory, in particular for 
extreme discharges in winter. It may therefore be worthwhile to explore a unified Rhine-
Meuse rainfall generator further. 
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