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1. INTRODUCTION 
 
The rainfall generator has been developed to generate long synthetic sequences of 
daily precipitation and temperature for the Meuse basin [see e.g. Leander and 
Buishand (2004), Leander et al. (2005), and Buishand and Leander (2011)] using the 
nearest-neighbour resampling (NNR) technique. These sequences have been used 
for discharge simulations with the semi-distributed HBV model (Aalders et al., 2004; 
Leander et al., 2005) to estimate the design discharge for flood protection works in 
the Netherlands. For the non-tidal embanked part of the river, the 1250-year return 
level of the discharge at Borgharen (near the city of Maastricht) is presently used as 
design discharge. An important source of uncertainty of this design discharge is the 
length of the historical records used for resampling. In order to study the sensitivity of 
the 1250-year return level to the choice of the historical data, several 20,000-year 
simulations were conducted with various 33-year subsets of the 1930-1998 period as 
well as a 20,000-year simulation based on the whole 1930-1998 period (Leander and 
Buishand, 2008). Apart from the average winter rainfall of the subset, it turned out 
that the presence or absence of the year 1995 in the subset strongly influenced the 
estimate of the 1250-year return level of the maximum 10-day winter basin-average 
rainfall as well as the estimated 1250-year return level of the discharge at Borgharen 
(Kramer et al., 2008). A difficulty with this sensitivity analysis is that it does not 
provide the standard deviation of the estimated return level. Therefore, for the Rhine 
basin a jackknife method was used to determine the uncertainty of the return level 
(Schmeits et al., 2014). In the present report this jackknife method is applied for the 
rainfall generator for the Meuse basin. Further, two alternative forms of the rainfall 
generator are considered to downweight the influence of the year 1995 on the 
estimated return levels, and the maximum 4-, 10- and 20-day basin-average rainfall 
amounts are studied rather than the maximum 10-day basin-average rainfall only.  
 
This report is set up as follows. The datasets that were used in this study are 
summarized in section 2. The nearest neighbour resampling technique and the 
different forms of the rainfall generator are described in section 3. Results for the 
various simulations are shown in section 4 and the uncertainty analysis is presented 
in section 5. Finally conclusions are drawn in section 6. 
 

2. DATASETS 
 
As the datasets that were used are described in detail in Buishand and Leander 
(2011), here only a short description is given. Three datasets are used as input for 
the rainfall generator: a dataset consisting of daily data from 7 precipitation stations 
and 2 temperature stations for the period 1930-2008 (excluding the period 1940-451), 
and 2 datasets that contain daily precipitation and temperature data for each of the 
15 HBV subbasins of the Meuse basin upstream from Borgharen for the periods 
1961-2007 and 1967-2008, respectively. The locations of the stations and the HBV 
subbasins are shown in Figures 2.1 and 2.2, respectively. The names of the HBV 
subbasins correspond to those used for rainfall-runoff-modelling (Hegnauer, 2013). 
 

                                                     
1 This 5-year period was also excluded in the simulation of Buishand and Leander (2011) 
based on the historical data for the period 1930-2008 (sim30-08). 
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Figure 2.1: Location of the 7 precipitation and 2 temperature stations in the Meuse basin. 
Chiny was closed after January 1987. A nearby station, Lacuisine, was used to continue this 
series. 
 
 

 
Figure 2.2: Location of the 15 HBV subbasins of the Meuse basin. 
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3. SIMULATION SETUP 
 

3.1 General 
With the NNR technique, weather variables are resampled simultaneously from the 
historical data. To incorporate autocorrelation, the resampling depends on the values 
of the previous resampled day. Therefore the days in the historical record that are 
most similar to those of the previously simulated day in terms of precipitation and 
temperature are pre-selected. One of these k nearest neighbours is randomly 
selected and the observed values for the day subsequent to that nearest neighbour 
are adopted as the simulated values for the next day. In the random selection from 
the k nearest neighbours, a decreasing kernel is used to give more weight to the 
closest neighbours. In line with Beersma (2002) and Leander and Buishand (2004), k 
is set to 10. 
 
A feature vector is used to find the nearest neighbours in the historical record. In the 
rainfall generator for the Meuse basin the feature vector is composed of three 
elements: 
 the average standardized daily temperature of the 2 temperature stations, 
 the average standardized daily precipitation of the 7 rainfall stations, and 
 the average standardized daily precipitation of the 7 rainfall stations, 

averaged over the 4 preceding days (4-day memory term). 
Standardization is done to reduce the effect of the annual cycle on the selection of 
the nearest neighbours. The daily temperatures are standardized by subtracting the 
calendar-day mean and dividing by the calendar-day standard deviation. Daily 
precipitation is standardized by dividing by the calendar-day mean wet-day 
precipitation amount. The effect of the annual cycle is further reduced by restricting 
the search for nearest neighbours to days within a moving window of 121 days, 
centered at the last simulated day (Leander and Buishand, 2007).  
 
In the pre-selection of the k nearest neighbours the feature vector elements are 
weighted inversely proportional to their variance. This variance was globally 
calculated, that is, one value was calculated for the entire record, rather than one 
value for each calendar day, month or season separately (hence the indication global 
variance and “gvar” in the simulation name).  
 
At the end of the simulation procedure, the resampled standardized variables are 
transformed back to their original scale. This backtransformation is done with the 
HBV subbasin data. Because these data do not cover the same period as the 
historical station data, a second resampling step is used in the backtransformation 
(Leander and Buishand, 2004; Leander et al., 2005). 
 

3.2 Simulation types 
Buishand and Leander (2011) presented a 20,000-year reference simulation based 
on the period 1930-2008. This simulation was indicated as Sim30-08. Unfortunately, 
it turned out that the daily precipitation data for Vouziers (Figure 2.1) were not 
entered in the feature vector. Therefore a new reference simulation was produced in 
this study. To reduce the influence of the length of the simulation on the estimated 
return levels, this new reference simulation has a length of 50,000 years instead of 
20,000 years. The new reference simulation is labelled “mem4d” here to distinguish it 
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from the other simulations in this report where the 4-day memory is replaced or its 
influence is reduced. 
 
Leander and Buishand (2004, 2008) observed that certain historical days often 
occurred in the most extreme simulated 10-day basin-average precipitation amounts, 
in particular a number of days in January 1995. Recent simulations for the Rhine 
basin show that this selection effect increases when a multi-day memory term is 
included in the feature vector (Schmeits et al., 2014). Therefore, two other 20,000-
year simulations were produced for the Meuse basin, one in which the weighting 
coefficient of the 4-day memory term was halved (labelled “halfmem4d”), and another 
one in which it was replaced with the areal precipitation fraction, i.e., the fraction of 
precipitation stations with daily precipitation larger than 0.3 mm, in the feature vector 
(labelled “nomem”). The feature vector elements used for the latter are the same as 
those for the rainfall generator of the Rhine basin. 
 
The following naming convention is used for the simulations: 
<memory tag>_<variance calculation tag>_<simulation length>. For each simulation the 
name is explained in Table 3.1, and the feature vector elements and their weighting 
coefficients are given in Table 3.2.  
 
 
Table 3.1: Naming convention and explanation of the simulations that were investigated.  
 

Name Meaning 
mem4d_gvar_50000 4-day memory term, globally calculated 

weights, 50,000 yr 
mem4d_gvar_20000 First 20,000 yr of mem4d_gvar_50000 
halfmem4d_gvar_20000 4-day memory term (half weighting 

coefficient), globally calculated weights, 
20,000 yr 

nomem_gvar_20000 No memory term, globally calculated weights, 
20,000 yr 

 
 
Table 3.2: Weighting coefficients of the feature vector elements used in the ‘mem4d’, the 
‘halfmem4d’ and ‘nomem’ simulations. The weighting coefficients for the memory term 
represent the values for the ‘mem4d’ and ‘halfmem4d’ (between parentheses) simulations. 
Note that in simulations without a memory term (‘nomem’), the weight for the memory term is 
set to 0, while in the simulations with a memory term the weight for the areal precipitation 
fraction is set to 0. 
 

Feature vector element (half)mem4d nomem 
Precipitation 2.19 2.19 
Temperature 1.05 1.05 
Areal precipitation fraction 0 6.58 
Memory (0.15) 0.30 0 
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4. SIMULATION RESULTS 
 

4.1 Comparison of the old Sim30-08 with the present mem4d simulation 
 
Figure 4.1 compares the distributions of the maximum basin-average precipitation in 
the winter half-year (October –March) of the old Sim30-08 simulation (Buishand and 
Leander, 2011) and the present mem4d simulation for three different durations. The 
distribution of the precipitation maxima of the mem4d simulation is closer to that of 
the observations than that of the old Sim30-08 simulation. To a large extent the 
differences between these simulations result from Vouziers accidentally being left out 
in the old Sim30-08 simulation (see further next section). 
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Figure 4.1: Gumbel plots of the maximum 4-, 10-, and 20-day average precipitation over the Meuse 
basin in the winter half-year for the old Sim30-08 simulation (Buishand and Leander, 2011) and the 
first 20,000 years of the present mem4d simulation. The blue pluses indicate the ordered maxima for 
the historical period 1930 – 2008 (and for the top 5 the year minus 1900 is added, e.g., 95 indicates 
the winter half-year October 1994- March 1995). Note that for the years 1930-1960 and 2008 no 
daily basin averages are available and that these were replaced by the closest nearest neighbour in 
the period 1961-2007, cf. Leander and Buishand (2008). T denotes the return period.  



 
 
 
 

8 

4.2 Results for simulations with and without a memory term 
 
The 4-day memory term was included in the feature vector of the rainfall generator 
for the Meuse basin to improve the reproduction of the autocorrelation of the daily 
precipitation amounts and the standard deviation of the monthly totals (Leander and 
Buishand, 2004; Leander et al., 2005). Figure 4.2 compares the autocorrelation 
coefficients of the simulated daily rainfall sequences with those of the observations. 
The “nomem” simulation somewhat underestimates the autocorrelation coefficients 
for all lags. There is no discernable difference in autocorrelation between the 
“mem4d” and “halfmem4d” simulations.  
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Figure 4.2: Basin-average autocorrelation coefficients in observed daily rainfall and in the 
simulations with (half) the weighting coefficient for the 4-day memory term, and without a 4-
day memory term. 
 
 
Gumbel plots of the maximum 4-, 10- and 20-day basin-average precipitation 
amounts are shown in Figure 4.3. The differences between the two simulations with 
different weights for the 4-day memory term are quite small and the Gumbel plots for 
these simulations are closer to those for the observations than those for the 
simulation without the 4-day memory term. This was also found in earlier simulations 
for the Meuse basin (Leander et al., 2005). 
 
As for the rainfall generator for the Rhine basin (Schmeits et al, 2014), the resampled 
historical days in the most extreme multi-day events in the winter half-year in the 
simulated series were examined. The relative frequencies of these historical days per 
winter are shown in Figure 4.4a, b and c for the 250 most extreme 4-day events, the 
100 most extreme 10-day events, and the 50 most extreme 20-day events, 
respectively. For the most extreme 4-day events, days from the winter of 1948 were 
selected considerably more often in all simulations than historical days from other 
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Figure 4.3: As in Figure 4.1, but now for simulations with half the weighting coefficient for the 4-day 
memory term (dotted) and without a memory term (dashed). The plot for the first 20,000 years of 
the simulation with a 4-day memory term (mem4d) is included for reference and is indicated by the 
solid line. 
 
 
winters, with a relative frequency of more than 30%. Note that this large relative 
frequency involves only a few days from December 1947. A secondary maximum 
frequency is visible in 1995. By contrast, for the 100 most extreme 10-day events the 
simulations with a 4-day memory term show a maximum frequency of about 20% in 
1995, but the frequency of selected historical days from 1995 is much lower (about 
7%) for the simulation without a memory term. Days from the winter of 1948 are also 
frequently found in the most extreme simulated 10-day events. For the most extreme 
20-day events all frequencies are below 11%. 
 
As was also noted by Schmeits et al. (2014) for the Rhine basin, the results of Figure 
4.4 give rise to suspect the resampling technique having a strong preference to 
specific periods with extremely high multi-day precipitation amounts. This strong 
preference to certain historical days in the maximum multi-day precipitation amounts, 
especially in simulations with a memory term, probably leads to an increase of the 
standard error of the extreme quantiles of these multi-day precipitation amounts 
compared to simulations without a memory term. This is further investigated in 
section 5.  
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Despite the fact that days from the winter of 1995 are more often selected if a 4-day 
memory term is included in the feature vector (Fig. 4.4), we can conclude from the 
other results in this section (Figs. 4.2 and 4.3) that the rainfall generator with a 4-day 
memory term is preferable, which is in line with earlier studies (Leander and 
Buishand, 2004; Leander et al., 2005). 
 
The frequent occurrence of days from December 1947 in the simulated extreme 4-
day and 10-day events is also the key for understanding the influence of omitting the 
Vouziers data on the simulated multi-day precipitation maxima.  In December 1947 
flooding occurred in the French part of the basin (de Wit, 2008). For that month also 
the largest historical 4-day basin-average precipitation is found  and precipitation in 
Vouziers, in particular, was extreme in that period. Consequently, the resampled 
days from the December 1947 event are generally coupled with more extreme 
precipitation over the sub-basins in the back transformation if the Vouziers data are 
included in the feature vector. The extreme multi-day events in the present “mem4d” 
simulation are therefore larger than in the old Sim30-08 simulation. 
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Figure 4.4: Frequency of simulated days from historical years for (a) the 250 most extreme 4-day 
precipitation winter maxima, (b) the 100 most extreme 10-day precipitation winter maxima, and (c) 
the 50 most extreme 20-day precipitation winter maxima in the simulations without a memory term, 
and with (half) the weighting coefficient for the 4-day memory term. The frequencies plotted at each 
year y were computed using data from the last months of year y-1 through the first months of year y. 
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5. UNCERTAINTY ANALYSIS 
 
In this section the uncertainty analysis for the rainfall generator for the Meuse basin 
is presented. The jackknife method used by Schmeits et al. (2014) for the Rhine 
basin was also applied to determine the standard deviation of the estimated return 
levels for the simulated data for the Meuse basin. First, the uncertainty analysis is 
discussed in detail for the rainfall generator with a 4-day memory term in the feature 
vector. Then the results for the rainfall generator without this memory term are given. 
Finally, sampling variability resulting from the finite length of the simulation run is 
explored. 
 
Twenty-four jackknife series of 69 years were formed by leaving out subsequent non-
overlapping 3-year blocks from the original series of 72 years (with the first block 
being 1931-332). For each jackknife series a 20,000-year simulation with a 4-day 
memory term was conducted similar to the 50,000-year reference simulation that 
includes all 72 years (the names of the NetCDF files of these simulations and the 
reference simulation are given in Appendix A1). Let  iTx̂ be the estimated T-year 

return level from the i-th jackknife series. Then the jackknife standard deviation of the 
estimated T-year return level is given by: 
 

  
2/1

1

2
)(ˆˆ

1



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






 




n

i
TiTjack xx

n

n
s       (1) 

 
where 

   


 
n

i
iTT nxx

1

/ˆˆ  

and n ( = 24) is the number of jackknife series. Because of less computational 
restraints on the hydrological part for the Meuse basin than for the Rhine basin 
(Schmeits et al. 2014), smaller blocks could be used in the jackknife method (3 years 
instead of 5 years). This yields a more accurate estimate of the standard deviation 
since the variance of sjack decreases with decreasing blocksize. Figure 5.1 shows the 
Gumbel plots of the 20,000-year simulations based on these 24 jackknife series 
together with the Gumbel plot of the 50,000-year mem4d reference simulation. The 
plots for two jackknife series are highlighted in this figure: one without the 1946-48 
block (black dotted) and one without the 1994-96 block (red dotted). These show the 
lowest precipitation maxima at long return periods, which is not surprising because a 
winter from which days were often selected in situations of extreme multi-day rainfall 
(1948 or 1995, see Figure 4.4) was left out in the respective jackknife series. 
 
Table 5.1 compares two estimates of the 1250- and 4000-year return levels of the 4-, 
10- and 20-day precipitation maxima in the winter half-year. The empirical estimate is  
computed as the 16th and 5th largest value in each of the 20,000-year simulations for 
T = 1250 and 4000 years, respectively, while the Weissman estimate is based on the 
joint distribution of the r largest values x[1] ≥ x[2] ≥ … ≥ x[r] (Weissman, 1978). In the 
Weissman method the T-year return level xT is estimated as 
 
   )/ln(ˆˆ NrTxx rT         (2) 

 
                                                     
2 Or, more precisely, 1 October 1930 -30 September 1933. The start of a block was set at  
1 October to avoid splitting the winter half-years. 
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with N ( = 20,000) the length of the simulation, and 
 
  rr xx ̂          (3) 

 
where rx  is the average of the r largest values. In line with the uncertainty analysis 

for the Rhine basin (Schmeits et al., 2014), r was set to 100. The estimated return 
levels in the table are the averages  Tx̂  from the 24 jackknife series and their 

standard deviations are based on Eq. (1). 
 
The estimated 1250- and 4000-year return levels of the 4-, 10- and 20-day 
precipitation maxima in the winter half-year for the Weissman method agree quite 
well with the empirical estimates, but the standard deviation of the Weissman 
estimate is somewhat smaller for the 4000-year return level. The relative standard 
deviation, /jacks  Tx̂ , ranges from 11 to 17% for the empirical estimate and from 11 

to 15% for the Weissman estimate. 
 
The same analysis was done for the rainfall generator in which the 4-day memory 
term was replaced by the areal precipitation fraction. The results are given in Table 
5.2. The standard deviations are lower than those in Table 5.1 for the rainfall 
generator with the 4-day memory term, except for the empirical estimates of the 
4000-year return level. For the Weissman estimate the relative standard deviation 
ranges from 8 to 12%. The reduction in standard deviation may be attributed to the 
fact that the rainfall generator without the 4-day memory term does not suffer from 
generating extreme multi-day rainfall events by repeatedly selecting certain days in 
January 1995. Nevertheless, the relative standard deviations in Table 5.2 are nearly 
twice as large as those given by Schmeits et al. (2014) for a rainfall generator for the 
Rhine basin without a 4-day memory term. Though the relative variability of area-
average rainfall over the Meuse basin is somewhat larger than that for the Rhine 
basin because of the smaller size of the Meuse basin, this cannot explain the large 
differences between the relative standard deviations of the estimated return levels. A 
more important factor is the large uncertainty of these standard deviations, in 
particular those for the Rhine basin which were based on only 11 jackknife series. 
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Figure 5.1: As in Figure 4.1, but now for 20,000-year simulations with a 4-day memory term 
based on 24 jackknife series of 69 years (black, red and green dotted; see legend), and  the 
complete 50,000-year “mem4d” simulation as a reference (black solid). 
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Table 5.1: Estimated return levels of 4-, 10- and 20-day winter half-year precipitation maxima 
and their standard deviations for the 20,000-year simulations with a 4-day memory term,  
based on 24 jackknife series of 69 historical years and for return periods of 1250 and 4000 
years. Both empirically determined and using the Weissman method (r = 100), see text. 
 

T (yr) Return level (mm)   Standard deviation 

 Empirical Weissman  Empirical Weissman 

4-day precipitation 

1250 109 109  14 mm (13%) 14 mm (13%) 

4000 115 116  19 mm (17%) 17 mm (15%) 

10-day precipitation 

1250 179 179  19 mm (11%) 19 mm (11%) 

4000 190 191  27 mm (14%) 23 mm (12%) 

20-day precipitation 

1250 259 257  29 mm (11%) 27 mm (11%) 

4000 278 277  40 mm (15%) 35 mm (13%) 

 
 
Table 5.2: As Table 5.1 but now for the 20000-year simulations without a memory term. 
 

T (yr) Return level (mm)   Standard deviation 

 Empirical Weissman  Empirical Weissman 

4-day precipitation 

1250 109 109  8 mm (7%) 11 mm (10%) 

4000 116 116  20 mm (17%) 12 mm (11%) 

10-day precipitation 

1250 176 176  17 mm (10%) 17 mm (10%) 

4000 189 189  28 mm (15%) 22 mm (12%) 

20-day precipitation 

1250 248 247  24 mm (10%) 19 mm (8%) 

4000 267 265  40 mm (15%) 28 mm (11%) 

 
 
Part of the uncertainty of the return levels is due to the limited length of the baseline 
series used for resampling. Another source of uncertainty is the finite length of the 
simulation run. The magnitude of this uncertainty can be estimated using asymptotic 
expressions for the variances of order statistics and the Weissman estimate. The 
empirical estimates in Tables 5.1 and 5.2 were based on the s-largest value x[s], 
where s = N/T. The variance of this order statistic can be approximated as (see 
Appendix A2): 
 

    2var 
N

T
x s            (4) 

 
where  is the scale parameter of an underlying Gumbel distribution. This scale 
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parameter is estimated from Eq. (3). The variance of the Weissman estimate can be 
approximated as (see Appendix A3): 
 

      2
2

/ln1 ˆvar NrT
r

xT 


      (5) 

 
This approximation relies on properties of order statistics from an exponential 
distribution and may therefore not apply in case of departures from an exponential 
tail. Departures from exponentiality may lead to systematic errors in the estimated 
variances. The bootstrap is an alternative that provides an estimate of the variance of 
order statistics without making assumptions about the underlying distribution. It also 
provides an estimate of the variance of the Weissman estimate, which is still valid if 
exponentiality is not precisely met. In this method samples of size N are generated 
by sampling with replacement from the simulated maxima. The standard deviation is 
then based on the estimated return levels for these bootstrap samples. 
 
 
Table 5.3: Relative standard deviation (%) of the estimated 1250- and 4000-year return levels 
of 4-, 10- and 20-day winter half-year precipitation maxima owing to the finite length of the 
simulation, Results are given for the empirical estimate of the return levels as well as for the 
Weissman estimate (r = 100) and apply for a 20,000-year simulation with a 4-day memory 
term in the feature vector.  
 

T (yr) Empirical  Weissman 

 
Asymptotic, 

Eq. (4) 
Bootstrap  

Asymptotic,  
Eq. (5)  

Bootstrap 

4-day precipitation 

1250 1.3 1.3  0.9 1.1 

4000 2.2 1.4  1.4 1.5 

10-day precipitation 

1250 1.5 1.6  1.1 1.3 

4000 2.5 3.1  1.6 1.8 

20-day precipitation 

1250 1.5 1.4  1.2 1.2 

4000 2.5 3.0  1.8 1.8 

 
 
Table 5.3 presents the relative standard deviation of the estimated 1250- and 4000- 
year return levels of the 4-, 10-, and 20-day precipitation maxima for a mem4d 
simulation of 20,000 years. The bootstrap estimates are based on 500 bootstrap 
samples of 20,000 years. For the empirical estimate of the 1250-year return level, the 
standard deviation from Eq. (4) corresponds well with the bootstrap estimate, but this 
does not hold for the empirical estimate of the 4000-year return level. For that return 
level the bootstrap estimate is unreliable, because the number of different values that 
the estimated 4000-year return level in the bootstrap samples take is limited, namely 
it coincides with x[5] and order statistics close to x[5], making it vulnerable to unusual 
data points (Davison and Hinkley,1997). For the Weissman estimate, the bootstrap 
results in slightly larger values of the standard deviation than Eq. (5). In that case it is 
saver to use the bootstrap results. The relative standard deviations in Table 5.3 are 
much smaller than those in Table 5.1, which means that only a small part of the 
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uncertainty is due to the finite length of the simulation. Nevertheless, the length of the 
simulation may have some influence on the jackknife estimate of the standard 
deviation, which is sensitive to random fluctuations in the simulation for a subseries 
wherein an influential year is deleted. In particular, for these subseries longer 
simulations may be useful. For a 50,000-year simulation the relative standard 

deviation is reduced by a factor of 6.12/5  . 
 
 
 

6. PET SIMULATION 
 
All simulations with the rainfall generator for the Meuse basin presented in this report 
are supplemented with corresponding time series for potential evapotranspiration 
(PET). For this a regression between daily temperature and daily PET for each HBV 
subbasin is used. Using this regression and the simulated temperature for each 
subbasin the corresponding PET is simulated. Note that PET is not an integral part of 
the rainfall generator for the Meuse basin, as precipitation and temperature, but that 
PET is obtained from a post-processing procedure. The (regression) relation for daily 
PET and daily temperature T used reads: 
 

   mmm TT PET )(1PET          (6) 

 

with mT  the mean observed temperature (˚C) and mPET  the mean observed PET 
(mm/day) for calendar month m in the period 1968-1989 for which both daily 
temperature and daily PET was available. m varies from 0.18 ˚C-1 in February to 

0.07 ˚C-1 in September and October. This regression equation is introduced and first 
used in Leander and Buishand (2007). 
 
 
 

7. CONCLUSIONS 
 
A series of simulations with and without a 4-day memory term was performed. A new 
simulation with a 4-day memory term based on the historical data for the period 
1930-2008 was done, because in the old Sim30-08 simulation (Buishand and 
Leander, 2011) the data from Vouziers were accidentally left out. Gumbel plots of the 
4-, 10-, and 20-day precipitation maxima of this new simulation are closer to those of 
the observed precipitation maxima than those of the maxima of the old Sim30-08 
simulation. The nature of the differences between simulations with and without the 4-
day memory term is similar to findings from analogous earlier simulations (Leander et 
al., 2005). For the Meuse basin, the use of a 4-day memory term improves the 
reproduction of the autocorrelation of the daily precipitation amounts and the 
distributions of the multi-day precipitation maxima. However, the rainfall generator 
with a 4-day memory term frequently selects days from the winter of 1995 in 
situations of extreme multi-day precipitation. In all simulations, certain days of 
December 1947 were often found in these extreme situations, no matter whether a 4-
day memory term was included in the feature vector or not. It is, however, not fully 
clear what causes such selection effects. Halving the weight of the 4-day memory 
term does not reduce the selection of days from the winter of 1995. 
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As in Schmeits et al. (2014), a jackknife approach was followed in the uncertainty 
analysis in this study. Using 24 (delete 3-year) jackknife series of 69 years as input 
for the rainfall generator, the relative standard deviation of the estimated 1250-year 
return level of the 4-, 10-, and 20-day precipitation maxima varied between 11 and 
13% when a 4-day memory term was included in the feature vector, and between 7 
and 10% if such a memory term was not included. These values are (almost) a factor 
of two larger than those for the Rhine basin (Schmeits et al, 2014), which should 
mainly be attributed to the large uncertainty of the jackknife estimates of the standard 
deviation.  
 
The main conclusion from the results in this report is that for the Meuse basin the 
rainfall generator with a 4-day memory term serves best as a reference for GRADE, 
which is in line with earlier results (Leander and Buishand, 2004; Leander et al., 
2005).  
 
 

ACKNOWLEDGEMENTS 
 
The daily precipitation and temperature records of the Belgian stations and the daily 
area-average precipitation for the Belgian subbasins used in this report were made 
available by the Royal Meteorological Institute of Belgium. The records of the French 
stations were provided by Météo France. The precipitation and temperature records 
of Aachen were freely available from the Deutsche Wetterdienst. 
 
 
 
 



 
 
 
 

18

APPENDICES 
 

A1. Names of the NetCDF files 
 
The names of the NetCDF files start with the string 
Meuse_2013_v01.1_mem4d_reference_50K for the reference simulation (with 
mem4d_gvar_50000[_reference] as the corresponding name in this report). The 25 
NetCDF files each contain 2000 years of data and are called: 
Meuse_2013_v01.1_mem4d_reference_50K_part01.nc, …, 
Meuse_2013_v01.1_mem4d_reference_50K_part25.nc. 
 
For the 24 jackknife simulations the names of the NetCDF files start with the string 
Meuse_2013_v01.1_mem4d_jackknife_20K_subseries01,…, 
Meuse_2013_v01.1_mem4d_jackknife_20K_subseries24 
(with mem4d_gvar_20000_jackknife as the corresponding name in this report). 
In each subseries a different 3-year block is deleted; details of which 3-year block is 
deleted are given in the metadata of the NetCDF files. The 10 NetCDF files for each 
of the 24 jackknife simulations each contain 2000 years of data and are called: 
Meuse_2013_v01.1_mem4d_jackknife_20K_subseries01_part01.nc,….., 
Meuse_2013_v01.1_mem4d_jackknife_20K_subseries01_part10.nc 
to 
Meuse_2013_v01.1_mem4d_jackknife_20K_subseries24_part01.nc,….., 
Meuse_2013_v01.1_mem4d_jackknife_20K_subseries24_part10.nc. 
 
The NetCDF files contain the precipitation, temperature and evaporation data for 
each of the 15 HBV_Meuse subbasins and use the Gregorian calendar. Each 
simulation starts in the year 2001 to avoid the Gregorian correction in the year 1582. 
 
Note that a version “Meuse_2013_v01_” 
(Meuse_2013_v01_mem4d_reference_50K_... and 
Meuse_2013_v01_mem4d_jackknife_20K_...) was provided earlier to Deltares that 
used the Julian calendar3 and which turned out to be incompatible with the Gregorian 
calendar used in FEWS4. Version “Meuse_2013_v01_” should therefore not be used 
anymore. 

                                                     
3 In this earlier version each NetCDF file contains 1000 years of simulated data rather than 
2000 years. 
4 FEWS: Flood Early Warning System (by Deltares). 



 
 
 
 

19

A2. The variance of empirical return levels 
 
For a simulation of length N, the T-year return level can be estimated as the s largest 
winter maximum x[s], where s =N/T. For the variance of x[s], the following asymptotic 
result holds (David, 1981): 
 

   
 T

s xNf

TT
x

2][

/11/1
var


       (A1) 

 
where f (.) is the probability density of the maxima. For the estimation of var(x[s]) it is 
assumed that the maxima follow a Gumbel distribution. 
  
The distribution function of the Gumbel variable is given by: 
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and the density 
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The T-year return level follows from: 
: 

  TxF T /11 .       (A4) 
 

giving 
 
   TxT /11lnln   .      (A5) 
  
Substituting this into Eq. (A3) gives for the density at x = xT : 
 

     )/11ln(/11
1

TTxf T 


.     (A6) 

 
The variance of x[s] can then be approximated as 
 

   
    22

2

][
/11ln/11

/11/1
var

TTN

TT
x s 





.     (A7) 

 
For large T, 1 – 1/T ≈ 1 and ln(1 – 1/T ) ≈ –1/T, and Eq. (A7) reduces to: 
 

  2
][var 

N

T
x s  .       (A8) 
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A3. The variance of the Weissman estimate 
 
The Weissman estimate of the T-year return level is given by Eq. (2). It can be 
shown that the statistics rx and ̂  in this equation are independent with variances 
(Weissman, 1978; Buishand, 1989): 
 

    r'xr  2var          (A9) 
 

   2
2

1
ˆvar 

r

r 
        (A10) 

 
where  .'  is the trigamma function. This leads to the following expression for the 

variance of Tx̂ : 
 

      






 

 2

2
2 /ln

1
ˆvar NrT

r

r
k'xT  .    (A11) 

 
For large r,   rr' /1  and Eq. (A11) can be approximated as: 
 

     2
2

/ln1 ˆvar NrT
r

xT 


.     (A12) 
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