
KNMI-Publication; 227

HISKLIM 15

De Bilt, 2010

Automatic Curve Extraction (ACE) Framework
Documentation

Hans van Piggelen, Jeroen Lichtenauer and Theo Brandsma

© KNMI, De Bilt. All rights reserved. No part of this publication may be reproduced, stored in retrieval systems, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission in writing from the publisher.

KNMI-Publication 227

HISKLIM-15

De B i l t , 2010

PO Box 201
3730 AE De B i l t
Wi lhe lminalaan 10
De B i l t
The Nether lands
ht tp ://www.knmi.n l
Te lephone +31(0)30-220 69 11
Te le fax +31(0)30-221 04 07

Authors: H.E. van Piggelen, J.F. Lichtenauer, T. Brandsma

The KNMI-program HISKLIM aims at making historical land and sea climate data from Dutch
sources physically accessible, with the highest possible time resolution and quality. The program
started in 2000 and will run 5 to 10 years.

HISKLIM-1 Het KNMI-programma HISKLIM (HIStorisch KLIMaat) / T. Brandsma, F.B.

Koek, H. Wallbrink en G.P. Können. (also KNMI-publication 191)
HISKLIM-2 Gang van zaken 1940-48 rond de 20.000 zoekgeraakte scheepsjournalen / H.

Wallbrink en F.B. Koek. (also KNMI-publication 192)
HISKLIM-3 Historische maritieme windschalen tot 1947 / H. Wallbrink en F.B. Koek.

(Memorandum)
HISKLIM-4 Onbekende weersymbolen in oude Extract-Journalen (1826-1865). / H.

Wallbrink en F.B. Koek. (Memorandum)
HISKLIM-5 CLIWOC, Multilingual Meteorological Dictionary; an English-Spanish-Dutch-

French dictionary of wind force terms used by mariners from 1750-1850 (also
KNMI-publication 205)

HISKLIM-6 DIGISTAD (DIGitaliseren STADswaterkantoor). H.W. Riepma. (Memorandum)
HISKLIM-7 Parallel air temperature measurements at the KNMI-terrain in De Bilt (the

Netherlands) May 2003–April 2005, Interim report. / T. Brandsma. (also
KNMI-publication 207)

HISKLIM-8 Hisklim COADS, Final report. / H. Wallbrink and F.B. Koek. (also KNMI-
publication 210)

HISKLIM-9 DIGISTAD, Disclosure of the hourly meteorological observations of the Amsterdam
City Water Office 1784-1963, Final report. / H. Wallbrink and T. Brandsma. (also
KNMI-publication 220)

HISKLIM-10 Report on meteorological observations at Willemstad, Curaçao, during the period
1910-1946. / P.V.J. Girigori. (Memorandum)

HISKLIM-11 The US Maury collection metadata 1796-1861. / H. Wallbrink, F.B. Koek and T. Brandsma
(also KNMI-publication 225)

HISKLIM-12 Historical maritime wind scales until 1947. / H. Wallbrink and F.B. Koek. (translation
and update of Hisklim 3; Memorandum)

HISKLIM-13 Historical wind speed equivalents of the Beaufort scale, 1850-1950. / H. Wallbrink and F.B. Koek.
(Memorandum)

HISKLIM-14 Data acquisition and keypunching codes for marine meteorological observations at the
Royal Netherlands Meteorological Institute,1854 – 1968. / H. Wallbrink and F.B. Koek. (also
KNMI-publication 226)

Automatic Curve Extraction (ACE)

Framework Documentation

Hans van Piggelen, Jeroen Lichtenauer and Theo Brandsma

Royal Netherlands Meteorological Institute (KNMI)
De Bilt, The Netherlands

February, 2010

Contents

1 Introduction 4

2 Data 6
2.1 Image dataset . 6
2.2 Metadata . 6

3 Framework 8
3.1 Applications . 8
3.2 Application design . 9
3.3 Institute specific implementation 9
3.4 Additional documentation . 10
3.5 Licensing . 10

4 Methodology 11
4.1 Scanning strip charts and rolls 11
4.2 Pre-processing . 13
4.3 Processing and detection of image features 13
4.4 Semi-automatic post-processing 13
4.5 Result aggregation . 13

5 Detection and processing of image features 15
5.1 Image correction . 15
5.2 Foreground/background segmentation 16
5.3 Grid detection . 21
5.4 Tip-over detection . 21
5.5 Curve tracing . 22

5.5.1 Dynamic programming . 23
5.6 Initial curve post-processing . 23
5.7 Curve color remodeling . 25
5.8 Secondary curve post-processing 25

6 Program execution 28
6.1 Installation . 28
6.2 Roller . 28

1

6.3 CurveExtractor . 29
6.4 PostACE . 31
6.5 ParseTracks . 31

7 Input data 34
7.1 Nomenclature . 34
7.2 Strip code . 34
7.3 Input images . 35
7.4 The configuration file config.ini 35

7.4.1 Directory structures . 36
7.5 Data tables . 36
7.6 Precipitation table . 37
7.7 Hourly precipitation table . 37
7.8 Series database . 39

8 Output files 41
8.1 Output images . 41

8.1.1 Curve and grid images . 41
8.2 Tracked data file . 42
8.3 Roller data file . 45
8.4 ACE file data file . 46
8.5 Log files . 46
8.6 Rainfall intensity table . 46

2

Preface

Digitization of the information on meteorological strip charts is a time consum-
ing activity. This is especially true when high-resolution output is needed like
5-minute rainfall sums. In the scope of the Dutch research program ’Climate
changes Spatial Planning’, KNMI undertook the task of, among others, digitiz-
ing hundreds of station years of rainfall strip charts and paper rolls from Dutch
stations. The end result is a dataset with long time series of 5-minute resolution
rainfall data. To facilitate the digitization, a framework was developped that
allows for Automatic Curve Extraction (ACE) from scanned images of strip
charts and paper rolls. This report contains the documentation of the ACE
framework.

3

Chapter 1

Introduction

In the archives of meteorological services, huge amounts of strip charts and pa-
per rolls are stored. These charts and rolls may contain information not yet
available in digital form but of interest for climate research and applications.

Strip charts and paper rolls have been used for continuous recording of ele-
ments like air temperature, humidity, cumulative rainfall depth, wind speed and
direction and air pressure. In many parts of the world the recorders have now
been replaced by automatic measuring devices whose output is digitally stored
in databases. The time resolution of the latter is often an order of magnitude
larger than that of the data that have been manually extracted from the strip
charts and paper rolls. For instance, in the Netherlands temperature and rain-
fall are now operationally stored at 10 minutes resolution and for some stations
even at 1 minute resolution. In contrast, the strip charts have been used in
the past mostly for extracting hourly values. Nevertheless, the charts and rolls
can be still be used to extract information with a time resolution of about 5 to
10 minutes. To do this manually is too labor-intensive and therefore often not
feasible.

Here we present the Automatic Curve Extraction (ACE) framework that au-
tomates the labor-intensive extraction work for rainfall strip charts and paper
rolls. Although the framework is developed for rainfall it can be suited for other
elements as well. The framework consists of four basic steps: (1) scanning of
the strip charts and paper rolls to digital images with a fast document scan-
ner, (2) applying the curve extraction software in a batch process to determine
the coordinates of the lines on the images, (3) visually inspecting the results of
the curve extraction software, (4) using post processing software to correct the
curves that were not correctly determined in step (3). This document describes
all of these steps in detail.

Qualitative data is essential for good historical climate analysis. Now that
historical weather data can increasingly contribute to modern climate models,

4

it is important to have understanding in historical weather behaviour. One of
these behaviours is the amount of rainfall each day and the rain differential in
time. From around 1890 until 1980, meteorologists have collected precipitation
data using special rain measurement devices, so-called pluviographs, at several
locations in The Netherlands. The data was recorded by automatically drawing
a curve on graphical strips (containing a rectilinear grid) each day, resulting in
a graph describing the total amount of rainfall versus time (see Figure 1). In
later years, paper rolls where used having up to 30 days with similar consecutive
grids on them.

The goal of this project and program is to extract from each digitally scanned
image the curve values, representing the amount of rainfall at a certain time.
Ultimately, these values are transformed into rainfall intensity values with a tar-
get time resolution of 5 minutes. The rainfall intensity resolution is somewhere
around 0,1 mm (millimetres) depending on the image vertical resolution.

5

Chapter 2

Data

2.1 Image dataset

The complete image dataset consists of over 110,000 strip charts and more than
5000 rolls. These recordings were made from the end of the 19th century until
halfway the 90s last century at 9 different geographical locations throughout
the Netherlands. An example strip is shown in Figure 2.1 and an example roll
is shown in Figure 2.2.

2.2 Metadata

In addition to the image database, two other sources of information are used.
First, series information was gathered from all scanned image and stored in
a small table. In this table the grid start time and length, the presence of a
curved vertical axis and the grid and curve colors are stored per location and
period having images with similar features. A separate table contains the av-
erage RGB values and colour component comparison thresholds for each color.
This latter table is not used anymore, but this present for compatibility reasons.

A large online Microsoft Access database was constructed which contains
information for each separate scanned image. Each entry contains an image ID,
corresponding date and file code, the primary and processing state of the image,
some notes, the grid start time and the last edit time stamp together with the
responsible user and location.

While the before mentioned information sources are present before any pro-
cessing is performed, in the end for each image additional data will be stored.
In the next chapter, this will be extensively described.

6

Figure 2.1: Example strip recorded in The Bilt at the KNMI on the 14th of
October 1896. As is clear, the vertical axis is curved and the image is slightly
tilted. The grid and curve colours are black and red respectively.

Figure 2.2: Example part of a roll image. The complete image is almost 250
times as large in vertical direction. As is clear, the image orientation is different,
as is the resolution in both directions.

7

Chapter 3

Framework

The Automatic Curve Extraction (ACE) framework was built specifically for
ease of use, speed, portability, precision and most importantly, data output.
To achieve a successful detection and conversion of the image data into usable
rainfall tables, a certain workflow is necessary requiring specifically designed
tools. Typically, images can directly be processed using the curve extraction
program, but in case of roll images, prior pre-processing (digital cutting) and
marking is required. After processing, the result can be visually inspected and
if necessary corrected. Ultimately, the resulting data is assembled into rainfall
intensity tables. Figure 2 schematically shows this workflow in far more detail.
These details will be discussed in Chapter 4.

3.1 Applications

Several applications have been developed to ensure successful detection and
processing of the images. The initial detection and processing is done by a
command-line interface (CLI) application, as is the parsing of the data output
into usable tables. The pre-processing of the roll images and post-processing of
the curve detection results are done in graphical user interface (GUI) applica-
tions. Below a table is shown which enumerates all programs and will give the
relevant section in which an extensive description is given about the program.

Name Description Interface Section
Roller Pre-processing of roll images Graphical user 6.2
CurveExtractor Processing of images Command-line 6.3
PostACE Post-processing of detection results Graphical user 6.4
ParseTracks Detection result parsing Command-line 6.5

Table 3.1: The main applications used throughout the ACE framework.

Some smaller tools have been developed to analyse and transform data, but
these are not part of the main ACE framework.

8

3.2 Application design

The framework is entirely written in C++ using the Standard Template Library
(STL) classes and some MMX code. For the graphical user interface programs,
the MFC library version 6.0 was used. While these library classes require a
license in order to be used, they assured rapid development and a broad range
of functional possibilities for the applications. To able to load JPEG images,
the free IJG JPEG library1 was implemented which has a special license (Sec-
tion 3.5). The principal design tool was Microsoft Visual C++ Studio version
6.0 SP6.

As far as possible and suitable for the design, the applications were written
using an object-oriented design approach. This holds for the storage and call of
image and database data, the core algorithms are implemented using a faster,
direct access approach. This ensures a fast and precise execution of the pro-
grams.

While most imaging programs are designed to completely load an image at
once, due to the size of the bitmap images and slow access over networks, a
streamed bitmap class was implemented. In short this means that only the
currently used (or visible) section of the images is loaded into memory, thereby
significantly reducing the load times and required memory resources. All pro-
grams involving image loading and saving have this functionality implemented.
If the workstation holds sufficient memory and if the operating system supports
it, the image data will be cached into memory leading to quick image display if
the requested section has been displayed before.

3.3 Institute specific implementation

The ACE framework is a set of tools standing on their own, but in its design
it has been adapted to the infrastructure and database structure of the Royal
Netherlands Meteorological Institute (KNMI). Therefore, if external implemen-
tation is wished for, thorough internal adaptation will be necessary. This can
be easily achieved because of the straightforward design of the applications.

Example institute specific implementation design choices are:

- Processing is focused on pluviograph recordings

- The database structure and name, table column names and internal con-
nections

- File names of scanned image and data files contain specific information
(see Chapter 7 and 8

1http://www.ijg.org

9

- Some system environment variables are used

- Many batch files and commands are adapted to the data storage structure

3.4 Additional documentation

Besides this general documentation about the framework and project, two addi-
tional supplements exist. First, the so-called code documentation describes the
structure and functions of the code which form the programs and applications
after compilation. Second, the manuals of the graphical user interface programs
provide information on how to use the various functionalities and how to main-
tain an effective workflow.

The code documentation is automatically generated from the code source
itself. Almost all functions and methods have descriptions and parameter ex-
planations defined directly above them in the function declaration header files.
The compiled code documentation can be found in the source directories in
HTML webpage form. In addition, the code within the functions themselves
have additional comments to help the programmer understand the structure
and workings of that particular function.

For the autogeneration of the code to work, a document markup language
is used called Doxygen2. By parsing the source code with the Doxyfiles pro-
vided with the code using Doxywizard, the HTML webpages and images will be
automatically created.

3.5 Licensing

The ACE framework and its internal programs and applications are licensed un-
der the GNU General Public License. It is provided ’as is’ but with no warranty.

ACE is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later ver-
sion. A copy of the GNU GPL is provided in the source archive.

For the IJG JPEG library the following legalese holds: The authors make
NO WARRANTY or representation, either express or implied, with respect to
this software, its quality, accuracy, merchantability, or fitness for a particular
purpose. This software is provided ”AS IS”, and you, its user, assume the entire
risk as to its quality and accuracy.

The IJG JPEG software is copyright (C) 1991-2009, Thomas G. Lane, Guido
Vollbeding. All Rights Reserved except as specified below.

2http://www.doxygen.org

10

Chapter 4

Methodology

To successfully process an image and detect its features, several steps are in-
volved which require careful attention. In this chapter these steps are discussed
in detail, and possible problems, solutions and alternatives are discussed. For
ease of exposition, most of the time, strip charts are used as reference. However,
the methodology is equally applicable for the roll images with the exception of
the grid detection step.

4.1 Scanning strip charts and rolls

Strip charts are scanned using the Canon DR5010C transit scanner, capable of
scanning at a speed of 20 charts per minute at a maximum resolution of 600 dots
per inch (dpi). Since physically cutting the rolls was not allowed, the Contex
Chameleon G600 scanner, designed for large image sizes, was used to scan the
rolls with a speed of 150 centimeter per minute at 300 dpi resolution. Using
these resolutions, a number of 10 to 15 pixels for the curve and grid line thick-
ness is achieved, which is considered sufficient. The curves can now easily be
distinguished from the background and the center of the line can be accurately
estimated.

Due to the large number of strip charts and rolls, file storage requirements
are a concern. Together with the output data resulting from the framework,
the necessary amount of data to be stored has become rather large (over 3TB).
Considering this in advance, the strip images are stored in high-quality JPEG
format to save storage space. Since the JPEG image image format is a lossy
compression codec, it can be assumed that some details will be lost. Fortunately,
this loss is minimal and all features in the images can still be successfully de-
tected. The roll images are stored in Windows Bitmap (BMP) or similar TIFF
format using a 256-color palette to save storage space. In addition, this allows
fast and partial loading of these images.

11

Figure 4.1: Schematic overview of the processing of an image in the framework.
The sub-steps of the image correction step are optional or applied as-needed.
Steps within the dashed box are fully automatic, and therefore can be applied
as a batch job. See text for details.

12

4.2 Pre-processing

For each measurement location, periods with identical features (e.g. the start
and end times of the graphs and the presence of a curved axis) are described in
a database and used later on in the processing of the images.

A property of the rolls is that they mostly contain multiple day recordings in
a sequence. For a correct detection of the rainfall values on the rolls, the exact
start and end date and time of the roll recording are needed, as well as the
exact locations of the day transitions and the upper and lower grid boundaries.
Sometimes, only arbitrary time markings made by the observer are available.
Before the application of ACE, the roll images were digitally cut to make sure
that each day on these images is processed correctly. To avoid the error-prone
automatic detection of these lines and markings, the day transitions and grid
boundary positions were identified manually. For this specific task, the GUI
application Roller was developed (see Table 3.1). Roller is capable of handling
the large bitmap images, digitally cutting them and to provide the necessary
tools to accomplish the marking of the marker and grid positions.

4.3 Processing and detection of image features

The main part of the ACE framework is the detection of image features and the
conversion of pixel coordinates into usable rainfall intensity values. This is an
extensive and sophisticated process and is described in Chapter 5.

4.4 Semi-automatic post-processing

The results of ACE are examined using PostACE. We developed this software to
visually inspect the results of the automatic extraction and to adjust the found
features in the images if needed. If necessary, the extraction with ACE can
be repeated within PostACE using user-defined image features, such as altered
tip-over moment positions.

In case the trace still doesn’t match the exact position of the curve found
on the image, correction lines can be drawn to force the curve point’s vertical
positions across a longer interval. In addition, polygons can be drawn to exclude
the enclosed pixels during the curve tracing phase by setting the corresponding
probability values to zero (background).

4.5 Result aggregation

Finally, the extraction results of the individual images are combined into a
rainfall intensity table with arbitrary time resolution and time range. In our
case, the time resolution was set to 5 minutes, corresponding to a width of
roughly 30 pixels for the strip charts and 60 pixels for rolls. Using the start and

13

end points of each curve with corresponding times, the exact pixel positions of
the 5 minute intervals are determined so that each interval exactly matches one
of the 12 intervals in an hour. The actual difference in pixel height within each
interval corresponds to the amount of rainfall during that period and thus the
rainfall intensity.

14

Chapter 5

Detection and processing of
image features

Here we present a detailed description of several procedures involved in the
development of ACE (dashed box in Figure 4.1). Most of the following text is
directly taken from [3].

5.1 Image correction

Image correction for rolls starts with the extraction of the correct part of the
scanned image, since only a single day is processed at a time. Images are trans-
formed automatically to the common strip orientation as shown in Figure 2.1.
Optionally, color correction can be applied if images do not have enough con-
trast to successfully complete the detection process.

Tilt correction utilizes the repetitiveness of the recurring horizontal lines
of the grid in vertical direction to measure the necessary local shift. First,
a suitable reference column is located in the central part of the image. All
other pixel columns will be vertically aligned with this reference column. By
cross-correlating target columns every 200 pixels in horizontal direction with
this fixed reference column and finding the optimal vertical pixel shift leading
to the best overlay match, the whole image can be straightened, eliminating
any tilt if present. For every chosen column, neighboring columns within a
specified interval of 150 columns are checked to select the most suitable column
for comparison. This is accomplished by autocorrelating these columns with
themselves. If correlation is high compared to neighboring columns, the column
is probably located at a vertical grid line in the image. If correlation is low, the
column is suitable for comparison. The column with the lowest autocorrelation
is selected as the column to be used for shift measurement. Once the shifts
have been found, the set of shifts is filtered so that any erroneous peak shifts
are removed and a smooth correction is realized. Ultimately, the shifts are

15

Figure 5.1: Schematic overview of the automatic color modeling process. The
strip chart is divided into blocks placed centrally on the image. Of each block
the grid and paper pixels are clustered into two segmentation groups (clust1) of
which the mean colors are calculated and grouped into the local color estimations
(clust2). The global grid and paper colors are derived from these groups. See
text for a detailed explanation of each step.

interpolated and applied to each pixel column of the image.
Vertical axis correction involves similar calculations. Instead of columns, all

pixel rows are cross-correlated with a suitable reference row located centrally in
the image. The curve of the vertical axis can be described by a second degree
polynomial. We fitted shifts to this function resulting in a smooth correction.
Note that this step is only performed if the metadatabase indicted that the
specific chart displays curvature of the vertical axes.

5.2 Foreground/background segmentation

The color distributions of grid and paper are robustly estimated in a two-step
clustering process, guided by four assumptions about relative coverage and in-
tensity of blank paper and grid lines:

16

1. Blank paper covers about 90% of the surface between grid lines.

2. Blank paper is brighter than anything else in the image.

3. Grid lines cover about 10% of the surface within a grid area.

4. Grid lines are darker than anything else in the image.

Assumptions 1 and 3 are not strict. ACE should be able to handle a reasonable
amount of deviation from the expected coverage. Assumption 2 holds for all
of our examples, because adding ink to paper usually leads to a reduction of
brightness. However, assumption 4 only holds when an image contains nothing
else but grid and paper. It is often violated when a piece of curve, handwritten
text or markers are present as well. This is why we have split the color estimation
process into a cascade of two clustering procedures. We first estimate grid and
paper color in Small Grid Blocks (SGBs) of the image, and, in the second step,
apply clustering to the outcomes of all SGBs. This is based on the fifth (and
crucial) assumption:

5. The grid area of an image can be broken up into square blocks, of which
more than 50% only contain grid and paper, without a curve, markings
or handwriting.

Assumption 5 means that assumptions 1 to 4 hold for at least 50% of SGBs. For
these blocks, paper and grid color estimation will be reliable. For the remain-
ing blocks, successful color estimation cannot be guaranteed. By subsequently
clustering the estimated mean paper and grid colors of all SGBs, the failed SGB
outcomes are discarded and successful results can be combined to increase esti-
mation accuracy. Figure 5.1 shows a schematic overview of the color modeling
process. In the following paragraphs the whole process is described in detail.

Clust1: SGB color modeling The size of SGBs is chosen at least as large
as one period of the grid pattern (both horizontally and vertically), so that
the thicker grid lines are always within a block. Larger blocks would not be
beneficial, as they would result in a higher percentage of blocks containing a
piece of the curve or other ink from stamps or handwriting. The SGBs are only
extracted from the middle region of the image, to ensure that they actually
contain grid lines. It is possible to extract overlapping blocks from an image in
order to maximize the percentage of blocks that do not contain anything but
blank paper and grid. However, this results in more blocks and thus higher
computational load. This did not seem necessary for our data. Here we only
used adjoining blocks, which was sufficient for our data.

The first step of clustering is applied to every individual SGB. The clustering
procedure is a modification of Expectation Maximization (EM). In a number of
iterations (5 iterations turned out to be enough to converge to a stable result),
the estimates of the mean and covariance of grid and paper color are updated
by re-computing the mean color of each cluster. A good initialization of paper
and grid color is crucial to a successful clustering. The initialization of paper

17

color c(0)P is done by computing the mean color c̄(B) of the brightest 90% of
pixels B in the SGB. Similarly, the initial grid color c(0)G is found by the mean
color c̄(D) of the darkest 10% of pixels D in the SGB. Brightness I of a pixel x
is defined as

I(x) =
r(x) + 2g(x) + b(x)

4
(5.1)

where r(x), g(x) and b(x) are the red, green and blue components of x, re-
spectively. This is because multiplications and divisions by two are executed
much faster in digital hardware, and most of current imaging devices use a ra-
tio of two green sensors for every pair of blue and red sensors. This means
that green is more reliably measured than red or blue. The mean color c̄(S) =
[r̄(xi), ḡ(xi), b̄(xi)]T of the colors c(xi) = [r(xi), g(xi), b(xi)]T , i ∈ S of the pixels
in set S is defined as

c̄(S) =
1
N

∑
i∈S

c(xi) (5.2)

Each iteration k starts with re-grouping SGB pixels to the paper P (k) and the
grid G(k) clusters. This is based on the Euclidean distance to the respective
estimates of mean colors in RGB space. To be robust against deviations from
the expected coverages, only the closest half of the respective expected coverage
is used. This means that the paper cluster P (k) is formed by the 45% closest
SGB pixels to c

(k−1)
P , while the grid cluster G(k) is formed by the 5% closest

SGB pixels to c(k−1)
G . Finally, the colors are re-estimated by c(k)

P = c̄(P (k)) and
c
(k)
G = c̄(G(k)).
c
(k)
P and c(k)

G of the last iteration are used as the estimated paper cP (m) and
grid cG(m) color, respectively, for the SGB with index m. The 3x3 covariance
matrix of grid color in RGB space ΣG is estimated over the last grid cluster
G(k). In our scanned images, the background was often saturated. This makes
it impossible to calculate the covariance of paper color ΣP . However, most of
the variation in paper, as well as grid color, was caused by gradual transition
between grid and paper. These smooth transitions are caused by variations
in the amount of grid ink on the chart/rolls, but also by interpolation around
edges during the scanning process. This implies that the covariances of paper
and grid are quite similar. Therefore, we could assume that paper color has the
same covariance as grid color.

Clust2: Combining SGB outcomes From the procedure described above,
we now have two sets of color values cP (m) and cG(m), m ∈ {1, . . . , NSGB},
where NSGB is the total number of SGBs. A single-color clustering is applied
to both sets, which differs from the above procedure for the individual SGBs
only in the computation of the initial color and the percentage of closest values
assigned to a cluster. The initial color for each set (paper and grid procedures
are now identical) is estimated as the mean color of the entire set, and the 50%

18

closest values are now used for assigning values to a cluster. The SGB grid
covariance matrices ΣG(m),m ∈ G(k) which correspond to the grid color values
that are assigned to the grid cluster after the final iteration, are averaged per
element, to obtain an overall estimate of the grid color covariance.

Grid likelihood For estimation of grid borders, it is important to have an
estimate of the grid pattern. The likelihood of a pixel x belonging to a grid line
is estimated by:

LG(x) = 255
(

1−min(1,
||c(x)− cG||
||cP − cG||

)
)

(5.3)

where || · || denotes the L2 norm of a vector (Euclidean distance in RGB space)
and min(a, b) equals a for a < b and b otherwise. The normalization with
the distance between paper and grid color ensures that paper color is given a
likelihood around 0, while the multiplication with 255 makes the results of a
whole image suitable to be saved as a typical 8-bit monochrome image. Since
this measure does not correspond to actual statistics, it has to be seen rather
as a fuzzy classification than as a likelihood.

Background likelihood Now that we have estimated statistics of paper and
grid color, we can use this information to recognize anything that looks like
neither of them (the foreground). Since the curve is drawn with different ink,
it will be part of this foreground. Therefore, foreground likelihood will help to
locate curve pixels.

The Mahalanobis distance is used to take into account the directional de-
pendency of the variance of background color in RGB space. Simply combining
the Mahalanobis distances to mean paper cP and grid color cG will lead to clas-
sifying the smooth transitions between grid and paper as foreground. This is
because pixels on the smooth edges are unlike grid color, but also unlike paper
color. Instead, we use the knowledge that the colors on these soft edges are a
linear combination of grid and paper color (assuming the smoothing is the same
in all color channels). Instead of computing the Mahalanobis distance to cP and
cG, a reference background color cGP (x) is defined as the projection of a pixel
onto the vector between cG and cP :

cGP (x) = cG + v̂PG ·max(0, (c(x)− cG)T v̂PG) (5.4)

v̂GP =
cP − cG
||cP − cG||

(5.5)

where max(a, b) is a for a > b and b otherwise. The max function ensures that
when the projection falls below cG (darker than grid color), cG is used directly
as the background color. Now, the unnormalized foreground likelihood L∗FG is
calculated as:

L∗FG(x) =

√
(c(x)− cGP (x))T Σ−1

G (c(x)− cGP (x))

I(x)
(5.6)

19

(a) (b)

Figure 5.2: Isosurface of likelihood in RGB space, in (a) for the Mahalanobis
distance to mean grid color and in (b) for the foreground likelihood model
LFG(x)

The division by brightness is done to allow more variation of brighter background
colors. This assumes that color variance scales with brightness. The difference
between this model and a straightforward Mahalanobis distance is shown in
Figure 5.2. In (a) an elliptical surface in RGB space is plotted that has an equal
Mahalanobis distance to the mean grid color. (b) shows a surface in the same
space that has an equal foreground likelihood as calculated by L∗FG(x).

To effectively use this background likelihood model, it is crucial to scale it in
a way that results in comparable likelihood values for all images, independent
of color variance or the estimation thereof. This is done in a robust empirical
estimation of the boundary value L(maxBG)

FG of L∗FG(x) over the SGBs that were
selected for the grid color cluster G(k) in the last step of the clust2 procedure
for grid color. For each of these SGBs, the 99th percentile of L∗FG(x) is deter-
mined over all pixels in the block. A clustering of these percentiles is done that
is identical to the clust2 procedure, resulting in L

(maxBG)
FG as the mean of the

final cluster.

Besides being scaled, the foreground likelihood is also mapped by a Gaussian
function centered at 0. This is because differences between colors with a large
distance from the background colors are relatively less important. A Gaussian
mapping reduces likelihood differences between these different foreground colors,
while still keeping nuances that may be important to track the curve path
through stains or other clutter or artifacts that are different from the estimated
background colors. Because the resulting likelihood LFG(x) does not correspond
to an actual probability, it has to be regarded as a fuzzy foreground classification:

LFG(x) = 255

1− exp

−1
2

(
αBGL

∗
FG(x)

L
(maxBG)
FG

)2

 (5.7)

20

The scaling with 255 is again to be able to save the result of the likelihood
computations as an 8-bit monochrome image. αBG is a factor that scales the
maximum background likelihood to a certain factor of the Gaussian standard
deviation. αBG = 0.4 was chosen as an educated guess. This value should
keep most of the background likelihood values on the high part of the Gaussian,
preventing large contrasts in the likelihoods between different background pixels,
while achieving a high contrast between foreground and background likelihoods.

5.3 Grid detection

In order to transform the curve pixel coordinates into usable rainfall and time
data, it is necessary to know the exact locations of the grid boundaries which
represent the known start and end times on the horizontal axis and the range
of rainfall on the vertical axis. Using the grid likelihood image, the locations
are found by estimating the mean distance between the grid lines. For each
row or column the sum of likelihoods of all pixels is calculated. To make sure
that slightly skewed grid lines are still incorporated in the calculation, for each
row or column the sum of an imaginary skewed line with a maximum skew of
20 pixels centered on that same row or column is regarded as well. From these
sum values the local maxima are extracted that exceed a sum value threshold
of Lg times the row or column length, respectively. Initially, Lg is set to 50. All
maxima arising from small successive row or column variations are discarded.
Now, the mean mutual distance between two successive maxima and its standard
deviation indicate how well the initial distance estimation fits the image. If the
standard deviation is larger than 2 pixels, the estimation is probably wrong and
most likely too many maxima are taken into account. Therefore, with a raised
threshold Lg,new = Lg + 1, a lower number of maxima is taken into account.
With this new set of maxima the distance estimation is repeated. As soon as the
estimation is accepted, the locations of the outermost maxima having a distance
comparable with the mean are marked as the outer boundaries of the grid. If
no good estimation can be found, the first maximum is used as the boundary
location.

5.4 Tip-over detection

Before the actual curve is traced, the tip-over moments need to be detected,
since they cause the curve to be discontinuous. The detection of these tip-
overs involves similar methodology as in the grid detection step. In the curve
likelihood image, a tip-over manifests itself as an almost vertical dark line. The
pixels of each column in an image are summed, and if any sudden negative peaks
in total column sum are found, they most likely correspond to one or more tip-
overs. To make sure that the more skewed tip-overs are taken into account as
well, an empirically estimated skew of 24 pixels regarding the whole line length
is allowed. A drawback of this method is that sometimes vertical time markings

21

made with the curve pen color are mistaken for tip-overs. During the initial
tracing in the next step they will be treated as such, but during the secondary
post-processing step they will be filtered out automatically and only the actual
tip-overs should remain.

Another drawback is that there is a probability that less visible tip-overs are
missed during detection. These are not taken into account, preventing a correct
curve trace. Manual addition of these tip-overs during post-processing solves
this issue.

In rare cases, tip-overs are retrograde (i.e. their skew is negative). The strip
chart image and curve likelihood image are corrected for this artifact by moving
all pixels prior to the tip-over horizontally to the left. This way, the tip-over
skew is corrected and the curve tracing will not skip any parts positioned on the
chart at the same time. Since this alteration is only small, the shift in time is
not an issue. Prograde tip-overs (the normal situation) are not corrected since
these cause no problems during tracing and skews are usually small (depending
on the time needed for emptying the reservoir) and therefore have negligible
influence on the outcome.

5.5 Curve tracing

A dynamic programming algorithm is applied to the curve likelihood image to
trace the curve on the image. The algorithm is capable of tracing a continuous
curve in right-to-left direction, using the principle of optimality ([1]). It solves a
globally defined problem by finding the optimal solution of the individual smaller
subproblems which together compromise this global problem. In horizontal
direction, the image is divided into sections separated by the tip-over moments
found in the previous step. If no tip-overs were found, the whole image is treated
as one section. For each section, the minimal cost path is determined, using the
pixel likelihood values as cost factors. In a mathematical sense, the minimal
cost path is determined as the sum of all the minimum cost sub-steps between
consecutive pixel columns:

min [C(x1, x2, . . . , xM)] = min
j=1,...,N

[
C(xj

M)
]

(5.8)

with C(xj
i) the total accumulated cost at pixel (i, j), M the total number of

columns and N the total number of rows in the image ([2]). C(xj
M) are thus the

pixels in the last (furthest right) column containing the total sum from left to
right. Starting from left, between each pair of consecutive columns the minimal
cost step from a certain pixel of the right column, the node, to a pixel on the left
column is determined (Figure 5.3). A user-definable change in the y-coordinate
is allowed with this step, in our case a search width of 25 pixels, centered on
the node height. Note that this implicitly limits the detectable steepness of
the curve and the ultimate maximum rainfall intensity that can be determined
automatically. The accumulated cost of the pixel on the left is added to the

22

value of the pixel on the right and the corresponding optimal step (change in
height) is remembered. This is repeated for every column pair. In the end, each
pixel in the outermost right column has the sum value of the minimal path from
the left to that particular pixel on the right. Since the coordinate of the best
neighboring pixel is known for each pixel, the minimum cost path can be traced
back from right to left, starting from the last column pixel with the lowest total
sum. Since the curve image might be noisy, the traced curve path most likely
does not represent the actual path of the curve. It also runs accross the entire
image instead of starting and stopping at the actual curve end points. This will
be dealt with later on during post-processing.

5.5.1 Dynamic programming

Dynamic programming is an optimization method based on the principle of
optimality. It searches for optima of functions in which not all variables are
simultaneously interrelated. In this case the aim is to find the best path (min-
imum cost) between the starting point A (one of the pixels in the most left
column) and end point C (pixel in the most right column). The cost is in this
case represented by the colour component value of each pixel. The principle of
optimalitys main point is that when the optimal path between A and C goes
through B, then its parts A-B and B-C are also optimal (for illustration see
Figure 5.3).

To translate this into an algorithm, the image is traversed column by column,
starting with the second column from left. For every pixel in the considered
column, the minimum cost path to a pixel in the previous column is searched,
using a specified search radius. To make sure that a continuous path is found,
the value of the pixel having the minimum value in the search range is added
to the pixel considered. When the next column is processed, then the influence
of the previous column is still apparent. Also the difference in pixel coordinate
height is stored to later be used as a pointer.

If all columns are processed, the minimum total cost can be found at a
certain location in the last column. Since for each location the path direction
to its best predecessor is known, the minimum path can be traced back. For an
illustration, see Figure 4.

5.6 Initial curve post-processing

Because the curve now follows the exact minimal cost path, which is not neces-
sarily the best solution, the result must be improved by repositioning the curve
points to the nearby local vertical line center of the curve on the image. This
line center is found by measuring the weighted sum of the intensities of the back-
ground pixels found in the row part centered to the current pixel position in the
curve likelihood image. The row with the minimum background pixel intensity
is most likely the vertical line center. We derived a mathematical formula which

23

Figure 5.3: Imagine a 3x3 image with coordinates or nodes A-I (a). To find a
path from left to right each node has a value or cost (b). To find the minimal
cost path, the best route from each consecutive column pixel to its predecessor
must be found, here for example from E (c). After this has been determined, the
optimality (in value and direction) is known for each column pixel (d). Repeat
this for the last column and add each found cost to this column, remember its
directions (e). Now the most efficient route is calculated by tracing from the
minimum pixel in the last column back to the starting column (f).

expresses the centering of the curve point at (x0, y0):

y′ = min
y=−N,...,N

[
M∑

x=−M

p(x0 + x, y0 + y)w(x)

]
(5.9)

with y′ the adjusted vertical line center, p(x, y) the intensity of the pixel at
coordinate (x, y), w(x) a ramped weight factor for a pixel at position x:

w(x) = 1− |x/M |. (5.10)

M is the number of pixels regarded horizontally in each direction and N the
number of rows regarded vertically in both directions.

24

The path of the curve still traverses the whole image from left to right. For
strip charts the curve itself almost always starts and ends at a different time on
the grid, while for rolls it starts and ends at the left and right image borders.
Therefore, the current path of the curve on the strip charts needs to be trimmed
from all pixels not belonging to the curve, which are located outside of the curve
begin and end points. In this initial step, an initial estimate of the positions of
these points is derived from the series database (Chapter 2) together with the
known coordinates of the grid.

5.7 Curve color remodeling

The current state of the path is used to adjust the color model for the curve
pixels. From all pixels belonging to the curve path a new mean color is cal-
culated. The Euclidean distance is used to remove pixels located far from the
mean. This improves the mean resulting in a refined estimate of the curve color.
Using the corresponding histogram, the curve likelihood image is reconstructed.
The tip-over detection and curve tracing are repeated using the steps outlined
in the previous paragraphs. In many cases this results in an improved estimate
of the curve path.

5.8 Secondary curve post-processing

Secondary curve post-processing is now applied to the newly traced curve.
Again, the start and end point of the curve need to be detected for the strip
charts. This time, morphological operators are applied to the path to detect
the current start and end points of the curve. Since the segmented path may
contain gaps of undetected curve, the first path segment from the left that is
longer than 150 pixels, is assumed to be part of the curve line and its outmost
left point is marked as the curve start point. The same is repeated for the
outermost right part. Here, the outmost right point of this segment is marked
as the curve end point. Again, any path points not belonging to the curve are
excluded in further calculations. This step is followed by the alteration of the
path to the center of curve line, as described in the initial post-processing step.

A common artifact is the presence of bumps in the path. These emerge
because of the changes in color of the curve on the image (e.g. when running
through a grid line) or because of the presence of time markings. The removal
of these bumps is accomplished by convolving the traced path by a continuous
morphological opening and closing of a local part of the curve. Events, such as
the ends of a line and tip-over moments, must be treated as if the line on one side
of the event continues horizontally over the event. This means virtually repli-
cating the last value during filtering near the events. Otherwise, these desired
extremes will also be cut-off. Figure 5.4 illustrates this idea. The only parame-

25

Figure 5.4: Mathematical display of the equivalent of an opening and closing
applied to the curve initially found on the image. On the left is the original
path, on the right the outcome after application. Two separate processing path
ways are displayed: the first row applies a maximum operator followed by a
minimum operator. The second row applies the same but in reverse order. The
outcome curve is the average of the results of the two pathways.

ter to choose here is the convolution window size, which must be larger than the
largest bump present in the curve. The bump removal operation preserves the

26

exact shape of monotonically increasing or decreasing signals and is therefore
a safe way to improve the quality of the trace. Furthermore, a relatively large
window size can be chosen for cumulative measurements (e.g. rainfall) since the
change in height of the path is not altered.

If there are any erroneous steps (changes in vertical height) present in the
path, a correction is applied to ensure a continuous path. By calculating the
derivative of the path, any sudden changes in path height are detected by ex-
tracting the coordinates corresponding to peak values in the derivative. A sec-
ond degree polynomial is fitted to the neighboring 40 pixels of the corresponding
curve point (x0, y0) to get a good estimate of the direction of the path around
that peak. The result is applied to the original path:

y(x) = y(x)w(x) + y′(x)(1− w(x)) for x ∈ [x0 −M,x0 +M] (5.11)

where y(x) is the original path, y′(x) is the fitted path and w(x) is a weight
factor according to Eq. 5.10.

The pieces of the curve close to the tip-over moments obtain special treat-
ment: a predefined number of curve points left or right next to the tip-over
moment will be positioned according to the average increase in vertical position
of the curve points before or after these points (respectively). Any tip-overs
whose left and right path have a small difference in height are probably not
tip-overs and are therefore removed.

27

Chapter 6

Program execution

In this chapter the running and operation of the command-line interface pro-
grams are briefly discussed. For an in-depth explanation of the usage of the
graphical user interface (GUI) programs, please refer to their respective manu-
als.

All programs are designed to run in Microsoft Windows XP, and are expected
to run in newer versions of this operating system. Other operating systems are
currently not supported, but the command-line interface programs are expected
to run without much code adjustment —though recompilation is necessary— in
other operating systems as well. The GUI applications need a complete rewrite
regarding the database connections and graphical elements. The latter could
have been avoided by using a different interface framework. The currently used
framework (Microsoft Foundation Classes (MFC)) might be replaced in future
versions of the ACE framework.

6.1 Installation

All programs are provided without installation tools or similar. All programs are
able to run from any directory provided that the paths in the configuration files
(Section 7.4) are properly set up. For the graphical user interface applications
an ODBC connection to the named database in required.

6.2 Roller

To digitally cut and mark the roll image files prior to curve extraction, Roller
provides the tools needed to accomplish these tasks. It is a graphical user inter-
face application as is shown in Figure 6.1. At any vertical position horizontal
markers can be added, which have two vertical grid lines running to neighboring
markers. Special commands make adding and positioning markers fairly easy.
Roller needs a configuration file in its directory (config.ini) to run properly

28

(see Section 7.4) and a connection with the series database.

Once the roll image has been properly marked, the markings can be saved
to a small Roller file which contains the coordinates of the markers and grid
lines and the corresponding times (see Section 8.3).

6.3 CurveExtractor

The main program of the framework is the automatic curve extraction program
called CurveExtractor. This program will analyze the colors and features of the
input image. Most of the work and necessary steps are determined automat-
ically by the program, either by applying prior-defined information or during
the detection run. If the user demands manually set parameters or wants the
program to skip certain detection steps, it is possible to enforce this through
the command-line. In Table 6.1 a complete list of parameter options is given to-
gether with the default values and brief explanation. Table 6.2 enlists the avail-
able flags. CurveExtractor does need the data tables (see Section 2.2 and 7.5)
located in subdirectory data. CurveExtractor will only run if a valid file name
is argumented.

The main syntax for the CurveExtractor is:

extcurve filename [options] [flags]

where filename is any image file (JPEG, TIFF, BMP supported), options are
the optional parameters (syntax: -option value) and flags are the optional
flags. CurveExtractor should run without any problems if no options or flags
are given. In addition, extcurve --version will display version information,
while extcurve --help will display similar help information about running the
program.

Two particularly important flags are the useace and useacefull arguments.
These will force the program to use previously detected color, tilt correction and
feature detection data. For example, extcurve BE197101 01.jpg useace will
process the image BE197101 01.jpg using the file BE197101 01.ace as detec-
tion data input. This will cause the program to finish much faster as it will skip
the color detection and tilt correction steps. Instead, the binary data in the
ACE-file will be used instead. If the useacefull argument is used, the grid,
tip-over and tracing detection steps will be skipped as well. Consequently, the
program will finish even quicker.

CurveExtractor will produce several files after processing has completed suc-
cessfully. Lets consider the example program execution:

extcurve BE197101_01.jpg

29

Option Description Default value
sf strip data file stroken.csv

cf colour data file colors2.csv

af forced ace file data file autodetect
start roll start day 1
lim roll day count all
width tracing search width 25
smoothwidth path smoothing width disabled
contrast image contrast no adjust
brightness image brightness no adjust
gamma image gamma no adjust
sideext roll side extension size 100
colrep color analysis repeat disabled
dbl show debug information level disabled

Table 6.1: CurveExtractor main options. Default values are only given if appli-
cable.

Flag Description
loadonly load images only (for testing purposes)
extract load and save images only (for extraction)
curve save curve likelihood image
grid save grid likelihood image
curveonly only save curve likelihood image (no processing)
gridonly only save grid likelihood image (no processing)
traceonly only trace the path (skip grid, tilt, curve)
skiptilt skip tilt correction
skipcurve skip curve correction
skiptrace skip path tracing
skippath skip path post-processing
skipfixing skip path tip over post-processing
skipstep skip path destepping
skipexport skip tracked data export
skipsave don’t save result image
skiptipover skip tip over detection
skipdip skip path dip detection
tiltsimple correct tilt only, not image curvature
gridsimple apply simple grid detection
binary output data to binary format (deprecated)
afdonly load Ace File Data only
metaonly load metadata only
useace use AFD data of previous run
useacefull use AFD data of previous run completely
roll force treatment as roll
halfwidth save with half horizontal size
debug show debug information
tables output debug tables
quiet suppress most output messages

Table 6.2: CurveExtractor main flags.

30

The following description will explain the output file naming conventions used
based on the input file name. First, a new image BE197101 01.tracked.jpg
will be drawn, which has the tilt and axis corrected original image with the de-
tected image features plotted on top it (see Section 8.1). This provides an
easy way of visually checking the produced results. All internal tables are
written to the ACE File Data (AFD) file BE197101 01.ace (Section 8.4) and
the detection results are output to a Tracked Data file BE197101 01.tracked
(Section 8.2). To be able to later find out what the program exactly out-
put, a log file BE197101 01.log is created (Section 8.5). If argumented, the
curve and grid likelihood will be plotted to images BE197101 01.curve.jpg
and BE197101 01.grid.jpg as well (Section 8.1).

6.4 PostACE

As soon as the image is processed by CurveExtractor, the results can be visually
inspected and adjusted in the post-processing program PostACE. This graphical
user interface application provides the necessary tools to do virtually anything
considered relevant with the detection results. Figure 6.2 gives an impression
how the application looks like.

PostACE requires a connection with the series database (Section 7.8), the
data tables (Section 7.5) and a configuration file located in its application di-
rectory (Section 7.4). PostACE will output the same files as CurveExtractor.

6.5 ParseTracks

The final step in using the framework is assembling the separate curve detection
results into usable rainfall intensity tables. This can automatically be accom-
plished with the program ParseTracks. If necessary, the output resolution and
other parameters can be adjusted through the command-line. In general, the
output table can only be constructed for a certain time range in years, but it is
also possible to generate a single date table (see below). The parameter options
and flags are listed in Tables 6.3 and 6.4, respectively. To run properly, Parse-
Tracks needs a configuration file (config.ini, see Section 7.4), a precipitation
table (Section 7.6) and an hourly rainfall table (Section 7.7) in its directory.
ParseTracks will only run if a valid location is argumented.

The main syntax for ParseTracks is as follows:

ptc location [options] [flags]

where location is any available location, options are the optional parameters
(syntax: -option value) and flags are the optional flags.

ParseTracks can run in two special modes. First, if ptc location checkexist
is executed, the program will only check which files can be located it expects to

31

Figure 6.1: Example usage of Roller roll image pre-processing application.

Figure 6.2: Example use of PostACE post-processing application.

32

Option Description Default value
start start year first available
end end year last available
res output resolution (minutes) 5
lim total day count limit all
dirlim total directory count limit all
hfile hourly precipitation file autodetect
wpl warning precipitation level 1 mm
dbl show debug information level disabled

Table 6.3: ParseTracks main options.

Flag Description
metadata load metadata only
report report tracked correction
keepdup keep duplicate tracked files
skipproc skip actual processing
skipsec skip secondary strips
debug show debug messages
quiet suppress most output messages

Table 6.4: ParseTracks main flags.

find according to the series database for that particular location. Any problems
are comprehensively reported. Second, ptc location -date date will extract a
single date for the given location.

ParseTracks will output a rainfall intensity table in accordance with the
KNMI table entry conventions (Section 8.6). In addition, a log file is created
providing information about the corresponding program run.

33

Chapter 7

Input data

In this chapter the input data and files needed to run the programs and appli-
cations properly are described.

7.1 Nomenclature

Many possibly unfamiliar terms are used throughout this and the next chapter.
The following table (Table 7.1) provids a short description about each term.

Term Description
Strip code The code of a strip corresponding to the file name of the

image. See Section 7.2

Table 7.1: Nomenclature table.

7.2 Strip code

Each image’s file name consists of a strip code and an extension. The extension
identifies the image format, while the strip code holds information about the
source of the image and the time the meteorological recording was made. In
general, for each recording day, a seperate strip code exists, but, as shown below,
this is not always the case. A strip code follows strict convention which is
applied throughout the framework. Examples, the image DB196506 04.jpg has
strip code DB196506 04, while HK198206 10.bmp has strip code HK198206 10.
In the following the above examples will be decomposed into their various pieces
of information.

In general, a strip code is constructed as follows:

LLYYYYMM_SS_RR

34

where LL holds the location abbreviation code, YYYY and MM are the correspond-
ing year and month, SS is the sequence number and RR stands for the roll image
index number. An example location abbreviation code is DB, the code for ’De
Bilt’. By convention, the sequence number and roll image index number run
from 1 until the last number in the sequence.

Note that the sequence number does not correspond with the actual date.
The reason for this is that in many cases multiple days have been recorded
on one strip and for rolls, the image contains multiple days in sequence. In
case of the first, the data files are distinguished by adding a single alphabetical
character directly after the strip code, e.g. DB190101 01a. No particular order
is expected from these characters, the series database is used to lookup the
corresponding date.

In case of roll images, the addendum identifies the day image index number
of all consecutive days on the roll. Obviously, for strips this number is omitted
together with the underscore.

7.3 Input images

The main source of information for the programs are the scanned images. These
images are expected to have a valid strip code, and to have the image features
necessary to successfully detect the rainfall curve on the image. These features
are the grid and the curve. It is expected that these grids and curves have darker
pixel intensities compared to the background (paper) pixel colors. Also, the
horizontal (time) axis increases from left to right, as does the vertical (rainfall)
axis from bottom to top.

Supported image formats are JPEG, BMP and TIFF. Other formats can
easily be implemented by creating new classes derived from the main image
class. There are no physical limitations to the image formats other than the
format’s limitations itself, with an exception for TIFF images. Here, the data
is expected to be in normal order, i.e. the pixel data is running from top-left
to bottom-right. The TIFF specification does not strictly require this, and
therefore this should be taken into account while loading these images. Because
this complicates the streamed loading process, this was omitted and therefore
the data is expected to be in normal order.

While loading the images, the image size determines whether the image will
be treated as a normal strip or a roll. If the image width is larger than or equal
to the image height, it is expected to be a normal strip, any other case will be
treated as a roll.

7.4 The configuration file config.ini

As mentioned in Chapter 6, the graphical user interface applications require a
configuration file providing them the information to successfully load and write
image and tracked data, and to load the current settings regarding navigation

35

and display. Also, user specific settings are stored in these files. The configu-
ration file’s file name is config.ini by default. This cannot be changed. All
settings are identified with a keyword, followed by the delimiter and its value.
The delimiter is always the equal-sign ’=’. Each text line contains a single
setting.

A configuration file for the PostACE application might look like:

ImageRoot=Z:\stroken_scans
ResultRoot=Z:\stroken_tracked
DataRoot=Z:\ACE\data
Database=metadata
Location=AM,Amsterdam,1
Location=VL,Vlissingen,310
ColorTable=0,255,64,0,255,0,0,0,0,0,0,0,0,0,255,0,255,128,0,0,255,255,0,0
LineThickness=7
OpacityLevel=50
UserLastStrip=testuser,1,AM190101_01

Table 7.2 provides all accepted keywords within a configuration file and its
description. Any other keywords are ignored.

7.4.1 Directory structures

Special attention is required for the directory structures of the image and result
image paths. Each source and result image are found in the respective location
and year maps. Regarding the above example configuration, the source image
DB195106 20.jpg is expected to be in Z:\stroken scans\De Bilt\1951, while
the resulting image and tracked data should be found in Z:\stroken tracked\De
Bilt\1951.

7.5 Data tables

Throughout the framework data tables are used which provide information
about consecutive recording periods for each location. Two tables are being
used, the color definition table and the location recording periode table. The
first is no longer used and the latter is only being used to retrieve the strip’s
grid time length. For compatibility reasons, the complete description of each
table is still included.

The color table defines color names for either the grid and curve. Per text
line, one entry is defined. An entry consists of a color combination for the grid
and curve and their accompanying color definitions and comparison functions.
An entry might look like:

"Black";"Red";200;200;200;180;150;190;170;150;160;-1;-1;-1;1;-1;-1;1;-1;-1

36

The first two names correspond to the grid and curve color respectively. The
nine numbers thereafter are reference color component values ranging from 0
(dark) to 255 (bright), defining RGB colors. In particular order, the first trio
represents the grid color, followed by the curve color and the tip-over color. The
final nine numbers correspond to the color component comparison functions
formerly used in the detection program. Three possible values exist: -1, 0 and
1. While comparing, each pixel color is compared with all RGB combinations
using the corresponding function. -1 requires the component value to be lower
than the reference, a 0 indicates the comparison is omitted and a 1 requires
the value to be larger than the reference component color value. Since these
tables are no longer used, further explanation is currently not included in this
documentation.

7.6 Precipitation table

The table assembly program ParseTracks requires a database input table. This
table is directly derived from the series database (Section 7.8), but to avoid a
ODBC-connection this table is constructed to allow direct reading from disk.
The precipitation table’s file name is arbitrary, but currently hardcoded into
the program code.

The table consists of text entries, one per row, containing information about
each strip. Without further explanation (please refer to the Series Database
explanation for that), an entry holds holds columns defined in Table 7.3, all
having strict column widths. The columns do not have a delimiter. Example
entries are:

380 17-09-1954 BE195409_01 6 g 2,3 07:00gm
380 01-03-1991 BE199103_01_02;BE199103_10_01 2 - 0,8 00:00gm
380 30-05-1991 1 o 0 00:00gm

As is visible, in the second row two strip codes are present separated by a semi-
colon (;). Entries do not require a strip code (row 3). Note that the primary
code and status columns only contain the first character of their respective
codes. Refer to Section 7.8 for an indepth explanation.

7.7 Hourly precipitation table

Similar to the precipitation table are the hourly precipitation tables. These ta-
ble are used by ParseTracks to compare the found intensity rainfall values with
the known hourly precipitation values. In general, per location a separate file
exists. The file name can be arbitrary, but currently a convention is used, e.g.
Beek380 rh.txt. It consists of the location name, KNMI code and the rh.txt
addendum to indicate it is a hourly precipitation table. By definition all hourly
value can be put in one file, but this leads to long loading times and unhandy

37

Keyword Description Example
ImageRoot Source image path Z:\stroken scans
ResultRoot Result image and trace data path Z:\stroken tracked
DataRoot Data tables path Z:\ACE\data
Database ODBC Data service name (DSN) metadata
CycleMode Navigation cycle mode index
Location Recording location abbreviation,

name and KNMI code
AH,Amsterdam HB,2

ColorTable Color table (R,G,B,A) multitude 0,255,64,0,255,0,0,0
LineThickness Line drawing thickness 7
OpacityLevel Overall drawing opacity level

(%)
50

AllTransparent Object transparency (1 or 0) 1
AutoNext Automatically navigate to next

image on save
0

SaveJPEG Save JPEGs on save 1
UserLastStrip User last edited strip code

(name, do load, strip code)
testuser,1,AM190101 01

Table 7.2: Accepted configuration keywords.

Offset Width Description Example
0 4 Location KNMI code 380
4 12 Date 17-09-1954
16 30 Strip code BE195409 01
46 3 Status code 6
49 3 Primary code g
52 5 Precipitation amount (10−2 mm) 2,3
57 7 Start time 07:00gm

Table 7.3: Column definitions for the precipation table.

Offset Width Description Example
0 5 Location KNMI code 380
6 8 Date code 19700101
15 4 Time (HHMM) 100
20 6 Precipitation amount (10−1 mm) 6

Table 7.4: Column definitions for the hourly precipation table.

38

large files. Furthermore, these tables are retrieved through the KNMI website,
where the files are set out in this manner.

The table consists of text entries, one per row, containing information about
each hour of rain. An entry holds columns defined in Table 7.4, all having strict
column widths and separated by a comma (,). An example is given below.

380,19700101, 100, 0

7.8 Series database

One of the most important sources of information is the series database. This
online database is required while post-processing the strips and rolls as it con-
tains the corresponding date, edit status and grid start time. For each date there
is a separate entry in the table, and because multiple images might describe one
recording session date, multiple strip codes can be present in the code field of
an entry. Table 7.5 gives a summary about the fields in the database table.

Not all fields are used during post-processing, currently only the station
name, recording date, primary code, status code, strip code and comments are
loaded at startup. The status code, last edit user and date fields are updated
on save, and possibly the strip code as well. The possible primary and status
codes and their descriptions are enlisted in Tables 7.6 and 7.7.

The strip code field requires careful attention. Normally, this field contains
a single strip code, but in some special cases two might be present. In case a
recording for a single day was made on two strips, the corresponding strip codes
are present in a single database entry separated by a semi-colon (;). Similar, in
case of rolls, the recording paper was changed during the day and therefore a
single day has multiple sources. While this table is being loaded, these special
entries are carefully processed and treated as two separate entries each contain-
ing one of the codes. It is important to keep the codes in chronological order,
as they are processed during assembly in the same manner.

39

Name Type Description Example
Id AutoNumber Auto-generated identifica-

tion number
10661

station Text Station name Amsterdam
datum Date/Time Recording date 10/10/1956
primair Text State of scanned image OK
status Text State of digitizing process 6. gecorrigeerd/gereed
Opmerkingen Memo Comments present on im-

age
Mist

bestandsnaam Text Strip code AM193107 08d
datum lamu Date/Time Last edit time stamp 28-10-2009 10:42:12
starttijd Text Strip grid start time 7.00 uur NT
digitaliseerbaar Text ??
gebr lamu Text Last edit user testuser
strook Yes/No Strip or roll? Yes

Table 7.5: Field descriptions of the series database.

Entry Description
geen neerslag No rainfall was recorded on strip
krom gescand Strip was erroneously scanned
OK Strip can be processed
ontbreekt Strip is not present in archive

Table 7.6: Possible primary codes in the corresponding series entry field.

Entry Description
1. niet gescand Strip has not been scanned
2. gescand Strip has been scanned, requires processing
3. opgeslagen in MOS Strip has been archived on the MOS system
4. verbeterd/gecontroleerd Strip is ready for processing after scan correction
5. gedigitaliseerd Strip has been processed and requires verification
6. gecorrigeerd/gereed Strip processing results have been verified and approved

Table 7.7: Possible status codes in the corresponding series entry field.

40

Chapter 8

Output files

In this chapter the output files produced by running the various programs are
described in detail.

8.1 Output images

By running CurveExtractor with a valid input image, the processing will pro-
duce a similar image with the detected image features plotted on top of it. This
image is tilt and curved vertical axis corrected and serves as a visual indica-
tion how well the detection worked without using the post-processing program
PostACE. By convention, the output file name will be equal to the input image’s
file name with tracked. placed just before the extension. The output image
format is currently programmed to be in JPEG format. Example: input image
VL197401 08.jpg will have output image VL197401 08.tracked.jpg. For roll
images, input roll image HK199204 10.bmp will result into HK199204 10 01.-
tracked.jpg, HK199204 10 02.tracked.jpg, etc. up till the number of record-
ing days present on the roll.

8.1.1 Curve and grid images

Provided that their output has been argumented on the command-line, Curve-
Extractor will save the grid and curve likelihood images to disk. These grayscale
JPEG images represent the likelihood for each corresponding pixel it belongs to
either the background or the grid or curve respectively. These images will have
similar file names as the input image, with either grid. or curve. inserted be-
fore the file extension. For example, input image AM190101 01.jpg will produce
AM190101 01.grid.jpg and AM190101 01.curve.jpg.

41

8.2 Tracked data file

The most important file produced by tracing the input image is the tracked data
file. These files will contain all the information for the post-processing program
PostACE to rebuild the output image from the original input image without re-
detecting its features. The only exception to this is the tilt and curved vertical
axis correction. These steps can be identically reproduced by just performing
these steps again, or by using the binary data in the AFD file (Section 8.4).
The tracked data files are located in the result directory and have extension
.tracked.

Two versions of the tracked data file exist. The first version, which is no
longer used and deprecated, was defined in early stages during the creation of the
framework and turned out to be too inflexible for adding new features, requires
strict ordering and did not allow too many variation in the number of found
features, later applied changes and so on. This version is no longer produced,
although some older detection results are still formatted in this revision. A
new definition was created (revision 2.0) which allows addition of new features
without breaking older files and is fully flexible in the amount of data, permits
the inclusion of later changes made in PostACE. Revision 2.0 of the tracked
file data consists of a preamble of keywords determining the type of data and
its contents followed by a long list of all path data. The postamble contains
later changes made during post-processing. All keywords are followed by an
equal-sign, even if there is no value defined for that keyword.

A tracked data file always starts with the tracked identifier and its version
on line 1 of the file: KATR20. After this line, the preamble keywords follow in
any particular order. The accepted keywords and their descriptions are listed
in Table 8.2. The end of the preamble is marked by the start keyword after
which all the path data is listed. The preamble will never change after the initial
detection. For each pixel a separate line is reserved having 5 different columns.
Example consecutive pixel rows are

59919 1922 1922 0 22
59933 1920 1920 0 23
59946 1919 1919 0 24
59959 1918 1917 0 25

The first column is the corresponding time in seconds on the image, followed by
the originally found vertical pixel coordinate, and current vertical pixel coordi-
nate. The fourth column represents the KNMI quality code and the latter the
total amount of rainfall measured from the beginning of the curve. Because of
errors in the early (but still used) versions of CurveExtractor, the seconds and
total amount of rainfall numbers might be incorrect and should be neglected
generally. The end of this section is marked by the end keyword. The number
of pixel rows is expected to be equal to the width of the input image.

42

Keyword Description Example value
line Correction line points (x-

coordinate, y-coordinate; pixels)
6017,736,6397,705

plane Erase plane points (x-coordinate,
y-coordinate; pixels)

3266,100,3477,210,...

tipovers Set of replacing tip-overs (x-
coordinate, skew; pixels)

3050,-12,6142,-6

changegrid Adjust detected grid (left, top,
right, bottom; pixels)

349,220,7016,1971

addindicator Add an path indicator (index, x-
coordinate; pixels)

1,1029

changeindicator Change indicator position (in-
dex, x-coordinate; pixels)

2,1567

forced Forced point (x-coordinate, y-
coordinate; pixels)

4456,910

Deprecated keywords
deltipover1 Delete detected tip-over (index) 0
addtipover1 Add tip-over (index, pixel, skew) 1,3010,-6

1 Replaced by keyword ’tipovers’.

Table 8.1: Accepted tracked data file correction type keywords. In between
parentheses the values are explained together with the unit after the semi-colon
(;). The latter two rows are deprecated keywords, i.e. they are still accepted
but replaced by other keywords.

The postamble contains corrections made during post-processing using the
PostACE application. A correction is build out of five keywords in a row in the
following order: correction, the correction type, time, date and end. If the
file is loaded again in PostACE, the corrections will automatically be applied
and overrule any information provided in the preamble. An example correction
is

correction=
changegrid=72,220,7026,1991
time=16:43:29
date=14/07/2009
end=

In this example, the grid is later adjusted to fit the image more exactly or pos-
sibly the grid detection step went wrong during processing in CurveExtractor.
Either way, the new coordinates are presented here together with the time and
date of correction. Possible correction type keywords are listed in Table 8.1.

43

Keyword Description Example value
delim Entry line delimiter ,
author Creator of original testuser
location Computer used during creation COMP001
time Time of creation 21:39:43
date Date of creation 24/04/2009
program CurveExtractor version used

during creation
ACE 2.0.17

source Source image type (roll or strip) strip
postprogram Post-processing program used PostACE 2.0.8.40
input Original input image DB193901 01.jpg
output Output image DB193901 01.tracked.jpg
strip Data table strip file stroken.csv
color Data table color file colors2.csv
grid Detected grid coordinates 349,220,7026,1991
verticaloffset Applied vertical offset (roll im-

ages only; pixels)
219

pathrange Start and end point of curve
(pixels)

349,6778

timerange Time range of strip grid (sec-
onds)

25200,117600

precrange Precipitation range of strip grid
(10−2 mm)

0,1000

sideext Vertical image extension used on
both sides of grid (roll images
only, pixels)

100

xunit The physical unit of the x-axis s
yunit The physical unit of the y-axis cmm
tipovers Detected tip-overs (x-coordinate

in pixels, skew; pixels)
2012,-12,4968,2

tipskew Detected tip-overs after skew
correction

2012,-12,4968,2

dip Detected dip (x-coordinate, y-
coordinate, vertical change, win-
dow start, window end; pixels)

9748,2165,12,9740,9761

columncount Number of columns in pixel row
entry

5

start Indicates start of path data (no value)
end Indicates start of path data (no value)

Table 8.2: Accepted tracked data file keywords. In between parentheses the
values are explained together with the unit after the semi-colon (;).

44

Keyword Description Example value
program Roller version used for creation Roller 1.12.0.30
author Last edit user testuser
location Last edit location COMP001
date Last edit date 08/10/2009
time Last edit time 17:07:53
invertedroll Is the roll inverted? (1 or 0) 0
invertedaxis Is the axis inverted? 0
marker Day transition marker (y-coordinate,

grid-left, grid-right; pixels)
18055,307,2679

timemarker Time marker (y-coordinate, grid-left,
grid-right; pixels)

9055,317,2579

endmarker Roll end marker (y-coordinate, grid-
left, grid-right; pixels)

455,321,2659

startdate Roll start date (day, month, year) 6,1,1982
starttime Roll start time (hour, minutes, seconds) 0,0,0
enddate Roll end date (day, month, year) 6,1,1982
endtime Roll end time (hour, minutes, seconds) 0,50,0
comments Additional comments

Table 8.3: Accepted roller data file keywords. In between parentheses the values
are explained together with the unit after the semi-colon (;).

8.3 Roller data file

To be able to digitally cut the roll images into separate consecutive days, roller
data files are created using the roll image pre-processing application Roller.
They provide the exact pixel coordinates of day transitions and grid boundary
locations. Special end markers mark the end of the roll recording line, while
time markers indicate time markings made by the observer. The start and end
time and date indicate the exact times the roll recording started and ended.
Roller data files have file extension .roller and are located in the input im-
age directories. They have the same file name as the corresponding image, e.g.
VL199201 01.bmp has Roller data file VL199201 01.roller.

All Roller data files all start with the roller identifier followed by a binary
version number, e.g. ’RLRD’ plus the binary version number. The newest
version supported so far is version 3, and therefore the binary version will have
the character corresponding with ASCII character 0x03. Hereafter, text lines
follow providing Roller and other programs with information about creation,
the properties of the roll and the defined markers. All text lines start with a
keyword, followed by an equal-sign ’=’ and its corresponding value. Table 8.3
enlists all accepted keywords.

45

8.4 ACE file data file

In addition to the tracked data files resulting from the detection processing done
by CurveExtractor, this program also creates a binary ACE file data (AFD) file
containing several histograms and tables providing the necessary information to
recreate the grid and curve likelihood images or to apply the tilt and vertical
curved axis correction. It also contains the path and tip-over data. The AFD
file is located in the result image directory and has file name extension .ace.

An AFD file offsets with three zeros and a binary version number. The
newest version supported is version 4. After this version the AFD header is
located, of which the fields are explained in Table 8.4. Directly after this header
all above mentioned histograms and arrays are placed. A histogram is defined
as an three-dimensional array containing conversion colors for each RGB bin
possible. Since a full range (256 x 256 x 256) would take up far too much
storage space, the RGB has only the defined number of bins (usually 64) in
each color component, making its size 64 x 64 x 64 = 262144 bins. Each bin is
stored in a byte, making the size thus 262144 bytes (in case of 64 bins per color
component). All arrays are defined as integer-arrays, thus their byte lengths
equal four times the array size. The complete AFD file structure is presented
in Table 8.5.

8.5 Log files

Log files are created during program runs of all programs. They contain infor-
mation about the various steps taken and other debug information, depending
on the program or application. Log files are meant for user reference and can
not be interpreted by any program.

8.6 Rainfall intensity table

The final step in the framework is the assemblation of the various tracked data
files into a formatted table, usable by any institute. The tables are produced by
the program ParseTracks by extracting the values in a specified resolution from
consecutive intervals. The exact output format depends on the formats used
in the corresponding institute, in this section the format used at the KNMI is
briefly explained. The table consists of text rows containing the physical entity
type and value. In this case the physical entity is precipitation or rainfall and
the value is expressed in 10−1 mm. The text rows’ columns are strictly spaced
and separated by a comma (,).

Example rows are

A380a, 19691231, 0005, 5Min, pr, 0.0, 0.0, 0,
A380a, 19691231, 0010, 5Min, pr, 0.0, 0.0, 0,

46

Offset Length Data type Description
0 4 integer Image width (pixels)
4 4 integer Image height (pixels)
8 4 integer Histogram size
12 4 integer Number of path points
16 4 integer Number of tip overs
20 4 integer Tilt correction array size
24 4 integer Curve start point (pixels)
28 4 integer Estimated line width (pixels)
32 20 Grid1 Grid
52 3 RGB2 Grid color (RGB)
55 9 Matrix3 Covariance matrix
64 3 RGB Paper color (RGB)
67 3 RGB Curve color (RGB)
70 3 RGB Curve color normalized
73 4 Boolean4 Curve color used
77 4 Boolean Background color used

1 Grid: (left, top, right, bottom, error), 5 times integer
2 RGB: (red, green, blue), 3 times byte
3 Matrix: 3x3 byte matrix, 9 times byte
4 Boolean: (true or false), equals integer

Table 8.4: Field descriptions of the ACE file data header structure. The total
length of the structure is 80 bytes.

Length Type Description
4 AFD Identifier 3 times zero and binary version
80 Header ACE file data header
2621441 Histogram Background color histogram
262144 Histogram Grid color histogram
262144 Histogram Grid vs Paper color histogram
262144 Histogram Paper color histogram
262144 Histogram Curve color histogram
various Point array2 Tilt correction points (x,y)
various Point array Path points (x,y)
various Point array Tip-over points (x,skew)
various Point array Curved vertical axis correction (x,y)

1 In case of a 64 per color component histogram size (defined in the AFD header)
2 A point is a combination of two integers and therefore 8 bytes in size

Table 8.5: Description of the ACE file data file structure.

47

Offset Width Description Example value
0 12 KNMI location code A380a
13 9 Date 19691231
23 5 Time 0005
30 13 Interval resolution 5Min
44 13 Physical entity abbreviation pr
57 14 Measurement entity value 0.0
73 14 Corrected entity value 0.0
87 6 KNMI quality code 0

Table 8.6: Rainfall table entry column descriptions.

A380a, 19691231, 0015, 5Min, pr, 0.0, 0.0, 0,

The first column indicates the recording location, followed by the date, time,
resolution and entity type. The two numbers following are the directly extracted
rainfall intensity and its hourly precipitation corrected equivalent. The latter
column is the KNMI quality code. See also Table 8.6. Note that the extra
spaces inbetween columns have been removed for clarity.

In case the program ParseTracks is run in debug mode sevaral columns are
added after the above mentioned columns. Given the following example,

A380a, 19691231, 0005, 5Min, pr, 0.0, 0.0, 0, 6536, 1301, 1.00, 1.00

the extra columns are the x-coordinate of the interval, the initial y-coordinate,
the fraction of the interval used and the hourly precipitation correction factor.
The interval fraction can be either lower or higher than 1, since some intervals
might be incomplete or overlap others. The hourly precipitation correction is
calculated by summing all intervals in a particular hour and weighing this with
the given hourly value. Again the extra spaces inbetween columns have been
removed for clarity.

48

List of Tables

3.1 ACE application . 8

6.1 CurveExtractor command-line options 30
6.2 CurveExtractor command-line flags 30
6.3 ParseTracks command-line options 33
6.4 ParseTracks command-line flags 33

7.1 Nomenclature table. 34
7.2 Configuration keywords . 38
7.3 Precipitation table entry . 38
7.4 Hourly precipitation table entry 38
7.5 Series database entry fields . 40
7.6 Series database primary codes . 40
7.7 Series database status codes . 40

8.1 Tracked data file correction keywords 43
8.2 Tracked data file keywords . 44
8.3 Roller data file keywords . 45
8.4 ACE file data header . 47
8.5 ACE file data file structure . 47
8.6 Rainfall table entry . 48

49

Bibliography

[1] R.E. Bellman. Dynamic programming. Princeton University Press, Prince-
ton, New Jersey, 1957.

[2] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Ma-
chine Vision. CL-Engineering, 3 edition, 1998.

[3] H.E. Van Piggelen, T. Brandsma, H. Manders, and J. Lichtenauer. Auto-
matic curve extraction for digitizing rainfall strip charts. In preparation,
2010.

50

