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Executive summary

Air quality forecasts are produced routinely, focusing on concentrations of polluting gases and
particles up to three days ahead. These air quality forecasts are useful for people which are
sensitive for pollution, e.g. COPD and Asthma patients. Long-term exposure to air pollu-
tion is harmful for our health, but also for animals and crop plants. Also the EU legislation,
which include rules for air pollution e.g. calls for air quality forecasts. In The Netherlands the
LOTOS-EUROS model is used to forecast the concentration of PM10 and ozone. This model
is based on a main equation which describes processes such as transport, diffusion, chemistry,
dry and wet deposition and emissions.

The air quality forecasts contain a simple bias correction. For PM10 a simple scaling factor
is applied and for ozone the bias correction is temperature dependent. The results of this re-
search project are given at four rural stations in The Netherlands, Kollumerwaard, Eibergen,
Vredepeel and De Zilk.

The aim of my research is to improve the LOTOS-EUROS model output for daily mean
concentration of PM10 and daily maximum concentration of ozone through statistical post
processing. The approach is based on the Model Output Statistics (MOS) method, which con-
sists of a multiple linear regression between a dependent variable and a couple of independent
variables, thereby the error is minimized. In this study the dependent variable is the mea-
sured data of PM10/ozone provided by the National Air Quality Monitoring Network of The
Netherlands (LML). The independent variables are the modeled data of PM10/ozone provided
by LOTOS-EUROS, the meteorological data provide by European Center for Medium-Range
Weather Forecasts (ECMWF), components of PM10 and precursor trace gases. The regressions
were performed based on a multi-years run of the LOTOS-EUROS model for 2003-2005 and
the results were checked for data of the year 2006. The regression coefficients of the multiple
linear regression are calculated with R, a language for statistical computing. The routine STEP
in R is used to remove variables from the regression, which are not significant enough. STEP
is based on the Akaike Information criterion (AIC). The performances of the forecasts were
evaluated by the correlation (R2), the root mean square error (RMSE) and the missing, false
and well modelled alarms. The two main research questions and corresponding results are:

Can the LOTOS-EUROS model output be improved for PM10 through statistical
post processing?

For PM10 the LOTOS-EUROS model output is improved substantially. The R2 increases
from 0.50-0.64 to 0.69-0.75 for the years 2003-2005. These highest R2 are reached with configura-
tion H, which include the model, persistence, a couple of meteorological parameters, components
of PM10 and precursor trace gases. This configuration H gives also the lowest RMSE, between
6.9-7.9 µg m−3 for the years 2003-2005, compared to values between 10.0-10.9 µg m−3 for the
model. These results are similar compared with a study presented by Konovalov (2009), were
R2 also increases and the RMSE decreases. Konovalov showed also the more variables are in the
regression the better the improvement, this is also shown in this study. The LOTOS-EUROS
model shows better scores for the stations in The Netherlands than the CHIMERE model for
the European stations used by Konovalov. The model, persistence and sea salt are kept in each
regression. At 75% of the stations the boundary layer height, temperature, nitrogen dioxide
and sulfur dioxide are kept in the regression.

In 2006 the difference between with or without including CTM tracers in the regression are
small. If CTM tracers are included higher R2s and lower RMSEs are reached. For instance ,
the maximum decrease of the RMSE is 8% between with or without the use of CTM tracers.

Dividing of the data into summer and winter or based on the boundary layer height and the
wind speed did not lead to a significant improvement compared to configuration H.
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Overall the regression with the largest improvement of the LOTOS-EUROS model output
for PM10 is configuration H.

Can the LOTOS-EUROS model output be improved for ozone through statistical
post processing?

For ozone the LOTOS-EUROS model output is also improved substantially. The R2 in-
creases from 0.64-0.76 to 0.81-0.86 for the years 2003-2005. The RMSE decreases from 15.6-19.6
µg m−3 to 12.2-15.0 µg m−3, this is reached by configuration H. The variables kept in each re-
gression are the model, persistence and the temperature. The total cloud cover, boundary layer
height, wind speed, nitric acid and sea salt are kept in the regression at 75% of the stations. For
the year 2006, the difference between with or without including CTM tracers in the regression
are small, only the RMSE shows significant lower values if CTM tracers are used.

Dividing the data into summer and winter or a division based on the boundary layer height
and the wind speed did not lead to a significant improvement compared to configuration H.
Dividing data based on the temperature at the hour of ozone maximum shows better results
for the years 2003-2005. The data is divided into two groups, group 1 include the data where
the temperature at the ozone maximum is equal or greater than 20 degrees Celsius and group 2
include the data where the temperature is lower than 20 degrees Celsius. In 2006 this does not
improve the results for all stations. For instance, at station De Zilk, the RMSE is increasing and
there appear peaks at points where it should not occur. For station Eibergen it has a positive
impact, the RMSE is lower and the missing exceedances are decreased compared to configura-
tion H. Also the missing exceedances at station Vredepeel and Kollumerwaard are decreased
compared to H.

Overall the best results were obtained when the LOTOS-EUROS model output for ozone is
to divide the data based on temperature, followed by a multiple linear regression with configu-
ration H for each group.

Further studies are needed to deal with the variability and space between stations. The multiple
linear regression is done for each station separately. As final result regression coefficients are
needed for all locations, not only at the stations. Without results in between stations these
results can not correct the model.

But this is also needed to decide if persistence is needed. If persistence is used, variability
will be reduced in the final result. The inclusion of persistence improves the model output
significantly, at all stations over the years 2003-2005 and also for the year 2006.

And further studies are also needed to optimize the exceedances. It is important to catch
the exceedances for PM10, concentration above 50 µg m−3, and for ozone, maximum 8-hourly
mean concentration above 120 µg m−3 or hourly concentrations above 180 µg m−3, related to
air quality regulations.
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1 Introduction

Air quality research studies describe the concentration of air pollutants in the air we breathe. Air
quality is dependent on the presence of pollutants that are harmful for human health, animals
and crop plants. Examples of pollutants are sulfur dioxide (SO2), nitrogen oxides (NOx),
ammonia (NH3), Ozone (O3), volatile organic compounds (VOCs) and Particulate matter (PM).
Sources of these pollutants are for instance industry, traffic or agriculture [Jacob, 1999].

World wide, air pollution is very high in a number of Asian cities (Karachi, New Delhi,
Katmandu and Bejing), in Latin American cities (Lima, Arequipa), and in Africa (Cairo) [World
Health Organization]. In China a third of 113 cities studied failed to meet national air quality
standards in 2009. According to the World Bank 16 of the 20 cities of the world with the worst
air pollution are located in China. A fifth of urban Chinese breath heavily polluted air. Many
places smell like high-sulfur coal. Only a third of the 340 Chinese cities that are monitored
meet China’s own pollution standards [China’s Ministry of Environmental Protection].

The issue of air pollution is still a major concern for many European citizens. As well it is one
of the areas in which the European Union has been most active. Since the early 1970s, the EU
has been working to improve air quality by controlling emissions of harmful substances into the
atmosphere, by improving fuel quality and integrating environmental protection requirements
into the transport and energy sectors, such as particle filter or a catalyst. But there are also
rules for concentration of O3, PM and NO2 in the air. As the result of EU legislation, much
progress has been made in tackling air pollutants such as sulphur dioxide, lead, nitrogen oxides,
carbon monoxide and benzene. However, despite a reduction in some harmful emissions, air
pollution continues to cause problems. Summer smog, originating in potentially harmful ground
level ozone, regularly exceeds safe limits. Fine particulates present a major health risk which
is of increasing concern. Clearly, more needs to be done at local, national, European and
international level [European Commission Environment and WHO rapport (2005)].

The problem of air pollution in the Netherlands were recognized before the last war, but
was not considered to be of great importance. There was some interest in the nuisance caused
by fly-ash and soot and this resulted in recommendations regarding the height of industrial
chimneys. But the interest in the effects of pollutants increased and offers a sound basis for
studies on the effects of separate pollutants. Nowadays in the Netherlands the largest limit
exceedances occur for NOx and PM10 [PBL reports].

Air quality is influenced not only by how much pollution is emitted into the air, but also
by meteorological factors. Weather and climate determine how air circulates and the degree to
which pollution builds up and determines most of the day-to-day variability. During winter,
high pressure systems lead to cold temperatures, stagnant air and a build up of pollutants in the
air near the surface. Low pressure systems bring winds and/or precipitation, which disperse air
pollutants and increases deposition of air pollutants. High temperatures lead to an enhanced
ozone production [Clean Air Agency of Puget Sound]. In the Netherlands a northwestern wind
direction carries along relatively clean sea air. Temperature and wind direction are not the only
parameters that influence the air quality. The boundary layer height, relative humidity, rainfall,
cloud cover, wind speed, temperature at the surface, relative humidity on the surface and wind
speed at the surface also influence the air quality.

Aerosols and their precursor trace gases have a negative impact on air quality. Also chemical
reactions occur at the surface and in the bulk of solid and liquid aerosol particles which has a
negative impact. It can change the property of the particles but also their effects on climate ant
human health [Pöschl (2005)]. When meteorological and emission data are available for a region,
its air pollution levels can be modeled. Models for air quality are also important for RIVM which
inform the population about the air pollution levels. Air quality models, or chemistry transport
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models, use mathematical and numerical techniques to simulate the physical, chemical and
meteorological processes that affect air pollutants as they disperse and react in the atmosphere.
Based on inputs of meteorological data and information about emission rates, these models
are designed to characterize primary pollutants, that are emitted directly into the atmosphere,
and secondary pollutants, that are formed as a result of complex chemical reactions within
the atmosphere [U.S. EPA]. Worldwide there are many different air quality models, including
statistical models and deterministic models. Statistical models are based on time series of
past measurements in order to define associations between meteorological conditions and an air
pollutant. Deterministic models are the chemistry transport models (CTM) mentioned above.
Nowadays, the performance CTMs has increased significantly compared to the early nineties
due to a better understanding of ozone and PM formation, sinks, meteorology, emissions and
the ability to include more complex process descriptions at higher spatial resolution due to the
growth in computer power [Honoré et al., 2008]. Examples of CTMs are MOZART (developed in
the U.S.), GEM-MACH (Canada), CHIMÈRE and MOCAGE (France) and EURAD (German).
The air quality model for the Netherlands is LOTOS-EUROS [Stern et al. (2008)].

To improve the air quality models, the simulations of the model are evaluated with air
pollution measurements. In the Netherlands, the National Institute for Public Health and the
Environment (RIVM) monitors the air quality every hour at several regional, street and city
locations. The RIVM also publishes three day forecasts of Ozone and PM10 for civil authorities
and the public based on the LOTOS-EUROS model [LML].

The aim of this research project is to improve model output for PM10 and ozone, through
statistical post processing with the Model Output Statistic method. The evaluation is done
over the years 2003 untill 2006, were 2003 untill 2005 are used as trainings set, so all the
calculations are done on this set, and 2006 is used as control set.
In this study the following research questions are answered:

� Can the LOTOS-EUROS model output be improved for PM10 through statistical post
processing?

� Can the LOTOS-EUROS model output be improved for Ozone through statistical post
proces-sing?

This report is organized as follow. In section 2 the measurements of the air quality is introduced
and detailed information about PM10 and ozone is given. In section 3 and 4 describe the history
of the Lotos-Euros model and the Lotos-Euros model itself. After that, in section 5, a summary
is given of research that has already been done on this subject. Section 6 describes the NMDC
project, in the context of which this research was done. The tools which were used for this
research project are described in section 7 and the method description is found in section 8.
After these introductory sections, sections 9 and 10 contain the results for respectively PM10

and ozone. In section 11, the assumptions and results will be discussed. The conclusions are
given in the last section, section 12.

6



2 Air pollution measurements

To monitor the air pollution levels and control the standards in the Netherlands monitoring data
is used for 2003-2006 from the Landelijk Meetnet Luchtkwaliteit (LML, National Air Quality
Monitoring Network) as operated by the RIVM. The LML stations provide hourly data for
ozone and daily mean concentration for PM10. For continuous monitoring there are about
60 permanent stations, spread over the entire country. Some stations play an international
role for e.g. determining the long- distance transport of species. There are 57 stations in the
Netherlands who measured the concentrations of PM10 over the years 2003-2006. For ozone
this is smaller, only 34 stations in the Netherlands have measured the concentrations of ozone
for the data set 2003-2006 [LML].

There are three kind of stations, rural, suburban or urban stations. For the evaluation of
the Lotos-Euros model only rural stations are used, these are at some distances from towns and
highways. Figure 1 shows which stations were used for our study.

Figure 1: Rural stations that appear in both the measured and modeled data
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2.1 PM10

Particles or particulate matter are materials in the air, which are part of air pollution. Particles
can occur in almost any shape or size, and can be solid particles or liquid droplets. There are
two groups, PM10, all particles smaller then 10 µg m−3 in diameter, and PM2.5, all particles
smaller then 2.5 µg m−3. In this study PM10 is used, which also include PM2.5. [Air Info Now ].

In models, the PM10 concentration is computed as the sum of several components, such
as sulphate, nitrate, ammonia, primary particulate matter (PPM), black carbon (BC) and sea
salt. Sources of PM10 are very diverse, half of the concentration are of natural origin such as
forest and grassland fires, living vegetation, mineral dust, water and sea salt. But also human
activities such as the burning of fossil fuels in vehicles, power plants and various industrial
processes generate a significant amounts of particulates. One third of the concentration of
PM10 consist of particles which are chemically formed in the air from gaseous precursors, such
as SO2, NH3, NOx and organic compounds. So the PM10 concentrations is the result of many
different emissions and processes and also the contribution from long-range transport plays an
important role [Velders G.J.M. (2009)].

The EU regulations include limit values for several components. The most stringent limit
values for the Netherlands are for PM10 and NO2. The limit value of PM10 is 50 µg m−3 for
the daily average concentration, not to be exceeded more than 35 times a year. There is also
an annual limit value of 40 µg m−3 which also not may be exceeded [ECE]. In most parts of
the Netherlands, the concentrations of PM10 are below the EU limit. The exceedances occur at
specific locations, mostly close to a number of industrial sites and stock farms [Velders (2009)].

2.2 Ozone

Ozone (O3) occurs both in the stratosphere, troposphere and at ground-level. Ozone in the
stratosphere, between 10 to 50 kilometer, is good for our health: it protects us and other life
from the sun’s harmful ultraviolet (UV) rays. Ozone in the troposphere, extends up to a level of
10 kilometers, is a greenhouse gas and ozone near the surface is a harmful air pollutant. Ozone
is not directly emitted in the air but it formed under influence of sunlight through chemical
reactions involving NOx and volatile organic compounds (VOCs). Some stratospheric ozone is
transported into the troposphere, and some VOC and NOx occur naturally, but the majority of
ozone at ground-level is the result of reactions of VOC and NOx. Examples of sources of VOC
are chemical plants, automobile emissions, gasoline pump, oil-based paints, forests, grasslands
and swamps. NOx result primarily from high temperature combustion. Examples of sources
are power plants, industrial furnaces and boilers and automobiles [U.S. EPA].

The concentrations of ground-level ozone are higher during periods with high temperatures.
Also the concentration over the day shows a pattern, with a maximum later in the afternoon
and a minimum around sunrise. High ozone concentrations generally occur in the Netherlands
if the weather situation causes the air in the Netherlands to be transported from continental
Europe. This often occurs at stagnant weather systems during the summer, where under the
influence of sunshine and high temperatures much ozone is formed. The ozone accumulates and
because the residence time of ozone in the lower parts of the troposphere is a few days, ozone
can be transported over long distances to and from the Netherlands. During these episodes,
ozone contributes to smog or haze. In the south and east of the Netherlands occur most of
smog days. This is due to higher average temperatures and the supply of ozone-rich air from
the southern and eastern parts of Europe [Velders G.J.M. (2009)].

The limit value of ozone is 120 µg m−3 for maximum daily 8 hour average concentration, not
to be exceeded more than 25 days per year. There is also an information and alert threshold,
at respectively 180 and 240 µg m−3 for one hour average [ECE].
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3 PROZON and PROPART

Before 2009 the RIVM used two statistical models for forecasting air quality, called PROZON
[Noordijk, H. (2003)] and PROPART [Noordijk, H. (2003)].

PROZON is used since 1992 and is a forecast model for ozone. This model gives a forecast
of the maximum hourly average of the ozone concentration for the next day or some days after
that day. The model is based on the following factors to divide the statistics into classes: station
type (rural, suburban or urban), season, concentration level and temperature. The statistics
shows an increase in ozone concentration with increasing temperature [Noordijk, H. (2003)].

PROPART is used since 1996 for the operational 1 day PM10 forecast in the Netherlands.
This model was developed at RIVM. The goal of this model is to forecast the daily mean
concentration of PM10 for tomorrow. This concentration can be constructed from today’s
observed concentration by multiplying it by a factor. This factor was constructed from meas-
measurements from the past and depends on today’s observed concentration, the station type
and today’s meteorological conditions and their forecast. The meteorological variables that are
used in PROPART are wind speed, wind direction, temperature, rainfall and rain duration.
Each variable is subdivided into classes to model its impact on the forecast. In this way a deci-
sion tree is made, the contribution of each variable and subclass is determined on a statistical
basis. For the meteorological variables, one value per meteorological variable per day is used
for the whole country [Noordijk, H. (2003)].
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4 The LOTOS-EUROS model

4.1 History

At the same time as PROZON and PROPART there were also two operational models, the
LOTOS model, stands for LOng Term Ozone Simulation, and the EUROS model, EURopean
Ozone Simulation. They were independently developed by respectively TNO and RIVM.

The first version of the LOTOS model was available in 1988 and was focussing on ozone. In
1999 aerosols and data assimilation schemes were included in the model.

The EUROS model was developed in 1990 for winter smog periods. Later ozone, persistent
organic pollutants and data assimilation were included in the model.

Both models cover Europe with the same grid resolution and treat the chemistry with a
modified version of the Carbon Bond Mechanism IV (CBM-IV) in combination with a thermo-
dynamic equilibrium module for semi-volatile aerosol species. The projection, meteorological
data and the technical structure were different in the two models. RIVM and TNO came to
an agreement and so both models were integrated into one common LOTOS-EUROS model
version 1.1 [Schaap, M. (2005)]. In January 2011 the latest model version 1.7 was released, the
results of which are used in this study [Segers, A. (2011)].

4.2 The LOTOS-EUROS modelling system

Below an overview of the LOTOS-EUROS modelling system is given[Schaap, M. (2008)].
The master domain of the LOTOS-EUROS model is from 35° till 70° North and from 10° West till
60° East. The standard grid resolution is 0.50° longitude by 0.25° latitude, this is approximately
30 by 30 km. It is possible to increase or decrease the resolution up to respectively a factor 8
or 2.

Figure 2: Schematic overview of the main building blocks of the LOTOS-EUROS model.

The block in the middle in figure 4.2 contains the main prognostic equation which describes
de change in time of the concentration of a component as a result of transport and diffusion,
chemistry, dry and wet deposition, emissions and entrainment,
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C is the concentration of a pollutant, U ,V and W are the large scale wind components in re-
spectively west-east direction, in south-north direction and in vertical direction. Kh and Kz are
the horizontal and vertical turbulent diffusion coefficients. E is the entrainment or detrainment
due to variations in layer height, Q is the contribution by emissions and D and W are loss terms
due to processes of dry and wet deposition respectively.

Transport occurs in three dimensions, consisting of horizontal and vertical diffusion and
entrainment processes. Entrainment is caused by the growth of the mixing layer during the
day. Chemistry is described with two chemical mechanisms, the TNO CBM-IV scheme and
the EB90. The TNO CBM-IV is a modified version of the original CBM-IV. The TNO scheme
includes 28 species and 66 reactions, including 12 photolytic reactions. The dry deposition is
parametrized following the resistance approach and the wet deposition is described using simple
scavenging coefficients for gases and for particles.

The LOTOS-EUROS model is equipped with a data assimilation package. For this observa-
tions (box on the right in figure 4.2) are needed. In data assimilation, the modeled concentration
of yesterday is compared with the observed value of yesterday and the processes in the model
are changed to bring the modeled value in better agreement with the observed one.

The left block in figure 4.2 shows the input data. The meteorological input data of the
LOTOS-EUROS system includes 3D fields of wind direction, wind speed, temperature, humid-
ity and density and 2D fields of mixing layer height, precipitation rates, cloud cover, several
boundary layer and surface variables. The data sets studied are produced with meteorological
data obtained from ECMWF (European Center for Medium-Range Weather Forecasts).

The input data also contains the anthropogenic emissions, a combination of the TNO emis-
sion database and the CAFE baseline emissions for 2000. The land use data in LOTOS-EUROS
are derived from land use database PELINDA and the IIASA database for Russia. The bound-
ary conditions for trace gases are obtained from the MOZART global model used in the MACC
(Monitoring Atmospheric Composition and Climate) project [MACC ]. Model top boundary
concentrations were set to 0.8 µgm−3 for sulphate and ammonium was set to neutralize the
sulphate. Other aerosol species were set to zero.
The LOTOS-EUROS modelling system contains the following components:

� Oxidants: O3, VOCs, NOx, Nitric Acid (HNO3), etc.

� Secondary Inorganic Aerosol (SIA): Sulphate (SO4), Nitrate (NO3) and Ammonium (NH4)

� Secondary Organic Aerosol (SOA) from terpenes

� Primary aerosol: PM2.5, PM10, Black Carbon (BC) and sea salt

� Heavy metals: Cadmium (Cd), Lead (Pb) and other non-volatile metals

� Persistent Organic Pollutants

4.3 The LOTOS-EUROS model output

The output of modeled species is in NetCDF format and can be fully specified in the control file.
Also the starting date of the output, the number of layers and the number of components can be
set. For this study a model run is done with version 1.7. First on European scale, 1

2 ° longitude
by 1

4 ° latitude, and then a zoom scale, 1
8 ° longitude by 1

16 ° latitude. This is done over the years
2003-2006. The modeled concentrations are extracted for 45 stations in the Netherlands.

The model output, used in this study, contains the following compounds: O3, NO2, NO,
SO2, NH3, HNO3 and aerosol components, such as BC, primary PM2.5 and primary PM10, SO4,
NO3, NH4, sea salt, total PM2.5 and total PM10.
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4.4 Operational LOTOS-EUROS forecast

In the operational LOTOS-EUROS forecast a post-processing is applied in the form of a bias
correction for PM10 and ozone. This bias correction brings the model in better agreement with
the measurements.

The bias correction for PM10 is based on a simple scaling factor. So the corrected value
of PM10 is equal to a function F times the modeled concentration of PM10. Were F = 2.11 +
0.291 ∗ sin(2π(d − 319.8)/365 and d the day of the year [Ruyter de Wildt, M. de (2011)].
When the modeled concentration of PM10 is used the bias correction is included in the modeled
concentration. So whenever “model” is used, the model includes the bias correction.

The bias correction for ozone is based on the temperature. Ozone simulations perform well
at medium and low temperatures, so for the modeled temperature at the surface below 20
degrees of Celsius, nothing is done. For the modeled temperature above 20 degrees of Celsius
the corrected ozone concentration is equal to a function G plus the modeled ozone concentration.
Were G = −0.00194883 ∗ T 2

s + 1.86295 ∗ Ts − 35.1348 and Ts the temperature at the surface
[Sauter, F. (2011)]. This bias correction is not included in this study, because it is based on a
regression.
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5 Literature study

My research is mainly based on two published studies. I will summarize the results of these
articles, the results which are relevant for my research. The results for my study were compared
with the results of these articles. The first article, ’Combining deterministic and statistical
approaches for PM10 forecasting in Europe’, is from Konovalov et al. written in 2009. The
second, ’Predictability of European air quality: Assessment of 3 years of operational forecasts
and analysis by the PREV’AIR system’, is written by Honoré et al. in 2008.

5.1 Konovalov et al.

The goal of this study was to investigate the prospects of the combined use of deterministic and
statistical methods for PM10 forecasting in Europe. The deterministic forecasts were produced
by CHIMERE, a chemistry transport model (CTM), and the daily PM10 data is obtained from
the AirBase air quality database of the European Environment Agency (EEA). To realize this
combination the Model Output statistics (MOS) method is used. The MOS method uses time
series of past measurements in order to define associations between meteorological conditions
and PM10 concentration.

In the statistical model Konovalov used 7 meteorological parameters: near surface tempera-
ture, horizontal wind speed (two components), specific humidity, boundary layer height, optical
attenuation due to clouds and precipitation. In his paper he only reported results obtained with
classical linear regressions and he used only the background monitors.

Konovalov did this study for the years 2003-2006, he divided the years in a cold season
(November-March) and a warm season (May-September) and evaluated the seasons separately.
To evaluated the forecasting skills he used the root mean squared error (RMSE) and the coeffi-
cient of determination (R2). Konovalov divided his data randomly in a training and a validation
subset and repeated this experiment 10 times. He averaged the 10 validation experiments to
evaluate the result.

The CHIMERE model was found to underestimate the observed concentrations both in
summer and winter and the best comparison was obtained with rural monitors.

Konovalov has tested various configurations of input variables of the statistical model, be-
cause not all the results of these configurations could be presented in his paper, he selected the
five most representative configurations of statistical models:

A 7 meteo parameters (D+1)

B 7 meteo parameters (D+1) + PMobs
10 (D+0)

C PMCTM
10 (D+1)

D PMCTM
10 (D+1) + 7 meteo parameters (D+1)

E PMCTM
10 (D+1) + 7 meteo parameters (D+1) + PMobs

10 (D+0)

D + 1 means the forecasts for the day after the current day, so D + 0 is the current day. obs
stands for the observed values and CTM are the output values of the chemical transport model.
These parameter subsets are used to describe the observations, PMobs

10 (D + 1), the value that
will be observed the day after the current day.

All configurations yield significantly better results than the CTM simulations and combined
forecasts (D and E) show better performances than “pure” statistical forecasts (A and B). The
best performances are obtained by E, were also PMobs

10 (D + 0) is used. This means that the
concentration of the next day e.g. correlated with the concentrations of the current day.
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The major part of reduction of the RMSE can be achieved by debiasing and scaling the raw
simulations, in configuration C. But to increase the correlation more complicated models are
needed. The maximum reduction of RMSE reaches 50% and the R2 increases from 0.32 to 0.6.
In the summer the most important meteorological parameter is temperature and in the winter
the boundary layer height.

The performance of forecasts were evaluated by means of the cross-validation method. It
was found that the MOS method enables significant improvements of the deterministic forecasts.
Also an important finding of Konovalov is that overall the post processed forecasts are better
than the raw forecasts not only for a given monitoring site, but also for territories of similar
type of environment (rural, suburban or urban) within several hundreds kilometers away from
the considered site.

5.2 Honoré et al.

The purpose of this paper is to give a quantitative assessment of the French national air quality
forecasting and monitoring system (PREV’AIR). The evaluation was carried out over the years
2004, 2005 and 2006 for three pollutants: O3, PM10 and NO2.

PREV’AIR is designed to provide forecasts of air quality up to three days ahead. The system
ingests input data from various origins and uses numerical models to produce a forecast. The
CHIMERE model and the MOCAGE model are run every day and produce routine forecasts
within PREV’AIR.

The MOS method was applied in PREV’AIR using a training period, the summers of 2003
to 2005. The forecast error O3,obs(s)− O3,mod(s) is regressed, at each monitoring site s, from
the predicted 2m temperature T2m,mod(s) and the predicted ozone daily maximum O3,mod(s).
So the estimated forecast error (EFE(s)) will be:

O3,obs(s)−O3,mod(s) ≈ EFE(s) = α · T2m,mod(s) + β ·O3,mod(s) + γ (2)

A different set of multiple regression coefficients is calculated for each site and each forecast
lead time. After that MOS daily maximum ozone, O3,MOS(s), is calculated for each monitoring
station, as the sum of the ozone forecast and the estimated forecast error:

O3,MOS(s) = O3,mod(s) + EFE(s) (3)

The MOS forecasts issued for each monitoring station are then interpolated over the whole
modeling domain.

The model overestimates the ozone daily maximum over coastal areas and underestimates
them over continental, central areas. The agreement is better for rural and for suburban sites
than for urban sites. The RMSE averaged over Europe varies between 16.8 and 19.4 µg m−3

at rural sites depending on the lead time. The skill smoothly decreases with lead time. It is
found that only 6% of the square of the RMSE is due to the meteorological forecast error. The
mean correlation varies between 0.76 to 0.84, with decreasing values as the forecast lead time
increases. The impact of the MOS procedure is higher when ozone episodes take place: all skill
scores are improved whatever the type of station considered.

As future outlook two promising avenues may be mentioned. First, the system performance
could be improved by taking observations more fully into account: analyzed concentrations
should be integrated in the forecasting chain at the initialization state. Second, ensemble
forecasting is a rather promising approach for substantially increasing the performance of air
quality forecasting system. This approach is adopted in the MACC project.
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6 The NMDC-project

NMDC stands for national models and data center. It is a strategic partnership between KNMI,
RIVM, TNO, Deltares, PBL en Alterra. An important motivation for this partnership was the
grow of the complexity of issues, the increasing demand for efficient research and development.

The NMDC is a virtual organization in which experts from the six partner institutions
are collaborating. In the first phase of the NMDC, fourteen research projects in the areas of
Innovation, Integration and Infrastructure are setup. One of the research projects is the learning
project LOTOS-EUROS. LOTOS-EUROS describes complex processes such as atmospheric
chemistry,transport and the exchange of substances with the surface. Partly because of this
complexity and large input/output volumes, the model is computing intensive.

The goal of this project is to provide better and clearer frameworks for research models
regarding operationalisation, maintenance, management and policy analysis. With this the
management and quality of research models will be more efficient and the LOTOS-EUROS
model will be improved [NMDC ]. This research project will lead to an improvement of the
operational LOTOS-EUROS model.

7 Tools for programming

Before moving to description of the method the tools are described which are used for these
methods. Three programming languages are used: Fortran 90, IDL and R.

Fortran 90 is a programming language that is especially suited to numeric computation
and scientific computing. Originally developed by IBM at their campus in south San Jose,
California in the 1950s for scientific and engineering applications. Fortran came to dominate
this area of programming early on and has been in use for over half a century in computationally
intensive areas such as numerical weather prediction and computational chemistry. It is one
of the most popular languages in the area of high-performance computing and is the language
used for programs that benchmark and rank the world’s fastest supercomputers. Fortran 90 is
used mainly for reading, writing and manipulating the LOTOS-EUROS output data, to change
hourly values into daily mean data for PM10 and into daily maximum for ozone, but also for
the meteorological data, components of PM10 or ozone and precursor trace gases. [Fortran].

IDL(Interactive Data Language) is a programming language used for data analysis and is
developed in the 1970s at the Laboratory for Atmospheric and Space Physics (LASP) at the
University of Colorado at Boulder. It is popular in particular areas of science, such as astronomy
and medical imaging. IDL shares a common syntax with PV-Wave and originated from the
same codebase, though the languages have subsequently diverged in detail. IDL is vectorized,
numerical, and interactive, and is commonly used for interactive processing of large amounts
of data (including image processing). The syntax includes many constructs from Fortran and
some from C. IDL is used for the graphics in this report [IDL].

R is a language and environment for statistical computing and graphics. R is created by
Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand. R is named
partly after the first names of the first two R authors. Now it is developed by the R Development
Core Team. R provides a wide variety of statistical (linear and nonlinear modelling, classical
statistical tests, time series analysis, classification, etc.), graphical techniques (can produce well
designed publication-quality plots, including mathematical symbols and formulas) and is highly
extensible. For this project the routine LM for linear modelling and the routine STEP are used,
which will be explained in section 8.1 [R].
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8 Method description

8.1 Model Output Statistics

The Model Output Statistics (MOS) [Wilks, D.S., (2006)] method is a classical procedure in
meteorology used to improve the skill of model forecasts based on multiple linear regression.
Multiple linear regression (MLR) is a method used to model the linear relationship between
a dependent variable and a couple of independent variables. In our observed concentration of
PM10 or ozone are needed as accurate as possible:

Y (i) = p0 +
n∑

k=1

pkxi,k + εi (4)

Y (i) is the dependent variable for the ith day. The dependent variable is sometimes also called
the predictand. In this study it is the 24h average concentration of PM10 or the daily maximum
concentration of ozone for the ith day. x is a vector of independent variables. The independent
variables are called the predictors, which are in this study the modeled concentration of PM10 or
ozone for ith day, but also the meteorological parameters for the ith day and the measured con-
centration of PM10 or ozone for the (i−1)th day. pi are the regression constant and coefficients,
n is the number of predictors and εi is the forecast error of the ith day.

εi = Y obs(i)− Y (i) (5)

Y obs(i) is the observed concentration of PM10 or ozone for the ith day.
MLR is based on least squares: the pi’s in equation (4) are fit such that the sum of squares

of εi is minimized. In this study the period is three years (2003, 2004 and 2005), or n is equal
to 1096 days.

n∑
i=0

ε2i = minimum (6)

In the process of fitting or estimating the model, statistics are computed that summarize the
accuracy of the regression model. The MLR is calculated in R, a language and environment for
statistical computing. To know with variables are significant enough for the multiple regression,
the routine STEP is used. STEP selects a suitable model by dropping terms with the Akaike
Information criterion (AIC). The AIC rewards variables for good fit, but imposes a penalty for
unnecessary variables. AIC is calculated by (7) or (8).

AIC = −2 ln(L) + 2 ·K (7)

AIC = n · ln(RSS/n) + 2 ·K (8)

With ln(L) the log likelihood function, where the estimaters are the most probable values for
the parameters, given the observed data. The parameters of interest are chosen in such a way
that the data is most likely. K is the number of parameters in the multiple linear regression.
RSS =

∑
(ε2i ), the sum of squares of the estimated residuals from the fitted model and n is

the number of measurements. So the routine STEP provides a list of the variables with its
coefficients which are significant enough to take into account [Wilks].

16



8.2 Nonlinear regressions

Nonlinear regressions are alternatives for statistical post processing and is used for optimalisa-
tion of the thresholds. The logistic regression is one of them. The logistic regression produces
probability forecasts. First the predictand, in our case the measured concentration of PM10 or
ozone, should be transformed in a binary variable, taking on the values zero and one. If the
measured concentration is above a certain threshold value the concentration will be set to one
and if the concentration is below it will be set to zero. Then the linear regression could be used
as described previously.

The major difference between the linear regression and the logistic regression is the output.
The logistic regression gives a probability that a measured value will be above a certain limit,
while the linear regression what the measured value will be.

If the value of the concentration in the logistic regression is set to the limit value, described
in de EU legislation, the logistic regression gives the probability that the limit value will be
exceeded. So a better description of when there are peaks occurs should be given. This is an
advantage compared to the linear regression, where the focus is on the bulk values. So the peaks
will be not necessarily improved.

8.3 Evaluation of the forecasting skills

To Evaluate the MOS output statistical skill scores, root mean square error (RMSE) and corre-
lation (R) are used. Bias indicates if the forecasts are under- or overestimated. Here, negative
values indicate underestimation and positive values means overestimation. RMSE gives the skill
in predicting the overall magnitude of the observations,

RMSE =

√∑n
i=1

(
Xi − Yi

)2
n

(9)

Xi and Yi correspond in our case to PMobs
10 and PM10 or Oobs

3 and O3 (see eq. (5)). n is number
of days.

Correlation is a measure of whether forecasts and observation change in the same way. The
closer the correlation is to one, the better the forecasts variability is in agreement with the
observations.

R =

∑n
i=1

[(
Xi −Xi

1
n

∑n
i=1Xi

)(
Yi − 1

n

∑n
i=1 Yi

)]√∑n
i=1

(
Xi − 1

n

∑n
i=1Xi

)2√∑n
i=1

(
Yi − 1

n

∑n
i=1 Yi

)2 (10)

Here the variables are the same as in (9) [Wilks].
The last thing which is checked is the skill of predicting the high concentration of ozone

(above 120 µg m−3) or PM10 (above 40 µg m−3). This is done by calculating the percentage of
modeled days that are also measured, the percentage of measured days that are also modeled,
the percentage of false alarms (modeled but not measured) or the percentage of missed events
(measured but not modeled). As I said before, the focus of the MOS method is not on the
exceedances, so these alarms are not necessarily improved by the MOS method.
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9 Results for PM10

9.1 Measurements against meteorological variables

The following meteorological variables are available: temperature, boundary layer height (blh),
wind at the surface, temperature at the surface, cloud cover, relative humidity, rainfall, merid-
ional wind speed, zonal wind speed, relative humidity at the surface, wind speed and wind
direction. Figure 3 shows scatter density plots of the meteorological variables against PM10

measurements. The black line is a linear fit between the meteorological variable and PM10

measurements. The diamonds are the mean value of each column.
Figure 3a shows a relation between the boundary layer height and PM10, a reciprocal func-

tion. Between wind direction and PM10, figure 3l, the diamonds suggest a sine-like dependence,
this is also found by Manders et al (2009) and De Ruyter de Wildt (2011).

The correlation between a meteorological variable and PM10 is calculated for each station.
The boundary layer height and wind at the surface have a good correlation against PM10 mea-
surements, the correlation values are ranging between -0.40 and -0.56. The correlation values
for wind at the surface are lower ranging between -0.15 and -0.48.

9.2 Measurements - model against meteorological variables

More interesting is the behavior of the meteorological variables against measurements - model
(see figure 4), because improvement of the model output is needed.

The relations shows in figure 4 e.g. the correlations are much weaker. So the dependence
on the meteorological variables are well described by the model. The improvement of the model
output will be very small. So the model will be used also as independent variable in the multiple
linear regression.

Figure 4l suggest also a sine-like dependence with an amplitude much smaller than in figure
3l. If the wind comes from the southwest, 64% of the measured concentration above 40 µg m−3 is
modeled and if the wind comes from southwest or southeast, 70% of the measured concentration
above 40 µg m−3 is modeled. For northwestern or northeastern wind this is much lower, 57%
of the measured concentration above 40 µg m−3 is modeled.

9.3 Model output compared with the measurements

Before the bias correction the correlation between the model and measurements was ranging
between 0.62 and 0.76, the RMSE was ranging between 15.5 and 28.4 µg m−3. With the bias
correction, the correlation shows a small increase, ranging between 0.71 an 0.80, it is small
because the bias correction does not change the variability so much. This is different for the
RMSE, ranging between 10.0 and 10.9 µg m−3, which shows a significantly decrease. Figure
5 shows how the modeled PM10 concentrations (with bias correction) behave compared to
the PM10 measurements. Most of the time the LOTOS-EUROS model, with bias correction,
underestimates the PM10 concentration.
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Blh - pm10 with linear fit

0 500 1000 1500 2000
Boundary layer height

50

100

150

P
m

10
 m

ea
su

re
m

en
ts

1 2 4 8 16 32 64 128 256 512 1024

numbers of points in one grid

Wind surface - pm10 with linear fit

0 2 4 6 8 10 12 14
Wind surface

50

100

150

P
m

10
 (

m
ea

su
re

m
en

ts
)

1 2 4 8 16 32 64 128 256 512 1024

numbers of points in one grid

Temperature-pm10 with linear fit

270 280 290 300
Temperature

50

100

150

P
m

10
 (

m
ea

su
re

m
en

ts
)

1 2 4 8 16 32 64 128 256 512 1024

numbers of points in one grid

Temperature surface - pm10 with linear fit

270 280 290 300
Temperature surface

50

100

150

P
m

10
 (

m
ea

su
re

m
en

ts
)

1 2 4 8 16 32 64 128 256 512 1024

numbers of points in one grid
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Figure 3: The scatter density plot of PM10 concentration in µg m−3 against a) boundary layer
height in m; b) wind at the surface in m/s; c) temperature in Kelvin; d) temperature at the
surface in Kelvin; e) rainfall in mm; f) relative humidity at the surface in %; g) relative humidity,
were 1.0 is really high humidity and 0 is zero humidity; h) total cloud cover, were 0 is clear
sky and 1.0 is overcast sky; i) wind speed in m/s; j) zonal wind speed in m/s; k) meridional
wind speed in m/s; l) wind direction, 0 is east, π is west and 2π is east. The color indicates the
density.

19



Blh vs pm10 with linear fit
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Figure 4: The scatter density plot of measured - modeled PM10 concentration, in µg m−3,
against a) boundary layer height in m; b) wind at the surface in m/s; c) temperature in Kelvin;
d) temperature at the surface in Kelvin; e) rainfall in mm; f) relative humidity at the surface in
%; g) relative humidity, were 1.0 is really high humidity and 0 is zero humidity; h) total cloud
cover, were 0 is clear sky and 1.0 is overcast sky; i) wind speed in m/s; j) zonal wind speed in
m/s; k) meridional wind speed in m/s; l) wind direction, 0 is east, π is west and 2π is east. The
color indicates the density.
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Figure 5: The behavior of the modeled PM10 concentrations vs the measured PM10 concentra-
tions, in µg m−3

9.4 The parameter configurations

To improve the PM10 simulations, eight parameter configurations were selected:

A Meteorological parameters (D+1)

B Meteorological parameters (D+1) + PMobs
10 (D+0)

D PMCTM
10 (D+1) + meteorological parameters (D+1)

E PMCTM
10 (D+1) + meteorological parameters (D+1) + PMobs

10 (D+0)

F PMCTM
10 (D+1) + CTM tracers (D+1)

G PMCTM
10 (D+1) + CTM tracers (D+1) + meteorological parameters (D+1)

H PMCTM
10 (D+1) + CTM tracers (D+1) + meteorological parameters (D+1) + PMobs

10 (D+0)

Configuration A and B are the standard statistical models which do not involve CTM simu-
lations. Both employ meteorological parameters and configuration B also involves the PM10

daily-mean concentration observed on the past day. C is not a configuration, it involves the
forecasts from the LOTOS-EUROS model. Configuration D and E correspond to the combined
forecasts. Configuration F,G and H are also combined forecasts, but they include CTM tracers,
which include components of PM10 and aerosol precursor trace gases.

Which parameters are selected for each configuration depends on the AIK criterion. The
terms which are removed by STEP differ for every station and configuration. By normaliz-
ing the variables, a dimensionless regression is obtained, e.g. Tnorm(k) = T (k)−mean(T )√

variance(T )
, with

T (k) the temperature at day k. Appendix 1 contains information about the regression coeffi-
cients for each variable in the eight configurations at station Vredepeel, De Zilk, Eibergen and
Kollumerwaard.

9.5 Performance of the multiple linear regression

In figure 6 the performance of the regression for the different configurations is shown. Not every
configuration shows a better result than the model, configuration C, because the model is not
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included in each configuration. This happens for configuration A and also almost every time
with configuration B. So the model is better than the regression for configurations based on
meteorological parameters and measurements of yesterday only.

Figure 6 shows that, the more variables in the regression, the better the improvement will
be. If persistence, measurements of yesterday is used a 5-8% better correlation is obtained.
The best performance is obtained in configuration H, when statistical models involve the set
of meteorological variables, the observed PM10 concentration and CTM tracers for a current
day. The maximum increase of R2 goes from 0.5 to 0.71 at station Kollumerwaard, this is a big
change.
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Figure 6: R2 for the different configurations at station Vredepeel, De Zilk, Eibergen and Kol-
lumerwaard.

In figure 7 the RMSE is given for the different configurations and the same four stations. The
maximum reduction of RMSE reaches 29% also for configuration H and station Kollumerwaard.
This is also the lowest error with a RMSE of 6.9 µg m−3. At station Eibergen the RMSE is
only 12% lower than the model and has the largest error of 7.9 µg m−3.
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Figure 7: RMSE, in µg m−3, for the different configurations at station Vredepeel, De Zilk,
Eibergen and Kollumerwaard.

In STEP some of the parameters in configuration H will be used at each station, such as the
model forecast, the measurements of the day before and sea salt. The boundary layer height,
temperature, temperature at the surface, nitrogen dioxide and sulfur dioxide are parameters
used in the regression at more than 75% of the stations.

The variables left over by STEP are so different in configuration E and H and also different
at each station, see Appendix 1. Therefore it is difficult to say which variable influence at most
and which give the largest change.

9.6 Checking the best configuration for the year 2006

The best configuration, configuration H, shows that it improves the model output substantially
for 2003-2005. In this section the behavior of configuration H in the year 2006 is checked. But
in figure 6 and 7 there is not a big difference between the configuration which does not use CTM
tracers (configuration E) and the configuration which use CTM tracers (configuration H). So
also the configuration without CTM tracers is checked for the year 2006. These configurations
shows the largest improvement in R2 and the RMSE for 2003 untill 2005. The improvement for
the year 2006 is also the largest for configuration E and H.
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9.6.1 R2 and RMSE

When R2 and the RMSE are calculated for configuration with or without CTM tracers (resp.
configuration E and H), the configuration with CTM tracers will be the best configuration
for 2006 at most stations. For instance at station Vredepeel the error will decrease with 8%
compared to the configuration without CTM tracers. In 2003-2005 the error decrease with
3%. The correlation between with or without CTM tracers does not change significantly at all
stations.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

The comparison between model and configuration H 

R of the model for 
the four years 
together

R of configuration H 
for the four years 
together

R of the model for 
the year 2006

R of configuration H 
for the year 2006

   Vredepeel           De Zilk            Eibergen     Kollumerwaard  

0

2

4

6

8

10

12

The comparison between model and configuration H

RMSE of the model 
for the four years 
together

RMSE of 
configuration H for 
the four years 
together

RMSE of the model 
for the year 2006

RMSE of 
configuration H for 
the year 2006

 Vredepeel          De Zilk           Eibergen      Kollumerwaard      

Figure 8: The behavior of the correlation and RMSE for the model and configuration H

Figure 8 shows the largest improvement at station Kollumerwaard: the correlation for 2006 is
0.76 compared to 0.69 for the model. Also for the four years together the correlation at this
station has the largest increase, from 0.70 to 0.79. Figure 8 shows that the RMSE for station
Kollumerwaard is much better, where it decreases from 10.7 to 7.6 for the four years together
and from 10.4 to 7.8 for 2006. The highest correlation for configuration H appears at station
Vredepeel, where it increases from 0.80 to 0.86 for the four years together and from 0.79 to 0.84
for 2006. The lowest RMSE for configuration H appears at station Eibergen for 2006, where
it decreases from 8.7 to 6.7 µg m−3. While it has the largest RMSE for configuration H in
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2003-2005, 7.9 µg m−3 (see figure 7). So the regression is robust from year to year.
Figure 9 shows how configuration H behaves compared to the measurements and the model

in the year 2006.

9.6.2 Exceedances

Not only the correlation and the error is studied, but also the skill of predicting the high
concentration. For PM10 these are the concentrations above 40 µg m−3. This is done by
calculating the percentage of false alarms or missed alarms.

At station Kollumerwaard the missing alarms for configuration H for the four years together
are decreasing with 43% compared to the model. For this station it is not true that the counted
false alarms are decreasing, because this configuration models a lot more high concentration
values than the model. For that reason more false alarms appear. First the model was to low,
it underestimate the measured values. The model gives 101 times high concentration values
compared to 178 times of measured high concentration values. Configuration H modeled 182
times high concentration values, much closer to the 178 that were measured.

At station Vredepeel the false alarms for configuration H for the four years together are
decreasing with 35% and the missing alarms shows 11% improvement.

Overall configuration H improve the model output at all four stations. For the complete overview
of counted alarms see Appendix 2.

9.7 Regressions for data sub-sets

Also the performance is studied of the multiple linear regression by dividing the data sets into
groups where a different behavior is expected. In one test the data set is divided into summer
(March till September) and winter (September till March), where for April and October there
were different options. These months are not clear defined as winter or summer months, so all
option are tried. One time April goes with the summer and October with the winter, the other
time April with the winter and October with the summer, April and October with the winter
or April and October with the summer.

In an other test the data is divided based on the boundary layer height and the wind speed.
The data was dividing into three groups, group 1 the data were the boundary layer is higher
than 400 meter, group 2 the boundary layer below 400 meter and wind speed above 4 m/s and
group 3 where the boundary layer was below 400 meter and the wind speed below 4 m/s.

By checking the correlation, the root mean square error and the figures for 2006 no significant
improvement is found compared to the best configuration H. So dividing is not a recommenda-
tion.
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Figure 9: The performance of the model and configuration H in the year 2006
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10 Results for ozone

The approach for ozone is similar to that of PM10, but ozone behaves different because other
variables influence ozone. For ozone the focus is on the daily maximum concentration, because
this varies more strongly from day to day than the daily mean. Secondly the EU legislation
has limit values for the concentration at the hour of ozone maximum. The bias correction, see
section 4.4, for ozone is not used in this study.

10.1 Measurements against meteorological variables

The meteorological variables are plotted against ozone measurements, to see which variables
shows a relation with the measured values. As for PM10, the parameters used are: tempera-
ture, boundary layer height (blh), wind at the surface, temperature at the surface, cloud cover,
relative humidity, rainfall, meridional wind speed, zonal wind speed, relative humidity at the
surface, wind speed and wind direction.

Figure 10.1 shows scatter density plots of meteorological variables against ozone measure-
ments. Here the black line is a linear fit between the meteorological variable and ozone mea-
surements and the diamonds are the mean value of ozone measurements for a given value of the
meteorological parameter.

Ozone shows a clear dependence on temperature and relative humidity. The temperature
gives correlation values ranging between 0.43 and 0.70 for each station. The correlation values
for relative humidity are ranging between -0.43 and -0.69. Because the temperature at the
surface and the relative humidity at the surface are also the same as temperature and relative
humidity, they give also a clear dependence.

10.2 Measurements - model against meteorological variables

More interesting is the behavior of the meteorological variables against measurements - model
(see figure 11), because improvement of the model is needed.

The dependence shown in figure 11 are also much smaller than in figure 10.1. Figure
11c shows a dependence, how larger the temperatures how more the model underestimate the
measured values. Also for ozone the variance of the meteorological variables are well defined
in the model, therefore the dependence is small. The improvement will be very small, so the
model is used as independent variable in the regression.

Figure 11l shows a relation between measurements - model concentrations of ozone against
wind direction. If the wind comes from south- or northwest 54% of the measured concentration
values above 100 µg m−3 is also modeled. For north- and southeastern wind the modeled ozone
concentration values are closer to the measured ozone concentration values. Respectively 67%
and 74% of the measured concentration values above 100 µg m−3 is also modeled.

10.3 Model output compared with the measurements

Figure 12 shows how the LOTOS-EUROS model, without bias correction, behaves compared to
the ozone measurements. The LE model preforms quite well for lower ozone concentrations. For
higher ozone concentrations the model underestimate the concentration of ozone some what.

10.4 The parameter configurations

To improve this model output for ozone the same configurations as for PM10 are used. The
modeled ozone concentration, the measured ozone concentration and the ozone concentration
of yesterday are changed into daily maximum concentration, the meteorological parameters
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Figure 10: The scatter density plot of measured daily maximum ozone concentration in µg m−3

against a) boundary layer height in m; b) wind at the surface in m/s; c) temperature in Kelvin;
d) temperature at the surface in Kelvin; e) rainfall in mm; f) relative humidity at the surface in
%; g) relative humidity, were 1.0 is really high humidity and 0 is zero humidity; h) total cloud
cover, were 0 is clear sky and 1.0 is overcast sky; i) wind speed in m/s; j) zonal wind speed in
m/s; k) meridional wind speed in m/s; l) wind direction, 0 is east, π is west and 2π is east. The
color indicates the density.
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Figure 11: The scatter density plot of measured - modeled daily maximum ozone concentration,
in µg m−3, against a) boundary layer height in m; b) wind at the surface in m/s; c) temperature
in Kelvin; d) temperature at the surface in Kelvin; e) rainfall in mm; f) relative humidity at
the surface in %; g) relative humidity, were 1.0 is really high humidity and 0 is zero humidity;
h) total cloud cover, were 0 is clear sky and 1.0 is overcast sky; i) wind speed in m/s; j) zonal
wind speed in m/s; k) meridional wind speed in m/s; l) wind direction, 0 is east, π is west and
2π is east. The color indicates the density.
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Figure 12: The Ozone daily maximum model values vs. the measurements with concentrations
in µg m−3

including temperature, the emissions who influence ozone and precursor trace gases are daily
mean values.

Also for ozone the routine STEP is used to select which variables are important. At each
station it differs which variable is removed by STEP. Appendix 2 contains information about
the regression coefficients for each variable in the eight configurations at station Vredepeel, De
Zilk, Eibergen and Kollumerwaard.

10.5 Performance of the multiple regression

Figure 13 shows the performance of the regression for the different configurations over the years
2003-2005. The model is almost for each station better than the regression for configurations
based on meteorological parameters and measurements of yesterday, configurations A and B.

The improvements of R2 for ozone are smaller than for PM10, because the R2 values for
the model are higher for the ozone daily maximum. Configuration H shows also for ozone the
best correlation. The maximum increase of R2 appears at station De Zilk from 0.64 to 0.76.
Without persistence, configuration G, the maximum increase of R2 appears also at station De
Zilk from 0.64 to 0.75. When persistence is used the correlation is 0.8-3% better than without
using persistence.

In figure 14 the RMSE is given for the different configurations at the same four stations over
the years 2003-2005. Not surprising the maximum reduction of RMSE appears for configuration
H. The maximum decrease is found for station De Zilk, with a decrease of 28.7% from 19.59
to 15.22 µg m−3. Without persistence the maximum decrease of RMSE is also for station De
Zilk, with a decrease of 26.6%. The lowest RMSE for configuration H is 12.34 µg m−3 found at
station Kollumerwaard.

The model forecast, the measured value of the day before and temperature are variables
in configuration H that are chosen by STEP for every station. There are also parameters used
at more than 75% of the stations, such as total cloud cover, boundary layer height, wind speed
and the components nitric acid and sea salt.
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Figure 13: The R2 for the different configurations at station Vredepeel, De Zilk, Eibergen and
Kollumerwaard.
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Figure 14: The RMSE for the different configurations at station Vredepeel, De Zilk, Eibergen
and Kollumerwaard.
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10.6 Checking the best configuration for the year 2006

10.6.1 R2 and RMSE

At all the stations the correlation for configuration H is larger than configuration E and G over
the year 2006. The RMSE is also lower for 2006. This regression, Configuration H, works also
for 2006. But these improvements are small: at all stations the correlation will increase not
more than 2% compared to configuration E and G. For the RMSE the improvement is larger,
but not more than 8% compared to configuration E and G. In 2003-2005 the RMSE decreases
between 4 and 8%.
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Figure 15: The behavior of the correlation and RMSE for the model and configuration H

As shown in figure 15, for 2006 the correlation are similar for all stations, ranging between
0.89 and 0.93. For the four years together the highest correlation for configuration H appear
at station Eibergen, it increase with 6% compared to the model. The RMSE shows large
improvement for the year 2006, it decreases with 20% at each station. The lowest RMSE occurs
at station Kollumerwaard, the RMSE decreases from 14.7 to 12.0. The largest RMSE occurs
at station Vredepeel, where it decrease from 19.6 to 15.7.

Figure 16 shows the time series of configuration H compared to the measurements and the
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model output in the year 2006 for the four stations. The higher peaks in figure 16 are not well
represented anymore: at most of the stations the model describes the peaks in 2006 better than
configuration H. This happens because reducing extremes is a general feature of multiple linear
regression, which optimizes the RMSE.

10.6.2 Exceedances

The skill of predicting the high concentration, for ozone the concentrations above 120 µg m−3,
is also used, by calculating the percentage of false alarms or missed alarms.

At station Kollumerwaard the missing exceedances are increased from 66.7% to 82.2% and
the measured exceedances that are also modeled are decreased, from 33.3% to 17.8%. Kol-
lumerwaard shows a large reduction of the peaks, the modeled values above 120 µg m−3 for
the four years dropped down from 37 to 13 compared to the 45 times this is measured. At the
other stations there is an improvement, for instance at station Eibergen the missing exceedances
decreased from 66.7% to 35.4%. The false exceedances for station Vredepeel is increasing from
16.7% to 18.0%, at station De Zilk and Eibergen the false exceedances are decreasing, respec-
tively from 18.0% to 11.3% and from 23.2% to 13.5%.

Overall configuration H improve configuration C at all four stations, for the exceedances, R2

and the RMSE. A complete overview of the counted exceedances is given in Appendix 3.

10.7 Regressions for data sub-sets

Also for ozone the full data set has been divided in subsets where a different behavior is ex-
pected. For ozone two divisions are tried, a division into summer and winter and a divisions
based on the boundary layer height and the wind speed. The same as for PM10 is concluded,
these divisions do not improve the model significantly more than configuration H.

For ozone another dividing of the data is tried, based on the temperature at the hour of the
ozone maximum. The first group include the data where the temperature of the time where the
highest ozone concentration occurs is 20 degrees Celsius or more and the second group where
this temperature is lower than 20 degrees Celsius. This is motivated by figure 11c, where the
model begins to show a negative bias above 20 degrees. Also the bias correction is based on
the temperature at 20 degrees Celsius [Sauter, F. (2011)]. For the years 2003-2005 this way
of dividing the data the results. Especially the RMSE decreases between 10-13% compared to
configuration H for the four stations. There is a small increase in the correlation, between 1-3%
compared to configuration H.

For 2006, not all the stations show better results, compared to configuration H. For Eibergen
the temperature division is better than the model and configuration H, the RMSE decreases to
12.9 µg m−3 compare to 17.2 µg m−3 for the model and 13.9 µg m−3 for configuration H. R2

is 0.93, the same as for configuration H. Also the well modeled exceedances are increasing at
station Eibergen, from 65% to 71%. In figure 17, configuration H and the temperature division
are shown for station Eibergen.
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Figure 16: The time series of the ozone daily maximum of the model and configuration H in
the year 2006
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Figure 17: The time series of the regression which the data is divide based on temperature
(blue) compared to the model, observations and configuration H in the year 2006 at station
Eibergen.

Especially the peaks between day 110 and 140 are captured better than in configuration H
and in the model. At station Vredepeel en Kollumerwaard the correlation for the year 2006
are the same as configuration H, but the error shows a small increase. On the other hand the
well modeled exceedances are increasing respectively from 62% to 80% and from 18% to 53%
of the measured exceedances were modeled. As mentioned before configuration H at station
Kollumerwaard showed a decrease in well modeled exceedances. The temperature division
reproduces the exceedances better compared to the model and configuration H, 53% of the
measured exceedances were modeled compared to 33% in the model and 18% in configuration
H.

At station De Zilk the error increases. This is because the amplitude of the peaks is often
too high. Figure 18 shows configuration H and the temperature division for station De Zilk.
Between day 210 and 240 there appear peaks for the temperature division, which should not be
there.

Figure 18: The time series of the regression which the data is divide based on temperature
(blue) compared to the model, observations and configuration H in the year 2006 at station De
Zilk.
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11 Discussion

Before summarizing the results a couple of assumptions and issues are discussed.

Multiple linear regression
In this study only a linear regression with linear functions were used, but it is also possible to
use linear regression with non-linear functions of the variables. The use of non linear functions,
such as one divided by the boundary layer height or temperature square, does not influence the
regression significant, so only linear functions are used.

How to deal with the variability and space between stations?
The multiple linear regression is done for each station separately. For each station an other set
off regression coefficients is found. Secondly, the STEP routine in R drops terms in the mul-
tiple linear regression which differs for each station. A multiple linear regression for the space
between stations is not possible, because there is no data in between stations. As final result
regression coefficients are needed for all locations, not only at the stations. Without results
in between stations, the results can not be used to correct the model. Fortunately, there are
techniques to interpolate the results, see for instance Konovalov et al.

Is the use of persistence needed?
If persistence is used, which means the measurements of yesterday, the variability will be lost
in the final result. The inclusion of persistency improves the model output significantly, at
all stations over the years 2003-2005 and also for the year 2006. This is shown by comparing
configuration D and G with E and H. But maybe the variability in the model is better modeled.

Is there a way to optimize the exceedances?
It is important to catch the exceedances for PM10, concentration above 50 µg m−3, and for ozone,
maximum 8-hourly mean concentration above 120 µg m−3 or hourly concentrations above 180
µg m−3, related to air quality regulations. A multiple linear regression does not always optimize
the exceedances, because a linear regression minimizes the RMSE. A regression is more focused
on the values which are appearing frequently than on the exceedances. Several options exist to
optimize the exceedances:

1. One of the options to optimize the exceedances is a logistic regression. The measured
values are changed into one or zero, one is for the concentrations above a certain value
and zero for the concentrations below that value. The regression result is the probability
that the value will be above that certain threshold value.

2. An other option is thinning the lower concentration values, take for instance 1/3 of the
lower concentration values and all the higher concentration values into the regression. The
higher concentration values get more weight.

3. Also dividing the data in subsets where a different behavior is expected may improve
the exceedances results. The division into summer and winter and the division based
on the boundary layer height and wind speed has no impact for the improvement of the
model output. The temperature division for the ozone maximum is one example where a
positive impact was found. It could be that other division based on the knowledge of the
occurrence of air pollution or based on model uncertainties have also a positive impact on
the model output.
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Appendix 1

This Appendix contains the regression coefficients of the multiple lineare regressions for PM10.
There are 7 configurations:

A Meteorological parameters (D+1)

B Meteorological parameters (D+1) + PMobs
10 (D+0)

D PMCTM
10 (D+1) + meteorological parameters (D+1)

E PMCTM
10 (D+1) + meteorological parameters (D+1) + PMobs

10 (D+0)

F PMCTM
10 (D+1) + CTM tracers (D+1)

G PMCTM
10 (D+1) + CTM tracers (D+1) + meteorological parameters (D+1)

H PMCTM
10 (D+1) + CTM tracers (D+1) + meteorological parameters (D+1) + PMobs

10 (D+0)

Configuration A and B are the standard statistical models which do not involve CTM simu-
lations. Both employ meteorological parameters and configuration B also involves the PM10

daily-mean concentration observed on the past day. C is not a configuration, it involves the
forecasts from the LOTOS-EUROS model. Configuration D and E correspond to the combined
forecasts. Configuration F,G and H are also combined forecasts, but they include CTM tracers,
which include components of PM10 and aerosol precursor trace gases.

All the variables, exept the model and yesterday, the measurements of the day before, are
normalized. The model and yesterday are in µg m−3. The RMSE (root mean squar error) gives
the skill in predicting the overall magnitude of the observations, and is also given in µg m−3.
The correlation (R) is a measure of whether forecasts and observation change in the same way.
The closer the correlation is to one, the better the forecasts variability is in agreement with the
observations.
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A B C D E F G H

intercept 28.3 12.8 9.6 5.5 -1.1 -4.1 0.7

model 0.7 0.5 1.1 1.2 0.7

yesterday 0.5 0.3 0.3

temp 37.2 22.7 14.1 9.6 15.7

u 0.7 0.6 0.8 0.8 1.0

v -0.9

8.2 3.3 6.0 3.1 4.4

-6.2 -3.6 -3.3 -2.7 -2.8 -2.3

0.7 0.5

speed 0.7 -1.0

rain -1.2 -1.2 0.5

dir

-2.3 -2.2 1.4 1.4

-37.8 -23.2 -14.6 -10.1 -14.5

-10.7 -5.3 -7.1 -4.4 -5.7 -1.7

so2 -0.9 -1.1 -0.9

nh3 -0.8 -0.8

nh4a

ppm10

ppm25 -2.5 -3.3 -1.5

no2 3.7 3.2 2.6

hno3 1.6 1.1 1.2

no3a -4.9 -6.8 -3.3

no

so4a -1.9 -1.8

meano3

-3.0 -3.2 -2.2

0.8 0.8 1.1

RMSE 12.48 9.70 10.19 8.94 8.00 8.73 8.61 7.78

R^2 0.35 0.61 0.64 0.67 0.73 0.68 0.70 0.75

Vredepeel

rhum

blh

tcc

wsurf

tsurf

srh

bc

na_f

na_c

Figure 19: The regression coefficients for station Vredepeel for the 7 configurations.
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A B C D E F G H

intercept 29.1 13.9 10.4 5.5 -4.8 -19.5 -11.7

model 0.7 0.5 1.2 1.8 1.2

yesterday 0.5 0.3 0.3

temp 13.4 9.2 -7.8 -4.2 -6.3 -3.1

u -0.5 0.8 1.1

v 1.0 2.1 1.2

-1.2

-6.3 -3.4 -3.6 -2.0 -1.5 -1.4

speed 2.1 0.5

rain -1.3 -1.1 0.6

dir -1.6 -0.6 -0.8

1.2 1.5 0.7

-16.2 -10.8 7.1 3.7 8.5 4.6

-0.7 -0.5 1.2

so2 -0.8

nh3 0.7

nh4a

ppm10 -3.3 -4.1 -2.7

ppm25 5.7 3.2 2.5

no2 0.7 1.6 1.0

hno3 1.6 1.6 1.2

no3a -5.2 -10.3 -5.8

no 0.9 1.3

so4a -3.0 -5.4 -3.6

-5.7 -5.5 -4.1

meano3

-4.6 -5.8 -3.6

-2.6 -5.8 -3.5

RMSE 11.26 9.06 9.97 8.51 7.60 8.19 8.02 7.38

R^2 0.33 0.57 0.56 0.62 0.69 0.65 0.66 0.71

De Zilk

rhum

blh

tcc

wsurf

tsurf

srh

bc

na_f

na_c

Figure 20: The regression coefficients for station De Zilk for the 7 configurations.
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A B C D E F G H

intercept 28.4 14.1 10.7 7.0 3.7 -6.8 -7.0

model 0.7 0.5 1.0 1.4 1.1

yesterday 0.5 0.3 0.2

temp 45.4 22.3 16.2 7.5 13.5 6.0

u 0.6

v 1.4 1.5 0.8 0.7

11.1 3.7 6.1 2.8 2.8

-3.6 -2.5 -1.2 -1.4 -0.8

0.9 0.8

speed 2.7 1.7 0.7

rain -1.2 0.6

dir -0.8

-5.7 -2.3 -2.7 -0.8

-46.5 -22.9 -16.6 -7.7 -11.4 -4.3

-12.1 -4.5 -4.8 -2.7 -2.6

so2 -2.1 -2.2 -1.6

nh3

nh4a -5.7 -11.5 -9.5

ppm10 1.0

ppm25 -1.6 -3.1 -2.4

no2 3.2 3.0 2.1

hno3 -0.5

no3a

no -0.8

so4a 1.3 1.8 1.6

meano3 0.8 1.0

-2.9 -3.1 -2.5

0.6

RMSE 11.77 9.67 10.19 8.77 8.16 8.48 8.38 7.92

R^2 0.31 0.53 0.60 0.62 0.67 0.64 0.65 0.69

Eibergen

rhum

blh

tcc

wsurf

tsurf

srh

bc

na_f

na_c

Figure 21: The regression coefficients for station Eibergen for the 7 configuration.
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A B C D E F G H

intercept 27.5 13.4 11.7 6.5 2.5 -19.3 -14.1

model 0.7 0.5 1.1 2.1 1.6

yesterday 0.5 0.3 0.3

temp 19.3 13.7 1.4 7.1 12.9 10.9

u 1.6 1.6

v 2.0 1.5 -2.0 -1.7

5.2 3.3 2.3 3.0 3.3 3.1

-5.7 -4.0 -1.7 -1.3 -1.2 -1.2

speed 2.1 1.1 1.0 1.8 1.2

rain -1.2 -1.2

dir -2.3 -1.6 -0.8 -0.6 -1.0 -0.9

-1.3

-18.3 -13.1 -6.1 -9.0 -8.0

-5.7 -3.8 -1.8 -2.5 -3.3 -3.2

so2 -1.9 -1.8 -0.9

nh3

nh4a -33.8 -17.4 -12.6

ppm10 1.2

ppm25 -2.7 -3.1

no2 2.6 2.5 2.4

hno3

no3a 20.0

no -1.1 -1.1 -0.6

so4a 11.2 1.1 1.1

meano3 1.7

-4.3 -7.7 -5.7

-1.7 -5.9 -4.0

RMSE 10.54 8.74 10.87 8.18 7.31 7.94 7.46 6.88

R^2 0.30 0.52 0.50 0.58 0.66 0.60 0.65 0.71

Kollumerwaard

rhum

blh

tcc

wsurf

tsurf

srh

bc

na_f

na_c

Figure 22: The regression coefficients for station Kollumerwaard for the 7 configurations.
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Appendix 2

The following tables show the regression coefficients for ozone. An explaination of the tables is
found in Appendix 1.
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Vredepeel

A B C D E F G H

intercept 70.0 42.1 21.8 14.7 27.0 38.2 31.7

model 0.7 0.6 0.6 0.5 0.4

yesterday 0.4 0.2 0.2

temperature 59.0 52.2 41.3 37.3 35.6 33.4

u 4.6 1.7 3.4 2.4 3.0 1.6

v -8.2 -5.1 -3.9 -3.9 -1.9

rel. humidity

2.7 4.3 3.4 3.7

1.5 1.0 1.5

speed -7.8 -5.2 -4.3 -4.1 -2.7 -2.7

rain 2.5 -1.1

direction 1.2 1.3 1.5

wind surf. 6.3 4.8 4.9 5.6

temp. surf. -44.6 -43.9 -37.2 -34.5 -33.9 -33.0

rel. hum. Surf. -19.4 -11.8 -9.7 -7.7 -8.1 -6.9

so2 5.0 1.5

nh4a 8.1 7.7 5.4

nh3 4.5 1.7 1.2

ppm10

ppm25 -2.3

no2 -6.0

hno3 8.5 7.8 7.0

no3a

no -5.3 -4.9 -4.6

so4a -6.9 -4.9 -2.3

pm10

4.1

6.2 6.1 5.3

-2.6 -2.8 -1.5

RMSE 20.41 18.02 18.20 16.47 15.73 15.86 14.85 14.51

R^2 0.69 0.76 0.76 0.80 0.82 0.82 0.84 0.85

tempmax

blh

tcc

bc

na_f

na_c

Figure 23: The regression coefficients for station Vredepeel for the 7 configurations.
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De Zilk

A B C D E F G H

intercept 74.0 45.3 27.5 20.7 30.9 34.4 28.4

model 0.7 0.6 0.6 0.6 0.5

yesterday 0.4 0.2 0.1

temperature 65.3 62.2 36.4 36.0 39.4 37.1

u 4.7 1.9 2.3 1.3

v -9.5 -6.4 -5.9 -4.7 -2.8 -2.0

rel. humidity 6.2 6.3 3.1 2.7

-5.5 1.8

3.4 2.6 3.7 3.1

speed -6.7 -1.7 -1.9 -1.9 -2.0

rain

direction 3.1 1.8

wind surf. 7.9

temp. surf. -48.9 -50.8 -31.4 -31.9 -36.1 -34.4

rel. hum. Surf. -17.8 -12.6 -6.5 -4.9 -7.6 -7.1

so2 4.3 2.1

nh4a -8.3 -10.6 -27.8

nh3 6.5 3.5 2.8

ppm10

ppm25 -18.5 -12.1 -8.6

no2 -7.4 -4.0 -3.5

hno3 4.0 5.0 4.4

no3a 11.8 12.5 24.5

no -4.2

so4a 6.5

pm10

19.0 9.8 7.5

5.8 3.2 3.1

-2.6

RMSE 21.20 19.17 19.59 16.28 15.89 16.58 15.47 15.22

R^2 0.52 0.61 0.64 0.72 0.73 0.71 0.75 0.76

blh

tcc

bc

na_f

na_c

Figure 24: The regression coefficients for station De Zilk for the 7 configurations.
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Eibergen

A B C D E F G H

intercept 68.3 43.3 22.9 15.7 24.1 34.1 27.8

model 0.7 0.6 0.6 0.5 0.5

yesterday 0.4 0.2 0.1

temperature 34.8 16.1 27.5 16.5 33.0 20.0

u -1.6 -2.3

v -6.9 -4.2 -4.4 -3.6

rel. humidity -6.4 -11.8 -5.2 -8.1 -7.8

4.1 5.3 1.5 3.2

2.2 1.7 2.2 1.7

speed -6.1 -4.7 -3.5 -3.7 -1.4 -1.3

rain 3.4 1.2 -0.9

direction -1.1 -1.0

wind surf. 3.8 3.8 4.5 5.4

temp. surf. -24.2 -9.5 -23.3 -13.6 -32.2 -18.6

rel. hum. Surf. -12.5 -4.8 -9.6

so2 6.6

nh4a -6.5

nh3 2.6

ppm10 2.3 2.7

ppm25 -6.5 -5.1 -5.1

no2 -6.5

hno3 6.7 5.8 5.1

no3a 9.3 4.9

no -2.4 -1.4

so4a

pm10 4.6

2.8 -2.5

6.3 6.8 5.8

-4.9 -4.1 -3.4

RMSE 18.64 16.79 17.08 15.34 14.69 14.93 13.79 13.53

R^2 0.70 0.76 0.75 0.80 0.81 0.81 0.84 0.84

blh

tcc

bc

na_f

na_c

Figure 25: The regression coefficients for station Eibergen for the 7 configuration.
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Kollumerwaard

A B C D E F G H

intercept 73.5 37.4 22.2 14.6 29.1 31.8 23.2

model 0.7 0.5 0.6 0.6 0.5

yesterday 0.5 0.3 0.2

temperature 17.4 11.3 18.8 12.4

u 1.1 1.3 0.8

v -6.9 -3.9 -4.4 -3.6 -1.3

rel. humidity -7.0 -7.2 -2.8 -4.5 -3.6

1.2 -1.8

3.0 2.1 2.5 1.4

speed -11.0 -8.7 -4.9 -5.7 -4.5 -4.8

rain 1.9 -1.1 -1.1

direction

wind surf. 9.3 8.1 5.3 6.9 5.7 5.0

temp. surf. 9.1 5.1 -16.5 -10.5 -17.1 -11.2

rel. hum. Surf. -5.8 -3.3 -4.4

so2 2.4 1.4

nh4a

nh3 2.1 1.4

ppm10

ppm25 -9.2 -10.1 -6.6

no2 -7.6 -5.9 -5.1

hno3 1.0

no3a -5.9 -5.6

no

so4a -2.2 -4.5 -2.5

pm10 4.8 11.8 9.8

5.5 5.3 2.9

3.3

-3.6 -4.2 -3.5

RMSE 17.89 14.88 15.63 13.49 12.74 13.61 12.92 12.34

R^2 0.51 0.66 0.66 0.72 0.75 0.72 0.75 0.77

blh

tcc

bc

na_f

na_c

Figure 26: The regression coefficients for station Kollumerwaard for the 7 configurations.

49



Appendix 3

The following tables contain the alarms for PM10, the concentration above 40 µg m−3 and the
exceedances for ozone, concentrations above 120 µg m−3. This is calculated for the model and
configuration H, which include the model, measurements of the day before, meteorological vari-
ables and CTM tracers for the four stations: Vredepeel, De Zilk, Eibergen and Kollumerwaard.

In the columns the total measured exceedances, the total modeled exceedances, the true and
false modeled exceedances and the missing exceedances are given. The first column in num-
bers, the second in percentage of the total modeled exceedances, so how many of the modeled
exceedances are true, TRUE

totalmodeled ∗ 100 and how many of the modeled exceedances are false,
False

totalmodeled ∗ 100. In the third column the percentage of the total measured exceedances are
given, how many of the measured exceedances are modeled, TRUE

totalmeasured ∗ 100 and how many
of the measured exceedances are missing MISSED

totalmeasured ∗ 100.
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Exceedance of PM10 above 40 µg per m3 

Model Configuration H

Total Measured (in %) Total Measured (in %)

total measured 249 249

229 212

TRUE 150 65.5 60.24 161 75.94 64.66

FALSE 79 34.5 51 24.06

MISSED 99 39.76 88 35.34

Model Configuration H

Total Measured (in %) Total Measured (in %)

total measured 205 205

211 210

TRUE 130 61.61 63.41 143 68.1 69.76

FALSE 81 38.39 67 31.9

MISSED 75 36.59 62 30.24

Model Configuration H

Total Measured (in %) Total Measured (in %)

total measured 214 214

219 200

TRUE 132 60.27 61.68 143 71.5 66.82

FALSE 87 39.73 57 28.5

MISSED 82 38.32 71 33.18

Model Configuration H

Total Measured (in %) Total Measured (in %)

total measured 178 178

101 182

TRUE 75 74.26 42.13 119 65.38 66.85

FALSE 26 25.74 63 34.62

MISSED 103 57.87 59 33.15

Vredepeel, 4 years of PM10 data

Modelled (in %) Modelled (in %)

total modelled

De Zilk, 4 years of PM10 data

Modelled (in %) Modelled (in %)

total modelled

Eibergen, 4 years of PM10 data

Modelled (in %) Modelled (in %)

total modelled

Kollumerwaard, 4 years of PM10 data

Modelled (in %) Modelled (in %)

total modelled

Figure 27: The alarms for PM10
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Exceedance of ozone above 120 µg per m3

Model Configuration H

Total Measured (in %) Total Measured (in %)

total measured 104 104

60 78

TRUE 50 83.33 48.08 64 82.05 61.54

FALSE 10 16.67 14 17.95

MISSED 54 51.92 40 38.46

Model Configuration H

Total Measured (in %) Total Measured (in %)

total measured 64 64

39 53

TRUE 32 82.05 50 47 88.68 73.44

FALSE 7 17.95 6 11.32

MISSED 32 50 17 26.56

Model Configuration H

Total Measured (in %) Total Measured (in %)

total measured 99 99

43 74

TRUE 33 76.74 33.33 64 86.49 64.65

FALSE 10 23.26 10 13.51

MISSED 66 66.67 35 35.35

Model Configuration H

Total Measured (in %) Total Measured (in %)

total measured 45 45

37 13

TRUE 15 40.54 33.33 8 61.54 17.78

FALSE 22 59.46 5 38.46

MISSED 30 66.67 37 82.22

Vredepeel, 4 years of ozone data

Modelled (in %) Modelled (in %)

total modelled

De Zilk, 4 years of ozone data

Modelled (in %) Modelled (in %)

total modelled

Eibergen, 4 years of ozone data

Modelled (in %) Modelled (in %)

total modelled

Kollumerwaard, 4 years of ozone data

Modelled (in %) Modelled (in %)

total modelled

Figure 28: The exceedances for ozone
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A complete list of all KNMI-publications (1854 – 
present) can be found on our website  
 
www.knmi.nl/knmi-library/knmipub_en.html 
 
 
 
 

 
 
 
 
 

The most recent reports are available as a PDF on 
this site. 
 
 



 


