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Chapter 1

Introduction

The workplan of the second phase of the EUMETNET OPERA program
(2004-2006) contains a work package 1.2 on ”Quality information for radars
and radar data”. A consortium of four different National Meteorological
Institutes has worked on this project and has addressed this complex project
theme. In addition a wide European support for the outcome of the project
has been obtained.

The increasing interest from the hydrological and NWP modeling commu-
nities in weather radar has initiated a change from mainly a qualitative use
to a more quantitative use of radar data. For the traditional use in nowcast-
ing mainly qualitative requirements have to be fulfilled, but for quantitative
precipitation estimation (QPE) or assimilation in a NWP model stringent
quantitative requirements are usually in force.

In the previous OPERA program, the project members have been re-
sponsible for a project on the ”Definition of Product Quality Descriptors”
(Holleman et al., 2002). In this project a review of the physical problems
of the observation technique was performed, ways to account for inherent
limitations in the technique like clutter and beam shadows were proposed,
and a set of BUFR-descriptors to encode the recommended quality informa-
tion were defined. Only global (static) quality descriptors, i.e., descriptors
that are valid for all data in a product, have been dealt with in this project.
Daniel Michelson and Iwan Holleman have worked on the data quality project
in COST-717 that was concerned with quality characterization and control
weather radar data with a focus on the requirements from hydrology and
NWP.

This OPERA project has built on the achievements of the previous OPERA
program and the COST-717 action. This had the advantage that input and
expertise from a wide community of radar experts, hydrologists, and NWP
modelers have been incorporated in the project outcome. In addition, this

5



approach has saved a lot of work and has strengthened the international
support for the project results. The objectives of this work package 1.2 were:

1. Definition of usable information to characterize the achieved data qual-
ity

2. Address truly local quality characterization issues, i.e., down to the
level of individual bins and pixels

3. Promotion of incorporation of the quality information in the exchanged
radar products and polar data

4. Support the potential users of the new quality information from, e.g.,
the hydrological and NWP communities, in the application of this in-
formation

To fulfill the objectives the project work has been divided into the fol-
lowing five subpackages:

A. Quality information for radar system. Issues regarding radar hardware,
signal processing and siting will be revisited.

B. Quality information for volume data of reflectivity and radial velocity. Is-
sues of (permanent) clutter, attenuation, beam filling, non-hydrometeor
identification, dealiasing, etc

C. Quality information for surface rainfall (accumulation) product. Issues
like height of observation above ground level, Z-R relationship, particle
phase, etc. How to include quality information in dynamical maps?

D. Quality information for wind profiles and radial wind super-observations.
Issues like wind model, VAD or VVP, horizontal and vertical resolu-
tion, error correlation, statistics to be included, etc. Dynamical quality
information for each vertical level or super observation?

E. Application of quality information. Issues like the definition of a common
framework to incorporate the quality information from subpackages (A-
D) and the provision of guidelines for end-users on usage of the quality
information will be considered

Regarding the actual incorporation of the new-defined quality information
in the exchanged radar data, a synergy with work package 2.1 ”New data
representation formats” is expected.
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Chapter 2

Previous work

In the framework of the previous OPERA program (1999-2003) projects cov-
ering the “Production of radar data” and the “development and standardiza-
tion of appropriate quality control procedures” were performed. This project
was split into three subprojects:

1. Description of the currently applied quality-ensuring procedures, see
Divjak et al. (1999)

2. Set-up of a library (database) describing calibration methods used for
each radar

3. Definition of a list of quality descriptors, see Holleman et al. (2002)

The purpose of the last subproject was to come up with a review of how
the physical problems of the observation technique impinge on our ability
to accurately measure the observed quantity. It proposed ways to account
for inherent limitations in the technique like clutter and beam shadows as
well as the variable behavior of the technique for things like bright band
and anomalous propagation. It has also dealt with the variable performance
of the equipment and algorithms used to generate different data products.
Finally, a set of appropriate BUFR-parameters to encode the current and
recommended/standardized quality information into the BUFR-message for
international exchange was defined.

Apart from being of general interest, the quality description indicators can
be used during the production of radar composites and the assimilation of
radar data in hydrological and atmospheric models. This subproject, there-
fore, had an evident connection with the activities of the former COST-717
action on “Use of Radar Observations in Hydrological and NWP Models”.
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In this subproject a review of all aspects of “quality” and how certain
performance factors impinge on the “quality” of the final products has been
performed. It was recognized that there are different factors that have bear-
ing on performance. There are, for instance, static factors that relate to
permanent conditions. These can be global, and relate to the fundamen-
tal technique (deficiencies in choice of operating frequency, i.e. attenuation,
etc.), and/or they can relate to the particular installation (local interference,
both physical and electrical, and the particular hardware employed). There
are also changing factors that relate to variable performance of the equipment
and the ability of the technique to cope with changes in the environment that
it is trying to sample. These can be long-term trend type changes or very
rapid dynamic changes.

From the review of the quality aspects, quality descriptors were deduced
for basedata, surface rainfall product, and the wind profile product. The
quality descriptors have been divided into global static, local static, global
dynamic, and local dynamic descriptors. “Global” refers to descriptors that
are valid for all data points, and “local” refers to descriptors which are given
per pixel or altitude. “Static” is used to denote descriptors that are constant
and only depend on the radar equipment, radar siting, or product algorithm,
while “dynamic” descriptors vary for each observation.

From the obtained quality descriptors a list of proposed BUFR qual-
ity descriptors has been deduced by Holleman et al. (2002). Only global
static quality descriptors are proposed, because it was not feasible to imple-
ment more complicated quality description within the lifetime of the previous
OPERA program.

2.1 Quality Description Framework proposed

by previous OPERA

The proposed quality descriptors were divided in the following way by Holle-
man et al. (2002):

• Static global descriptors. These indicators remain unchanged during
most of the time and are constant in space. They are not influenced
by changing external factors like environmental parameters, e.g., the
weather

• Static local descriptors. These indicators remain unchanged during
most of the time, but do vary in space. A good example of a static
global descriptor is a static clutter map
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• Dynamic global descriptors. These indicators are time and situation
dependent and thus they can change from one product to the follow-
ing in time. They are, however, considered valid during a whole scan
sequence and are associated to all data points contained in a given
product.

• Dynamic local descriptors. These indicators are also time and situation
dependent. In addition, these indicators may change within a given
product from one data point to the next one.
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Chapter 3

Application of quality
information

3.1 Summary

A framework is presented to facilitate the propagation of uncertainty in-
formation at the interface between weather radar and meteorological and
hydrological applications. The underlying principle is to make maximum use
of both:

1. the knowledge of the data provider on the sources of uncertainty, and,

2. the knowledge of the user about the sensitivity of his application to
errors in the data.

Uncertainty information propagates from the observer to the end user, whereas
sensitivity information propagates in the opposite direction from the user to
the observer. Maximum benefit is only obtained if both information trains
are well established.

3.2 Objective

The presented framework will facilitate the communication about uncertainty
between data providers (here radar experts) and data users (for instance
meteorologists and hydrologists). The goal is to improve the propagation
of uncertainty and sensitivity information and thus maximize the practical
benefit of applications using weather radar measurements as input.
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3.3 Introduction

Many studies were made to describe the quality associated with weather
radar measurements and products. There are two main approaches:

1. simulation of errors and limitations of the instrument, and,

2. comparison with ground truth.

In the first approach uncertainty is simulated based on conceptual mod-
els and detailed knowledge about the sources of error. An example is the
simulation of the uncertainty that results from ignoring small-scale variabil-
ity of vertical reflectivity gradients in common operational profile correction
algorithms. Another example is the three-dimensional map of the radar vis-
ibility that can be simulated with a digital terrain map and a model of the
propagation of the radar beam in the atmosphere. The visibility map shows
regions of partial or total shielding of the radar beam by mountains and the
horizon. It is a fundamental limitation of a weather radar and has direct im-
pact on the uncertainty of radar estimates of rainfall rates at the ground. A
third example is the clutter likelihood obtained with a conceptual model and
measurements of the signal fluctuations, Doppler spectrum width, Doppler
velocity, vertical gradients, spatial continuity and residual clutter during clear
sky.

In the second approach we do not make assumptions on the origin of
uncertainty. Here, uncertainty is quantified at the outcome by comparison
of radar products (e.g. radar rainfall estimates) with ground truth (e.g. rain
gauge measurements), see for instance Germann et al. (2006b). Although
there is still work to be done along these two approaches, we already have
enough information to make a first-order description of radar quality.

The critical point is the next step: The conversion from this instrument-
oriented type of uncertainty information into measures that can be used in
meteorological and hydrological applications. This step requires an intensive
dialog and a clear definition of the interface between the provider (here radar
expert) and the user (meteorologist or hydrologist). This is the missing part
in current implementations of operational applications.

It is often proposed that the data provider needs to define a generally valid
quality index between 0 (bad) and 1 (good). Although appealing from the
user point of view, because there is not much work for him, this approach
is doomed to fail for a simple reason: It does not take into account the
specific sensitivities of the application to the various types of uncertainty
in the data. This step requires detailed knowhow of the application, its
sensitivities to errors in the input data and the propagation of uncertainty
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Figure 3.1: Illustration of the framework.

through the system to the output. The data provider does definitely not
have this type of detailed knowhow. On the other hand, it is not sufficient
either if the user gets from the data provider a large number of instrument-
specific quality figures which are difficult to understand without the help of
the technician of the instrument.

In short, we need a framework to facilitate the communication on data
quality.

3.4 The framework

The core of the framework presented here (Fig. 3.1) is a clearly defined in-
terface that consists of a set of generic and physically meaningful parameters
(quality indicators). This is the simplest way to make best use from both i)
the knowledge of the data provider on the sources of uncertainty, and, ii) the
knowledge of the user about the sensitivity of his application to errors in the
data. The set of quality indicators contains neither instrument-specific nor
application-specific peculiarities.

The conversion (quality input method) from instrument-specific quality
information (quality factors) into generic and physically meaningful quality
information (quality indicators) requires detailed knowledge of the instru-
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Figure 3.2: Provider, interface, and user.

ment, the measurement techniques, the data processing, and is thus clearly a
task for the data provider (here radar expert). The wavelength of the radar,
for instance, is a quality factor. The root mean squared error of horizontal
wind speed expressed in [m/s] of a wind profile product, on the other hand,
is an example of a quality indicator.

The conversion (quality output method) from the quality indicators into
a form of quality information that can be used in the application (quality
index), on the other hand, requires detailed knowledge of the application
and its sensitivity to uncertainty in the data, and is thus clearly a task for
the user (meteorologist or hydrologist).

Both steps, the quality input and output methods, are only possible if the
quality indicators at the interface are defined in a generic way using common
physical and statistical definitions.

The flow of quality information from the data provider (provider unit)
to the user (user unit) goes through the interface (interface unit) which
consists of a set of quality indicators (Fig. 3.2). The number and type of
quality indicators is open. The only requirement is that any user can read
and correctly interpret the quality indicators without detailed knowledge of
the provider unit.
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3.4.1 Terminology

Here we give a short definition including some examples of the terms intro-
duced in the previous section. See also Figs. 3.2 and 3.3.

Provider: the instance producing the data (e.g. radar system)

Quality factor: a factor that affects the quality of the data (e.g. wave-
length)

Quality input method: method to convert quality factors into quality in-
dicators

Quality indicator: generic physically meaningful descriptor of the data
quality 1 (e.g. root mean square error of wind speed expressed in [m/s]).

Interface: instance that holds the set of quality indicators

Quality output method: method to convert quality indicators into qual-
ity indices

Quality index: way of using quality information in the application (e.g. a
weight between 0 and 1, good data having larger weights)

User: instance of the application that uses the quality information

3.5 Example

Here, an example is given to illustrate how the above scheme can be applied
in practice.

Context: A hydrologist is developing a real-time system for short-term
prediction of river runoff of several catchments in the Swiss Alps. The size
of the catchments is of the order of 1000 km2. The model predicts the
probability that the runoff exceeds a predefined threshold in the following 2
hours. The only rainfall input is a radar map of surface rainfall rates at a
resolution of 1 km and 5 min available with a delay of 1 min.

Step 1: The hydrologist (user unit) goes through the list of quality in-
dicators (interface unit) provided by the radar experts (provider unit), and
selects those quality indicators that seem useful in the given context. These
are:

1We prefer the term “quality indicator” rather than “quality descriptor” because the
latter is already used in the context of metadata in OPERA BUFR messages.
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Figure 3.3: Examples of quality factors, indicators and indices.

1. RCF: A map that indicates for each season and 1 km pixel the frequency
of residual clutter; in % of time.

2. RB: A static map that indicates for each 1 km pixel the residual bias
of the radar rainfall estimate, in dB.

3. RS: A static map that indicates for 9 subregions of Switzerland a mea-
sure of the spread of radar errors, in dB.

4. CI: A static map that indicates for each 1 km pixel the average intensity
of clutter when clutter elimination is switched off, in dBZ.

Step 2: The hydrologist defines the quality output method to convert
the information of the selected quality indicators into quality indices to be
applied in the runoff prediction system. The quality output methods are
based on i) knowledge on the sensitivity of hydrological runoff modeling for
a 1000 km2 catchments in the Alps, and, ii) the detailed description of the
quality indicators provided by the radar expert. A possible solution may be:

1. A binary mask to use only those 1 km pixels with RCF<3% AND
|RB| <5dB AND RS<3dB AND CI<15dB.

2. A correction factor derived from RB to correct rainfall rates of accepted
pixels.

16



3. A confidence index derived from RS to be associated with the runoff
forecast: high for RS<1.5dB; medium for 1.5dB<RS<2.5dB; low for
RS>2.5dB.

Step 3: Cross-check of quality output method by radar expert from
provider unit.

Step 4: Implementation, verification, education.
In the above approach the uncertainty of radar precipitation estimates is

taken into account using the static map of radar error spread (quality indica-
tor RS). This way we do not consider space-time correlation of radar errors.
There is a more sophisticated approach if an estimate of the full error co-
variance matrix including space-time correlation is available: In this case we
can generate an ensemble of radar precipitation fields, each member of which
is a possible realization of the true field and is in agreement with our best
knowledge on radar uncertainties (Germann et al., 2006a). Here, the error
covariance matrix is the quality indicator, the ensemble generator the output
method, and the ensemble itself the “quality index”. The hydrological model
can then simply be run several times each time with a different radar input.
that is, a different ensemble member. A crucial point in this approach is the
selection of a small ensemble out of a large number of generated members.
The selection practice, which is also part of the output method, obviously
depends on the sensitivity of the application and thus requires knowledge
from the user unit.

3.6 Harmonized representation of quality in-

dicators

This section outlines a means for representing quality indicators in a harmo-
nized way, with a focus on their international exchange in a way which the
receiver can anticipate. The quality framework presented earlier in this chap-
ter uses the term indicator in a specific way, and the term index in another.
Although we will see that the harmonization procedure presented below is
designed as a conventional index [0-1], in this context it is intended only as
a scaling method for representing a quality indicator2. In other words, the
reader should not consider the harmonization process to be analogous to a
quality output method which results in a quality index. Instead, the scaling
process is simply intended to represent the quality indicator in a predictable
way which can thus facilitate its exchange and use in various applications.

2Note, however, that international exchange of quality indices as defined in this quality
framework, or their provision to users, is by no means prohibited.
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While users should, ideally, be conscious of the science behind a given quality
indicator the scaling procedure does not demand such detailed knowledge.
In fact, in reality, some users may simply appreciate having confidence in
all quality indicators being available in a harmonized way, no matter what
they represent. Towards the end of this section, after the principles are give,
specific information is presented which is required to perform the harmoniza-
tion.

For quality characterization to be meaningful, with quality information
originating from many disparate sources, a generalized procedure must be
defined and applied. In terms of the pure logistics involved in exchanging the
relevant information internationally, such a generalized procedure becomes
vital both in facilitating the exchange and in a given institute’s ability to
manage the information received from international sources. In the following,
an attempt is made to use the proposed terminology defined in Chapter 3 of
this report.

Quality characterization becomes “internationally relevant” when a qual-
ity indicator is defined. All steps preceding the definition of the quality
indicator can be considered to be internal to the characterization algorithm.
What is important is that the quality indicator is defined using a recognized
physical quantity. The name of this quality indicator must therefore always
be given in the package (file) which is exchanged internationally.

As long as the minimum and maximum values of the individual quality
indicator are given (also in the package) then the quality indicator can be
represented in a harmonized manner, e.g. for a Cartesian array in normalized
form, as,

Q̂ind(x,y) =
Qind(x,y) −min(Qind)

max(Qind)−min(Qind)
, (3.1)

thus always resulting in a quality indicator containing values between 0 and
1. Values lying outside this interval can be used to denote “no data” (un-
radiated areas) and “no echo” (radiated but no return) pixels or bins3. In
cases where the quality indicator is categorical, e.g. “yes” or “no” informa-
tion, it can easily be represented as no=0 and yes=14. Although it may seem
counter-intuitive to reformat a physical quantity in a given quality indicator
using this harmonization procedure, doing so ensures that any quality indi-
cator exchanged internationally will arrive in a harmonized, and therefore
predictable fashion.

3It is therefore unwise to attempt to compress the contents of any continuous quality
indicator to an 8-bit unsigned word using a linear transform, no matter how tempting it
may be.

4If there are more categories than “yes” or “no”, then care must be taken so that the
categories can be normalized cleanly using this proposed harmonization.
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Potential problems arise in this process if the quality indicator is not
a linear quantity. However, as luck would have it, the radar community is
comfortable using the decibel scale and so any quality indicator, such as radar
reflectivity factor and precipitation intensity or accumulation, can easily be
accommodated as such if required.

In summary, any given quality indicator can be packaged as a floating
point array (per-pixel quality indicator) provided the following information
is provided on the quality indicator:

• the physical entity contained in the quality indicator,

• accurate description of the physical entity,

• the maximum value in the quality indicator,

• the minimum value in the quality indicator,

• the value used to identify “no data”,

• the value used to identify “no echo”.

It might be advantageous to propose standard values of the latter two flags,
e.g a value greater than one for “no data” and a negative value for “no echo”.

This procedure provides a harmonized method of representing quality
indicator information expressed as an error, a correction, and/or an un-
certainty.

3.7 Combining of quality indicators

If all quality indicators, packaged according to Sec. 3.6, were made available
for international exchange, and network capacity was sufficient to support the
operational exchange of all this information, then it would not be necessary
to address the issue of combining quality indicators. Instead, it would be up
to each NMS to combine the quality indicators however it wishes, based on
its own priorities and applications.

However, we do not yet have the luxury of being able to exchange all
quality indicators, so the issue of combining them intelligently must be ad-
dressed. Generally, if two or more quality indicators are to be combined, the
combination can be either:

• additive (arithmetic mean), or

• multiplicative (geometric mean),

where normalized weights are assigned to each quality indicator before the
combination takes place. These weights can be determined in any of the
following ways:
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1. Each array is assigned a static weight.

2. A pixelwise weight is determined dynamically.

3. Any combination of 1 and 2.

Combination of information in this context is analogous to data compres-
sion, since the objective is to represent the same information much more
efficiently.

It can be argued that additive combination is physically unmeaningful,
since any given (normalized) quality indicator with zero quality should in
principle make any remaining qualities irrelevant. In other words, an arith-
metic average quality can be considered useless if any individual quality is
zero. This issue is dealt with ruthlessly when calculating the geometric mean.

An important objective when combining quality indicators is in making
the process reversible, ie. non-destructive compression. To enable this,
all weights must be available as metadata along with the method used in
applying them. If any of the weights have been determined at the pixel or bin
level, then arrays of weights must be given for the process to be reversible.
If any of the weights are zero when deriving the geometric mean, then it
becomes impossible to retrieve the original quality indicators, according to
the principle that “you can’t get something from nothing”5. Therefore, in
some cases, there may be no benefit in combining quality indicators compared
to making them available individually, at least in terms of reversibility.

If making the individual quality indicators available is impossible, for
whatever reason, then the combination process can only be considered anal-
ogous to destructive compression6. Nevertheless, in such cases, the interna-
tional availability of an average quality indicator can still provide valuable
information to the user on the quality of a given observable.

3.8 Fractality

So far the framework has been presented from the point of view of having a
provider unit that covers the whole chain from the raw measurement made
by a radar system to the final radar product that is ingested in a hydrological
application.

The same framework may be applied at a smaller scale, for instance at
the interface between a raw radar product with reflectivity in polar space

5This is like trying to perform an attenuation correction on an extinguished signal. . .
6A common form of destructive compression is Huffman coding used in creating JPEG

files.
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(provider unit) and an algorithm that makes the best radar estimate of sur-
face rainfall rates (user unit). See Fig. 3.3. Here, the quality indicators
describe the uncertainty of polar reflectivity, and the quality output method
incorporates the sensitivity of the rainfall rate estimation algorithm to un-
certainties in polar reflectivity.

Another example is the procedure of compositing images from single
radars to produce a radar mosaic. Here the individual radar systems are
the provider unit, and the compositing procedure is the user unit. The qual-
ity indicators in the interface unit describe the uncertainty of data of the
single radar images.

The framework may be applied at a larger scale as well. The whole chain
from the radar observation through numerical weather prediction modeling
and hydrological modeling to a sea level prediction can be considered as the
provider unit. The user unit is the civil protection who have to make a
decision in case of a sea level prediction above a critical threshold. Here, the
quality input method simulates the whole chain of uncertainty propagation
from the observation to the sea level forecast. The quality indicator can be,
for instance, the expected range of sea level, a reasonable way to express the
uncertainty in the whole forecast system. In short, the same framework can
be applied at different scales of details.

3.9 Conclusion

A framework is presented to provide a guideline to improve exchange of un-
certainty and sensitivity information at the interface between a data provider
(here radar community) and a user (here meteorologist or hydrologist). Its
success depends among other factors on the acceptance by the data provider
and user.

The presented framework is not anyhow strictly related to radar technol-
ogy, meteorology or hydrology. It can be used as well at any other interface
between a data provider and a data user, provided that uncertainty in the
data is relevant for the given application.

Usually the selection of the quality indicators and the definition of the
quality output method are static. Principally it is also possible to allow for
dynamic adaptation of the quality output method to changes in either the
sensitivity or the uncertainty or both. Obviously, this solution may easily
become unstable and needs thus to be used with care.
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Chapter 4

Quality information for radar
systems

In this chapter, we discuss quality factors inherent in a radar system. Hence,
the focus is on system properties which affect the quality of the measurement
data. System independent properties - like weather - are discussed in the next
chapter. However, it should be kept in mind that the distinction between
these “internal” and “external” quality factors is somewhat vague as some
of these factors interact: the sensitivity of a radar to some external quality
factor often depends on an internal quality factor. Various radar system
quality factors have already been introduced concisely in the earlier OPERA
reports by Divjak et al. (1999) and Holleman et al. (2002). In this chapter,
the goal is in defining quality factors and indicators that can be utilized in
assessing quality of radar data (5) and further, in generating products (6, 7)
such that quality information is taken into account.

4.1 Operating frequency

In setting up a weather radar system, one of the fundamental choices is the
type of radar. The operating frequency is a central static system parameter.
Defining quality in formal terms becomes a practical need for example in
combining data from two radars with differing frequency. A typical weather
radar operates in the C band (around 5 GHz) providing a good balance
between sensitivity to precipitating droplets and attenuation. Weather radars
exist also in the X-band (around 10 GHz) and the S-band (around 3 GHz).
Relative performance of these bands is outlined in Fig. 4.1. Hence, operating
frequency determines the compromise for sensitivity and attenuation. On
the other hand, attenuation depend on weather: data quality is a function of
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distance and intensity of precipitation along the beam. Due to this dynamic
aspect, we return to this topic in the next chapter.

C−band
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Figure 4.1: Schematic presentation of sensitivities of different frequency
bands: increased sensitivity yields decreased transmission (ie. increased at-
tenuation).

4.2 Beam width

The angular beam width is a fixed system property determined by antenna
disc dimensions and frequency. As the beam diameter increases linearly
with range, the spatial resolution decreases proportionally in the beam-
perpendicular direction. This topic is also discussed in the next chapter.
Formally, the beam with is often approximated as a Gaussian bell curve;
hence beam width refers to the half-width of the beam power. Strictly
speaking, power transmitted off the main beam sometimes hits targets of
high reflectivity, especially ships and aircraft (see section 5.11). In addition,
distinct maxima off the main beam, sidelobes, cause unwanted echoes that
are sometimes hard to recognize.

4.3 Doppler filtering

A central radar property is the support of Doppler speed measurements pro-
viding beam-directional velocity components of target particles. Speed mea-
surements are input for meteorological end products (Ch. 7) but also serve
as an important means for anomaly detection and removal. In Doppler
radars, the maximum unambiguous velocity, is constrained by frequency f
by VNyquist = PRF · c/4f . where PRF is the pulse repetition frequency. The
maximum unambiguous range is limited trough RNyquist = c/2PRF.

Technically, unlike operating frequency f , maximum unambiguous veloc-
ity and range are not static system properties as PRF can be altered. Thus,
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scanning routines may involve dual-PRF or vary PRF between subsequent
tasks. In designing quality indicators (Ch. 3), instead of PRF, it is more in-
formative to use maximum unambiguous velocity and range which are more
likely physically meaningful quantities to end users.

4.4 Calibration errors

As radars consist of real mechanical and electronic parts, various kinds of
losses and distortions occur. Calibration is an unavoidable procedure to get
measurement data to match with ideal, theoretical models. Various calibra-
tion procedures can be applied to optimize hardware accuracy (Divjak et al.
(1999),Huuskonen and Hohti (2004),Puhakka and Puhakka (2004), Huusko-
nen and Holleman (2006)). Calibration itself is a non-ideal procedure, and
remaining errors will decrease the measurement quality. Since calibration
errors are intrinsically unknown, they cannot be communicated and applied
in data processing unlike many other quality indicators.

Pointing errors are mechanical calibration errors resulting from inaccu-
racies in initial calibration or from biased position sensors. Especially in the
lowest elevation angles, one-tenth degree errors will cause significant prob-
lems. In addition to static, bias-like calibration errors, fluctuations may
occur for example due to radar tower oscillations in wind or bending due to
asymmetric heating caused by the sun.

Electromagnetic calibration errors originate from hardware components
involved in a measurement cycle of a radar: the transmitter, waveguide, an-
tenna mirror, and receiver. All these components are potential causes of
signal loss. For various practical reasons one typically satisfies with a cali-
bration error (reflectivity measurement bias) of 2-3 dBZ. In addition, there
are fluctuations that are sometimes hard to detect. For example, sensitivity
decreases gradually with receiver age.

4.5 Radar siting

Deciding the location of a radar is a complex task. Firstly, target applications
and customers must be considered; public forecasting, hydrology, and avia-
tion for example have different needs. Second, one should consider a radar
as a component of larger (radar) observation network: current and future
stations affect the location of a new site. Third, there are often various geo-
graphical constraints for potential locations of a radar station: accessibility,
orography, public land use and regulations.
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As a quality factor, radar siting is one of the most static ones. Failure in
these produces problems which cannot be corrected by other parts of data
processing or can only be corrected to a limited extent. Adding radars to
a non-optimally designed network or moving radars to better locations are
sometimes solutions to consider but require large expenses.

For an established radar station, local orography, at least the radar hori-
zon, is a quality factor to be communicated in the data processing. (See
Sec. 5.4)

4.6 Summary

The quality factors discussed above have been collected in Table 4.1. Ba-
sically, there are three types of factors deteriorating data quality: biases,
fluctuations and probabilistic quantities. In principle, biases are the easiest
ones: they can be canceled by good calibration. Fluctuations are inaccuracies
of which the magnitudes are unknown in single measurements, but statisti-
cal properties may be available. For example, approximated error limits can
be communicated as ±∆ type accuracy information. Further, subsequent or
multi-source errors (limits) can be treated in a mathematically disciplined
manner (see Peura et al. (2006)). Probabilistic quantities are needed in de-
scribing occurrences (frequencies) of events that affect quality. More quanti-
ties of this type are introduced in the next chapter.
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Table 4.1: Summary of quality indicators of a radar system. Typical values
are rough estimates. See also Saltikoff et al. (2004).

Quality factor Quality indicator Notation Typical value Affects

Operating fre-
quency

? f [Hz] 3, 5, 10 GHz Sensitivity, at-
tenuation

PRF Max unamb. velocity VNyq [m/s] 5–30 m/s Wind products
Max unamb. range RNyq [m] 50–250 km Range

Beam width β [deg] 1◦ Spatial resolu-
tion

Pointing acc., elevation ∆θ [deg] < 0.1◦ Spatial resolu-
tion

Pointing acc., azimuth ∆φ [deg] < 0.5◦ Spatial resolu-
tion

Radar horizon Max range at altitude
h

rh [m] < 5◦ Range

Clutter Statistical cl. maps,
Doppler-filtered signal

[dBZ] Data reliability

Sensitivity Min. detectable signal
at 1000m

MDS [dBZ] < −40 dBZ Detection of
snow and
drizzle

Overall uptime
reliability

Data availability Pdata [%] 90− 99% dBZ Everything
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Chapter 5

Quality information for volume
data

In this chapter, we discuss quality associated with weather radar measure-
ments: reflectivity (Z), Doppler velocity data (V), and velocity spectrum
width (W). Besides the system related error sources discussed in the previous
chapter, radar data frequently suffers from external errors such as aircraft,
buildings, electromagnetic interference and other factors illustrated in Fig-
ure 5.1. We start by discussing the general geometrical properties of weather
radar data as quality information often conforms to that geometry. As this
chapter focuses on the volume data, not on products generated from the
data, only basic products (PPI and CAPPI) are introduced for the purposes
of illustration.

Figure 5.1: Phenomena affecting radar data quality.
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5.1 Measurement geometry

In operational weather radars, the measurements are mostly carried out as
azimuthal sweeps or elevation scans, that is, antenna rotations with a con-
stant elevation angle. Measurements are operationally configured as tasks ,
each of which typically consisting of several sweeps, producing a set of nest-
ing conical surfaces. The obtained three-dimensional measurement dataset
is called a volume scan or briefly, a volume.

Figure 5.2: A typical scanning strategy of an operational weather radar.

Sweep data, measured in the polar coordinates, can be presented in a
two-dimensional array (Fig. 5.3). This so called b-scope format is not suited
to meteorological monitoring but is useful in tracking anomalies. As it is the
complete presentation of the measurement, prior to geographical projections
and data compositions, it is often most efficient to design data correction
procedures in this format (Peura, 2002).

⇒

Figure 5.3: The b-scope image of the lowest elevation (0.5◦) (left) and the
corresponding Cartesian image product (right).
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Figure 5.4: Possible geometries of quality information.

A Cartesian image of sweep data — often projected on geographical im-
age layers — is called a planar position indicator (PPI). Mostly, the lowest-
elevation sweep is considered only; hence this kind of image is sometimes
called a base product. A constant-altitude planar position indicator (CAPPI)
is a horizontal intersection of radar data. A typical altitude of the intersect-
ing plane is 500 m or 1000 m.

If the intersecting plane is between (under, over) the beams, measurement
values have to be interpolated. Often, one applies a Gaussian model for the
beam power, obtaining for example a weighted sum of the lower/upper beam
intensities to each image point.

Optimally, interpolation or extrapolation schemes - like those applied in
surface precipitation products (Ch. 6) utilize approximated vertical profiles
of reflectivity to recover from sparse or missing measurements.

5.2 Beam broadening and filling

As illustrated in Fig. 5.5, the physical width of an atmospheric volume cor-
responding to a measurement bin expands with distance from the radar. In
Cartesian products, this beam broadening effect means that the spatial reso-
lution varies drastically (Fig. 5.5). This geometrical property is apparently
a static quality factor. However, the extent of information loss depends dy-
namically on weather: in a convective event details are more likely missed
than in widespread, smoothly varying precipitation. In radar image compos-
ites, variable input resolutions can be used as quality indicators such that
the radar with the best spatial resolution dominates over other radars Peura
et al. (2006); Fornasiero et al. (2006).

The sixth power mathematics in radar combined to beam broadening
yields a further problem called beam filling, which means that an intensive
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phenomenon at a periphery of a measurement volume dominates in the whole
measurement volume. Inversely, if target fills only 50% of the bin volume,
only about 3 dB is missed.

Figure 5.5: Geometrical disparities in resampling radar data (· · ·) to target
pixels (+) in a Cartesian image product Henja and Michelson (1999). Close
to the radar (left) several measurements contribute to an image pixel - and
vice versa in distant locations (right).

5.3 Beam overshooting

The curvature of the Earth means that even the lowest radar beams are
relatively high (1000 m at 150 kms, 3000 m at 200 kms), making estimations
of surface rain less reliable. Hence, this causes faulty estimations in the case
of overhanging precipitation (altostratus, see Figure 5.6) and in low-initiating
snowing (Koistinen et al., 2003). Similar problems occur also due to beam
blocking caused by mountains.

One can say that Earth curvature itself is not an“anomaly” or error.
In some applications, like in data assimilation applied in numerical weather
prediction (NWP) models, the three-dimensional volume data can be applied
using the native polar geometry. Hence, strictly speaking this problem should
not be seen as volume data quality issue. It however dominates in many
central products like in surface rainfall products (Ch. 6).

5.4 Beam blocking

In mountainous regions, terrain elevation limits the radar horizon: due to
beam blocking, precipitation behind the horizon remains undetected. As dis-
cussed in 4.5, radar horizon is one of the major issues to be taken into account
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Figure 5.6: Overhanging precipitation approaching from the South-West (225◦).
In distant observations, precipitation-free areas remain under the radar beams.

in siting. (One may also argue that a radar horizon belongs to the radar “sys-
tem”.) Radar horizon elevation in degrees or meters can be communicated as
a function of azimuth and range. Alternatively, it can be given for each radar
elevation angle, like the map shown in Figure 5.7 or for certain altitude(s)
(Table 4.1).

5.5 Ground clutter

As radars are very often used for approximating surface precipitation, the
lowest sweeps are targeted as close to the Earth surface as possible. As
a compromise, radar data is sometimes contaminated by strong peak-like
echoes – ground clutter – originating from buildings, masts and natural tar-
gets like tall trees. Doppler filtering carried out by radar signal processors is
an established technique to remove such anomalies; the practical hypothesis
is that only hydrometeors move. However, some non-precipitating targets –
like wet tree tops in wind – do move.

On the other hand, also the removal of valid false echoes produces holes
in the image products. As a possible solution, one could mark the altered
bins with the probability of an anomaly (that is, confidence on the validity of
the applied removal) and use that information in re-generating missing data
from, say, neighboring bins.

As not all operational radars are equipped with Doppler filters, there are
many ground clutter detection algorithms reported in the literature. The

33



Figure 5.7: Beam blockage image and precipitation image suffering from miss-
ing sectors. Increasing pixel intensities indicate decreasing quality. (Courtesy
of Uta Gjertsen, met.no .)

algorithms output errors as reflectances and/or probabilities.

5.6 Sea clutter

One of the most critical and yet unresolved anomalies is the so-called sea
clutter. It occurs typically when warm air layer located over cold sea refracts
radar beams downwards, making them hit sea weaves. An example is shown
in Figure 5.8.

The sea clutter problem is rather serious because the contaminated ar-
eas are large and echo powers (dBZ’s) are relatively high, producing severe
errors in estimated rain rates. On the other hand, the problem is hard to
tackle, because the shape of echo patterns appearing in radar images resem-
ble those of true precipitation — a challenge for both duty meteorologists
and automated correction schemes. Even the motion of the waves produce
Doppler speeds similar to those of true precipitation, leaving Doppler filters
inapplicable.

The spatial and temporal resolution of SYNOP observations in sea areas
is poor, making physical, beam propagation model based correction methods
inapplicable.

One general strategy is to approximate temperature and humidity con-
ditions to estimate the probability of surface precipitation. For example,
one may try surface temperature and cloud top height and proceed towards
deriving vertical cloud structures by applying temperature and humidity pro-
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Figure 5.8: Left: Weather radar image containing both sea echo (south-west) and
precipitation (west, north-west). Right: corresponding METEOSAT image sup-
porting the recognition of sea clutter by revealing cloud-free sea in the respective
area.

files. Practically, one may use a numerical weather prediction model for ap-
proximating air temperature and hence, probability of rain. Also thermal
information from satellite data can be applied Bovith et al. (2006).

5.7 Beam attenuation

As explained in Chapter 4, the atmospheric attenuation of a radar beam
depends on operating frequency. Further, attenuation is highly sensitive to
intensity of precipitation: in moderate rain, radar beams can easily penetrate
through hundreds of kilometers without remarkable loss while relatively small
areas of heavy (over 45 dBZ) rain or hail block the beam quickly. An ex-
ample is shown in Figure 5.9. Principally, attenuation can be estimated by
accumulating it in subsequent bins, but due to intrinsic sensitivity of this
process the obtained values are prone to large errors. However, one can
more easily determine the probable sectors of attenuation which means that
measurements from another radar (or rain gauges) can be adaptively used
in recovering from the attenuation (see Figure 5.9, right, and compositing
examples in Section 8.3).

35



Figure 5.9: Attenuation problem at Vantaa radar (top right) appearing in un-
detected precipitation over Estonian islands Saaremaa and Hiiumaa (South).
Bottom: respective probabilistic attenuation images.

5.8 Wet radome attenuation

As explained in Ch.4, the radome of a weather radar causes some attenuation,
even though its form and materials are designed to be permissive for the
applied radar frequency (Germann, 1999). On a “normal” (dirty) radome,
the two-way attenuation may be of order 3 dB at the rain intensity of 15
mm/h. On a waxed radome, the respective attenuation is of order 1.5 dB
(Kurri and Huuskonen, 2006). The attenuation effect increases in the case
of sleet, which sometimes builds a sticky layer on the radome. This is a
challenge for radome designers — and also for detection designers trying to
model the expected layer shape and thickness on the radome.
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5.9 Wind turbines

Generally, actively moving — translating, rotating, vibrating — targets cause
quality problems in both dBZ and Doppler data. Moreover, they cannot be
removed by Doppler filters designed to detect zero-velocity targets. Wind
turbines are a problem of this category. Recently, OPERA has formulated
recommendations for the siting of wind turbines so that these problems can be
avoided or at least decreased; see the related OPERA project report (Chéze
et al., 2006) and recommendations (Chéze et al., 2006).

5.10 Insects and birds

Radar data is often contaminated by insects flying or drifting at altitudes
up to one kilometer. As their water content is small, they do not cause
severe errors in dBZ but nevertheless cause some biases in cumulative rainfall
products. The bias dominates near the radar because of radar sensitivity and
relatively low altitudes. An example is shown in Figure 5.10.

To some extent, birds and insects can be recognized by the constant low-
intensity dBZ field near the radar. Birds are bigger and more independent
movers, causing increased variance in Doppler speeds: in spectrum width
detected by the signal processor as well as in speed discontinuities in neigh-
boring bins of measured data. In precipitation, the changes in velocities of
neighboring bins are smoother — interrupted only by aliasing i.e. “jumps”
at the ends of the unambiguous range. These jumps can be filtered out by
appropriate processing. One of the detection challenges is in that also ex-
treme weather events such as gusts, microbursts and tornadoes cause similar
jumps in Doppler speeds.

It should be kept in mind that existence of insects is actually desired in
Doppler measurements, especially in precipitation-free situations ie. clear air
echoes.

Sometimes one may apply “cross-filtering”, that is, flagging/removing er-
roneous measurements in Doppler data based on quality indications obtained
from intensity data, and vice versa.

5.11 Ships and aircraft

Ships and aircrafts appear as distinct peaks in the dBZ data. The intensity
of a peak is comparable or larger to that of convective cells including hail.
The intensity decreases rapidly towards the neighboring bins. The strongest
echoes are caused by ships. Often, the peaks originating from ships have
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Figure 5.10: Birds and insects in radar data. The Doppler velocity field
contains more variations in the case of birds; the detection product for birds
is based on this property. The detection product for insects actually detects
both insects and birds; it is based on fuzzy rules of proximity and reflectivity.

“sidelobes” perpendicular to the radar beams because ships can reside a few
degrees off the radar beam and still return strong echoes. These “sidelobes”
can be used in detection and removal (Peura, 2002).

5.12 Summary of quality indicators for radar

data.

In this chapter, we have presented dynamic quality indicators for weather
radar data. A summary is shown in Table 5.1. Most of the presented prob-
lems in data quality actually result from the combination of system param-
eters and targets measured. Some indicators are analogous to measurement
accuracies while some are of probabilistic nature. In the latter case the qual-
ity indicator can be used as an index as well.
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dBZ Detection: SHIP Detection: EMITTER

Figure 5.11: Ships and electromagnetic interference (dBZ).

Table 5.1: Suggestions of quality indicators and indices for radar data. Most
of the indicators typically imply designing challenging detection schemes.
“Non-meteorological echoes” include land and sea clutter, speckle noise, elec-
tromagnetic interference, aircraft, birds etc. The quality indicators requiring
vertical profile of reflectivity (VPR) relate more to problems beyond the
“plain” volume data; see Ch. 6.

Quality factor Quality indicator Quality index

Beam broadening (Dynamic detail loss analysis?) Spatial resolution inversed
[1/m2]

Beam overshooting VPR analysis (near-radar mea-
surements,

Probability [%]

Overhanging precipitation models, soundings) Probability [%]
Non-meteorological echoes Odd values in data [Z],[m/s] Probability [%]

Wet/snowy radome attenuation Echo loss in all or some direc-
tions [Z]

Probability [%]

Attenuation in precipitation Path-integrated attenuation
(PIA) [Z]

Probability [%]
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Chapter 6

Quality information for
precipitation at the surface

This Chapter addresses quality issues related to the representation of data
and quality information of radar reflectivity factor and precipitation at the
Earth’s surface. Rainfall can be instantaneous or accumulated.

The foundation upon which this work is conducted is the Data Quality
Report produced as a part of COST 717 (Michelson et al., 2005a). Since sur-
face estimates are dependent on the radar set and its original measurements,
the content of this subpackage is dependent on other elements of this Work
Package, namely subpackages A and B (Chapters 4-5). Input data quality
to the task of estimating surface variables will also fundamentally affect the
surface estimate.

In this Chapter, the ways in which contemporary methods used to esti-
mate surface reflectivity and rainfall can interface with the task of deriving
quality information are addressed.

6.1 Methods based on the Vertical Profile of

Reflectivity (VPR)

VPR-correction techniques are, similarly to gauge-adjustment techniques
presented below, designed to make radar observations made aloft represen-
tative at the surface. Since the input to a VPR correction can be the same
as the input to gauge adjustment, the magnitude of the necessary correction
will be the same for both. However, some processing chains use these two
methods sequentially, such that the VPR correction first accounts for most
of the correction, and then gauge adjustment acts to minimize the residual
bias against gauge observations. Gauge adjustment is addressed in the next
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section.
The underlying principle in conducting a VPR correction is that the

knowledge of the vertical distribution of radar reflectivity can be used to
determine a correction applicable to a measurement made aloft. In other
words, the difference between the reflectivity at the surface (bottom) of a
profile and the reflectivity at any given height along the profile can be used
as a correction for radar data measured at that height.

Despite the simplicity of the VPR correction principle, there are a number
of important limitations and uncertainties involved in making the principle
work in practice. The most important challenge is in deriving a VPR, the
basis for the correction, which is representative in both time and space. A
radar can generate a complete VPR only rarely. This VPR is generated using
data at short ranges, e.g. <40 km, and it may not be representative in more
distant areas. The profile may also be contaminated by random or systematic
errors, so it may not even be representative for the area from which the data
used to generate it were taken. Therefore, a climatological profile can play
an important role, since it can always be used as a fallback in cases where
the local profile fails. Temporal averaging of profiles, with or without the cli-
matological profile, is also useful in deriving more widely-applicable profiles
(e.g. Germann and Joss, 2002). Numerous techniques have been developed
mostly within the last few years, yet there is no recognized reference pub-
lication which reviews them. The background provided in Michelson et al.
(2005b) builds upon that given in Germann and Joss (2002) and might serve
as a useful starting point.

Networking VPR corrections adds to the complexity of deriving a rep-
resentative VPR upon which a correction can be based. If each radar in
a network produces an operational VPR, and the radar network density is
low (e.g. around 200 km between pairs), then spatial interpolation of these
profiles may still give improved results compared to using local profiles for
each radar (Pohjola and Koistinen, 2007). Nevertheless, spatial interpolation
of VPRs risks introducing artificial gradients in the horizontal distribution
of the derived profiles. Little can be done about such artifacts, yet both
producers and users of data corrected using such profiles should be aware of
the artifact’s potential existence.

A major uncertainty in conducting any VPR correction is the existence
of overhanging precipitation. Such precipitation does not reach the surface,
due to evaporation, yet it is easily detected by radar. The problem becomes
serious where an echo becomes stronger as a result of correction, yet no
precipitation reaches the surface; the “correction” leads to worse results in
such cases. Diagnosis and treatment of overhanging precipitation presents
a major challenge at present. At the other end of the profile, total beam
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overshooting (no radar echo) cannot be corrected because there is nothing
there to correct.

The VPR is a simple product which should be made available for inter-
national exchange, either alone or as part of the corresponding wind profile
(WRWP). If VPRs are available internationally in real time, then interested
NMSes can use them to perform VPR corrections themselves, according to
their own priorities, instead of receiving e.g. a CAPPI product which has
already been corrected. Similarly, if VPRs are to be made internationally
available, they should not be subject to any temporal or spatial interpola-
tion beforehand. Quality control of individual VPRs should, however, be
conducted and documented.

If a surface radar estimate has been derived using a VPR correction,
and this product is made internationally available, then the VPR used for
the correction becomes this product’s quality indicator. This is the most effi-
cient way to package this information, since the product’s metadata (antenna
height, scan strategy) together with the VPR can be used to determine the
correction applied to the original data and even reconstruct the original data
if wanted. If the surface product was generated using dynamic corrections
based on spatial interpolation of two or more VPRs, then the correction ap-
plied to each pixel becomes the product’s quality indicator and this quality
indicator can then easily be harmonized according to Sec. 3.6.

6.2 Gauge adjustment

Using observations from precipitation gauge measurements to adjust the
quantities provided by radar is a well-established statistical framework for
improving the quality of radar information. A proper review of gauge adjust-
ment, both techniques and practices in Europe, has been produced in COST
717 (Gjertsen et al., 2004) and should be consulted for more detail.

The objective of gauge adjustment is to correct radar data measured aloft
using surface measurements, the result being a radar-based surface estimate.
Since radar makes it measurements at increasing altitudes with increasing
range, gauge adjustment most often deals with correcting radar’s systematic
underestimation. Corrections can, however, be negative in highly convective
precipitation climates or in summer conditions out to relatively short ranges.
While the simplest form of correction is a bulk correction (adjustment us-
ing a single global value), gauge adjustment is most effective when applied
spatially. A simple spatial adjustment involves applying a correction based
only on range. A fully spatial correction involves deriving and applying a
pixelwise correction. Such methods are commonplace in Europe today.

43



Primitive forms of gauge adjustment consider the gauge observations as
representing “the truth”, and the radar data are forced to agree with them.
More intelligent techniques attempt to consider the errors to both gauge
measurements and radar estimates in the adjustment procedure. Gauge er-
rors in this context deal with determining the gauge measurements’ spatial
representativeness. Gauge measurements suffer from several fundamental er-
ror sources, some of which can be extreme but which are correctable (e.g.
Michelson, 2004). While both producers and users of gauge-adjusted radar
data must be aware of such gauge-measurement errors, addressing them di-
rectly lies outside the scope of this work package.

There are different families of gauge-adjustment techniques. A widespread
family of methods involves using the gauge-to-radar ratio as the basis for ad-
justment. This is an intuitive approach, since adjustments can easily be
expressed in terms of dB. Another family of methods involves the use of
gauge observations to dynamically tune the Z-R relation at the pixel level.
The output of such procedures can be expressed in terms of coefficients A
and b. Other approaches may output results in other ways.

Radar’s underestimation at distant ranges (increasing heights) can be
extreme, involving corrections of several thousand percent. This is normal
radar behavior and nothing to be alarmed about. It is therefore appropriate
that corrections be expressed in terms of dBZ for reflectivity and in dBR
(mm/nh) for precipitation. It is therefore also appropriate that errors and
uncertainties be expressed in these quantities as well. This is straight-forward
for gauge-to-radar-based adjustment techniques. It should also be fairly easy
to modify techniques based on the Z-R relation to output results in these
quantities.

If results from gauge-adjustment can be output in a harmonized way, then
we can identify a useful quality indicator which can be easily normalized
according to Sec. 3.6. This would enable the packaging and international
exchange of quality information related to gauge adjustment.

6.3 Multisource methods

With the exception of gauge adjustment, this section deals with how radar
data quality may be characterized through the use of information from exter-
nal (relative to the radar) information sources for the purposes of determining
surface estimates.

Multisource methods are slowly emerging to give us the ability to im-
prove the quality of radar observables. While such methods have been used
operationally for over a decade in the United Kingdom (e.g. Kitchen et al.,
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1994), they are relatively uncommon elsewhere. So far, they seem to be most
useful in solving problems in relatively uncomplicated ways. For example,
NWP model fields have been found to provide fairly accurate information on
the height of the melting layer (Mittermaier and Illingworth, 2003); such in-
formation can be useful when treating the bright band in radar data. Since
newer NWP model configurations can better resolve precipitation systems
than previous models, we have the potential to better resolve the spatial
distribution of factors influencing precipitation observed by radar. The first
attempts at achieving a VPR-like correction using NWP, analyzed fields, and
model physics were only partly successful (Michelson et al., 2005b), yet this
kind of approach shows promise. Similarly, several attempts have been made
to use NWP or extrapolated surface measurements to determine the precip-
itation phase and thus apply corresponding Z-R relations, yet none of these
methods have reported any success. Polarization techniques at typing pre-
cipitation particles appear to be useful at short ranges, yet their operational
usefulness to full range is still uncertain.

One of the areas where multisource methods may become useful in the
short term is in the identification and treatment of overhanging precipitation
and evaporation in the boundary layer. As mentioned in Sec 6.1, VPR cor-
rections cannot properly deal with evaporation. This is probably one of the
more important reasons why VPR correction techniques today do not suc-
ceed in significantly reducing the random error in validations against gauge
observations. Multisource treatment of evaporation could be a useful method
following a VPR correction which stops at the cloud base. Similarly, correct-
ing radar for the effects of wind drift on snow is a current issue of concern,
especially in temperate and colder climates. This is being addressed con-
structively (Mittermaier et al., 2004), and can also help reduce the random
error against gauge data.

Despite the advances made over the last few years, multisource methods
are still in their infancy and need time to mature. Consequently, it may be
too early to formulate harmonized procedures for deriving quality indicators,
unless the net result to be represented as a quality indicator is expressed in a
way which is always related to the physical quantity observed by the radar.

6.4 An example QPE quality indicator

Operational quantitative precipitation estimation (QPE) in Sweden is per-
formed using a simplified version of the BALTRAD gauge-adjustment tech-
nique (Michelson et al., 2000). This algorithm will be the basis for exempli-
fying how a quality indicator may be formulated which follows the quality
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Figure 6.1: Operational gauge-adjustment correction factor as a function of
surface distance, derived for May 25, 2006, at 6:00 UTC.

framework set out in this report. For the sake of simplicity, we can state
that no other quality-control methods are applied to the data prior to gauge
adjustment.

This gauge-adjustment technique is based on the gauge-to-radar ratio,
specifically:

F = 10× log
G

R
. (6.1)

Originally, the algorithm makes use of data assimilation methods for deriving
a fully spatial adjustment-factor field. The basis for this is correction factor
F as a function of surface distance from the radar, which is used as a first
guess. This first guess is derived using a second-order polynomial. Then,
individual F points are spatially interpolated, and, based on the qualities of
individual F points, the spatially interpolated field is weighted against the
first guess to derive the final adjustment factor for each pixel. In practice, it
has been found that the density of real-time SYNOP observations is so low
that the spatial analysis has almost no impact on the final result. So, the
real-time implementation uses only the first guess.

The real-time implementation generates one-hour accumulated precipita-
tion products on the full Nordic network coverage area. SYNOP observa-
tions are available for 6 and 18 UTC. Additionally, the second-order relation
is based on all F point pairs available over a ten-day moving window. This
means that the first guess will not be subject to abrupt changes over time.

A case from May 25, 2006, at 9:00 UTC illustrates this product and its
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Figure 6.2: The left image shows a one-hour gauge-adjusted accumulated
precipitation ending on May 25, 2006, at 9:00 UTC. Quality indicator corre-
sponding to the left image is shown in the right image where quality ranges
from 0 (lowest) to 1 (highest).

quality indicator. Figure 6.1 shows the correction factor as a function of sur-
face distance from the radar. This correction is applied to each pixel in the
radar-based precipitation accumulation which is derived from Nordic com-
posites. The one-hour gauge-adjusted precipitation accumulation is shown
in Figure 6.2 (left image).

In order to package the quality indicator according to the proposed frame-
work, a couple of constants are needed; these are the minimum and maximum
surface distances from the radar in the whole product domain (0 and 250 km,
respectively). The three coefficients used in deriving the correction factor
shown in Figure 6.1 are also needed. These values are all stored as metadata
in the product file. The application of this information using Equation 3.1 is
also provided as metadata in the product file. The quality indicator itself is
stored in the product file as a separate image, illustrated in Figure 6.2 (right
image), with 32-bit floating point depth just like the accumulation image.
Note that this image is scaled according to Equation 3.1. Note also that this
image is little more than a spatial representation of Figure 6.1, applied to the
precipitation accumulation composite, if all data from all radars are present
for the integration period. If a radar dropped out during the integration
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period, other radars covering the same area will contribute instead, and then
the quality indicator image can be described as semi-dynamic.

The availability of this information in the product file implies that the
quality indicator image, together with the associated metadata, can be used
to reverse the gauge-adjustment. This means that it becomes possible to
determine the correction applied to any given pixel. And this means that it
becomes possible to formulate criteria for accepting/rejecting the precipita-
tion accumulation based on the correction factor and/or surface distance. In
fact, we have everything we need to formulate a quality output method and
derive a quality index for a given application.

It should be noted that this application of the quality framework is a
relatively trivial one, as the framework allows for multiple quality indicators
of different dimensions. It nevertheless represents an early operational im-
plementation of the quality framework which can evolve over time. With
increased amounts of quality information, and more dynamic information
available at the per-pixel level, the issues related to the combination of the
information, outlined in Section 3.7 of this report, become relevant.
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Chapter 7

Quality information for wind
data

This chapter will deal with quality information for weather radar wind pro-
files, radial wind super-observations, and raw radial wind data. The weather
radar wind profiles which can be considered a special kind of super-observations
will be discussed in detail. It is concluded that the radial wind standard devi-
ation is a useful and commonly available quality indicator for weather radar
wind data. The following items will be described in this chapter:

• Review of quality factors for weather radar wind data

• Retrieval and quality evaluation of weather radar wind profiles

• Derivation of radial wind super-observations

• Analysis of raw velocity data

• Recognition of bird migration contamination

• Proposal for quality indicators

7.1 Quality factors for wind data

A detailed overview of quality factors for wind (profile) data is given in an
OPERA working document (Holleman et al., 2002). In chapters 4 and 5
some quality factors influencing the radar systems and radar base data are
discussed. A resume is given below.
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7.1.1 Velocity Aliasing

Because a Doppler radar uses phase differences to determine the radial ve-
locity, there is a maximum velocity that can be determined unambiguously.
This maximum velocity is called the Nyquist velocity and it can be expressed
as (Doviak and Zrnić, 1993):

VNyquist =
PRF · λ

4
(7.1)

where PRF is the Pulse Repetition Frequency of the radar pulses and λ is the
wavelength of the radar (5 cm for C-band). The timelag between two suc-
cessive radar pulses, and thus the PRF, also determines the maximum range
that can be resolved unambiguously. This leads to the fundamental equation
for the maximum (Nyquist) range and maximum velocity of a Doppler radar:

RNyquist · VNyquist =
c · λ
8

(7.2)

where c is the speed of light. For measurements with a Doppler radar, a
trade-off, therefore, has to be made between the maximum velocity and the
maximum range. Velocity aliasing can usually be identified in radar images
by detecting abrupt velocity changes of about 2·VNyquist between neighboring
measurements. In this case, the basic assumption is that the true wind field
is sufficiently smooth and regular; this is true for the greater part of the
weather situations with the exception of mesocyclones, tornado vortices or
highly sheared environments.

Aliasing problems can largely be circumvented by applying different mea-
surement techniques, like dual-PRF or staggered PRT (Pulse Repetition
Time). Many operational Doppler radars in Europe have the capability of us-
ing the dual-PRF technique. During a dual-PRF measurement, radial winds
are measured with alternating high and low PRFs. By combining the mea-
sured velocities at low and high PRF, the maximum unambiguous velocity
can be extended by about a factor of three. Recently several publications of
analysis and correction of dual-PRF velocity data have appeared (Joe and
May, 2003; Holleman and Beekhuis, 2003; Tabary et al., 2005). Alternatively,
dealiased wind profiles can be obtained from the azimuthal derivative of the
velocities (Tabary et al., 2001) or by mapping the velocity data on a Torus
(Haase and Landelius, 2004). In a second step the dealiased wind profiles
can be used to dealiase the radial velocity data.

To be able to interpret Doppler velocity data information on the applied
PRF(s) and on the measurement technique, e.g., single-PRF, dual-PRF, stag-
gered PRT, should be given in the BUFR message. Furthermore, (additional)
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de-aliasing during post-processing of the velocity data or calculation of the
wind profile should be indicated.

7.1.2 Clutter and anomalous propagation

Radial wind measurements can be heavily affected by normal or anomalous
propagation clutter. Clutter signal can be suppressed to a large extent from
the reflectivity and radial wind data by reducing the echo power around zero
radial velocity using discrete filtering techniques in the time or frequency
domains. All operational Doppler radars apply this kind of filtering before
the radial velocity is determined. For a complete discussion on the problem
of the bias introduced in the radar wind spectrum due to the clutter and
clutter-suppression algorithms, the reader is referred to Seltmann (2000).

To assess the a-priori quality of wind profiles, the application of Doppler
clutter filtering and the rejection of radial wind close to zero should be indi-
cated.

7.1.3 Birds and actively-flying insects

Non-hydrometeor targets such as insects and birds are detected by (Doppler)
radar as well. While some insects can provide a help in defining the boundary
layer wind, birds and actively-flying insects are a serious problem for velocity
retrieving algorithms (Koistinen, 2000). Erroneous wind data due to birds
can often be recognized by inconsistency of the velocity data. The application
of a bird-wind rejection algorithm should be indicated and otherwise the
likeliness of bird contamination and/or preferred azimuths of migrating birds
should be listed. Examples of contamination by birds and insects are shown
in Section 5.10.

7.2 Weather Radar Wind Profiles

7.2.1 Profile retrieval

Wind profiles can be obtained from single-site radar data under the assump-
tion of a linear wind model. In this model the wind in the vicinity of the
radar (at the origin) is expressed as:

U(x, y, z) = u0 + x
∂u

∂x
+ y

∂u

∂y
+ (z − z0)

∂u

∂z
(7.3)

and likewise for V (x, y, z) and W (x, y, z). Using this linear wind field, the
radial wind can be calculated as a function of range, azimuth, and elevation.
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Figure 7.1: Radar geometry for measuring wind profiles.

For a uniform wind field this results in:

Vradial = u0 cos θ sin φ + v0 cos θ cos φ + w0 sin θ (7.4)

When Doppler radar data is displayed at constant range and elevation (θ),
the radial wind as a function of azimuth (φ) will have the form of a sine.
The wind speed and direction can be determined from the amplitude and
the phase of the sine, respectively. This technique is called Velocity-Azimuth
Display (VAD), and it was introduced by Lhermitte and Atlas (1961) and
Browning and Wexler (1968). The radar geometry used to measure these
volume scans is shown schematically in Figure 7.1.

Instead of processing, for each height, a single VAD or a series of VADs,
one can also process all available volume data in a certain height layer at
once. This so-called Volume Velocity Processing technique (VVP) has been
introduced by Waldteufel and Corbin (1979). Using equation 7.3 of the linear
wind model, the radial wind can be calculated for all points within a layer
centered at height z0. Via a multi-dimensional and multi-parameter linear fit,
the parameters of the linear wind field can be extracted. The VVP technique
is typically applied to thin layers of data at successive heights to obtain a
wind profile.

The standard deviation of the radial velocity σ is calculated from the
SVD solution using the chi-square merit function (Press et al., 1992):

σ2 =
N∑

i=1

(Vr,i − Vr(~ri))
2/(N −M) (7.5)
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where Vr,i are the observed radial velocities, N is the number of radial veloc-
ity data, and M is the number of parameters in the radial velocity model.
The retrieved wind vectors are quality controlled by rejection of the vectors
with a standard deviation larger than a certain threshold. The quality and
availability of wind vectors are coupled, and the optimum setting of standard
deviation threshold depends on the application of the profiles

For wind profile products, the retrieval technique used to extract the wind
profiles from the volume data, e.g., VAD, EVAD, or VVP, and the maximum
range used for profile retrieval should be indicated in the BUFR message.
Furthermore, quality indicators resulting from the retrieval of the wind at
each height, like the number of valid points, the chi-square of the fit, standard
deviations of wind speed and direction, are useful. Finally, the quality of the
wind profiles is different for clear air, stratiform precipitation, or convective
situations. The median reflectivity at each height could be used to indicate
the meteorological situation.

For the definition of the quality indicators for Weather Radar Wind Pro-
files, the specification for WRWP products by Galli et al. (1999) is taken into
account. Most of the quality descriptors defined for the base data can also be
used for the wind profile product. Especially the type of clutter treatment is
of importance for the wind profile product.

7.2.2 Profile quality

The intercomparison of different implementations of the VAD and VVP wind
profile retrieval methods using radiosonde profiles as a reference revealed that
the VVP method performs slightly better than the VAD method (Holleman,
2005). Furthermore it was found that the most simple implementation of
the VVP retrieval method, i.e., using a uniform wind field, provides the best
horizontal wind data. Figure 7.2 shows a timeseries of weather radar (VVP)
and Hirlam NWP wind profiles for 8 January 2005 between 06 and 12 UTC
in black and blue, respectively. On this day a low pressure area with strong
winds moved over the Netherlands. In figure 7.2 wind speeds up to 50 m/s
are observed between 4 and 6 km altitude. Evidently the agreement between
the radar and model wind vectors is good, but the update frequency and
availability are different.

Histograms of the wind speeds observed by Doppler radar have been
constructed for three different height ranges. The constructed histograms
for the 0-2 km, 2-4 km, and 4-6 km height ranges are shown in figure 7.3.
The vertical axis represents the wind vector count per 1 m/s-wide bin using
all available radar wind profiles between 1 October 2001 and 30 June 2002.
Comparing the histograms for the three height ranges, it is evident that
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Figure 7.2: A time-height plot with the weather radar wind vectors (VVP)
for 8 January 2005 between 06 and 12 UTC. The wind profiles from the
Hirlam NWP model are overlayed in blue. Wind speed and direction are
indicated by wind vanes. Each full barb represents a wind speed of 5 m/s
and each triangle a wind speed of 25 m/s.

the total number of available wind vectors and the mean wind speed are
decreasing and increasing, respectively, with increasing height. The fraction
of the number of available wind vectors to the maximum number of vectors
decreases from 0.39 at ground level to 0.16 at 6 km altitude.

The observation minus background statistics for the weather radar (up-
per frames) and radiosonde (lower frames) wind profiles against the Hirlam
NWP model are shown in figure 7.4. The figure shows the bias and stan-
dard deviation of the Cartesian u- and v-components of the wind vectors
calculated for the 9 months verification period (1 October 2001 and 30 June
2002). In this comparison the radiosonde has a clear advantage over the
weather radar because the radiosonde profiles are assimilated by the Hirlam
model. It is therefore not a surprise that the observed biases of the wind
vector components from the radiosonde are only a few tenths m s−1 and thus
negligible. The standard deviation of the radiosonde wind vector components
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Figure 7.3: This figure shows histograms of the observed wind speeds for
three different height layers and using wind speed bins of 1 m/s. The wind
speeds are obtained from the radar using the VVP retrieval method. The
vertical bars represent the mean wind speeds as obtained from the radiosonde
observations over the same period.

against the Hirlam background is between 1.5 and 2.0 m s−1 at ground level
and gradually increases to almost 3.0 m s−1 aloft. This increase is probably
due to the increase of the wind speeds with height and to the drifting of the
radiosonde. For the radar wind data, a small positive bias for both Carte-
sian components is found. The standard deviation of the VVP wind vector
components against the Hirlam background is around 2.0 m s−1 at ground
level and about 2.5 m s−1 aloft. Figure 7.4 shows that observation minus
background statistics of the weather radar wind profiles are at least as good
as those of the radiosonde profiles. This result evidently demonstrates the
high quality of the weather radar wind profiles.

7.3 Radial Velocity Super-Observations

The so-called ”Super-Observations”, i.e., proximate observations combined
into a single observation representative at a larger spatial scale compatible
with a NWP model, have been introduced by Lorenc (1981). The derivation
and assimilation of radar super-observations of radial velocity is described
extensively by Michelson (2003). For the generation of super-observations
the radial velocity data are averaged into polar bins “voxels” with a typical
size of 10 km in range and 3.5 deg in azimuth. For each super-observation
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Figure 7.4: Profiles of the bias (•) and standard deviation (�) of the Carte-
sian u- and v-components from the verification of the radar (upper) and
radiosonde (lower) wind data against the Hirlam model.
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Figure 7.5: Raw radial wind data (left) and radial wind super-observation
(right) for a winter storm captured by Radar Karlskrona on 3 December 1999
at 1830 UTC (figure taken from Michelson (2003)).

an extensive set of metadata and statistic properties are generated:

Longitude/Latitude of the super-observation

Elevation angle of the super-observation

Range of the super-observation from radar

Azimuth of the super-observation with respect to radar

Averaging lengths in horizontal and vertical directions

Average radial wind velocity from all raw bins in super-observations

Radial wind variance square of radial velocity standard deviation

Sample size of radial velocity bins in super-observation

Average reflectivity over super-observation volume

and much more. An example of a radial wind super-observation is shown in
Figure 7.5.
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Figure 7.6: B-scope display of raw dual-PRF velocity data from 1454 UTC 6
November 2001. The azimuthal scan was recorded at an elevation of 0.5 de-
grees using PRFs of 750 and 1000 Hz. Areas A and B of the main figure have
been enlarged in the two frames on the right. Several sources of contami-
nation have been marked in the figure. White indicates areas with “missing
data”.

58



-40 -20 0 20 40
Deviation of dealiased velocity [ms

-1
]

0

2000

4000

6000

8000

10000

12000

N
um

be
r 

of
 p

oi
nt

s

Even
Odd

-40 -20 0 20 40
Deviation of dealiased velocity [ms

-1
]

0

10

20

30

40

N
um

be
r 

of
 p

oi
nt

s Even
Odd

Figure 7.7: Histogram of the deviations of each dealiased velocity from the
local median velocity. This histogram has been compiled using the data
of the azimuthal scan of Fig. 7.6. Separate histograms are shown for even
and odd azimuths. The central peaks go up to a number of about 12,500
(off-scale).

7.4 Raw Radial Velocity Data

To elucidate the error characteristics of dual-PRF radial velocity data, an
analysis of measured velocity data has been performed (Holleman and Beekhuis,
2003). Figure 7.6 shows a typical example of raw dual-PRF velocity data.
The velocity data are presented in a so-called “B-scope display” or range-
azimuth indicator, and two regions of interest have been enlarged in the right
frames. From a close examination of Fig. 7.6 and other data, it appears that
(dual-PRF) velocity data are typically contaminated by clutter, noise, and
outliers (see also Chapter 5). These sources of contamination have been in-
dicated in the side frames of Fig. 7.6. There is some sidelobe clutter present
at ranges shorter than 10 km in Fig. 7.6, but the most distinct clutter is
caused by specular reflection of the radar beam from a building located at
246 degrees azimuth (see upper-right frame of Fig. 7.6). Noise from inciden-
tal scatterers is predominantly visible at short range (< 35 km) because the
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echoes from nearby targets are very strong. The presence of velocity outliers
in large areas of high-quality data is characteristic for data obtained using
the dual-PRF technique. Large areas with falsely dealiased velocities, which
are characteristic for single-PRF data, are not present in dual-PRF data
provided that the maximum velocity is below the dual-PRF unambiguous
velocity.

A quantitative analysis has been performed to obtain detailed informa-
tion on the quality and outliers of dual-PRF velocity data. For this, each
velocity datapoint in an azimuthal scan is compared with the local median
velocity. The local median velocity is calculated from the datapoint itself
and the surrounding datapoints. An area measuring five range times three
azimuth points is taken, and it is required that at least nine out of the fifteen
datapoints contain valid data. The deviation of the datapoints from the lo-
cal median values has been analyzed. In Fig. 7.7 histograms of the velocity
deviations observed in the azimuthal scan of Fig. 7.6 are shown. For a reason
that will become clear, velocity data from even and odd azimuths have been
collected into different histograms. The histograms have been constructed
using a velocity bin size of 0.3 m s−1 matching that of the dual-PRF velocity
data.

The central peaks of Fig. 7.7, containing the points with hardly any de-
viation from the local median velocity, go up to a number of about 12,500.
The vast majority of the analyzed points obeys local continuity. The width
of the central peaks is determined by the variance of the velocity data. A
standard deviation of 0.50 m s−1 is obtained. Apart from the central peak,
two distinct sideband peaks are evident in both histograms of Fig. 7.7. The
sideband peaks correspond to the velocity outliers which are characteristic
for the dual-PRF technique. The number of points within the sidebands can
be used to calculate the fraction of velocity outliers. The fraction of outliers
is 9.1×10−3 and 7.3×10−3 for the even and odd azimuths, respectively. It
is evident from Fig. 7.7 that the sidebands for even and odd azimuths are
centered at different velocity deviations. The median deviation of the even
azimuth sidebands is 20.9 m s−1 and that of the odd azimuth sidebands is
24.6 m s−1. These velocity deviations roughly match the unambiguous inter-
vals of the low PRF (20.0 m s−1) and high PRF (26.6 m s−1) measurements.
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Figure 7.8: Scatterplot of observed standard deviation and reflectivities for
wind profiles of the radar in De Bilt in March 2003.

7.5 Recognition of bird migration contamina-

tion

The radial standard deviation obtained from a VAD or VVP wind profile
retrieval can be used to recognize bird migration contamination in Doppler
velocity data. In the Netherlands a quantitative comparison of “wind data”
from the Doppler weather radar with data from the dedicated bird radar
over the period March to May 2003 has been performed (van Gasteren et al.,
2006). The Royal Netherlands Airforce (RNLAF) employs a Flycatcher
tracking radar which is modified to operate as a dedicated bird radar. The
radar is performing both PPI scans and RHI scans perpendicular to the
main direction of the bird migration. The PPI scans provide speed and
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flight-direction data, while the RHI scans provide the bird densities at var-
ious altitudes. The distance between the KNMI and RNLAF radars was
approximately 80 km.

Figure 7.8 shows a scatterplot of observed standard deviation and reflec-
tivities for wind profiles of the radar in De Bilt in March 2003. It is found
that the standard deviation of the radial velocity can be used to separate the
profile data from the Doppler weather radar into “true” wind vectors and
bird movement vectors. Standard deviations larger than 2 m/s indicate bird
migration and smaller ones point to good wind data. In addition, thresholds
on reflectivity (roughly 0 dBZ) and wind speed can be used to filter bird
migration contamination. This implies that high quality wind vector data,
i.e., without bird signatures, can be obtained. Moreover, these results show
that the “wind” profiles from Doppler weather radars contain quantitative
information on the temporal and vertical distribution of migrating birds.

7.6 Proposed quality indicators for wind data

In OPERA working document (Holleman et al., 2002) a list of static quality
descriptors has been proposed which is still useful:

Quality factor Quality indicator Notation Typical value Affects
Scanning: Antenna azimuthal speed Vant [deg/s] 6 - 36 Noise, resolution

Pulse Repetition Frequency PRF [Hz] 250 - 1200
Pulse width ∆ [µs] 0.5 - 2 Noise, resolution

Velocity range Lowest estimable radial wind Vn [m/s] 0-5
Highest estimable radial wind Vx [m/s] 10-50 Speed

Volume: Inner radius of measured vol. Rx [km] 0 - 10
Outer radius of measured vol. Rn [km] 20 - 50

Retrieval: Doppler wind methods Table
Re-run without outliers Flag Clutter

Birds: Bird removal methods Table Speed and dir.
Bird contamination likely Flag
Preferred azimuths φ [deg] 0-360

From the review of quality factors for weather radar wind data, the review of
VAD/VVP wind profiles and super-observation algorithms, and the analysis
of raw velocity data it appears that the radial velocity standard deviation
is a useful and commonly available quality indicator. The usefulness of this
quality indicator is corroborated by the example on bird migration contami-
nation in wind profiles. All in all, the proposed quality indicators for weather
radar wind data are:
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Quality factor Quality indicator Notation Typical value Affects
Echoes Number of valid points N 50 - 5000 Retrieval

Reflectivity in retrieval volume Z̄ [dBZ] −30 - 50
Variability Spectral width in retrieval volume W̄ [m/s] 0.1 - 10 Speed and dir.

Radial velocity standard deviation σrad [m/s] 0.1 - 10
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Chapter 8

Examples of using of quality
information

8.1 Assimilation of reflectivity data

A first example of how the framework proposed in chapter 3 can be imple-
mented in a real world case is given in Section 3.5. Here, we provide a sec-
ond example by adding references to other chapters. Say, an Alpine weather
service plans to use radar reflectivity in order to get a better estimate of
the initial conditions of the operational numerical weather prediction model.
Radar reflectivity measurements are assimilated by means of a latent heat
nudging scheme using the radar product with the best estimate of the surface
precipitation rate (chapter 6). If the radar hardware is stable (chapter 4) and
ground clutter is effectively eliminated (section 5.5) the main factor for the
quality of radar measurements in a mountainous region is beam blocking, see
section 5.4 and Pellarin et al. (2002). Note that VPR errors (section 6.1) are
mainly a consequence of beam blocking. If beam blocking is the most rele-
vant quality factor, a simple approach to incorporate radar quality into the
assimilation scheme is to convert beam blocking above a given location into
a weight in the latent heat nudging scheme. In the terminology of chapter 3
the beam blocking map corresponds to the quality indicator, the weight to
the quality index, and the applied conversion to the quality output method
(see also Fig. 3.1). A similar approach was implemented for first attempts of
radar assimilation into the aLMo model of MeteoSwiss (Leuenberger, 2005).
Figure 8.1 shows the observation weights used in the LHN scheme as derived
from radar quality. The weights are interpolated onto the 7km model grid.
Dark shading denotes high quality, bright values low quality. The bold solid
line outlines the 1000m contour of the model topography. The white trian-
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Figure 8.1: LHN observation weights as derived from radar quality (Figure
taken from Leuenberger (2005).)

gles mark the locations of the 3 Swiss radars. For more details the reader is
referred to Leuenberger (2005), section 4.2.3.

8.2 Visualization

Once quality information is available in a system, a straightforward applica-
tion to consider is to somehow visualize it. Often, the geometry of quality
data is similar to that of measurement data hence one may treat quality
data as an additional ”channel”, perhaps clickable over, or in parallel. An
example of introducing visual quality information in intersection products is
shown in Fig. 8.2.

In practical meteorological applications, there is often many data sources
competing from the visual attention of the user. Hence, visualizations of
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Figure 8.2: Traditional (top) and quality-visualized (bottom) intersection
products. In this illustration, distance to actual measurement points (only)
has been applied as quality information.

quality information can be viewed only on demand, if the main data looks sus-
picious or clearly erroneous. In addition, quality data visualizations should
be important in training the end-users of the applications – reminding about
the uncertainties more or less frequently appearing in data.

8.3 Compositing

In operational automated processes, quality information can and should be
used for altering the main data as to increase the quality of the final products.
A straightforward principle is to discard measurements having quality (in-
dex) lower than some threshold. What this “discarding” practically means
can be ambiguous. For example, if suspicious measurements must be re-
placed by some kind of default values, what would be a neutral choice? In
principle, data points with quality index close to zero should be treated as
“no-data”, like locations outside the radar scope. Sometimes a good policy
is to replace an unreliable measurement with spatially neighboring values or
previous reliable values at the same location.
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Sometimes several measurements from the same location are available -
as within overlapping ranges of neighboring radars. In radar image com-
posites, Maximum measurement value has been a conventional choice for a
compositing principle (Fig. 8.3). However, also contaminated data is easily
passed through. Another conventional principle Average, has the advan-
tage of compromising data discrepancy; one can reason that “all” the infor-
mation is taken into account. However, this principle fails for example in
the case of attenuation, as shown in Fig. 8.3, right (bottom of the image).
It must be pointed out that in their basic forms, neither of these principles
applies quality information.

Figure 8.3: Composites using Maximum (left) and Average (right) algo-
rithms.

In applying Maximum-Quality principle, the measurement having the
highest quality is applied. A conventional Nearest-Radar composite can
actually be seen as such a composite, using distance to a radar as a indi-
cation of quality. Moreover, one can mix measurement values of varying
reliability in a multitude of ways. For example, one can apply Weighted
Average principle, using a global quality index for each radar, or down at
single measurements (bins), indices varying from pixel to pixel (Fig. 8.5).
Finally, using suitable “quality algebra” (Peura et al., 2006) it is possible to
smoothly alternate between the aforementioned principles.
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Figure 8.4: Composites using Maximum-Quality (left) and Quality-

Weighted-Average (right) algorithms.
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Figure 8.5: A composite (left) using Quality-Weighted-Average algorithm
and its quality field (right) obtained as Average composite of the original
single-radar quality data.
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Chapter 9

Conclusions and
recommendations

The increasing interest from the hydrological and NWP modeling communi-
ties in weather radar has initiated a change from mainly a qualitative use to
a more quantitative use of radar data. For the traditional use in nowcasting
mainly qualitative requirements have to be fulfilled, but for radar composit-
ing, quantitative precipitation estimation (QPE), or assimilation in an NWP
model stringent quantitative requirements are usually in force.

In this working document a generalized framework is presented to facil-
itate the propagation of uncertainty information at the interface between
weather radar and meteorological and hydrological applications. Further-
more the quality factors for radar systems, volume data, surface rainfall esti-
mates, and radar wind data have been reviewed in several chapters. Based on
the quality factors proposals for quality indicators have been made. Finally
examples of the use of quality information in NWP assimilation, visualiza-
tion, and compositing have been presented.

Naturally not all (fundamental) issues could be solved during this project
and the discussions in the working group of OPERA. A remaining question is
the amount and type of quality information the data providers should provide
to the users. Should we provide all quality indicators or quality indices? In
the former case the users should run the quality output methods themselves
and the data provider only offers help. In the latter case the data providers
run the quality output methods, which have been developed in collaboration
with user groups, for different users. It should be noted that in some cases
the data provider is also the user, e.g. with quality-weighted compositing of
single-site products. Another frequently discussed topic is the use of scaled
quality indicators or unscaled indicators, i.e., in original physical units. A
related issue is the combination of quality indicators during the treatment of
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radar data in a processing chain. Because of the great interest in the work
on quality information, this work definitely needs continuation and more
discussion in the next phase of OPERA.

The vehicle to transport the quality information, either quality indica-
tors or indices, to the users is the data format. The data format which is
currently used for operational exchange of radar data is BUFR. BUFR offers
(limited) possibilities for additional of associated quality information. For
this BUFR templates together with all required additional BUFR descrip-
tors to represent the quality information have to be defined. In the OPERA
work package 2.1 on “New data representation formats”, the HDF5 format is
recommended for consideration as an official European standard format for
weather radar data and products. Therefore it is recommended to consider
the HDF5 format also for the exchange of quality information. Furthermore,
it is recommended to develop documentation illustrating the set of relevant
and important quality indicators including a detailed and physical meaning-
ful description. Finally, it is important to make the conceptual model for
representation of quality information as presented in this document more
concrete by producing a set of example files containing radar products and
the corresponding quality information. These examples can then be used to
initiate an (operational) exchange of quality information in the next phase
of OPERA.
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