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Abstract
Since 1997 the European Centre for Medium-Range Weather Forecasts

(ECMWF) has made seasonal forecasts with ensembles of a coupled ocean-
atmosphere model (S1). In January 2002, a new version (S2) was introduced.
For the calibration of these models, hindcasts have been performed starting in
1987, so that 15 years of hindcasts and forecasts are now available for verification.

The main cause of seasonal predictability is El Niño and La Niña perturb-
ing the average weather in many regions and seasons throughout the world. As a
baseline to compare the dynamical models with, a set of simple statistical models
(STAT) is constructed. These are based on persistence and a lagged regression
with the first few EOFs of SST 1901–1986 wherever the correlations are signif-
icant. The first EOF corresponds to ENSO, the second to decadal ENSO. The
temperature model uses 1 EOF, the SLP model 5 EOFs and the precipitation
model uses 2 EOFs but excludes persistence.

As the number of verification data points is very low (15), the simplest
measure of skill is used: the correlation coefficient of the ensemble mean. To fur-
ther reduce the sampling uncertainties we restrict ourselves to areas and seasons
of known ENSO teleconnections.

The dynamical ECMWF models show better skill in 2-meter temperature
forecasts over sea and the tropical land areas than STAT, but the modeled ENSO
teleconnection pattern to North America is shifted relative to observations, lead-
ing to little pointwise skill. Precipitation forecasts of the ECMWF models are
very good, better than those of the statistical model, in South-East Asia, the
equatorial Pacific and in the Americas in December–February. In March–May
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the skill is lower. Overall, S1(S2) show better skill than STAT at lead time 2
months in 29(32) out of 40 regions and seasons of known ENSO teleconnections.

1 Introduction

The goal of seasonal forecasts is predicting the average weather on a timescale
of seasons with a lead time of a few months to a year. This is possible in some
regions and seasons, due to the influence of slowly varying boundary conditions,
the most important of which is El Niño — Southern Oscillation (ENSO). Fifteen
years of hindcasts and forecasts of two state-of-the-art numerical seasonal forecast
systems from the ECMWF are compared with the results of statistical models in
the companion paper. In this paper we compare the performance in forecasting
global fields of surface air temperature, mean sea level pressure and precipitation.

To keep the length of the paper manageable, most of the assessment is
based on comparison of maps of temporal correlation between ensemble-mean
forecast and analyzed values. The use of correlation as a measure of forecast skill
does not tell the full story: it ignores any problems of bias and scaling in the
model forecasts and problems with the estimated probabilities (e.g., under/over
confidence), although any such problems can in principle be dealt with by ap-
propriate post-processing of the model output. It provides a first-order estimate
of the forecast skill by ignoring more refined methods of signal detection based
on probability thresholds adjusted to cost/loss properties of a specific application
(Palmer, 2002). This is particularly relevant in mid-latitudes, where predictability
based on the ensemble mean is often low, and skill is better assessed by looking at
the Relative Operative Characteristics (ROC) (Wilks, 1995; Mason, 2003). How-
ever, a shift in the ensemble mean is still a useful indicator of possible skill, and
it is a robust measure with relatively small uncertainties on the limited number
of verification years available.

The period over which the forecasting schemes are verified and compared
is 1987–2001. The fact that we have only 15 years of verification inevitably limits
the power of the comparisons we can make: the fluctuations in skill due to the
small sample size will often be as large as the differences between the models.
Another problem is that investigating a large number of independent regions and
seasons implies that the chance of ascribing ‘good forecast skill’ to a random
fluctuation is also high.

These are generic problems with verifying seasonal forecasts, particularly
in regions where the ratio of predictable ’signal’ to unpredictable ’noise’ is low
(e.g., Anderson et al., 1999; Sardeshmukh et al., 2000). We will give 95% con-
fidence intervals on the correlation coefficients wherever practicable to indicate
the uncertainty. We also restrict our comparisons to areas and seasons of known
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ENSO teleconnections in order to minimize the chances of being misled by ran-
dom fluctuations. Finally, it is possible that there is true low-frequency variability
in teleconnections and seasonal predictability, beyond the apparent variability in-
herent in a noisy system. This will be investigated using a Monte Carlo approach
similar to the one used by Gershunov et al. (2001). We try to be moderate in
our discussion of the results of this paper, but the reader is advised to be cau-
tious in interpreting apparent differences in the plotted forecast performance of
the various systems, as the differences are only significant when many cases are
considered together.

All maps in the paper were obtained from the KNMI Climate Explorer web
site (climexp.knmi.nl), which allows the reader to investigate regions and seasons
not covered in this paper.

A similar comparison between the ECHAM and NCEP dynamical models
and statistical models has been performed by Peng et al. (2000) for the much
longer period 1950–1994 in an uncoupled context: the models were forced with
observed SST. In contrast to their Regression model, the STAT model also in-
cludes persistence and multiple modes. The Demeter project (Palmer et al., 2004)
generated longer time series for February, May, August and November 6-month
coupled runs. Statistical models were not included, however, and the analysis
methodology was different.

The numerical and statistical models used were described in the companion
paper, as are the observations against which they are verified. The predictions of 2
meter temperature fields are compared with observations in section 2.1, sea level
pressure in 2.2 and precipitation fields in 2.3. This is mostly in the form of global
maps, although precipitation is discussed regionally and seasonally because of the
smaller scales of variability and the strong dependence of skill on the season. We
consider both the estimated correlation skill of the models, and their ability to
reproduce observed teleconnections of ENSO, on which most of the skill is based.
Section 3 summarizes and concludes the paper.

2 Verification of seasonal forecasts

Seasonal forecasts attempt to predict deviations from climatology of the weather
averaged over two to four months. As in the companion paper discussing ENSO
forecasts, the correlation coefficient will be used as a measure of skill. This skill
strongly depends on the location and the season. With only 15 years of data,
each combination of location, season and lead time only has 15 independent
verifications. To give an idea of the uncertainty in the correlation coefficients,
note that for a correlation of zero and Gaussian errors, the 95% confidence level
is at r = 0.44 for the one-sided t-test appropriate for skill estimates. This means
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that on average 5% of the area of global maps of correlation coefficients will show
correlations higher than r = 0.44 even in the absence of any skill. Fields with
large spatial correlations can easily show larger areas with apparent skill (Livezey
and Chen, 1983). On the other hand, low values of the correlation in a sample of
this size could correspond to relatively high skill.

To reduce the number of areas where skill might arise by chance we look
specifically at well-known El Niño teleconnections. El Niño is known to be
the largest single source of predictable interannual variability. We measure the
teleconnections by looking at the simultaneous correlation between Niño3 SST
anomalies and the forecast anomalies around the world. (Correlations with the
Niño3.4 index are very similar and are not shown.) This measurement can be
made for both the observations and the coupled forecast models. Much of the
seasonal climate variability in mid-latitudes is unpredictable, and so the correla-
tion between Niño3 SST and local weather is relatively low. In the case of the
model integrations, it would be possible to obviate this by taking the ensemble
mean and correlating with the ensemble mean Niño3 SST. In this case the un-
predictable ’noise’ would be largely removed, and the correlations would be high
for those regions where El Niño dominated the predictable part of the variability.
Although this is an interesting statistic, it is not one that can be easily compared
with observations and it is therefore not used here.

Instead, we calculate the simultaneous correlation for all ensemble members,
each with its own model Niño3 index. This is done by constructing two extended
time series by the juxtaposition of the individual ensemble members. The fact that
the model correlations are estimated over many realizations reduces the sampling
uncertainty, but does not change the expected outcome for a single model run.
For both S1 and S2, the number of ensemble members available for each year
varies, because of the way the ensembles were constructed (see the companion
paper). This would give years with fewer ensemble members less weight than
other years. In order to weigh all years equally, we augmented the ensemble sizes
to the maximum size (29, 30 or 31 for S1, 41 for S2) by repeatedly and equally
sampling the available ensemble members. When the maximum size is not an
integer times the real size, the remaining members are chosen randomly. This
changes the correlation slightly, but much less than the uncertainty from other
sources.

The observed teleconnections are estimated using the the verification
dataset over the 15 years of the verification period. The figures are directly compa-
rable to those in Peng et al. (2000) for the uncoupled atmospheric model response
to prescribed SST.

In the case of large sample sizes and assuming stationarity of ENSO telecon-
nection, the skill of any statistical model based only on linear correlations with
Niño3 SST will be equal to the absolute value of the observed teleconnections
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scaled down by the skill in predicting Niño3 SST. The skill of the STAT model
is thus expected to bear some similarity to the absolute value of the Niño3 tele-
connection pattern. The similarity, however, may not be too close as the STAT
model may not be dominated by Niño3, 15 independent realizations is not a large
sample size (the 95% confidence level for a two-sided t-test that should be used
to asses the significance of the teleconnections, is at r = 0.51) and the ENSO
teleconnections may not be stationary (Diaz et al., 2001; Gershunov et al., 2001).

Most forecasts are compared with the NCEP/NCAR reanalysis (Kalnay
et al., 1996), which contains the NCEP OI SST analysis (Reynolds and Smith,
1994). For precipitation the GPCP dataset is used (Huffman et al., 1995).

2.1 Global 2m temperature fields

First we consider the prediction of temperature outside the equatorial east Pacific
region that was discussed in the companion paper, considering land areas as well
as ocean. Although a measure of land surface temperature is possible, a more
commonly used variable is the air temperature at a height of 2m, denoted by
T2m. Over the oceans this temperature is strongly correlated with SST.

Figure 1 shows the skill of the Dec–Feb averaged ensemble-mean tempera-
ture prediction from forecasts started on 1st October, measured as the correlation
with the T2m for Dec–Feb from the NCEP/NCAR reanalysis. Panel a) shows the
results from S1, panel c) from S2 and panel e) from the STAT model. Again, one
should keep in mind that every point of the maps of correlation coefficients with
observations has data from only 15 years and so the uncertainty in the correlation
coefficient is quite large.

In all three models, the skill in the central east Pacific is quite high although
parts of the area are blanked out for the STAT model because of a shortage of
data. In the north Pacific, too, there is a suggestion of useful skill in the coupled
models but this is less apparent in the statistical model. In the Indian ocean the
skill of the two coupled models is quite high, but lower in the case of STAT.
In the tropical Atlantic the skill of the two coupled models is lower than in the
Pacific but still significantly higher than that of STAT. All models have skill in
predicting SST in the northern subtropical Atlantic Ocean. They also seem to
have skill south of Greenland, most evident in STAT; further analysis shows that
this is largely due to persistence. Over land, predictability of T2m is generally
lower than over the ocean, reflecting in part the lower heat capacity of land
which results in less persistence. Nonetheless there appears to be some skill in
the coupled models over parts of South America and of Africa.

In the northern Pacific Ocean and Indian Ocean the skill of both S1 and
S2 is higher than expected on the basis of ENSO teleconnections and persistence,
which are included in the statistical model. This points to other physics con-
tributing to the skill. The teleconnection in the area extending from the southern
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a) b)

c) d)

e) f)

Figure 1: Verification of Dec–Feb T2m forecasts from 1 Oct against the
NCEP/NCAR reanalysis. a) Skill of S1 ensemble mean, b) S1 Niño3 telecon-
nection patterns, c), d) same for S2, e) skill of STAT (white points did not have
enough data or strong enough teleconnections to merit a prediction), and f) Niño3
teleconnection patterns over 1987–2002.
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Caribbean north-eastwards to Europe (Hstenrath and Heller, 1977; Enfield and
Mayer, 1997; Penland and Matrosova, 1998; Czaja et al., 2002) is simulated well
by all three models.

There are sizable ENSO teleconnections to temperature in the Americas at
the peak of El Niño in boreal winter (van Loon and Madden, 1981). As in Peng
et al. (2000), the South American teleconnections are reproduced quite well by
the numerical models (Fig. 1b,d). The statistical model suffers from lack of data
in northern South America.

In North America, long-term observations show on average milder winter
weather during El Niño along the west coast and the Canada-U.S. border, and
warmer weather during La Niña along the Gulf Coast (note the asymmetry).
Linear correlation coefficients are around 0.3 for these teleconnections, which
were also present during the verification period (Fig. 1f). The linear statistical
model only shows skill along the coast (Fig. 1e), probably due to the large non-
linearity of the teleconnection (Hoerling et al., 1997; Sardeshmukh et al., 2000;
Wu et al., 2003). Both ECMWF models have correct warm teleconnections in
South Alaska (Fig. 1b,d). However, instead of the extension eastwards along the
border (Fig. 1f), they show a northward extension of the teleconnection pattern.
The cooling pattern along the Gulf Coast is also situated too far north and is too
strong in S2. Due to these teleconnection errors forecast skill is limited to the west
coast (Fig. 1a,c). These errors could possibly be corrected for by a downscaling
technique, although how much they are due to sampling error is unclear. Similar
problems in GCM forecasts for North America were found by Barnston and Smith
(1996), Anderson et al. (1999) and Peng et al. (2000).

2.2 Surface pressure

In the extratropics, the shift of circulation patterns due to El Niño and La Niña
is a major source of predictability. The ECMWF models reproduce the overall
sense of the winter North American ENSO teleconnection pattern reasonably well
(Fig. 2b,d). However, the teleconnections over land appear to be too weak: the
center of the Aleutian low in the North Pacific is shifted 20–30◦ too far west, re-
sulting in the poor teleconnections over land that were noted in the T2m forecasts
(section 2.1). As in observations, the models have no projection of the ENSO tele-
connection patterns onto the NAO: the correlation for ensemble members started
on 1 Nov between the Dec–Mar averaged Azores-Iceland NAO and the Niño3
index is r = −0.10+9

−9 in S1, r = −0.15+8
−8 in S2. This is in good agreement with

the observed value over 1865–1996, r = −0.05+17
−18.

Dec–Feb sea-level pressure is also predicted well in the area of the Southern
Oscillation, although the pattern extends too far to the west over the Indian
Ocean. Most southern hemisphere teleconnection patterns are also captured, the
high pressure region in the South Pacific pattern at 60◦S is also shifted to the
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a) b)

c) d)

e) f)

Figure 2: Verification of Dec–Feb SLP forecasts from 1 Oct against the
NCEP/NCAR reanalysis. a) Skill of S1 ensemble mean, b) S1 Niño3 teleconnec-
tion patterns, c), d) same for S2, e) skill of STAT, and f) Niño3 teleconnection
patterns over 1987–2002.
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a) b)

c) d)

e) f)

Figure 3: Verification of Jun–Aug SLP forecasts from 1 Apr against the
NCEP/NCAR reanalysis. a) Skill of S1 ensemble mean, b) S1 Niño3 teleconnec-
tion patterns, c), d) same for S2, e) skill of STAT, and f) Niño3 teleconnection
patterns over 1987–2002.
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west.
In contrast, in Jun–Aug the forecast skill is not quite so good, especially

over the East Pacific and Atlantic Oceans. (Fig. 3). This may be because the
ENSO teleconnections are weaker as panel f) indicates. The predictability is less
dominated by ENSO at this time which in turn may be related to the weaker
amplitude of El Niño at this time. It is also harder to predict ENSO from April
starting dates. Still, the different shapes of modeled and observed Southern Os-
cillation patterns (Figs 3b,d,f) suggest that model error plays a large role.

Apart from ENSO teleconnections there seems to be some skill in the
predictions for eastern North-America and northern and southern Europe in
both ECMWF models. The skill in Europe may be connected with the sum-
mer predictability discussed in Colman and Davey (1999). There is also good
skill (r > 0.6) unconnected to ENSO in forecasts of sea-level pressure north-east
of New Zealand, especially in S1.

2.3 Precipitation

The spatial decorrelation scales of precipitation are small, making the dangers of
‘bump-hunting’ correspondingly higher: the chance of finding statistically ‘signifi-
cant’ correlations with no physical basis is proportional to the number of indepen-
dent possible events investigated. As will be shown quantitatively in section 2.3.1,
seasonal predictability of precipitation is based mainly on ENSO teleconnections.
This is used to restrict the search space: we consider only regions and seasons of
known teleconnections (Ropelewski and Halpert, 1987; Kiladis and Diaz, 1989).
First the main areas and seasons with ENSO teleconnections are mapped, then
for a list of 40 regions and seasons with teleconnections |r| > 0.4 over 1901–1986,
the skills of STAT, S1 and S2 for 1987–2001 starts are compared. We consider the
skill per grid-box; area-averaged precipitation will have higher skill (e.g., Gong
et al., 2003).

2.3.1 ENSO-related skill

The connection between ENSO and the predictability of precipitation can be
shown from a plot of the skill of the forecasts against the strength of El Niño.
During strong El Niño and La Niña events the skill is higher than during neutral
conditions, as shown in Fig. 4. For this plot the skill is the spatial anomaly
correlation of the ensemble-averaged forecast with observations. This measure is
dominated by high-rainfall regions in the tropics. As expected, the model skill
in forecasting precipitation patterns is higher during El Niño and La Niña than
during neutral conditions. The excursion to the right represents the large 1997/98
El Niño. Precipitation was not predicted as well during its onset (lower branch) as
during its demise (upper branch), as the Niño3 index was underpredicted during
the onset and some teleconnections lag El Niño.
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Figure 4: Skill of the global +2 month precipitation forecasts (spatial correlation
of the S1 (a) and S2 (b) 3-month average ensemble mean with the GPCP obser-
vations) as a function of the value of the Niño3 index. The numbers denote the
starting month and year of the 3-month season, the dashed line gives the best fit
to the absolute value of Niño3, r = 0.23+0.17|N3| for S1, r = 0.16+0.18|N3| for
S2.
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A simple model of ENSO-forced precipitation can be constructed by taking
precipitation anomalies to be proportional to the Niño3 index N3 plus a noise
term ε: pobs = AN3 + ε. The model prediction should be similar, pmod = AN3 + η.
In the case of an ensemble average we normally have η2 � (AN3)

2: the model
noise is reduced by the ensemble averaging. On the other hand, the weather
noise is not necessarily small and in places may be larger than the signal. The
correlation can be written as

r =
pobspmod√
p2

obs

√
p2

mod

=
(AN3)

2√
(AN3)2 + ε2

√
(AN3)2 + η2

≈ |AN3|√
ε2

(1)

where the bar denotes spatial averages. If the ENSO signal is smaller than the
weather noise, this gives a quasi-linear relationship between correlation and size
of El Niño. Motivated by this we attempt a straight line fit to the data, while
acknowledging it will not be appropriate for high values of correlation. 1

Fig. 4 shows that the correlation can be approximated by r = 0.23±0.03+
(0.17 ± 0.03)|N3| for S1 and by r = 0.16 ± 0.02 + (0.18 ± 0.02)|N3| for S2 (the
range denotes 2σ symmetrical error estimates). The non-zero constant term shows
that there are more factors than ENSO that give rise to predictability that are
captured by the ECMWF models.

Limited by the short sample of ENSO events included in the 1987-2001
period it is not possible to infer the existence of asymmetry/symmetry in the
skill with respect to El Niño and La Niña. Neither can one exclude the possibility
that the seasonal forecast system might present different levels of skill during the
positive/negative ENSO phases (Sardeshmukh et al., 2000).

2.3.2 South-East Asia, Australia and West Pacific

August–November Globally, the strongest observed effects of ENSO on precip-
itation occur during the dry season (Aug–Nov) in eastern Indonesia (Berlage,
1957) and the western equatorial Pacific. For example, of 10941 stations in the
Global Historical Climate Network (GHCN, Vose et al., 1992) v2b with more than
40 years of precipitation data, those with the highest correlation with Niño3 are
Banda Island, Indonesia (4.53◦S, 129.88◦E) with r = −0.82+6

−4 and Beru, Kiribati
(1.40◦S, 176.00◦E) with r = +0.82+8

−13 for Aug–Nov rainfall. In eastern Indonesia
and the West Pacific this is the dry season, in which drought has large effects. In
central and western Indonesia this time of year includes the onset of the monsoon,
which starts in September on Sumatra, October on Java and November on Bali.

1. The number of ensemble members is also not constant over this period, in Fig. 4b the points
labeled 1 and 7 have 41 members up to 2001 and the others only 5 up to 10.2001. Starting
11.2001 all seasons have 40 members. The influence of this on the skill is much less than the
variations due to ENSO.
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In central Indonesia, the onset is the season most sensitive to ENSO; western
Indonesia has no long-term linear ENSO teleconnections in this season.

The ECMWF forecasts from starting dates around 1 Jun (the +2 forecasts)
are compared with observations in Fig. 5. One sees that the models are better
than both the STAT model and a contemporaneous statistical Niño3 relationship
(panel f) in predicting the dry season precipitation anomalies in Indonesia: r >
0.8 in the eastern part for S1, in spite of the very rough approximation of the
orography and land-sea mask there. The S2 correlations are somewhat lower,
possibly due to the limited ensemble size (5) and the smaller amplitude of the
predicted ENSO signal. The STAT model has near zero skill in some boxes, for
instance in the Java region, in spite of the ENSO teleconnection. This is due to
the influence of the second EOF of SST which is included in the STAT model:
during the training period this EOF contributed positively to the skill, but this
was reversed after 1987.

Although the correlation of the GCMs is (very) good, the magnitude of the
dry-season anomalies was in general underpredicted, so post-processing of the
output would be desirable. For example, in Aug–Nov 1997 the S1 (S2) model
ensemble mean forecast was 55% (50%) of the normal rainfall in the region 10◦S–
EQ, 110◦–130◦E. Less than 35% was observed.

Eastern Australian rainfall is also forecast rather better by the GCMs than
the statistical model, which is mainly based on ENSO (r(N3) ≈ −0.4 over the last
century). This teleconnection was not as strong in 1987–2001 as in the training
period, leading to little skill in the statistical model. Variations in the strength
of ENSO teleconnections have occurred before: a 15-year running correlation on
NINO3 SST with precipitation at Melbourne (37.82◦S, 144.97◦E, 1855–1992) is
even positive in 1932–1941, in spite of the long-term value of r = −0.39 ± 0.13.
A Monte-Carlo study (Gershunov et al., 2001) shows that this is not necessarily
due to decadal climate variability: most random series with r = −0.39 will have
15-year periods with r > 0 in 100 years. Apart from the weak observed ENSO
teleconnections, the ECMWF models used other predictors to forecast precipita-
tion more successfully. However, both dynamical models overextend their ENSO
teleconnections into central and western Australia, leading to spurious forecasts
there.

The strong ENSO teleconnection in the west Pacific is generally handled
well by the model giving high skill forecasts. There is a nodal line in the telecon-
nections which crosses the equator near 150◦E (panel f). Obviously any forecast
skill which is based on ENSO teleconnections will be reduced in the vicinity of
the nodal line. The nodal lines in the model (panels b, d) are slightly shifted
relative to that in panel f. Perhaps as a consequence of this the skill in Papua
New Guinea is reduced. The forecasts in the equatorial central Pacific are very
good: r reaches 0.9 there.
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a) b)

c) d)

e) f)

Figure 5: Verification of West Pacific Aug–Nov (dry season) precipitation fore-
casts from 1 Jun against the GPCP analysis. a) Skill of S1 ensemble mean, b) S1
Niño3 teleconnection patterns, c), d) same for S2, e) skill of STAT, and f) Niño3
teleconnection patterns over 1987–2001.
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North of the equator, in the Philippines, the statistical model only finds
strong enough historical teleconnections at one single grid point, where it showed
good skill over 1987–2001, r = 0.68. The ECMWF models only have skill r ≈ 0.4
because the ENSO teleconnection observed in this period is not present in the
models. The lack of a teleconnection is representative of the long-term behavior
of other stations in the Philippines, which did not get included in the statistical
model. The skill of the statistical model is therefore to a large extent due to
chance.

December–February In contrast to the onset date, the intensity of the wet mon-
soon in central Indonesia is normally not affected by El Niño — once it rains, it
pours. In eastern Indonesia the correlations of Dec–Feb rainfall with Niño3 are
also much smaller than in the dry season. Because of this lack of correlation the
statistical model makes few predictions (Fig. 6e). However, the rainfall response
in the 1997/98 El Niño was very different to the normal response, in that over
large parts of Indonesia the monsoon rains were substantially reduced in January.
To emphasize the marked reduction in rainfall in January 1998, Fig. 7 shows the
relative precipitation anomaly; panel d shows that the rainfall was typically re-
duced by 50% over Java and estern Indonesia. The S1 model correctly predicted
the tendency for a dry January in this specific case (panel a).

S1 tends to predict reduced rainfall in most of Australia during El Niño
(Fig. 6b). Over the whole century observations show that only the north-eastern
coast had significant ENSO teleconnections (r = −0.3 . . . − 0.4) in this season.
During the last 15 years these teleconnections were absent, however, leading to
very little skill in both GCM and statistical forecasts for eastern Australian sum-
mer precipitation. In contrast, the GCM predictions for western Australia had
some skill.

On the other side of the equator, rainfall anomalies in the Philippines,
a standard El Niño teleconnection in this season, were predicted well by the
ECMWF models. The wet teleconnection to the Chinese East coast (Tang et al.,
1997) is also present. Its modeled strength is similar to the long-term record,
which is weaker than Fig. 6f shows. These last two teleconnections were also
present in the uncoupled ECHAM and NCEP models in Peng et al. (2000).

March–May Rainfall anomalies during the onset of the Asian Monsoon in Mar–
May are forecast very well (see Fig. 8) in a zone extending from the Philippines
westward to the Andaman Islands (12◦N, 93◦E). The correlations are higher than
can be explained by the model ENSO teleconnections. A lag-correlation study
of observational data shows that SST in the region east of the Philippines also
influences rain in this zone.
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a) b)

c) d)

e) f)

Figure 6: Verification of West Pacific Dec–Feb (rainy season) precipitation fore-
casts from 1 Oct against the GPCP analysis. a) Skill of S1 ensemble mean, b) S1
Niño3 teleconnection patterns, c), d) same for S2, e) skill of STAT, and f) Niño3
teleconnection patterns over 1987–2002.
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a) b)

c) d)

Figure 7: a) The S1 and c) S2 ensemble mean forecasts for the rain anomaly in
January 1998 from starts around 1 Oct 1997 relative to the 1987–2001 model cli-
matology, b) the statistical model forecast and d) observed relative precipitation
anomalies relative to the 1987–2001 observed climatology.
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a) b)

c) d)

e) f)

Figure 8: Verification of West Pacific Mar–May (onset Asian monsoon) precipi-
tation forecasts from 1 Jan against the GPCP analysis. a) Skill of S1 ensemble
mean, b) S1 Niño3 teleconnection patterns, c), d) same for S2, e) skill of STAT,
and f) Niño3 teleconnection patterns over 1987–2001.
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June–July In the remaining months, Jun–Jul, ENSO teleconnections are much
weaker in South-East Asia and the West Pacific (not shown). The STAT model
performs very badly due to the spring barrier in ENSO predictability. The
ECMWF models still have skill r > 0.8 in parts of eastern Indonesia and r ≈ 0.6
in the northern Philippines, in both cases much higher than can be explained by
correlation with model Niño3.

2.3.3 The Americas

December–February In the Americas the strongest teleconnections are at the
peak of El Niño, Dec–Feb (Ropelewski and Halpert, 1987; Kiladis and Diaz, 1989).
These are: rain along the equator in the Pacific just reaching parts of the Peru-
vian and Ecuadorean coasts, wetter than normal weather in southern Brazil and
Uruguay, drought in northern South America and more rain in Mexico and the
southern U.S., especially Florida. The forecast skill of the dynamical models was
at least as good as that of the statistical models in these areas (see Figs 9a,c,e),
although the model teleconnections were weaker than observed (Figs. 9b,d,f).
There was also skill in north-eastern Brazil, where Dec–Feb contains the onset of
the rainy season. This skill is not simply related to ENSO and it is absent in our
ENSO-based statistical model. The ECHAM and NCEP forced models did not
show some of the South America teleconnections (Peng et al., 2000).

The weak ECMWF model teleconnections to the Californian coast resemble
those of the average historical record, which the statistical model is based on,
like the forced NCEP model, but unlike the forced ECHAM model. However, in
this area there are large decadal variations. A 20-yr running-window correlation
analysis of the GHCN precipitation data for Santa Barbara (34◦N, 120◦E, 1867–
2001) shows that the correlation coefficient was around −0.4 from 1890 to 1930,
+0.3 up to 1990 and +0.6 since then. A Monte-Carlo study shows that these
decadal variations in the strength of the teleconnection are unlikely to be due to
sampling effects (P < 5%). The non-stationarity of the climate led to very little
skill in the statistical model forecasts on the West Coast in 1987–2001. As the
ECMWF models are closer to the long-term average than the situation of the last
ten years their skill is also low. Other factors that may play a role in lowering skill
are the fairly strong nonlinear effects present in this area (Hoerling et al., 1997;
Sardeshmukh et al., 2000; Mason and Goddard, 2001) or the wrong position of
the Aleutian pole of the PNA-like teleconnection pattern in the ECMWF models.

March–May In Mar–May there are teleconnections in the observations to
North-East Brazil and Southwest U.S./North Mexico (Figs 10e,f). Neither
of these is present to the same extent in either ECMWF model. This is
not due to the spring barrier. The ECMWF models have good skill in
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a) b)

c) d)

e) f)

Figure 9: Verification of Dec–Feb precipitation forecasts from 1 Oct in the Ameri-
cas against the GPCP analysis. a) Skill of S1 ensemble mean, b) S1 Niño3 telecon-
nection patterns, c), d) same for S2, e) skill of STAT, and f) Niño3 teleconnection
patterns over 1987–2002.
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a) b)

c) d)

e) f)

Figure 10: Verification of Mar–May precipitation forecasts from 1 Jan in the
Americas against the GPCP analysis. a) Skill of S1 ensemble mean, b) S1 Niño3
teleconnection patterns, c), d) same for S2, e) skill of STAT, and f) Niño3 tele-
connection patterns over 1987–2001.
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Mar–May in South-East Asia and the Pacific Ocean. Also, the statistical
model, with a much larger spring barrier, obtains decent skill scores. There
are known deficiencies in the climatology of the dynamical models in this
season: a too intense ITCZ and a large dry bias over Brazil (Anderson
et al., 2003). These probably affect the ENSO teleconnections. (See also
http://www.ecmwf.int/products/forecasts/d/charts/seasonal/verification.)

In North-East Brazil there is predictability at this time, the rainy season,
due in part to SST in the Atlantic Ocean (Hastenrath and Greischar, 1993).
S2 shows quite good predictability in this region apparently beyond that due
to ENSO. The skill (r ≈ 0.7) is comparable to the skill of the UK Met Office
forecasts for Fortaleza/Quixeramobim (4◦S, 39◦W) over 1987–1998 (1996 missing)
in quintiles, r = 0.73+23

−42 (Folland et al., 2001).

June–November During the rest of the year the ENSO teleconnections to pre-
cipitation over the Americas are much weaker.

2.3.4 Africa

The rainfall over Africa has a strong regional and geographical variation. Rather
than show plots for all seasons we will condense the rainfall information neatly
into one figure. In Fig. 11 we plot rainfall and correlations with Niño3 in three
sectors, corresponding to different times of year with ENSO teleconnections (Has-
tenrath, 1995). The top-left sector, showing West Africa, has a monsoon climate
with rainfall maximum in Jul–Sep. Area-averaged Sahel rainfall in this season has
a weak link to El Niño (Palmer, 1986), r = −0.41 over 1901–2000. At individual
stations the teleconnection is much weaker, so that the statistical model only
makes predictions at a few grid boxes.

For the top right sector, we use the period Oct–Nov to capture the short
rains. These have a well-established relationship with ENSO (Ogallo, 1988), al-
though the relationship is fairly weak, r < 0.4. Rainfall is more strongly con-
nected to Indian Ocean SST (Goddard and Graham, 1999; Latif et al., 1999),
so predictability could be larger than the ENSO teleconnection suggests. The
relationship between the East African long rains and ENSO is less clear. For
example Rowell et al. (1994); Philipps and McIntyre (2000), based on different
temporal and spatial scales, did not show any significant correlations between the
East Africa long rainy season and either the atmospheric or oceanic component
of ENSO.

The bottom sector covering southern Africa is for summer (Dec–Feb), when
there is a (weak) ENSO teleconnection to less rain during El Niño. In fact the full
twentieth century only shows teleconnections to the southwest corner, although
shorter records also hint at possible teleconnections to Zimbabwe (Cane et al.,
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a) b)

c) d)

e) f)

Figure 11: Verification of West-African monsoon (Jul–Sep, top left), East African
short rains (Oct–Nov, top right) and South African summer (Dec–Feb, bottom)
precipitation forecasts at lead time +2 months against GPCP analysis. a) Skill
of S1 ensemble mean, b) S1 Niño3 teleconnections, c), d) same for S2, e) skill of
STAT, f) observed ENSO teleconnections.
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1994).
The last 15 years show stronger ENSO teleconnections to Africa (Fig. 11f).

In East Africa this is entirely due to the heavy rains in 1997. This dependence
on one event means the uncertainty in these correlations is large. For instance at
Mombasa, Kenya (4.03◦S, 40.10◦E, 1890–1991), the correlation over 1987–2001 is
r = 0.65 with a 95% confidence interval −0.60 < r < 0.92, which easily includes
the long-term value r = 0.30±0.18. In the Sahel, a Monte-Carlo study of decadal
changes in 1000 random time series with the same long-term regression and cor-
relation with Niño3 as Jul–Sep Sahel rainfall shows that the recent correlation
of r = −0.52 ± 0.26 falls well within the range expected due to the sampling
uncertainty and decadal changes in ENSO variability. The same holds for the
Dec–Feb southern Africa rainfall, which over 1987–2002 had stronger and more
northerly teleconnections than earlier in the twentieth century.

Figs 11b,d show that S1 and S2 have only weak ENSO teleconnections and
panels a,c show that there is only limited skill with S1 somewhat better than S2.
The skill around the Persian Gulf is related to a weak ENSO teleconnection that
also shows up in the historical record. The STAT model is very incomplete due to
lack of data. In the regions with enough historical observations, its skill (Fig. 11e)
is lower than the absolute value of the strength of the historical ENSO teleconnec-
tions over 1901–1986. For comparison, the combined statistical/dynamical model
Sahel forecasts of the UK Met Office (Folland et al., 1991) had skill only in the
Sudan.

Except in South Africa, the skill shown by S1 in fig 11a and to a lesser extent
S2 in 11c is not directly attributable to ENSO as can be seen by comparing with
the ENSO (Niño3) teleconnections in Figs 11b,d. These are much weaker than
the correlations between Niño3 and observed precipitation over the last 15 years,
(fig 11f) and even weaker than those in the historical record.

We are aware of the failure to capture the strong flooding over
Kenya/Somalia in late 1997 in the seasonal prediction model. In fact the rainfall
was located off the coast and further model studies using the observed SSTs for
this period failed to capture the heavy rainfall over land in this region though
predicting the excess rainfall over the ocean to the east of Kenya and Somalia was
well done. Other models, such as the IRI version of the ECHAM3 model, sim-
ulated the strong anomalies very well (Goddard and Graham, 1999), although
other versions of the ECHAM model did poorly (Latif et al., 1999; Palmer et al.,
2004).

In fact it is striking how poorly the S1 and S2 models seem to capture the
El Niño teleconnections over Africa (Fig 11b,d) at this lead time, even though
they perform quite well in other regions. It should be noted that at a shorter lead
time (1Jun forecast) the pointwise skill in the Sahel is much better, r ≈ 0.6 for
Jul–Sep rain.
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The predictability of rainfall on the west coasts of Africa seen in experiments
with prescribed SST (Rowell, 1998; Peng et al., 2000) is not recovered in these
coupled systems. Rainfall in these areas is correlated with coastal SST, which is
not forecast very well by the ECMWF models (see Fig. 1).

2.3.5 Other ENSO precipitation teleconnections

The Jun–Aug South Asian monsoon historical teleconnection was too weak to
enter the simple statistical model. The monsoon was also not forecast well by
the ECMWF models. The increased strength of the Oct–Dec monsoon rains in
southern India and Sri Lanka during El Niño was captured well by the statistical
model, but not by the ECMWF models. Curiously, both S1 and S2 predicted the
relatively wet Dec–Feb 1997/98 in central India correctly, although this is not an
ENSO teleconnection.

The weak ENSO teleconnection to spring precipitation in Europe (van Old-
enborgh et al., 2000) lead to some skill in the statistical system in Morocco, Ire-
land and Scotland, and the Ukraine. However, it was not reproduced in either
dynamical model. S2 did have skill in Europe, although based on effects other
than on the teleconnection (not shown).

2.3.6 Systematic comparison

Due to the limited number of years for which forecasts (hindcasts) are available,
few of the above differences in apparent skill between the statistical and dynami-
cal models are likely to be considered highly significant in a statistical sense when
assessed individually. Our ability to compare the skill of the models can be im-
proved by sacrificing geographical and seasonal detail, and considering aggregate
statistics. To do this, we selected 40 regions and 3- or 4-month seasons of historical
simultaneous ENSO teleconnections with correlations r > 0.4 on the basis of the
Hulme, GPCP and GHCN datasets. For the area-averaged precipitation in each
of these regions and seasons the skill of the STAT, S1 and S2 models at lead time
+2 was computed. The results are shown in Table 1. The error estimates show
the 95% confidence interval computed with a bootstrap method. When the lower
bound exceeds zero the number is printed in bold, corresponding to P < 2.5% in
a one-sided significance test.

Of the 40 areas and seasons where skill is expected on the basis of ENSO
teleconnections, S1 has a higher skill score than STAT in 29 and S2 has a higher
skill score than STAT in 32. As the skill in predicting ENSO is much higher
than the skill in the seasonal precipitation over most of the earth, the forecasts
are fairly independent even though they are based on the same set of El Niño
and La Niña events. Assuming full independence, the null hypothesis that the
STAT model has equal skill to the ECMWF models can be rejected at the 0.5%
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Region latitude longitude season STAT S1 S2
East Indonesia 10◦S–EQ 110◦E–130◦E Aug–Nov 0.37+38

−45 0.87+9
−19 0.82+13

−8

– – Dec–Feb 0.68+23
−41 0.63+23

−42 0.32+44
−37

– – May–Jul 0.00+0
−0 0.64+25

−36 0.82+11
−20

Philippines 5◦N–10◦N 120◦E–130◦E Dec–Feb 0.54+28
−39 0.72+20

−31 0.72+20
−40

– – Mar–May 0.70+17
−31 0.82+13

−39 0.85+10
−21

– – Sep–Nov 0.69+17
−23 0.18+64

−56 0.56+26
−32

East Australia 40◦S–20◦S 145◦E–155◦E Jul–Sep 0.00+0
−0 0.63+29

−64 0.73+21
−84

– – Oct–Dec 0.31+32
−46 0.37+44

−55 0.42+34
−49

South Pacific 20◦S–10◦S 160◦E–200◦E Oct–Dec 0.76+15
−20 0.60+24

−49 0.57+22
−54

– – Jan–Apr−0.30+49
−44 0.46+38

−50−0.19+54
−45

– – May–Jul −0.48+63
−40 0.80+12

−24 0.70+18
−38

Equatorial Pacific 5◦S–5◦N 170◦E–240◦E Dec–Feb 0.78+16
−30 0.95+4

−19 0.89+8
−30

– – Mar–May 0.69+21
−33 0.82+14

−38 0.78+17
−35

– – Jun–Aug 0.01+60
−37 0.67+26

−22 0.77+15
−33

– – Sep–Nov 0.56+26
−25 0.94+5

−61 0.92+6
−67

South China 20◦N–30◦N 110◦E–120◦E Nov–Jan 0.24+48
−76 0.19+38

−65 0.63+26
−73

– – Feb–Apr 0.19+40
−59 0.13+50

−72 0.49+31
−31

Hawaii 15◦N–25◦N 160◦W–155◦W Nov–Jan 0.33+44
−61 0.70+21

−35 0.12+50
−77

– – Feb–Apr 0.34+42
−73 0.36+40

−50 0.57+25
−38

New Mexico 30◦N–40◦N 110◦W–95◦W Oct–Jan 0.37+44
−56 0.44+43

−54 0.40+43
−56

– – Feb–May−0.09+55
−47 0.40+38

−57 0.41+35
−48

Florida 25◦N–30◦N 85◦W–80◦W Dec–Mar 0.76+18
−44 0.57+26

−31 0.72+17
−36

NW US 45◦N–55◦N 125◦W–105◦W Nov–Feb 0.30+43
−44 0.41+33

−55 0.45+43
−70

Mexico 20◦N–30◦N 110◦W–95◦W Oct–Dec 0.41+44
−67 0.15+51

−58 0.78+13
−21

– – Jan–Mar 0.11+44
−43 0.47+28

−50 0.49+35
−54

– – Jul–Sep 0.00+0
−0−0.08+51

−44 0.15+39
−46

N South America EQ–15◦N 70◦W–50◦W Jun–Aug 0.17+37
−34 0.54+32

−41 0.57+31
−54

– – Sep–Nov 0.49+31
−54 0.80+15

−39 0.69+18
−31

– – Dec–Feb 0.67+23
−35 0.78+15

−25 0.87+10
−18

NE Brazil 10◦S–EQ 45◦W–35◦W Apr–Jul 0.43+31
−45 0.77+17

−30 0.73+21
−41

Uruguay 40◦S–30◦S 65◦W–55◦W Nov–Jan 0.65+22
−67 0.77+15

−51 0.80+13
−31

Coastal Ecuador 10◦S–EQ 85◦W–80◦W Feb–May 0.00+0
−0 0.59+28

−76 0.53+30
−64

Central Asia 35◦N–45◦N 60◦E–75◦E Oct–Jan 0.05+49
−46 0.45+34

−38 0.47+31
−59

India 15◦N–30◦N 70◦E–90◦E Jun–Aug 0.14+55
−61−0.19+55

−47 0.23+40
−55

Sri Lanka 5◦N–10◦N 75◦E–85◦E Oct–Dec 0.55+27
−37−0.10+46

−43 0.19+38
−48

East Africa 5◦S–5◦N 30◦E–40◦E Oct–Dec 0.14+51
−88 0.34+54

−40−0.12+74
−49

Southern Africa 35◦S–25◦S 15◦E–35◦E Nov–Feb 0.26+33
−41 0.59+21

−23 0.28+46
−62

SW Europe 10◦S–10◦N 30◦E–40◦E Jul–Sep 0.00+0
−0−0.12+57

−66 0.17+50
−60

– – Oct–Dec 0.11+53
−88 0.45+46

−35−0.07+83
−51

Central Europe 10◦N–40◦N 45◦E–55◦E Oct–Dec 0.19+50
−59 0.53+27

−49 0.83+13
−47

Table 1: Regions and seasons of known ENSO precipitation teleconnections, and
the skill of the three models at lead time +2 months over 1987–2001 starts.
The error estimates denote the 95% confidence intervals (times 100), for boldface
numbers this interval excludes zero.
26



level (S1) and 0.01% level (S2); the dependencies will increase these numbers. In
contrast, the difference between S1 (16 better) and S2 (23 better) could easily
have arisen by chance if both systems had equal skill. The same conclusions hold
for the +1 and +3 forecasts (not shown).

Due to the limited number of years, the difference between the skill of the
S1(S2) and the STAT model is significant at the 95% level in only 5(4) regions
and seasons with strong teleconnections (East Indonesia Aug–Nov and May–
Jul, South Pacific Jan–Apr (S1) and May–Jul, Equatorial Pacific Jun–Aug). The
STAT model is significantly better in 1(0) region and season (Sri Lanka, Oct–Dec,
S1). By chance each of these categories would be expected to have one entry.

Analysis of Table 1 suggests that the lead of the ECMWF models over the
statistical model exists at all times of year, but is most dominant in the March–
August period, with S1(S2) having higher skill scores than STAT in 9(12) out
of 12 forecasts. This is the time when the GCMs are producing substantially
better forecasts than the STAT model of ENSO-related SST anomalies, and the
dominance is thus unsurprising. The fact that the GCMs appear still to have
the advantage at times of year when their SSTs are not better than those of
the STAT model, is an encouraging sign of the potential of GCM-based seasonal
forecasting. In Sep–Feb 20(20) of the 28 seasons/areas were forecast better by
S1(S2) than STAT, which are both significant at the 2% level if all forecasts are
assumed independent.

The dynamical models also perform better than the model ENSO tele-
connections alone would indicate (not shown). The observed skill at lead time
+2 months is larger than the absolute value of the correlation coefficient with
modeled Niño3 in 29 cases out of 40 in S1, and in 34 in S2. This confirms the
impression from the previous sections that even in areas of known ENSO telecon-
nections other mechanisms that give rise to seasonal predictability are modeled
correctly by the dynamical models.

3 Conclusions

We have compared the skill of the ECMWF seasonal forecast models to that of
a simple SST-based statistical model on areas of known ENSO teleconnections
over the period 1987–2001. ENSO teleconnections are the main, though not only,
source of predictability at these time scales. The correlation coefficient is used as
the skill measure. This assumes that the biases in the mean state and variability
are known and corrected for. In this article the first-order forecast, the ensemble
mean, is used.

The dynamical models forecast SST better than the statistical model in
the Pacific, Atlantic and Indian Oceans. Temperature over land is forecast well

27



in northern South America, but the ENSO teleconnections to North America in
winter are sufficiently displaced that the 2m temperature forecasts do not show
much pointwise skill away from the west coast.

The skill of precipitation forecasts depends very strongly on the region and
season considered. With only 15 years of data and small decorrelation scales the
chance of finding accidental skill is very high. We therefore restricted ourselves to
regions and seasons of known ENSO teleconnections. The importance of ENSO
for seasonal forecasting of precipitation is shown by the fact that during El Niño
and La Niña the skill of the dynamical model precipitation forecasts (as measured
by a spatial correlation, which emphasizes the tropics) is much higher than during
neutral conditions.

In South-East Asia and the West Pacific, parts of Australia and the Ameri-
cas in Dec–Feb the dynamical models forecast precipitation better than the statis-
tical model, due to the inclusion of other SST-weather interactions. In contrast, in
Mar–May the teleconnections to the Americas are not forecast well by the GCMs.
Also, the (fairly weak) teleconnections to the Indian Monsoon, East Africa and
Europe are not reproduced well.

Overall, the ECMWF models are on average significantly better than the
statistical model in forecasting precipitation at lead times +1, +2 and +3 months
when evaluated in 40 regions and seasons of known ENSO teleconnections, even
though the statistical model is based on lagged ENSO regressions. The ECMWF
precipitation forecasts are also better than can be accounted for by ENSO tele-
connections alone, demonstrating that value is being extracted from the global,
comprehensive nature of the forecast system.

And so what do we conclude about the relative merits of dynamical and
statistical seasonal forecasts? The first point to make clear is that the statistical
models used here, although entirely respectable, may not necessarily be the best
that can be constructed, especially on a regional basis – one thinks of the Nord-
Este region of Brazil as one example where this may be true. It is very likely to be
the case that for some regions, statistical models still have a definite advantage
over at least the two dynamical models considered here.

The argument often put forward in favor of GCMs is that they have a
(supposedly) clear development path which will lead to improved forecasts in the
future. Experience has shown that it is not easy to make big improvements to
either the models or the seasonal forecast systems which use them. Nonetheless,
models and forecast systems are being improved, and over time this is likely to
lead to a transformation in the quality of the GCM-produced forecasts. A key
question, which we have addressed in this paper, is whether the ’benefit’ of GCMs
is something that lies only in a possibly distant future, or is something which is
tangible now. We hope we have made clear that although the GCMs are far from
uniformly helpful, they have a real contribution to make to practical forecasting
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today.
As is also concluded from the comparison from ENSO forecasts, dynamical

and statistical models both have strong and weak points. More accurate and reli-
able forecasts can be obtained from a multi-model approach, optimally combining
the information from both classes of models.
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