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Abstract

The European Centre for Medium-Range Weather Forecasts (ECMWF) has
made seasonal forecasts since 1997 with ensembles of a coupled ocean-atmosphere
model (S1). In January 2002, a new version (S2) was introduced. For the cali-
bration of these models, hindcasts have been performed starting in 1987, so that
15 years of hindcasts and forecasts are now available for verification.

Seasonal predictability is to a large extent due to the El Nifio — South-
ern Oscillation (ENSO) climate oscillations. ENSO predictions of the ECMWF
models are compared with those of statistical models, some of which are used
operationally. The relative skill depends strongly on the season. The dynamical
models are better at forecasting the onset of El Nifio or La Nina in boreal spring
to summer. The statistical models are comparable at predicting the evolution of
an event in boreal fall and winter.

1 Introduction

The use of dynamical models for seasonal forecasting is becoming widespread. In
principle, numerical models that represent the dynamics of the atmosphere, ocean
and land should be able to give better seasonal forecasts than purely statistical
approaches, because of their ability to handle a wide range of linear and non-linear
interactions and their potential resilience against a changing climate. In practice,
model errors are still a substantial source of problems (Latif et al., 2001; Palmer
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et al., 2004), and it remains unclear to what extent the present generation of
numerical forecast models is able to challenge existing empirical methods for
seasonal forecasting. Barnston et al. (1999) concluded that dynamical models did
not forecast the 1997/98 El Nino and following La Nina better than statistical
models. Anderson et al. (1999), Sardeshmukh et al. (2000) and Peng et al. (2000)
compared how various models propagate the effect of (prescribed) SST anomalies
to make seasonal forecasts, finding comparable or better skill in the statistical
models. Our results from coupled models do not support these findings.

In this set of papers we compare the seasonal forecasting performance of
two state-of-the-art coupled numerical systems (both from ECWMF) with a sta-
tistical forecasting scheme based on lagged regression with SST patterns. As most
seasonal predictability is due to El Nino — Southern Oscillations (ENSO) vari-
ability, the performance of the three schemes is compared first for ENSO forecasts.
For this comparison three more sophisticated statistical forecast models that are
used operationally are also included. The companion paper considers seasonal
forecasts of global fields of surface air temperature, mean sea level pressure and
precipitation.

The period over which the forecasting schemes are verified and compared is
1987-2001. This is primarily due to the numerical forecast results being restricted
by lack of ocean observations in the equatorial Pacific before this period. For the
simple statistical model we take advantage of the limited verification period by
restricting the training period to dates prior to 1987, ensuring a relatively clean
statistical forecast for the verification. The operational statistical models have
been cross-validated. The fact that we have only 15 years of verification inevitably
limits the power of the comparisons we can make: the fluctuations in skill due to
the small sample size will often be as large as the differences between the models.

In section 2 of the paper, we describe the numerical and statistical models
used, and the observations against which they are verified. Next, in section 3, we
discuss the skill in predicting indices of ENSO variability. Section 4 summarizes
and concludes the paper.

2 Model, data

2.1 Brief description of the ECMWF models.
2.1.1 System-1

At ECMWF two coupled ocean-atmosphere models have been developed for sea-
sonal forecasting. The first (called System-1, and denoted S1) was introduced in
1997 (Stockdale et al., 1998). At the time that this coupled model was being de-
veloped the version of the ECMWEF atmospheric model that was used for weather
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forecasting was IF'S cy15r8. This version was used in S1, though at a lower reso-
lution than the weather forecast model. The coupled model resolution was T63,
with 31 vertical levels. The initial conditions for the atmospheric component of
the coupled model were obtained from the atmospheric analyses used for weather
forecasting but truncated to the lower resolution used in the coupled model. In
addition to upper air values, the atmospheric analyses provide initial conditions
for soil moisture and snow and ice cover.

The ocean model was a global version of HOPE with a resolution of 0.5° x
2.8° near the equator but lower meridional resolution in the extratropics. The
ocean initial conditions were obtained from an ocean analysis system in which all
available in-situ thermal data were assimilated. For further details of the ocean
data assimilation procedure see Alves et al. (2004) and Balmaseda (2003).

The strategy for creating a forecast ensemble was to run the coupled model
out to 6 months ahead starting on successive days within a month, giving 28-
to 31-member ensembles. Such forecasts exist from the start of 1997. (In fact,
during 1997, computer restraints made it possible to run only 3 times a week but
we have recently backfilled these to daily.)

The coupled model is not perfect; in common with all fully-coupled models,
it drifts and so the model climatology does not match that of nature. To overcome
this, anomalies are calculated with respect to the model climatology which is
obtained by running an 11-member ensemble for every month of the years 1991-
1996. In January, April, July and October the ensemble was increased to 27
members. In contrast to the forecast phase (1997-2002), all hindcasts for the
calibration period started from the first of the month. For these hindcasts, the
ensemble was generated by using very small SST perturbations in the initial
conditions. The perturbations are negligible in themselves, but because of the
chaotic nature of the atmosphere model create substantial spread as the forecast
progresses. In order to allow some comparison with System-2 (see later) a further
set of integrations was recently performed for the years 1987-1990 when a 5-
member ensemble was run for each month of the year. For this set, forecasts were
started from 2 days before the start of the month to two days after.

Sea surface temperature (SST), 2-meter temperature (T,) and sea-level
pressure (MSL) have been archived as instantaneous values only at 00Z. The
accumulated variables, precipitation (P) and solar radiation (SSR), are daily
averages.

Because different strategies were used to generate ensembles and the num-
ber of members in an ensemble varies over the period 1987-2001, validation of the
system is not trivial. For the 'real-time’ forecasts, ensemble-mean monthly-means
have been created by averaging the ensemble of daily forecasts starting from the
16th of the previous month to the 15th of the current month. First, monthly
mean values were created. A sliding window was used: for each forecast the first



28/30/31 days were averaged to create a monthly mean. For ensemble member
1 this would represent the period from the 16th of one month to the 15th of the
next. For ensemble member 2 the averaging period is 17th of one month to the
16th of the next and so on. Then all the monthly mean values are averaged to
create a monthly-mean ensemble-mean with a nominal start date of the first of
the month. For the calibration period all ensemble members start on the first of
the month so monthly means are from the start of the month to the end of the
month. For the period 1988-1990, a sliding window is again used but with only
5 members in the ensemble mean. This is a slightly different averaging technique
to that which was used to produce the operational web products for S1.

The data can be sorted by lead month (40, +1, ... ) or by nominal starting
date. A ‘1 Jan’ forecast was not available until the 26th of January, as the ocean
data assimilation system ran 11 days behind real time and the last ensemble
member was started from conditions of the 15th Jan. We define the January
forecast as month +0, the February forecast as 41, etc. This definition of lead
time is consistent with the then-functional ECMWF web site: the number of
months between the nominal start date of the forecast and the verification period.

In summary, S1 was a prototype system and subject to different ensem-
ble generation strategies at different periods in its development. This makes the
forecasts from S1 quite difficult to use.

2.1.2 System-2

System-2 (S2) was introduced into operational use at the beginning of 2002.
It differs from S1 in a number of ways. The atmospheric component is cycle
23r4 of the IFS with a horizontal resolution of T95 and 40 levels in the vertical.
The ocean model resolution was increased to 0.3° X 1.4° near the equator and
to 1.4° x 1.4° at higher latitudes and the vertical resolution increased from 20
to 29 levels. Changes were also made to the ocean model physics and to the
ocean assimilation system. In order to sample some of the uncertainty in the
ocean initial conditions, not one, but 5 ocean analyses are performed, from 1987
to present. The different ocean analyses differ in the wind fields used to produce
them: perturbations representative of the perceived uncertainty in the wind stress
have been added to the ECMWF wind stress.

Patterns of wind stress perturbations were constructed from differences be-
tween interannual monthly anomalies of the ERA-15 reanalysis and Southampton
Oceanography Centre (SOC) monthly mean wind stresses (Josey et al., 2002), for
the period 1980-1997. These differences between two state-of-the-art estimations
of wind stress using observations must be representative of the typical uncertain-
ties on the knowledge of the wind stress field. Only the low frequency uncertainty
in the wind is important so monthly means are adequate for our purposes. The
wind stress perturbations are stratified by calendar month. By linearly interpo-
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lating two randomly picked wind stress patterns representative of consecutive
months (the full pattern being applied to the middle of each month), daily per-
turbations can be obtained. These are then used to randomly perturb the daily
wind stress that forces the ocean model.

The ocean analysis system consists of an ensemble of five independent ocean
analyses, making use of the wind perturbations described above. Member 0 has
no wind perturbations applied, members 1 and 2 have the same patterns but
of opposite sign, and likewise for members 3 and 4. This method of ensemble
generation means that the ensemble-mean winds are not biased relative to the
unperturbed member: only a spread is introduced.

The set of ocean analyses is augmented with SST perturbations to create
an ensemble of ocean initial conditions to use in the coupled forecasts. We do
this in a smilar way to what we did with wind stress: we estimate SST patterns
that should be representative of the typical errors in SST products. One set of
perturbation patterns has been constructed by taking the difference between 2
different weekly-mean SST analyses (Reynolds OI and Reynolds 2DVAR) from
1985 to 1999 (Reynolds et al., 2002). A second set of SST perturbations has been
constructed by taking the difference between Reynolds 2DVAR SSTs and its 1-
week persistence. The first set of SST perturbations samples the uncertainties in
the SST analysis, whereas the second difference samples the uncertainties due to
the fact that the SSTs from NCEP are a weekly-mean product. For each starting
date, 2 combinations from these 2 different sets of perturbations are randomly
selected and are added to the SSTs produced by the operational ocean analyses
with a + and — sign, creating 4 perturbed initial states. The perturbation has
full value at the surface but is ramped down to zero at 40m depth. The SST
perturbations are not present during the analysis phase, but are added to the
initial conditions at the start of a forecast.

Since a burst mode is used for ensemble generation rather than the lagged-
average approach, all ensemble members start on the same day. To sample well
the effect of different atmospheric forcing on the SST, we need to ensure that
the different ensemble members follow a different sequence of synoptic variability
after a few days. One way of doing this is to use the so-called ‘stochastic physics’
(Buizza et al., 1999). The use of stochastic physics is also to represent uncertain-
ties in the parameterisation of subgridscale processes. These parameterisations
are meant to represent the average effect of subgrid scale processes on the large-
scale flow, but there is also a random component to this effect (e.g., for the same
value of the average cloud cover in one model cell, there are many possible vertical
and horizontal distributions of the clouds, and thus a range of radiative forcing
of the flow). This kind of stochastic forcing is an attempt to take into account
these uncertainties in the physical parameterisations by randomly perturbing the
atmospheric parameterised physical tendencies at each time step of the model



integration. This introduces a random component in the atmosphere which re-
sults in a divergence of synoptic systems in the early range of the forecast. This
approach is used in the ECMWF medium range weather ensemble prediction sys-
tem (Buizza et al., 1999). For further details of the ensemble generation strategy
see (Vialard et al., 2003)

The above strategy of creating the ensemble makes it possible to start all
forecasts from the 1st of the month. The calibration period is 1987 to 2001 when 5
forecasts, with ocean initial conditions taken from each of the ocean analyses, are
made for each month for each year. In May and November these are augmented
to 41 by also perturbing SST. The actual forecasts consist of 40 members created
for the first of each month, available in real time around the 15th of the month.
For further description of S1 and S2, including an assessment of their different
characteristics see Anderson et al. (2003).

2.2 The statistical models

A set of simple statistical seasonal forecast models, denoted by STAT, has been
developed for comparison with S1 and S2. They were constructed on the basis
of observations in the period 1901-1986. The predictors are the persistence and
the time series E;(t) of the first few EOFs of SST in the Kaplan reconstruction
(Kaplan et al., 1998). The first EOF describes the main mode of ENSO, the
second one has a low-frequency times series and describes the decadal ENSO
variability (Zhang et al., 1997). The predictands are fields of SST (Kaplan et al.,
1998), T2m (HadCRUT, Jones, 1994; Parker et al., 1994; Jones et al., 1997), SLP
(Basnett and Parker, 1997) and precipitation (Hulme et al., 1998). At analysis
time ¢, the forecast for quantity X at forecast time ¢; is simply

X(tf) :p(mfvma)X(ta) +Zai(mf7ma)Ei(ta) (1)

=1

where p(my, m,) represents the effect of persistence from calendar month m, to
month m and a;(my, m,) the past effect of EOF i of SST on X, also dependent
on the seasonal cycle and lead time.

The model parameters p(mys, m,) describing the effect of persistence are
obtained from a linear fit to the observations over 1901-1986. The parameters are
set to zero at grid points where the fit is not significant at the 2.5% level (one-sided
t-test). Next the effect of persistence is subtracted from the observations, and the
parameters a;(my, m,) describing the effect of EOF i are fitted to the resulting
fields. For these parameters we demand a (two-sided) significance of 5% /N. The
number N of EOFs that are taken into account was estimated subjectively by
watching from which EOF onwards the teleconnections a; start to consist of noise
far away from the places where the EOF pattern has large amplitudes, again only
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predictand predictors
variable | dataset resolution m | p N
SST Kaplan 5 x 5° 1,3 | p 20
T2m HadCRUT 5 x 5° 1,3 |p 1
SLP UKMO 5 x b° 13| p 5
prep Hulme 3.75x2.5° 1234 - 2

Table 1: The parameters of the statistical seasonal forecast model STAT. Persis-
tence is indicated by p, the number of EOFs used by N, the number of months
in a season by m. Precipitation models have also been constructed for 2- and
4-month seasons as these often correspond to local wet or dry seasons. After 1994
SLP persistence was taken from the NCEP/NCAR reanalysis.

looking at data prior to 1986. This way, the risk of overfitting is decreased at the
expense of reduced skill due to precursors that are not included.

Separate forecast models were made for multi-month seasons instead of
summing the monthly forecasts. Both predictor and predictand are summed over
the same number of months. The lead time in this case is the number of months
between the last month of the predictor season and the first month of the predic-
tand season. The model parameters are given in Table 1. The statistical models
are available from the authors.

In the case of forecasts of Nino indices, the forecasts were also compared to
a simple damped persistence model CLIPER, which corresponds to the statistical
model described above with N = 0 and the same Nino index for both predictor
and predictand. It is trained on all data up to and including the analysis date.

Finally, we considered a set of proven, more elaborate, statistical models
which include multivariate predictors. The first is the ENSO-CLIPER model of
Landsea and Knaff (2000), which was downloaded from their web site. Although
they discuss results from other regions in their paper, the model is only made
available for 3-month averaged Ninod index forecasts. It is trained on data from
1954 to 1994, so the training period has some overlap with the verification pe-
riod 1987-2001. As indicated before, the STAT and CLIPER model are totally
independent of the verification period.

Also included are the Markov model by Xue et al. (2000) and Constructed
Analogue (CA) model by van den Dool (1994); van den Dool and Barnston (1994),
which are in operational use at the National Centers for Environmental Predic-
tion, USA. The Markov model projects sea level, SST and zonal wind in the trop-
ical Pacific on three combined EOFs, and describes their evolution by monthly
3 x 3 matrices fitted over 1980-1995. The CA model fits the observed global SST
evolution over the last year as a weighted sum of the years 1956-2001 with posi-
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tive and negative weights. Its forecast is the same sum of the observed evolution
of these years. The monthly values have been reconstructed from the seasonal
forecasts. The forecasts from these two models is available on the 5-8th of the
month, earlier than the GCM forecasts. The hindcasts are cross-validated, i.e.,
for each year a model is constructed on a training period that leaves out that
year.

3  Skill in the prediction of ENSO indices

One of the most important tests of any coupled model is to see how well it predicts
El Nino and how the skill compares with that of the various statistical models.
Widely-used indicators of ENSO conditions are the SST indices for certain regions
in the equatorial Pacific. The Ninio3 and Nino3.4 indices are created by averaging
SST anomalies over the boxes 5°S-5°N, 150°-90°W and 5°S-5°N, 170°-120°W
respectively.

The predictions for S1 and S2 are shown for leads of +1, 43 and +5 months
in Figs 1a and 1b. The observed SST is also plotted. For comparison, results from
the operational statistical Markov and CA models are shown in Figs 1c and 1d.
Hindcasts from the simple STAT model are shown in Fig. le.

Fig. 1 shows that the 1997 warm event and the following extended cold
period were successfully forecast by both the ECMWF models, though S2 un-
derestimated the strength of the warm event. The hindcasts from both coupled
models underestimated the 1987 event, possibly due to errors in the ocean initial
conditions. The 1988 La Nina was captured. The simple statistical models do not
capture the onset of the El Nino and La Nina events. The more sophisticated
statistical models have intermediate properties. For instance the CA model fails
to capture the onset of El Nino several times, but correctly predicts the following
La Nina.

To quantify the performance of the various models, the anomaly correlations
for the +1, +3 and +5 month forecasts over the 15 years are given in Table 2. The
errors denote the 95% confidence interval computed with a standard bootstrap
resampling method (Efron and Tibshirani, 1998) on the correlations in which
800 time series of 180/n (model, observed) blocks of n months drawn from the
original set with replacement were constructed. The correlation for each of these
was calculated. The 95% confidence limit interval is the position of the 20th and
780th value of the sorted correlations. The length of the moving block n was
set equal to the decorrelation length of the forecast errors for a given lead time.
This is three months for forecasts with lead times +3 and +5, two months for
monthly forecasts with smaller lead times, and one month for statistical 3-monthly
forecasts at +0. The dynamical 3-monthly 40 forecasts have a decorrelation time
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Figure 1: The observed values of the Nifno3 index compared with the a) S1, b)
S2, ¢) Markov, d) CA and e) STAT model forecasts at +1, +3 and +5 months.



of 5 months. The error decorrelation is much faster than the decorrelation of
ENSO indices.

Confidence limits are included since it is important to be able to judge the
difference between the correlation coefficients of the different models against a
measure of the uncertainty in these correlation coefficients due to the limited
sample sizes. If all the skill were due to just one very big and successful forecast,
and the other forecasts were small and unsuccessful, the correlation coefficient
could be large, but the uncertainty would also be large since the one good forecast
could have been due to sheer luck. This is captured well by the bootstrap method.

The arbitrary verification period 1987-2001 influences the numbers in table
2. In particular, the dynamical systems predicted the 2002/03 El Nino quite well,
whereas most statistical models failed to forecast it. The inclusion of this period
would have been to the advantage of the dynamical models but this was not done.

Table 2 shows that both dynamical models are better at forecasting the
Nino3d index than all the statistical models, including the operational statistical
models. The difference is significant at 95% (with a one-sided ¢ test) for monthly
forecasts of S2 compared with all statistical models at lead +1 and +3 (probably
due to the truncation in EOFs), at lead +5 only compared with damped persis-
tence (CLIPER). In the 3-monthly forecasts the difference between S2 and the
statistical models is significant at lead 40, and at +3 with the simple CLIPER
and STAT models. At these lead times the chance that one would get a better
skill score for S2 by pure chance is less than 5%, for the other dynamical vs statis-
tical comparisons the chance is somewhat higher. In forecasting the more westerly
Nino3.4 index the skills of the statistical models are higher than in Nino3, so that
at longer lead times the CA model has comparable skill over this period to the
dynamical models.

S2 is generally better than S1. At longer leads, S2 has a problem in that
the amplitude of its ENSO variability is damped. This is an undesirable feature
related to model error, and although its impact on the correlation score is prob-
ably modest, it might be related to the lack of advantage of S2 at longer leads.
Anderson et al. (2003) give a thorough comparison S1 and S2, and explore the
issues involved in the lower amplitude of variability in S2.

A simple multi-model forecast was made by taking the average of the four
operational models: S1, S2, CA and Markov. The overall skill is close to the best.

While the seasonally-averaged skill is a useful overall indication, it is quite
likely that skill is a function of the time of year and this seasonal variability may
differ from model to model. To illustrate this and to intercompare the seasonal
dependence of the skill of the different models, we show in Fig. 2 the correlation
coefficient of the monthly and 3-monthly Nino3 indices at lead time +3 as a
function of the target season. In these figures we plot the dynamical models and
the operational statistical models, CA; MARKOYV and, for the 3-month averaging,
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monthly Nino3 3-monthly Nino3
lead | +1 +3 +5 +0 +3
S1[091%F 0.847¢ 0.7371210.93F3 0.8175;
S210.94%2 0.8775  0.767% | 0.95t2 0.847,
MARKOV | 0.87%2 0.7577) 0.63%13 | 0.8975 0.7273)
CA | 0.8373 0.767%, 0.70M, | 0.867F 0.75%%,
STAT | 0.88%3 0.75712 0.61715 | 0.8572 0.6371S
CLIPER | 0.88%5 0.7272% 0.56737 | 0.8375 0.5773%

ENSO-CLIPER 0.85% 0.737;
MULTI-MODEL | 0.9373 0.8775  0.79™%, | 0.9573 0.85%9,
monthly Nino3.4 3-monthly Nino3.4
lead | +1 +3 +5 +0 +3

S110.9372 0.8773 0.7977, [ 0.9473 0.8477,

S21 09575 0.88T% 0.779, | 0.96%2 0.8476,

MARKOV | 0.91%% 0.817% 0.73%), | 0.9173 0.7873

CA | 09173 0.86%2 0.7877, | 0.9372 0.8473

STAT | 0.9172 0.79™%, 0.65712 | 0.8873 0.677}2
CLIPER | 0.91F2 0.771); 0.61745 | 0.8772 0.631}3
ENSO-CLIPER 0.90%% 0.817¢
MULTI-MODEL | 0.96%} 0.9072 0.84%%, | 0.961 0.88™3

Table 2: Anomaly correlation coefficients of the S1 and S2 forecasts of monthly
and 3-monthly Nifiod and Nino3.4 compared with MARKOV, CA, STAT,
CLIPER, and ENSO-CLIPER models. MULTI-MODEL denotes a simple av-
erage of the operational models S1, S2, CA and MARKOV. Results from the
multivariate ENSO-CLIPER model are only available for a lead time of +0 and
+3 months and for 3-month averages. 0.917 denotes that the 95% confidence
interval is 0.86 to 0.94, this interval has been computed with a bootstrap method
with moving block lengths equal to the forecast error decorrelation length.
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Figure 2: The skill in predicting the a) monthly and b) 3-monthly Nino3 index
at a lead time of +3 months.
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Figure 3: The skill in predicting the a) monthly and b) 3-monthly Nino3.4 index
at a lead time of +3 months.
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the ENSO-CLIPER (this is the only range for which results are available).

Two things stand-out immediately in these figures. All the statistical models
have a marked seasonality in skill, which is much less evident in the dynamical
models. The simple statistical models show the spring persistence barrier as the
very low predictability of Jun—Aug Nino3 (Webster, 1995; Balmaseda et al., 1995);
for the SOI this was already noted by Walker (1924). The CLIPER three-month
forecast has skill of less than zero for the June prediction from March, and the
skill is even below 0.2 in forecasting June from May (not shown). The MARKOV,
STAT and CA models also have a strong seasonality in skill, though not as marked
as CLIPER. However, the predictions from the statistical models are good for
the winter months and CLIPER, the worst for boreal summer, is better than
CA and MARKOV and ranks with the best for winter forecasts (Fig. 2a). The
other, perhaps surprising feature is that the ‘spring predictability barrier’ does
not occur at the same time in the different statistical models: the minimum is in
June for CLIPER, MARKOV and STAT but in May for CA.

Similar comments apply to Fig. 2b showing 3-monthly forecasts, except
that one can now include the ENSO-CLIPER model. This has poor performance
in AMJ whereas the other statistical models have poor performance in JJA. The
variability in skill from one start date to the next shown by ENSO-CLIPER is
surely an undesirable feature. Whether this indicates some over-fitting of the
model parameters has not been determined.

Although the NINO3 region has been widely used as an indicator for ENSO,
there was a move in the 90’s to introduce another region Nino3.4 (Barnston et al.,
1997). This was motivated in part by the perception that forecasts were more
skillful for this region. We show the results for the various models for Nino3.4 in
Fig 3. This should be compared with Fig. 2. As expected, almost all models are
more skillful in Nino3.4 than in Nino3, but this especially true for the CA, which
over this period is comparable to the dynamical systems in 3-monthly forecasts.
The seasonality of the ENSO-CLIPER model is reduced in Nino3.4 but it is still
different to that of the other statistical models.

The relatively small seasonality in the skill of the dynamical models is prob-
ably in part due to the assimilation and propagation of subsurface oceanic infor-
mation: a Kelvin wave takes about two months to cross the Pacific Ocean, and
slower oceanic processes give some skill beyond that time. A statistical model us-
ing subsurface information also has better skill in crossing the spring barrier than
the simple SST-based statistical models such as STAT and CLIPER (Balmaseda
et al., 1994, 1995; Xue et al., 2000; McPhaden, 2003). Subsurface observations are
not used as predictors in STAT because of the poor quality before the TAO array
was deployed in the early 1990s. The CA model captures some of this information
by fitting to the SST evolution of the past year.

A multi-model average could combine the strong points of the dynamical
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Figure 4: The skill in predicting the a) monthly and b) 3-monthly Nino3, and c)
monthly and d) 3-monthly Nifio3.4 indices at a lead time of +3 months.

and statistical models. The seasonality of the correlation coefficient for the multi-
model and S2 is shown in Fig. 4 for the Nino3 and Nino3.4 indices; this can be
compared with Figs 2 and 3. Panels a) and b) show that S2 is quite hard to beat
for the Nino3 region, as the statistical models have less skill there. Panel ¢) shows
that the multi-model and S2 are pretty much equivalent. Panel d) shows that for
3-monthly forecasts the multi-model has less seasonality in skill than S2, clearly
beating S2 in Nino3.4 at this lead time.

4 Conclusions

We have compared the skill of the ECMWF seasonal forecast models over 1987—
2001 starts to that of a set of statistical forecast models in predicting ENSO. The
anomaly correlation coefficient is used as the skill measure, since it is not affected
by the biases in the mean state and amplitude of the variability. In this article
the first-order forecast, the ensemble mean, is used.
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The ECMWF seasonal forecast models have proven to be good El Nifio pre-
diction systems. Over 1987-2001 starts the yearly-averaged anomaly correlations
are significantly higher than those of the simple statistical models considered, and
higher than those of operational statistical models. However, this is an average of
two very different regimes. The skill of the dynamical models is higher than the
skill of the statistical models during the spring barrier: the onset of El Nino or La
Nina is forecast better. In fact, S1 predicted the start and amplitude of the 1997-
98 event very well most of the time, in real forecast mode, although the model
still underestimated the explosive growth during spring 1997. S2 is more damped
than S1, but has higher correlation scores. However, once an El Nino event is
established in boreal summer, statistical forecasts are already quite good, and
model errors prevent the GCMs giving a better forecast than the statistical ones,
especially at longer lead times.

Of course, the opposition of dynamical and statistical methods in seasonal
forecasting is a false antithesis. While a purely statistical /empirical approach
is feasible, despite its limitations, a dynamical model-based forecast needs cal-
ibration and interpretation. Further, the move towards multi-model forecasting
provides a context for combining the better aspects of both statistical and dy-
namical models to produce more accurate and reliable forecasts than either class
of model alone. A simple multi-model forecast is the average of the four opera-
tional models: S1, S2, CA and Markov. The skill scores are indeed the highest,
though not convincingly better than S2. More sophisticated methods to combine
forecast models with different characteristics would probably yield even better
results.
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