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ABSTRACT

The authors report on the development of an efficient and accurate tool for computing Lagrangian trajectories
using time-varying velocities. By linearly interpolating the velocities both in space and time one can obtain
analytical expressions for the trajectory inside each model grid box. In combination with a numerical deter-
mination of the transit times through each grid box, these expressions allow for the implementation of expedient
algorithms for offline analyses of large datasets resulting from general circulation models. The authors dem-
onstrate the efficacy of this approach on a time-varying two-dimensional model gyre.

1. Introduction

Ocean and atmosphere general circulation models
(GCMs) can provide a huge amount of data on veloc-
ities, temperature, and other characteristics. A versatile
technique to analyse these data and derive further in-
formation is to consider Lagrangian trajectories. These
trajectories can be calculated using the three-dimen-
sional velocity fields from the GCMs and essentially
represent the streamlines of the particular model. Usu-
ally, in the case of ocean studies, water masses are dis-
tinguished in terms of temperature and salinity. Em-
ploying Lagrangian trajectories, water masses can also
be distinguished in terms of origin and/or destination
and be traced, while its characteristics are continually
changing.

Trajectories can be computed online, that is, they are
integrated in the GCM at each model time step. A con-
siderable reduction in computational effort can be ob-
tained by employing the model output after the model
integration has been finished. Trajectories are then com-
puted offline from these model outputs.

Recently, new tools for calculating and interpreting
trajectories have been developed (Döös 1995; Blanke
and Raynaud 1997). For stationary velocity fields, it
was shown by Blanke and Raynaud (1997) that the tra-
jectory inside one grid box can be given analytically,
assuming a linear interpolation of the velocities. There-
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by, the need for expensive numerical schemes was re-
laxed. An entire trajectory then consists of subsequent
analytical calculations of positions on the edges of grid
boxes. Forward and backward integrations in time are
both possible. In this way, very large quantities of tra-
jectories can be generated accurately and efficiently,
providing a powerful tool to carry out offline investi-
gations of large datasets from GCMs. In the case of
sampled time-dependent velocity fields, the above can
also be applied by assuming the velocities to be constant
over (part of ) the time-sampling interval. The season-
ality of the Pacific Equatorial Undercurrent could be
treated in this manner (Blanke and Raynaud 1997).

In addition, by assigning certain mass transports to
particular trajectories (Döös 1995; Blanke and Raynaud
1997), quantitative measurements of water mass ex-
changes between different ocean basins or sections can
be obtained. For a proper analysis, one generally needs
tens of thousand trajectories, which would be impossible
to do online in the case of high-resolution GCMs. Within
this approach a specific water mass is represented by a
large ensemble of smaller water parcels, each repre-
senting in an averaged sense a collection of water mol-
ecules. Temperature and salinity budgets along trajec-
tories can be computed in order to assess water mass
transformations (Drijfhout et al. 1996). Convection can
be taken into account by assigning a water parcel a
random depth whenever it enters a convectively unstable
water column (Döös 1995; Drijfhout et al. 1996). Like
the velocities used to calculate the trajectories, these
convection events also follow from the ocean GCM.

Here, we develop an extension to the approach fol-
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FIG. 1. Illustration of a trajectory [x(t), y(t)] through one grid box.
The model velocities are defined at the corners of the box.

lowed by Döös (1995) and Blanke and Raynaud (1997).
A method to calculate Lagrangian trajectories from a
sampled set of time-varying velocity fields is presented.
By simultaneously interpolating linearly in space and
time, it is possible to derive analytical solutions for the
trajectory inside a grid box. The solutions are such that
the transit time through a single grid box must now be
determined numerically. The accuracy and efficiency of
our method is demonstrated by applying it to a time-
dependent two-dimensional model gyre. Hence, pow-
erful algorithms can indeed be devised to calculate tra-
jectories from time-dependent velocity fields.

We start by discussing the case of stationary velocity
fields in section 2. The general outline of a trajectory
calculation is described. In the next section, we show
how to treat the case of time-varying velocity fields.
First, the analytical solutions pertaining to linear ve-
locity interpolations in space and time are given. This
is followed by a description how to utilize the exact
results in order to calculate numerically the appropriate
transit time through a single grid box. Finally, our meth-
od is illustrated in section 4 by calculating trajectories
using the velocity fields from a particular time-varying
two-dimensional model gyre. By comparing analytical
and numerical trajectories, we investigate the magnitude
and behavior of the errors introduced by using the ap-
proximation of interpolating velocities linearly in space
and time. We also consider some comparisons with Run-
ge–Kutta integration schemes.

2. Stationary velocity fields

We first discuss the case when the velocity fields do
not depend on time (Döös 1995; Blanke and Raynaud
1997). An example of such a case is an annual-mean
dataset. Velocities are considered to be known on the
corners of the grid boxes (‘‘B’’ grid) of the particular
model. From these velocities, volume transports are de-
rived. The volume transport through the eastern wall of
the ijk grid box is given by

1
U 5 (u 1 u )DyDz , (1)i, j,k i, j,k i, j21,k k2

in which i, j, k denote the discretized longitude, latitude,
and depth, respectively; u is the zonal velocity; and
DyDzk defines the meridional–vertical area. Meridional
transports are defined analogously, while vertical trans-
ports simply follow from the nondivergency of the ve-
locities.

Inside a grid box (see, e.g., Fig. 1), volume transports
are obtained by interpolating linearly between the values
of the opposite walls. For the zonal direction, for ex-
ample, using Fi 5 Ui,j,k and r 5 x/Dx, one obtains

F(r) 5 F 1 (r 2 r )(F 2 F ).i21 i21 i i21 (2)

Local transport and position are related by F 5 dr/ds,
where the scaled time variable s 5 t/(DxDyDzk) the
denominator being the volume of the particular grid box.

The approximation (2) can now be written in terms of
the following differential equation:

dr
1 br 1 d 5 0, (3)

ds

with b 5 Fi21 2 Fi and d 5 2Fi21 2 bri21. Using the
initial condition r(s0) 5 r0, the zonal displacement of
the trajectory inside the considered grid box can be
solved analytically and is given by

d d
2b(s2s )0r(s) 5 r 1 e 2 . (4)01 2b b

The time s1 when the trajectory reaches a zonal wall
can be determined explicitly:

1 r 1 d /b1s 5 s 2 log , (5)1 0 [ ]b r 1 d /b0

where r1 5 r(s1) is given by either ri21 or ri. With the
use of (2), the logarithmic factor can be expressed as
log[F(r1)/F(r0)]. For a trajectory reaching the wall r 5
ri, for instance, the transport F(r1) must necessarily be
positive, so in order for Eq. (5) to have a solution, the
transport F(r0) must then be positive also. If this is not
the case, then the trajectory either reaches the other wall
at ri21 or the signs of the transports are such that there
is a zero zonal transport somewhere inside the grid box
that is reached exponentially slow.

For the meridional and vertical directions, a similar
calculation of s1 is performed determining the meridi-
onal and vertical displacements of the trajectory, re-
spectively, inside the considered grid box. The smallest
transit time s1 2 s0 and the corresponding r1 denote at
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which wall of the grid box the trajectory will exit and
move into the adjacent one. The exact displacements in
the other two directions are then computed using the
smallest s1 in the corresponding expressions (4). The
entire procedure is then repeated for as long as is de-
sired. The above considerations can easily be translated
into an efficient numerical algorithm.

Note that interpolations different from Eq. (2) are
possible. For example, in a two-dimensional formula-
tion in which the velocities are defined at the grid box
corners, the zonal velocity u(x, y) within the ij grid box
can also be given by

u(x, y) 5 a 1 a (x 2 x ) 1 a (y 2 y )0 1 i21 2 i21

1 a (x 2 x )(y 2 y ), (6)3 i21 i21

where the four coefficients {a0, a1, a2, a3} can be ex-
pressed in terms of the four velocities {ui21, j21, ui, j21 ,
ui21, j, ui, j}. The last two terms in (6) represent the linear
y dependence of the zonal velocity within that grid box
and may be of importance in the case of strongly curved
streamlines. This Lagrange interpolation in space is cor-
rect up to linear order in Dx and Dy. This is also true
for the approximation (2), albeit the second-order error
may be larger compared to the one corresponding with
the use of Eq. (6). To increase the order of accuracy,
one should include in the interpolation scheme velocities
that lie outside the ij grid box. The differential equations
that correspond with the interpolation (6) are coupled
and nonlinear. It seems impossible to give a general
analytical solution for this case. One could optionally
drop the nonlinear terms. We continue, however, to
make use of (2), since it allows for straightforward,
independent analytical solutions in the stationary case
and provides an adequate framework to treat time-de-
pendent fields.

3. Time-dependent velocity fields

a. Analytical solutions

The approach presented in the previous section can
be extended to the case of time-varying velocity fields.
Given a set of velocities {vn} for each model point,
where n represents a discretized time, a linear interpo-
lation of transports in space as well as in time leads to

F(r, s) 5 F 1 (r 2 r )(F 2 F )i21,n21 i21 i,n21 i21,n21

s 2 sn211
Ds

3 [F 2 F 1 (r 2 r )i21,n i21,n21 i21

3 (F 2 F 2 F 1 F )], (7)i,n i21,n i,n21 i21,n21

where, as before, r and s are scaled space and time
variables, respectively; Ds 5 sn 2 sn21; and i signifies
either a longitudinal, meridional, or vertical direction.
Connecting the local transport to the time derivative of
the position, we get the differential equation

dr
1 ars 1 br 1 gs 1 d 5 0, (8)

ds

where the coefficients are defined by

1
a 5 2 (F 2 F 2 F 1 F ), (9)i,n i21,n i,n21 i21,n21Ds

b 5 F 2 F 2 as , (10)i21,n21 i,n21 n21

1
g 5 2 (F 2 F ) 2 ar , (11)i21,n i21,n21 i21Ds

d 5 2F 1 r (F 2 F ) 2 gs . (12)i21,n21 i21 i,n21 i21,n21 n21

Analytical solutions can be obtained for the following
three cases: a . 0, a , 0, and a 5 0. Note that inside
the grid box, the acceleration, d2r/ds2 5 2ar 2 g,
consists of a constant and an r-dependent term propor-
tional to a. For a . 0, the latter term implies a varying
deceleration across the grid box. If a . 0, we define
the timelike variable and getj 5 (b 1 as)/Ï2a

g g2 2j 2j0r(s) 5 r 1 e 201 2a a

bg 2 ad 2 2 2j 2j01 [D(j) 2 e D(j )], (13)0!a a

using Dawson’s integral D(j ) 5 exp(2j 2) j 2# exp(x ) dx0

and the initial condition r(s0) 5 r0. Substituting a , 0, j
becomes imaginary. By defining z 5 ij 5 (b 1 as)/

, Eq. (13) can be re-expressed asÏ22a

g g2 2z 2z0r(s) 5 r 1 e 201 2a a

bg 2 ad p 2z2 e [erf(z) 2 erf(z )], (14)0!a 22a

where . The case a 5z 2erf(z) 5 (2/Ïp) # exp(2x ) dx0

0 will occur occasionally in practice. Its corresponding
solution of (8) reads

d d
2b(s2s )0r(s) 5 r 1 e 201 2b b

g
2b(s2s )01 [1 2 bs 1 (bs 2 1)e ]. (15)02b

Compare this with the solution (4) for time-independent
velocity fields.

A major difference compared to the time-independent
case is that now the transit times s1 2 s0 cannot in
general be obtained explicitly. Using the solutions (13)–
(15), the relevant root s1 of

r(s ) 2 r 5 0,1 1 (16)

has to be computed numerically for each direction. In
the following subsection, we describe how the roots s1
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FIG. 2. Example of trajectory r(s) exhibiting two extrema (zero-
transport points) inside the relevant rs ‘‘box.’’ Regions with positive
and negative transports are shown. Extrema for trajectories with dif-
fering initial conditions must lie on the hyperbola (dotted curves).

and the corresponding exiting wall r1 can be determined.
The displacement of the trajectory inside the considered
grid box then proceeds as discussed previously for sta-
tionary velocity fields.

b. Determination of s1 and r1

Here we consider how to determine the roots s1 of
(16) and the corresponding r1 needed to compute tra-
jectories inside a grid box. In the following, sn21 # s0

, sn and the relevant roots s1 are to obey s0 , s1 # sn.
We also focus on the cases a . 0 and a , 0, since the
considerations below can easily be adapted for a 5 0.
For numerical purposes, we use

bg 2 ad F F 2 F Fi21,n21 i,n i,n21 i21,n5 , (17)
a F 2 F 2 F 1 Fi,n i21,n i,n21 i21,n21

g F 2 Fi21,n i21,n215
a F 2 F 2 F 1 Fi,n i21,n i,n21 i21,n21

2 r , (18)i21

F 2 F 1 a(s 2 s )i21,n21 i,n21 n21j 5 , (19)
Ï2a

and similarly for z.
The coefficient (17) appearing in the solutions (13)

and (14) is exactly zero when either the ri21 or ri21 wall
represents land, the transports Fi21 or Fi being zero for
all n, respectively. In these instances, the opposite wall
fixes r1, and the root s1 . s0 can then be computed
analytically. If there is no solution, we take s1 5 sn.
When all three transit times equal sn, the trajectory will
not move into an adjacent grid box but will remain
inside the original one. Its new position is subsequently
computed, and the next time interval is considered.

If (bg 2 ad)/a ± 0, the computation of the roots of
Eq. (16) can only be done numerically. This is also true
for locating the extrema of the solutions (13) and (14).
Alternatively, one can consider F(r, s) 5 0 using Eq.
(7) to analyze where possible extrema are located. It
follows that in the sr plane, extrema lie on a hyperbola
of the form r 5 (as 1 b)/(c 1 ds). Of course, only the
parts defined by sn21 # s # sn and ri21 # r # ri are
relevant. Depending on which parts of the hyperbola,
if any, lie in this ‘‘box’’ and on the initial condition
r(s0) 5 r0, the trajectory r(s) exhibits none, one, or at
most two extrema. In the latter case, the trajectory will
not cross either the wall at ri21 or the one at ri (see Fig.
2 for an example). Hence, those trajectories r(s) deter-
mining the transit time s1 2 s0 will have at most one
extremum, that is, there is at most one change of sign
in the local transport F.

An efficient way to proceed then is as follows. First,
consider the wall at ri. For a trajectory to reach this
wall, the local transport must be nonnegative, which
depends on the signs of the transports Fi,n21 and Fi,n.
Four distinct configurations may arise: A) F(ri, s) . 0

for sn21 , s , sn, B) sign of F(ri, s) changes from
positive to negative at s 5 s̃ , sn, C) sign of F(ri, s)
changes from negative to positive at s 5 ŝ , sn, D)
F(ri, s) , 0 for sn21 , s , sn.

For case A, evaluate r(sn) using the appropriate an-
alytical solution. If r(sn) $ ri, the trajectory has crossed
the grid-box wall for s1 # sn. If the initial transport
F(r0, s0) , 0, the trajectory may have crossed the op-
posite wall at an earlier time. The latter is only possible
if case C applies for the wall at ri21 and ŝ . s0, in which
case one checks whether r(ŝ) # ri21. If this is not so,
then there is a solution to r(s1) 2 r1 5 0 for r1 5 ri

and s0 , s1 # sn. Subsequently, this root can be cal-
culated numerically using a root-solving algorithm. On
the other hand, if r(sn) , ri or, if applicable, r(ŝ) # ri21

continue with considering the other wall. The arguments
for the wall at ri21 are similar to those relating to ri.

If case B applies and s0 , s̃, follow the considerations
given for case A using s̃ instead of sn. If there is a root
for r1 5 ri, then s0 , s1 # s̃. For case C, follow the
considerations given for case A. If there is a root for r1

5 ri, then ŝ , s1 # sn. For case D, no solution of (16)
is possible for r1 5 ri. Turn attention to the other wall.

All these considerations, to be applied to each direc-
tion, can be programmed and implemented quite
straightforwardly.

4. Application to a two-dimensional gyre

In this section, we present results of Lagrangian tra-
jectory calculations using velocity fields describing a
time-varying two-dimensional gyre. Employing a model
that allows analytical solutions for the trajectories gives
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TABLE 1. Characteristics of trajectories studied. The amplitude a, period Ta, and mean flow strength Cmean are given, respectively. The
maximum and/or minimal values of the flow strength are Cmean 3 [1 6 l]. Typical amplitude deviations |Da(t)/a| and rms values at t 5 200
yr are also shown (see Figs. 5 and 6).

Amplitude
a/Dx

Period
Ta (years)

Mean flow
Cmean (Sv m21)

Typical
|Da(t)|/a

rms at
t 5 200 yr

9.5
19.5
29.5
39.5

12.5
13.3
14.6
16.8

0.49
0.46
0.42
0.37

14 3 1024

33 3 1025

14 3 1025

8 3 1025

0.391
0.095
0.037
0.011

the possibility to test and demonstrate the usefulness of
the tools developed in section 3.

The stream function C, defining the gyre, is given by

1
2 2˜C(x, y, t) 5 C (t) exp 2 [(x 2 x ) 1 (y 2 y ) ] ,l 0 025 62L

(20)

where (x0, y0) is the stationary center of the gyre and
L its size. The explicit time dependence is described by
the prefactor

2p t˜ ˜C (t) 5 C 1 1 l cos . (21)l 0 1 2[ ]t0

The term C defines circular flows with strengths ex-
hibiting a Gaussian dependence on the distance from
the gyre center. In addition, these strengths have a si-
nusoidal time dependence with a period t0. If | l | is
larger than unity, the flows also reverse direction pe-
riodically. The time-varying horizontal velocities or
transports follow from 2dC/dy and dC/dx. Note that
these transports depend both on x and y in contrast to
the ones derived from C } [(x 2 x0)2 1 (y 2 y0)2]. In
the latter case, a 5 0 and b 5 0 for each grid box and
direction. The gyre [(20)] obviously allows for a more
extensive test of our implemented algorithm.

The trajectories x(t) 5 [x(t), y(t)] can be found an-
alytically by employing dx/dt 5 v and read

2p t
x(t) 5 x 1 a sin 1 f (t) , (22)0 l[ ]Ta

2p t
y(t) 5 y 2 a cos 1 f (t) , (23)0 l[ ]Ta

where the time-dependent phase factor fl with T0 5
Ta50 has the form

lt 2p t0f (t) 5 f 1 sin . (24)l 0 1 2T t0 0

The initial conditions determine the phase constant f0

and the amplitude a. For a stationary gyre (l 5 0), the
trajectories describe a periodic circular orbit around the
center of the gyre with a period Ta given by

2 22pL a
T 5 exp . (25)a 2˜ 1 2|C | 2L0

In the case of a time-varying gyre, the trajectories follow
the instantaneous velocity and move on a circle with a
fixed amplitude, resulting in a nontrivial time-dependent
phase behavior of x(t).

We implemented the gyre [(20)] on a grid having a
1008 3 1008 flat geometry with a 18 3 18 horizontal
resolution and consisting of one vertical layer. The fol-
lowing grid-box dimensions are set: Dx 5 Dy 5 111.18
km. The gyre characteristics are C0 5 20.5 Sv m21 (1
Sverdrup 5 106 m3 s21), L 5 50Dx and t0 5 1 yr. The
typical long timescale ø T0 of the circulation is of the
order of 12 to 13 yr. The center of the gyre is at 508
latitude and 508 longitude. We have studied trajectories
with initial conditions such that f0 5 0 and a/Dx 5
9.5, 19.5, 29.5, and 39.5, respectively. See also Table
1. Lagrangian trajectories using these initial conditions
and fields derived from (20) were calculated and com-
pared with the theoretical solutions. The time depen-
dency of the periodic fields was sampled at times tn 5
nt0/N (n 5 0, . . . , N21). Unless stated otherwise, N
5 16. (Results obtained below do not essentially change
when employing instead a set of sampled fields that are
averages over time intervals of t0/N.)

The roots of Eq. (16) are computed numerically using
the well-known Newton–Raphson method. Near the
root, this method approximately doubles the number of
significant digits with each iteration step. Writing f (z)
5 r(z) 2 r1 and choosing a starting value z1, one em-
ploys

21
df (z )lz 5 z 2 f (z ) . (26)l11 l l [ ]dz

To ensure convergence for all possible starting values,
we use a type of bisection technique whenever the com-
puted iteration value falls outside a time interval brack-
eting the root. The same is done when large values of
f (zl) are obtained due to the exponential nature of the
solutions (13)–(15). Convergence is achieved when
| zl11 2 zl | , «(zl11 2 s0) giving s1 5 zl11, while the
parameter « controls the relative error in the computed
transit time s1 2 s0. Generally, the resulting relative
errors are on average one order of magnitude smaller
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FIG. 3. Computed trajectories [x(t), y(t)] for l 5 3.4 and the four
values of a employed. The trajectories are drawn from t 5 0 to t 5
200 yr. The contour lines of the stream function [(20)] are also cir-
cular. The trajectories remain circular for both the time-independent
(l 5 0) and time-dependent (l ± 0) case, although the motion on
the circle is markedly different (see, e.g., Fig. 4).

than the control parameter. Unless stated otherwise, «
5 1027.

Computed trajectories (x, y) from t 5 0 to t 5 200
years are shown in Fig. 3 for l 5 3.4. It is seen that
the computed trajectories remain on a circle with am-
pitude a. The meridional position y as a function of time
is presented in Fig. 4 for l 5 3.4. Both the analytical
and numerically computed values are given. A slow
oscillation, described by the period Ta and amplitude a,
is superimposed with yearly oscillations. These become
larger for larger l. The computed trajectories do not
differ from the exact ones for short times, indicating
that the time-sampling interval Dt of about three weeks
is very adequate for obtaining convergency. For much
larger Dt, deviations at the subyearly scale start to ap-
pear, which are larger in the case of the smaller ampli-
tudes a. These deviations are also larger upon increasing
l. At very large times, it is seen that the computed
trajectories develop varying phase differences relative
to the analytical ones. Trajectories alternatingly dephase
and rephase.

To gain some insight into the amplitude and phase
deviations of the numerical results xnum(t), we consider
the amplitude defined by a(t) 5 \xnum(t)\ and the overall
root-mean-square (rms) error defined by

rms(t) 5 \x (t) 2 x(t)\/a.num (27)

Linear interpolations in space and time imply a ‘‘local’’
error of the order of (Dx)2 and (Dt)2. As the trajectories
evolve in time, these errors either add up and/or may

(partially) compensate each other. In the former case,
errors are proportional to the number of time steps and
thus grow linearly in time. Smaller errors occur for the
trajectories having a smaller curvature (e.g., larger am-
plitude). This can already be seen in Fig. 4. Also see
the discussion on interpolating in space at the end of
section 2.

Relative amplitude deviations Da(t)/a 5 | a(t) 2 a | /
a are shown in Fig. 5 for a 5 9.5Dx and l 5 3.4. The
behavior is irregular, and the maximum values attained
do not grow as a function of time but are constant.
Typical (absolute) deviations, which are presented in
Table 1, scale as (1/a)2. This is in accordance with a
second-order ‘‘local’’ error due to the linear interpola-
tion in space. To a very good approximation, the am-
plitude is conserved, implying that trajectories follow
the instantaneous transports very well (also see Fig. 3).
When numerical trajectories are sufficiently close to the
analytical ones, amplitude deviations are independent
of the value of l, indicating that these are indeed de-
termined by the errors introduced by the linear inter-
polation in space. When reducing the accuracy with
which the roots of (16) are computed, an additional error
comes into play, and the overall deviations increase. For
« 5 0.1 e.g., | Da(t) | /a exhibits a linear time depen-
dence corresponding with a slow continuous decrease
of \xnum(t)\. Such a linear contribution, albeit with a
much smaller proportionality constant, also appears at
intermediate values of « when the number of time sam-
plings N is sufficiently lowered.

The rms errors as a function of time are presented in
Fig. 6 for l 5 3.4. The overall error displays a linear
contribution superimposed with oscillations with a pe-
riod of 1 yr. The latter are solely due to the sampling
of the time dependency of the fields. Increasing l or
decreasing N will give larger oscillations with the same
period. The magnitude of the oscillations roughly scales
with (Dt)2 or (1/N)2. On the other hand, the linear con-
tributions in Fig. 6 equal the ones when using l 5 0.
Therefore, these originate from interpolating in space,
while the oscillating contributions are due to interpo-
lations in time. The rms values at t 5 200 yr are given
in Table 1. Except for the largest amplitude, these scale
as (1/a)2. The slope of the linear contributions depends
on the initial position within the grid box. When relaxing
the time interpolation and computing the trajectories
using constant velocities over time intervals of size t0/
N, the rms errors have qualitatively the same behavior
as above. In contrast, both the slope of the linear con-
tribution and the magnitude of the superimposed oscil-
lations have increased. For the smallest and largest am-
plitude, the slope increases by 10% and 400%, respec-
tively. The oscillations are a factor of 10 larger. Thus,
applying a linear interpolation in time reduces rms errors
in this case.

Since deviations in the amplitude were shown to be
very small, the rms error is basically determined by
inaccuracies in the phase. Note that for constant am-
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FIG. 4. Meridional position y as a function of time t for l 5 3.4 and various amplitude values.
Drawn (dotted) lines are the analytical (computed) results. The slow oscillation is described by
the period Ta. From top to bottom at t 5 184 yr; a/Dx 5 9.5, 19.5, and 39.5, respectively.

plitude, maximal dephasing (5p) between computed
and analytical trajectories leads to rms 5 2. The phase
deviations are the largest for the trajectory with the
smallest amplitude (also see Fig. 4). Errors introduced
due to linear interpolations in time are seen to com-
pensate one another on average. This is due to the fact
that for (20), transports periodically increase and de-
crease while flows remain circular at all times. For other
types of flow fields, therefore, interpolations in time may
very well contribute significantly to the overall error.

The time reversibility of the numerical code was test-
ed by first integrating trajectories forward in time for a
thousand years and then integrating them backward in
time. The largest differences between initial and final
positions was of the order of 1025Dx, essentially rep-
resenting a very small phase difference. The latter
shouldn’t be too surprising, since the employed flows
are very regular, and associated trajectories will there-
fore not exhibit much chaoticity.

The average number of iterations required to solve 1
root of Eq. (16) numerically was 3 or 4, depending on
the configuration of the transports involved (see section
2b). At each time step, there isn’t necessarily always a
solution for each direction, so that the average number

of iterations per time step is lower than 6 to 8. For l
5 3.4, this number was 2.8. Compared to the case of
stationary velocities, the total computational effort in-
creased by a factor of 3. Applying our approach to the
more complex case of a three-dimensional seasonal da-
taset from the OCCAM project (Webb et al. 1997) re-
sulted in a 80% increase in CPU time and an average
number of 4.6 iterations per time step for solving the
roots.

How does our method compare with Runge–Kutta
integration techniques? Let us first point out that nu-
merically solving equations like dr/ds 5 F(r, s) gen-
erally entails two types of approximations. The time
derative must be represented such that an accurate time
integration can be performed and the transport or ve-
locity F(r, s) must be defined in terms of the sampled
data in space and time. A particular choice for the latter
will determine the subgrid description of the stream-
lines. It then remains to choose an algorithm to calculate
trajectories that accurately follow these streamlines.

A Runge–Kutta algorithm uses a fourth-order finite
difference method. For given spatial resolution Dx and
typical velocities y, the time step t must be small enough
so that displacements do not ‘‘overshoot’’ in the normal
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FIG. 5. Relative amplitude deviation Da/a as a function of time t for l 5 3.4 and a 5 9.5Dx.
Typical deviations scale as (1/a)2.

direction for curved trajectories, such as shown in Fig.
1. For trajectories near coasts particles could otherwise
end up on land. This can be avoided (Drijfhout et al.
1996; Fujio et al. 1992) at the expense of an increased
computational effort. On the other hand, for streamlines
that strongly converge on the scale of Dx particles may
then cross to another streamline and eventually end up
in a wrong region of the model. These considerations
apply to the cases of stationary velocities and time-
dependent velocities.

Employing a first-order scheme and data from an
eddy-resolving ocean model, Bönig and Cox (1988)
adaptively scaled the time step such that a gridbox is
traversed in n steps: yt 5 Dx/n. For typical trajectories,
they found that n 5 200 was adequate for their purposes.
Drijfhout et al. (1996) determined an appropriate time
step by requiring an idealized two-dimensional velocity
field that integrated circular trajectories remain un-
changed for at least 100 loops. Using a Runge–Kutta
scheme, a 58 3 58 model resolution, and a typical ve-
locity y 5 0.1 m s21, a time step of a half day (n ø
100) was obtained.

In contrast, our approach is based on analytical time-
dependent solutions. No additional code is required for

strongly converging streamlines or near land boundar-
ies. Our method is presently restricted to linear inter-
polations in space and time for representing the subgrid
velocities. As shown for the model gyre above, the com-
puted trajectories differ from the analytical ones mostly
due to the interpolation in space. We have discussed
other interpolations at the end of section 2. The imple-
mentation of these interpolations is rather straightfor-
ward for Runge–Kutta based algorithms.

To compare CPU performances, we also calculated
trajectories using Runge–Kutta schemes in which the
velocities are interpolated according to Eqs. (7) and the
extension of (6) to first order in Dt. Per time step, the
latter required 26% more computational effort compared
to the former, but the number of steps n for traversing
a grid box was about one order smaller due to being a
more accurate interpolation in space for curved stream-
lines. In the following, we discuss results for the more
efficient Runge–Kutta scheme.

To investigate the flow regime determined by the
smallest spatial scale, that is, strongly curved stream-
lines, we chose the trajectory with parameters l 5 3.4,
a 5 2.5Dx, Ta 5 20.2 days and velocity y 5 2pa/Ta

5 1 m s21 [see Eqs. (22) and (23)]. Note that due to
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FIG. 6. Root-mean-square (rms) error \Dx(t)\/a for computed trajectories as a function of time
t for l 5 3.4 and various amplitude values. From top to bottom: a/Dx 5 9.5, 19.5, 29.5, and
39.5, respectively. Errors are mainly reflected in terms of phase differences between computed
and analytical trajectories. Contributions to error: linear contribution is due to interpolation in
space; oscillations with yearly period are due to interpolation in time.

the time dependence, the magnitude of the velocity can
become smaller and larger [order of y(1 1 lTa/T0)].
For our method, the average time step to cross a grid
box is 0.44 days, with an average number of 4.6 iter-
ations per time step for solving the roots. On an SGI
workstation, the required CPU time for 1 million time
steps is 35.2 s. Applying the same criterion as used by
Drijfhout et al. (1996), we estimated t 5 0.05 days (n
ø 10) for the Runge–Kutta method. The CPU time for
n million Runge–Kutta time steps measured 36.2 s. It
should be noted that for the latter calculations, we did
not include any provisions for adapting the time step or
to prevent ‘‘overshootings’’ ending up on land. In an
application to a GCM, these should be included resulting
in a substantial increase of CPU time.

For the four trajectories above (see Table 1), the ve-
locities y 5 2pa/Ta are of the order of a few centimeters,
since the periods Ta are much larger. For our method,
the average traversal time was 10 to 16 days, which is
of the order of the sampling time interval. The appro-
priate time step t was such that also n ø 10. Thus, also
for flow regimes determined by Dt variations, compa-
rable CPU times (not taking into account previously

discussed provisions) are found for the Runge–Kutta
scheme and the method developed here.

If the latter time variations are relaxed, the time step
t can be increased. Generally, the Runge–Kutta scheme
using the first-order Lagrangian spatial interpolation is
expected to be more efficient than the presented method
in the case of stationary velocity fields with weakly to
moderately curved streamlines.

In conclusion, the numerical algorithm developed for
calculating trajectories from time-varying fields has
been shown to be both accurate and efficient.

5. Summary

We have presented a method to calculate Lagrangian
trajectories from time-varying velocity fields. A linear
interpolation in space and time allows for the derivation
of analytical expressions for the trajectory inside a mod-
el grid box. Contrary to the case of stationary fields,
the transit time through each grid box must be deter-
mined numerically. A description of how to apply and
implement the analytical results has been given.

With the use of a particular time-varying two-dimen-
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sional model gyre, we have tested our method and in-
vestigated the behavior of errors introduced by inter-
polating linearly in space and time. The errors due to
the approximation of interpolating linearly in time main-
ly average out because of the sinusoidal time depen-
dency and the gyre flows being circular. The main dif-
ference between analytical and numerically computed
trajectories can be expressed in terms of phase differ-
ences, which are dominantly determined by errors due
to the linear interpolation in space. Trajectories with a
large curvature exhibit larger phase differences. For
more general flow fields, the time-interpolation errors
will also contribute significantly to these phase devia-
tions.

We have shown that accurate and efficient algorithms
can be devised for calculating Lagrangian trajectories
that may prove useful for the offline analysis of large
datasets derived from GCMs. The present method will
now be used to trace the thermohaline conveyor belt
and other water masses in the high-resolution ocean
GCM OCCAM.
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