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ABSTRACT

Recent modeling and observational studies have indicated that the interaction of the Gulf Stream and the deep
western boundary current (DWBC) in the North Atlantic may induce low-frequency (decadal timescale) vari-
ability. To understand the origin of this low-frequency variability, a line of studies is continued here addressing
the stability and variability of the wind-driven circulation using techniques of dynamical systems theory. In an
idealized quasigeostrophic 2-layer model setup, stationary solutions of the coupled wind-driven gyres/DWBC
system are computed, using the lateral friction as control parameter. Simultaneously, their stability is assessed.
When a DWBC is absent, only oscillatory instabilities with intermonthly timescales are found. However, when
the strength of the DWBC is increased, the coupled 2-layer flow becomes susceptible to instabilities with
interannual timescales. By computing transient flows at relatively low friction, it is found that the existence of
these interannual modes induces low-frequency variability in the coupled Gulf Stream/DWBC system with a
preferred interannual timescale.

1. Introduction

Near Cape Hatteras, where the Gulf Stream leaves
the North American coast and flows eastward into the
Atlantic, it crosses the deep western boundary current
(DWBC) flowing southward at greater depths. Both ob-
servations and numerical studies suggest a strong dy-
namical interaction between the two currents, resulting
in complex behavior of the flow in this crossover region.
Richardson (1977) gave an overview of records of Gulf
Stream and deep undercurrent measurements collected
between 1961 and 1972. Estimates of the undercurrent
transport, measured over periods of typically a few
weeks, varied between 2 and 50 Sv (Sv [ 106 m3 s21),
with a mean value of 16 Sv. Hogg (1983) showed that
the deep circulation in the crossover area consists of
two components: the DWBC flowing southward along
the continent and transporting approximately 12 Sv, and
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two recirculation gyres aligned with the Gulf Stream
axis. He argued that these recirculation gyres are driven
by eddy momentum fluxes caused by Gulf Stream and
DWBC instabilities. In Pickart and Smethie (1993), it
was reported that, while the shallowest part of the
DWBC (at 500–1200 m depth) is entrained by the Gulf
Stream and follows an eastward course, the deeper wa-
ters (at 2500–3500 m) do cross underneath the Gulf
Stream and stay close to the western boundary of the
basin. Recent Lagrangian observations obtained with
RAFOS floats launched at approximately 800 and 3000
m depth support this view of the vertical splitting of the
DWBC in the crossover region (Bower and Hunt
2000a,b). From surveys conducted over the period
1991–95 a total mean DWBC transport of 19 Sv is
deduced, of which 8 Sv is carried in the upper part, and
11 Sv in the deeper part of the DWBC (Pickart and
Smethie 1998). Current meter data covering a period of
three years were analyzed by Pickart (1994). These ob-
servations indicate that on timescales shorter than a year
vacillations of the velocity of the DWBC can be attri-
buted to pulsing of the DWBC transport and to mean-
dering of the DWBC itself. On longer timescales, it
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appears that fluctuations in the DWBC are connected
to those of the Gulf Stream.

The observational record is still fairly short and,
hence, can only give limited information on the char-
acteristics of the variability on longer timescales (see
Pickart 1994). In contrast, ocean models can be applied
to study the variability of the interacting Gulf Stream
and DWBC on both shorter and longer timescales. For
example, Thompson and Schmitz (1989) and Tansley
and Marshall (2000) demonstrated the strong impact of
the DWBC on both the mean path of the Gulf Stream
and on (the variability of ) its separation point. Using a
three-layer primitive equation model of the Gulf Stream/
DWBC system, Spall (1996a,b) found pronounced low-
frequency variability. The circulation in his model com-
prised a Gulf Stream–like surface circulation and a shal-
lower and deeper DWBC, and its mean state agreed well
with the available observations (Pickart and Smethie
1993). Oscillations with a timescale of 10 years were
clearly present in the model simulations. During the
high-energy phase of such an oscillation, the DWBC in
the second layer is deflected by the Gulf Stream and
flows eastward. During the opposite phase, it is only
partly deflected and partly remains near the coast and
crosses underneath the Gulf Stream. In the upper layer,
the Gulf Stream penetrates far into the basin during the
high-energy phase, whereas its penetration scale is much
less during the low-energy phase. Since the low-fre-
quency variability was absent when there is no DWBC
in the second layer, Spall (1996b) concluded that the
decadal oscillations in his model simulations were
caused by interactions of the Gulf Stream and the upper
DWBC. He described the mechanism of the low-fre-
quency variability in terms of wave–mean flow inter-
actions.

However, as Spall (1996b) already noted, it is sur-
prising that similar high-and low-energy states and pat-
terns of low-frequency variability were found in a purely
wind-driven homogeneous model by McCalpin and
Haidvogel (1996). More recently, Berloff and Mc-
Williams (1999) and Meacham (2000) found low-fre-
quency variability in 1.5- and 2-layer models of wind-
driven double-gyre flows as well. These oscillations are
also characterized by high-and low-energy states, as-
sociated with changes in the zonal penetration scale of
the Gulf Stream. The similarities in the low-frequency
variability simulated by McCalpin and Haidvogel
(1996) and Spall (1996b) illustrate that it is difficult to
extract the responsible physical mechanism just from
the dominant spatial patterns of the variability. Recent
work by Qiu (2000) showed that large-scale interannual
changes of the Kuroshio Extension system are also char-
acterized by an oscillation between an elongated and a
contracted state. It should be noted that the seven year
TOPEX/Poseidon dataset that he analyzed is fairly short
to be able resolve these interannual timescales properly.
Nonetheless, it is noteworthy that observations indicate
that this type of low-frequency behavior, characterized

by changes in the penetration scale of the midlatitude
jet, is not only occurring in numerical simulations.

In this paper, we focus on the dynamics of the flow
in the Gulf Stream/DWBC crossover region. To under-
stand the role of the DWBC in low-frequency vari-
ability, we continue a line of studies addressing the sta-
bility and variability of wind-driven midlatitude gyres,
using techniques of dynamical systems theory (e.g.,
Jiang et al. 1995; Speich et al. 1995; Dijkstra and Kats-
man 1997; Berloff and Meacham 1998; Schmeits and
Dijkstra 2000). In most of these studies, the transition
from simple flows to complex, more realistic, flows is
investigated using the magnitude of the lateral friction
as a control parameter. At high lateral friction, stationary
flows exist with, as a limiting (linear) case, the Sver-
drup–Munk flows (Pedlosky 1987). When friction is
decreased, these stationary flows lose stability through
Hopf bifurcations, which introduce temporal variability
with a preferred timescale and pattern. It appears that
these timescales are intermonthly for purely wind-driv-
en flows modeled by 2-layer quasigeostrophic theory
(Dijkstra and Katsman 1997). At lower friction, sub-
sequent instabilities and nonlinear interactions appear
to induce low-frequency variability, as is shown in the
studies by McCalpin and Haidvogel (1996) and Berloff
and McWilliams (1999).

In this paper, we investigate how this picture of the
variability of the wind-driven gyres changes when a
DWBC is allowed to dynamically interact with the up-
per-layer flow. A priori, there seem to be several pos-
sibilities depending on whether and how the DWBC (i)
modifies the structure of stationary solutions, (ii) chang-
es the preferred timescales arising from instabilities on
these stationary solutions, and (iii) modifies the nonlin-
ear interactions in the low-friction regime. In this paper,
these issues are systematically studied within a 2-layer
quasigeostrophic model in a square basin. The upper-
layer flow is wind-driven, while the DWBC is modeled
through in- and outflow conditions in the lower layer,
which determine its volume transport. Although this set-
up seems highly idealized, for the purely wind-driven
flows the type of variability found in such a simple
model was shown to display many qualitative features
of the internal variability in cases with realistic geom-
etry and wind forcing (Dijkstra and Molemaker 1999).

In section 2, the approach and numerical model are
briefly introduced, with emphasis on the implementation
of the DWBC. The stationary solutions for the coupled
wind-driven/DWBC system are presented in section 3,
for changing values of the lateral friction coefficient.
One of the main results is that multiple equilibria dis-
appear under ‘‘realistic’’ DWBC strength: only one
branch of stationary solutions remains. Stationary so-
lutions on this unique branch are susceptible to insta-
bilities with an intermonthly to interannual timescale.
The precise changes in the bifurcation diagram and the
changes in the character of the instabilities are inves-
tigated in sections 4 and 5, respectively, by gradually
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TABLE 1. Dimensional and nondimensional parameters for the 2-layer model.

24 21f 5 1.0 3 10 s0

6L 5 1.0 3 10 m
22 21U 5 1.6 3 10 m s

3a 5 1.0 3 10t

3b 5 1.0 3 10

211 21b 5 1.6 3 10 (ms)0

3D 5 0.6 3 10 m1

3D 5 1.4 3 10 m2

2F 5 8.5 3 101

2F 5 3.5 3 102

21 22t 5 1.5 3 10 N m0

3 23r 5 1.0 3 10 kg m
22 22g9 5 2.0 3 10 m s

V 5 2.1in

21l 5 1.5 3 10

FIG. 1. Plan view of the boundary conditions in the second layer:
Vin is a control parameter defining the (dimensionless) inflow velocity
of the DWBC in the northwest of the basin, over the (dimensionless)
width l. The dimensional transport is defined as 5 VinUlLD2.* *G G2 2

increasing the strength of the DWBC from zero. In sec-
tion 6, the time-dependent behavior of the flow is an-
alyzed, both in the presence and the absence of a
DWBC, in the low friction regime. The results are sum-
marized and discussed in section 7 and lead to the con-
clusion that interaction of the Gulf Stream and the
DWBC induces a preference for variability on specific
interannual timescales.

2. Model formulation and implementation

The 2-layer quasigeostrophic model on a b plane as
used in Dijkstra and Katsman (1997) is extended here
to allow for a DWBC in the lower layer. The compu-
tational domain is a square ocean basin of horizontal
dimensions L 3 L 5 1000 km 3 1000 km and of con-
stant depth D 5 2 km. The two layers have mean thick-
nesses D1 and D2 (D 5 D1 1 D2) and densities r 1 Dr,
respectively. The quasigeostrophic vorticity equations
describing the flow are nondimensionalized using char-
acteristic horizontal and vertical length scales L and D,
a horizontal velocity scale U, a wind stress scale t0, and
a timescale L/U, and become (following Pedlosky 1987)

] ] ]
1 u 1 y [z 2 F (c 2 c ) 1 by]1 1 1 1 1 2[ ]]t ]x ]y

y x1 ]t ]t
25 ¹ z 1 a 2 (1a)1 t 1 2Re ]x ]y

2z 5 ¹ c (1b)1 1

] ] ]
1 u 1 y [z 1 F (c 2 c ) 1 by]2 2 2 2 1 2[ ]]t ]x ]y

1
25 ¹ z (1c)2Re

2z 5 ¹ c . (1d)2 2

In these equations, the streamfunction cn and vorticity
zn are used (n 5 1, 2), and (un, y n) 5 (2]cn/]y, ]cn/
]x). The applied wind stress forcing is purely zonal and
provides a double-gyre flow in the upper layer:

1
x yt (y) 5 2 cos(2py); t 5 0. (2)

2p

Dissipation is through lateral friction only, and there is
no interfacial friction between the two layers. The phys-
ical parameters in the equations are the Reynolds num-

ber Re, the planetary vorticity gradient b, the wind stress
forcing at, and the rotational Froude numbers for the
first and second layers (F1 and F2). These are given by

2UL b L t L0 0Re 5 ; b 5 ; a 5 ;t 2A U rD UH 1

2 2 2 2f L f L0 0F 5 ; F 5 , (3)1 2g9D g9D1 2

where f 0 is the Coriolis parameter, b0 is the planetary
vorticity gradient, g9 5 gDr/r is the reduced gravity,
and AH is the lateral friction coefficient. Standard pa-
rameter values used in this study are the same as in
Dijkstra and Katsman (1997), and given in Table 1.

To allow for a DWBC in the model, an inflow is
prescribed in the northwestern part of the basin, whereas
the outflow is over the full width of the southern bound-
ary. In Fig. 1, a plan view of the second layer is shown,
together with the applied boundary conditions. The in-
flow is prescribed over a dimensionless width l (l , 1),
by defining the streamfunction c2 at the northern bound-
ary as

2V x for x ∈ [0, l]inc 5 at y 5 1.2 52V l for x ∈ [l, 1]in

The (positive) parameter Vin controls the strength of the
DWBC in the northwest. The value used for l is 0.15,
corresponding to a dimensional inflow width of 150 km
for the standard model parameters. The dimensional in-
flow velocity (m s21) and the DWBC transportV* G*in 2

(m3 s21) are

V* 5 V U; G* 5 V UlLD .in in 2 in 2
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TABLE 2. Overview of the applied boundary conditions for the
2-layer model.

Upper layer North
South
East
West

free slip
free slip
no slip
no slip

c1 5 0
c1 5 0
c1 5 0
c1 5 0

z1 5 0
z1 5 0

]c1/]x 5 0
]c1/]x 5 0

Lower layer North
South
East
West

inflow
outflow
no slip
no slip

Condition (4)
]c2/]y 5 0

c2 5 2Vinl
c2 5 0

z2 5 0
]z2/]y 5 0
]z2/]x 5 0
]z2/]x 5 0

At the southern boundary, the net outward transport
through the boundary is required to amount to the trans-
port coming in through the northern boundary. There-
fore, the integrals of the meridional velocity y 2 5 ]c2/
]x over the open northern and southern boundaries must
equal:

1 1]c ]c2 2dx 5 dx.E E) )]x ]x0 y51 0 y50

Since c2 has to be continuous along each boundary, it
is clear from Fig. 1 that this condition is satisfied by
prescribing c2 5 0 at the western boundary and c2 5
2Vin l at the eastern boundary. Furthermore, it is re-
quired that in the south the flow is normal to the bound-
ary:

]c ]z2 25 0; 5 0 at y 5 0.
]y ]y

In this way, the outflow profile at the southern boundary
is not fixed, but can adjust to variations of Vin and other
model parameters. With these boundary conditions, it
is possible that locally the transport through the southern
boundary is inward, as long as it is compensated by an
outflow elsewhere along this boundary. In practice, this
feature has proven not to cause any problems. For the
closed boundaries, no-slip conditions are prescribed in
the east and west, and free-slip conditions in the north
and south, as for the standard model configuration. In
Table 2, an overview of all the boundary conditions is
given.

The set of equations (1) and the boundary conditions
are discretized on a nonequidistant grid of 49 3 33
points. The grid size varies between 3 and 43 km zonally
and between 27 and 35 km in the meridional direction,
and is smallest near the western boundary and around
the central latitude of the basin. A resolution study
showed that sufficiently accurate results are obtained
with this stretched grid (Dijkstra and Katsman 1997).
Using an iterative method, we directly solve the sta-
tionary form of the set of equations (1) to find stationary
flows for a specific parameter setting. With the help of
a continuation algorithm, branches of stationary solu-
tions can be followed as one of the model parameters
is varied. In this study, both Re and Vin are used as
control parameters.

Subsequently, the stability of the stationary solutions

along a branch is determined by performing a linear
stability analysis. It is assumed that the stationary so-
lution is perturbed by infinitesimally small perturbations
w of the form

st (l1in)tw(x, y, t) 5 ŵ(x, y) e 5 ŵ(x, y) e .

The points in parameter space where the growth rate l
of a specific mode w changes sign are called bifurcation
points. These are of particular interest since they mark
a qualitative change in the behavior of the flow. These
growth rates can be determined from the (discretized)
linear stability problem. The exponents s are the ei-
genvalues of the stability problem, while the associated
eigenvectors determine the spatial patterns of theŵ
modes. Solving the complete discretized linear stability
problem is practically impossible for a large-dimen-
sional system. However, to determine the initial desta-
bilization of the flow, only the first few modes (i.e., only
the most unstable modes) need to be calculated [see
Dijkstra et al. (1995) for details on the numerical im-
plementation].

Examples of bifurcations that can be encountered
when one control parameter is changed are limit points,
pitchfork bifurcations, and Hopf bifurcations (e.g., Nay-
feh and Balachandran 1995). The first two mark a
change in the number of stationary solutions that exist
for a specific parameter setting, whereas at a Hopf bi-
furcation point time-dependent behavior is introduced.
There, the real part l of a complex conjugated pair of
eigenvalues s1,2 5 l 6 iv changes sign so that the
stationary solution becomes unstable to an oscillatory
mode w. Above critical conditions (l . 0), the time-
dependent behavior of the mode w is described by

l tw(x, y, t) 5 [a (x, y) cos(nt) 2 a (x, y) sin(nt)]e . (6)1 2

The imaginary part n of the eigenvalue determines the
frequency of the oscillation (the period p 5 2p/n), and
the two associated eigenvectors, a1 and a2, determine
the spatial pattern of the mode. Equation (6) only de-
scribes the initial growth of the oscillatory mode. As it
grows, the assumption that the amplitude of w is infin-
itesimally small, used in the linear stability analysis, is
no longer valid. Nonlinear processes have to be taken
into account to determine the finite amplitude evolution
of the mode.

A nice spin-off of stationary state-solvers is the im-
mediate availability of a second-order accurate implicit
time-integration scheme. Such a time-dependent version
of the 2-layer quasigeostrophic model is applied to cal-
culate transient purely wind-driven and coupled wind-
driven/DWBC flows in section 6. The trajectories are
initialized with the known stationary solution for the
specific parameter setting, and perturbed with the most
unstable mode known from the linear stability analysis.
This method assures a fast deviation of the time-de-
pendent flow away from this stationary solution.
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FIG. 2. (a) Bifurcation diagram for the purely wind-driven double-
gyre flow ( 5 0.0), as a function of Re. On the vertical axis, c1

*G2

at a grid point in the southwest of the domain [at (x, y) 5 (0.02,
0.14)] is plotted as the measure cSW of the stationary solutions. Solid
(dashed) lines indicate (un-) stable solution branches. Marked are
three Hopf bifurcations H1, H2, and H3 (triangles) and a limit point
(L2). The inset shows the multiple solutions between Re 5 36 and
Re 5 37. (b) Contour plot of the upper-layer stationary solution at
Re 5 31 (contour interval is 0.3; the lower layer is motionless).

3. Impact of the presence of a DWBC

As ‘‘realistic’’ strength of the DWBC, a transport of
7.2 Sv is chosen, which corresponds to Vin 5 2.1 or

5 3.4 cm s21. In this section, the stationary solutionsV*in
and the stability characteristics of the wind-driven flow
obtained when such a DWBC is present are contrasted
with those obtained when such a DWBC is absent.

The latter results were computed for 5 0 andG*2
closed lateral boundaries in Dijkstra and Katsman
(1997), and are recapitulated here shortly. In Fig. 2a,
the bifurcation diagram for this purely wind-driven flow
is shown. In this diagram, the stationary solutions for
the flow are presented as a function of the Reynolds
number Re, which serves as the control parameter. On
the vertical axis, a particular measure of the stationary
solutions is plotted. Here, we use the value of the upper-
layer streamfunction c1 at a grid point in the southwest
of the domain [at (x, y) 5 (0.02, 0.14)] to represent the
flow. This measure is indicated as cSW. Solid (dashed)
branches indicate linearly (un)stable solutions and bi-
furcation points are indicated by markers. There is no

flow in the second layer for any of the stationary so-
lutions for the purely wind-driven flow (c2 5 0) since
the wind stress forcing only acts on the upper layer and
interfacial friction is not incorporated in the model. For
a stationary solution, the lower layer is therefore un-
forced and hence motionless (Pedlosky 1996). Despite
that c2 5 0, the second layer is of importance for the
stability of the wind-driven flows, as was shown in Dijk-
stra and Katsman (1997).

For low values of Re, the stationary solution is
unique, and c1 is perfectly antisymmetric with respect
to the midaxis of the basin as a result of the symmetry
properties of the quasigeostrophic model (see Dijkstra
and Katsman 1997). Since the zonal velocity of the
solutions on this branch is symmetric, the branch will
be referred to as the symmetric branch. The circulation
is still relatively weak (cSW is small) and the flow is
linearly stable (solid line on the left in Fig. 2a). As Re
is increased, the circulation becomes stronger (cSW in-
creases) and becomes susceptible to baroclinic insta-
bilities. Three oscillatory modes with intermonthly
timescales destabilize the flow at the Hopf bifurcations
marked H1, H2, and H3 in Fig. 2a [for details, see Dijk-
stra and Katsman (1997)]. The symmetric, unstable sta-
tionary solution for Re 5 31 is shown in Fig. 2b. Be-
tween Re 5 35.7 and Re 5 36.9, multiple symmetric
equilibria exist due to the existence of two limit points
(only the second limit point L2 is marked explicitly in
Fig. 2a). Moreover, a small interval in Re exists where
multiple asymmetric equilibria are found (inset in Fig.
2a). These asymmetric solutions appear through sym-
metry-breaking pitchfork bifurcations, and both solu-
tions with a stronger (weaker) subpolar and a weaker
(stronger) subtropical gyre exist.

Such a bifurcation diagram is also constructed for the
coupled wind-driven/DWBC flow. The DWBC transport
is set at 5 7.2 Sv, while all other parameters areG*2
kept the same as for the purely wind-driven flow. In
Fig. 3a, the stationary solution branches are plotted with
again Re on the horizontal axis, and the same measure
for the solution on the vertical axis. For comparison,
the solutions found for the purely wind-driven flow are
shown in Fig. 3a as dotted curves. With a DWBC of
the chosen strength, only one branch of solutions is
found for the investigated range in Re [Re ∈ (20, 125)].
The flow first becomes unstable through a Hopf bifur-
cation marked H1 in Fig. 3a, at Re 5 25.8. At this Hopf
bifurcation, the growth rate of a particular oscillatory
mode becomes positive. However, at Re 5 29.7 the
growth rate of this mode becomes negative again, and
the flow stabilizes through a reverse Hopf bifurcation
(not explicitly marked in Fig. 3a, but visible as the tran-
sition from a dashed to a solid branch).

A stability analysis of the stationary solutions reveals
that for Re ∈ (20, 125) nine different modes destabilize
the flow. The timescales of these modes [which will be
referred to as B1 to B9 (B for boundary current)] vary
from 0.7 to 22.3 years at critical conditions. In Fig. 3a,
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FIG. 3. (a) Bifurcation diagram for the coupled wind-driven/DWBC
flow ( 5 7.2 Sv), as a function of Re. The same measure cSW as*G2

used in Fig. 2a is plotted on the vertical axis. For comparison, the
solution branches for the purely wind-driven flow that were shown
in Fig. 2a are indicated here by a dotted line. Marked are the Hopf
bifurcation points H1–H9 (triangles). Solid triangles are used when
the associated modes remain unstable for increasing Re, and open
triangles for the bifurcation points associated with those modes that
stabilize again through a reverse Hopf bifurcation. [(b)–(c)] Contour
plot of the stationary solution at Re 5 31, in the upper and lower
layers. Contour interval is 0.3 in (b) and 0.05 in (c).

the Hopf bifurcation points where the modes become
unstable are marked H1 to H9. Six of the oscillatory
modes (including B1) stabilize again for larger values
of Re through a reverse Hopf bifurcation, but three of
them remain unstable. Hopf bifurcations associated with
the latter modes are marked with solid triangles in Fig.
3a, the others with open triangles. The modes that sta-
bilize again attain maximum dimensional growth rates
l* 5 lU/L of 0.04–1.0 yr21.

The linearly stable stationary flow at Re 5 31 is
plotted in Figs. 3b–c. The upper-layer jet flows north-
eastward, and its separation point lies 125 km south of
the zero wind stress curl line (the midaxis of the basin).
This is in contrast to the symmetric wind-driven flows
(Fig. 2b), for which separation occurs exactly at the
midaxis of the basin. In the second layer, the DWBC
mainly follows the western boundary southward, until
it reaches the crossover region where it is deflected
(north) eastward. It returns to the coast farther south
and then continues along the western boundary again.
Despite the obvious simplifications of our model setup,
the stationary solutions show basic features of the Gulf
Stream/DWBC interaction simulated by more compli-
cated models. As in Thompson and Schmitz (1989), the
separation point shifts southward due to the presence of
the DWBC (Figs. 3b,c). The deflection of the DWBC
near the crossover point is also captured by the model.

When Figs. 2 and 3 are compared, it is clear that the
presence of the DWBC has a large impact on the struc-
ture of the bifurcation diagram, on the spatial patterns
of the stationary solutions, and on their stability char-
acteristics. First, when the DWBC is present regimes of
multiple equilibria do not exist. The precise details of
this transition towards unique stationary flows is ex-
plored in section 4. Second, whereas only intermonthly
oscillatory modes destabilize the flow in absence of a
DWBC, interannual to decadal modes destabilize the
flow when a DWBC is present. The preference of the
coupled wind-driven/DWBC flow for these longer time-
scale instabilities is investigated in section 5.

4. Stationary solutions

The multiple stationary equilibria found for the purely
wind-driven flow have disappeared when a DWBC of
7.2 Sv is present (Figs. 2a and 3a). By gradually in-
creasing the strength of the DWBC from zero, the results
of the two cases can be connected and the fate of the
multiple equilibria can be studied.

A detail of the bifurcation diagram for the wind-driv-
en flow ( 5 0.0) is shown as dotted lines in Fig. 4a,G*2
showing (part of ) the region where multiple equilibria
exist [the interval Re ∈ (36.5, 37.0)]. Three limit points
(L1, L3a, and L3b) and two pitchfork bifurcations (P1 and
P2) are marked in this figure. The limit point L2 (shown
in Fig. 2a) lies outside the range in Re displayed here.
The symmetric solution branch is marked ‘‘S,’’ while
asymmetric solutions branching off at pitchfork bifur-
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FIG. 4. Bifurcation diagrams as a function of Re, for varying
strengths of the DWBC. (a) Detail between Re 5 36.5 and 37.0, for

5 0.0 (dashed) and 5 0.003 Sv (solid); (b) bifurcation diagram* *G G2 2

between Re 5 20 and 125, for 5 0.0, 1.7, 3.4, and 7.2 Sv (dotted,*G2

dashed, dash-dotted, and solid branches, respectively). The limit
points L2 and L3a are marked in (b) by open and filled circles.

cations are marked ‘‘separate south’’ and ‘‘separate
north,’’ indicating that the upper-layer jet separates
south or north of the midaxis of the basin, respectively.
The solutions with a southerly (northerly) separation
have a stronger subtropical (subpolar) gyre, so cSW is
larger (smaller).

In Fig. 4a, the solution branches for 5 0.003 SvG*2
are plotted as well (solid lines). The presence of this
weak DWBC destroys the reflection symmetry of the
system around the midbasin. Hence, the pitchfork bi-
furcations that mark the spontaneous breaking of the
internal symmetry of the solutions for the purely wind-
driven flow no longer exist. The former symmetric so-
lution branch now connects to the solution branch with
the stronger subtropical gyre (‘‘separate south’’). The
two asymmetric solution branches with a stronger sub-
polar gyre (‘‘separate north’’) form a closed loop. This
loop shrinks when is increased further, and ultimatelyG*2
vanishes. So, the stationary solutions with a jet sepa-
rating north of the midaxis of the basin cannot exist in
the presence of a DWBC, and only a branch of solutions
with a jet that separates south of y 5 0.5 remains. This
is consistent with findings by Thompson and Schmitz

(1989) and Tansley and Marshall (2000), that the DWBC
pushes the separation point southward.

Despite the disappearance of the separate north
branch, multiple stationary solutions still exist when the
DWBC transport is weak, due to the limit points L3a

and L2. However, when the DWBC transport is in-G*2
creased further, these limit points on the separate south
branch disappear as well. To show this, in Fig. 4b the
remaining stationary solution branch is plotted as a
function of Re for various DWBC transports. For a
DWBC transport 5 1.7 Sv, L3a (marked by a filledG*2
circle in Fig. 4b) has moved to a larger value of Re
while L2 (open circle) remains in the same position. For

5 3.4 Sv, the limit points are found closer togetherG*2
and have both moved to higher values of Re ( 5ReL3a

100.7 and 5 100.2). Finally, when the DWBC isReL2

strong enough, multiple equilibria do not exist anymore;
no limit points are found for Re up to 125 for 5G*2
7.2 Sv. So, the regimes of multiple equilibria that were
found for purely the wind-driven flow are no longer
present when a DWBC is introduced.

As the strength of the DWBC is increased, the spatial
patterns of the stationary solutions change significantly.
For 5 0.0, the stationary solution at Re 5 31 isG*2
symmetric (see Fig. 2b). For a weak DWBC, the sym-
metric solution branch connects to the separate south
branch (Fig. 4a), and hence one expects a stationary
solution with a jet that separates south of the midaxis
of the basin. Examples of stationary flows for increasing

and Re 5 31 are shown in Fig. 5. For 5 1.7 SvG* G*2 2

(Figs. 5a,b), the jet indeed separates slightly south of y
5 0.5. The jet direction changes to northeastward for
increasing DWBC transports, and stationary meanders
develop. The separation point of the upper-layer jet
shifts southward with increasing , as in ThompsonG*2
and Schmitz (1989). It shifts over a distance of 35 km
for 5 1.7 Sv and over 250 km for 5 10.0 Sv.G* G*2 2

In the second layer, the undercurrent follows the coast-
line until it reaches the crossover region. There, part of
the flow continues along the coast and part gets deflected
eastward and crosses the midlatitude jet east of the re-
circulation cells in the upper layer. For higher transports,
the DWBC is deflected less far into the basin in the
crossover region. As is clear from Fig. 5e, a DWBC
transport of 10 Sv induces a southward shift of the sep-
aration point, which is very large compared to the basin
size of 1000 km. The interaction between the wind-
driven gyres and the DWBC is quite vigorous as a con-
sequence of the relatively shallow layer depths chosen
here. To allow for a fair comparison with the results
presented in Dijkstra and Katsman (1997), we kept the
layer depths the same as in that study and used a weaker
transport of 7.2 Sv as the standard value.

For a purely wind-driven flow a southerly separation
is associated with a stronger subtropical gyre. However,
for 5 1.7 Sv, the subpolar gyre of the solution isG*2
stronger than the subtropical gyre (Fig. 5a). This
strengthening of the subpolar gyre can be explained by
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FIG. 5. Streamfunction of the stationary solution in the (left) upper and (right) lower layers for a fixed Reynolds
number (Re 5 31) and [(a)–(b)] 5 1.7 Sv, [(c)–(d)] 5 5.0 Sv, and [(e)–(f )] 5 10.0 Sv. Contour interval* * *G G G2 2 2

is 0.3 in the upper and 0.05 in the lower layer. Recall that the stationary solutions for 5 0.0 and 7.2 Sv were*G2

already shown in Figs. 2b, 3b, and 3c, respectively.

considering the conservation of potential vorticity for
the coupled wind-driven/DWBC flow. As long as the
DWBC is weak, its presence mainly alters the potential
vorticity balance through vortex stretching. Since c2 ,

0 over the whole domain, the upper-layer depth h1

(which is proportional to c1 2 c2) increases. This in-
crease in h1 tends to reduce the potential vorticity of
the flow. To conserve potential vorticity, additional pos-
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FIG. 6. (a) Dimensional growth rates l* 5 lU/L of the modes that
destabilize the purely wind-driven flow, for a fixed Reynolds number
(Re 5 31) and increasing . Solid, dashed, and dash-dotted lines*G2

are used for the growth rate of the modes associated with H1, H2,
and H3 in Fig. 2a, respectively. (b) Dimensional growth rates l* of
the modes B1–B9 that destabilize the coupled wind-driven/DWBC
flow, associated with the Hopf bifurcations H1–H9 in Fig. 3a, for a
fixed DWBC transport ( 5 7.2 Sv) and increasing Re. Shown are*G2

the intervals in Re where the modes have positive growth rates (l*
. 0; black) or are only marginally damped (l* . 20.25 yr21: gray).

itive relative vorticity is required, consistent with a
stronger subpolar and a weaker subtropical gyre in the
upper layer. For higher values of the maximum ofG*2
the upper-layer streamfunction reduces but the subpolar
gyre remains strongest (Figs. 5c–f).

5. Internal modes of variability

In this section, focus is on the fate of the intermonthly
modes found for the wind-driven flow, and on the origin
of the low-frequency modes found for the coupled wind-
driven/DWBC flow, as presented in section 3.

a. The stabilization of intermonthly modes

In Fig. 6a, the dimensional growth rates l* 5 lU/L
of the three oscillatory modes that were found to de-
stabilize the symmetric, purely wind-driven flow are
plotted against for a fixed Reynolds number Re 5G*2
31. For 5 0, these modes all have positive growthG*2
rates at Re 5 31. It appears that increasing the strength
of the DWBC strongly damps these three modes, and
for . 5.4 Sv none of them is able to destabilize theG*2
flow anymore. As is increased, the periods of theG*2
modes increase slightly. The stationary solutions be-
come stable with respect to these baroclinic modes as
a result of changes in the solutions themselves. While
there is a weak DWBC or no inflow at all, well-devel-
oped recirculation gyres exist that give rise to a sharp
jet (see Fig. 5a). As a consequence, the vertical shear
| u1 2 u2 | is quite large (up to 40 cm s21). When the
strength of the DWBC is increased, the vertical shear
is strongly reduced since the amplitude of c1 decreases
and because the DWBC is deflected in the crossover
region.

One might expect that the stationary flow can be de-
stabilized again by these baroclinic modes when the
vertical shear of the stationary solution increases, for
example at larger Re. However, when Re is increased
for a fixed value of 5 7.2 Sv, the coupled wind-G*2
driven/DWBC flow remains stable to this type of per-
turbations with an intermonthly timescale. Hence, the
interannual modes found to destabilize the coupled
wind-driven/DWBC flow are not simply a modification
of these intermonthly modes.

b. The appearance of low-frequency variability

For 5 7.2 Sv, nine different modes were foundG*2
to destabilize the coupled wind-driven/DWBC flow (see
section 3). In Fig. 6b, the intervals in Re along the
branch of stationary solutions in Fig. 3a where each of
these nine modes has a positive growth rate (l* . 0:
black) or is only marginally damped (l* . 20.25 yr21:
gray) are presented. Six of the oscillatory modes have
positive growth rates only over a small interval in Re
before they stabilize again through a reverse Hopf bi-
furcation and, hence, are of lesser importance for the

variability. In contrast, the modes B3, B8, and B9 are
expected to contribute to the time-dependent behavior
of the flow over a larger interval in Re. Only the char-
acteristics of these latter modes are discussed in detail
here. Contour plots of the perturbation streamfunction
w of these modes, in both upper and lower layers, are
shown in Fig. 7 for one phase of the oscillation (nt 5
0.0). Note that the amplitude of the mode is arbitrary
but that the ratio of the amplitude in the upper and lower
layers is determined from the linear stability analysis.
Hence, for each mode the two fields are scaled with the
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FIG. 7. Snapshots of the modes B3, B8, and B9 in the (left) upper and (right) lower layers at phase nt 5 0.0. [(a)–
(b)] B3 (period p* 5 pL/U 5 0.7 yr at criticality), [(c)–(d)] B8 (p* 5 1.4 yr) and [(e)–(f )] B9 (p* 5 5.1 yr). For
each mode, the plots are scaled with the maximum of the perturbation streamfunction f1 in the upper layer.

maximum of the upper-layer perturbation streamfunc-
tion.

At H3 (Re 5 77.4), the stationary flow is destabilized
by the mode B3 (Figs. 7a,b), which has a period of 8.2
months at criticality. Its main features are the O(150)

km anomalies in the strip between (x, y) 5 (0.4, 0.7)
and (x, y) 5 (0.6, 0.4) in both layers. During a cycle,
these anomalies propagate southeastward from (x, y) 5
(0.4, 0.7) toward (x, y) 5 (0.6, 0.4) where they decay
again. A phase difference exists between the response
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FIG. 8. Spatial patterns of the stationary solution in the (left) upper and (right) lower layers at [(a)–(b)] Re 5 78
and [(c)–(d)] Re 5 121. Contour interval is 0.2 in the upper layer and 0.05 in the lower layer.

in the two layers: the lower layer leads the upper layer.
In Figs. 8a and 8b, the stationary solution at Re 5 78,
near the bifurcation point H3, is shown for comparison.
The upper-layer jet of the stationary solution has a
strong meander in the area where B3 shows the strongest
response, whereas there is only a weak circulation in
the lower layer in this region.

At H8 (Re 5 87.0), an oscillatory mode with a time-
scale of 1.4 yr becomes unstable (B8; Figs. 7c,d). The
stationary solution at this Reynolds number has not
changed much compared to that in Figs. 8a and 8b and
is therefore not shown. The mode shows a response on
somewhat larger spatial scales than B3, and the strongest
anomalies develop near the center of the domain. During
the cycle they propagate (north) westward with the re-
turn flow of the subpolar gyre (see Figs. 8a,b), and decay
near the western boundary around (x, y) 5 (0.1, 0.8).
Again, a phase difference exists between the response
in the two layers, with the lower layer leading the upper
layer. Both B3 and B8 mainly affect the midlatitude jet
near the center of the basin.

The third oscillatory mode for which the stationary

flow remains unstable for increasing Re has a period of
5.1 yr at criticality (B9: Figs. 7e,f). This mode desta-
bilizes the flow at the bifurcation point H9 at Re 5 120.8,
a Reynolds number which corresponds to a lateral fric-
tion coefficient AH 5 130 m2 s21. It is, based solely on
its period, the most interesting mode of variability for
comparison with the low-frequency variability found by
Spall (1996b). The most important features of the mode
are two large-scale anomalies centered at (x, y) 5 (0.2,
0.25) and (0.2, 0.4) at phase nt 5 0.0. These are aligned
with the recirculation gyres of the stationary solution at
this Reynolds number, shown in Figs. 8c and 8d. The
propagation of these two anomalies during a cycle is
visualized in Fig. 9 by two sections through the basin
at a fixed latitude as a function of time. In this figure
the dimensionless time t̂, measured in units of the period
p 5 2p/n, is plotted on the vertical axis. The zonal
coordinate x is on the horizontal axis. The positive
anomaly, which at time t̂ 5 0.0 is present in the northern
recirculation gyre at (x, y) 5 (0.2, 0.4), first propagates
(south) eastward. Its path is captured in the section
through y 5 0.4 in Fig. 9a, while moving from (x, t̂)
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FIG. 9. Longitude–time diagrams displaying the propagation of the mode B9, by (a–b) a section along y
5 0.4 and (c–d) a section along y 5 0.3. Two oscillation periods are shown [t̂ 5 t/p ∈ (0, 2), p 5 2p/n ],
both for the (top) upper and (bottom) lower layer.

5 (0.2, 0.0) towards (x, t̂) 5 (0.45, 0.5) in the upper
layer. In the second layer (Fig. 9b), the propagation of
the anomaly is similar. Subsequently, this positive
anomaly returns to the western boundary following a
(south) westward course. Its path is clearly visible in
Figs. 9c and 9d, a section through y 5 0.3, as it moves
from (x, t̂) 5 (0.45, 0.5) toward (x, t̂) 5 (0.2, 0.8). A
negative anomaly follows the same path as the positive
anomaly half a cycle later. This interannual mode has
its strongest response in a region where both the surface

and the deeper circulation are strong, that is, in the
crossover region.

Summarizing the results in this section, we can con-
clude that the coupled wind-driven/DWBC flow be-
comes unstable to different modes of variability than
the purely wind-driven flow. These new modes have
intermonthly to interannual timescales. Furthermore,
other perturbations on timescales of years to decades
exist that are only marginally damped over large inter-
vals in Re. However, to assess their importance it needs
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to be verified that the low-frequency modes discussed
in this section indeed contribute substantially to the
time-dependent behavior of the flow at low friction. In
particular, the contribution of B9 to the variability is of
interest.

6. Transient flows at low friction

Similar to the approach followed by, for example,
McCalpin and Haidvogel (1996) and Spall (1996b),
transient flows are computed. Here we compare the
time-dependent behavior of a purely wind-driven flow
to that of a coupled wind-driven/DWBC flow, both at
low friction (Re 5 130). The parameter setting for these
two integrations is the same except for the absence or
presence of a DWBC of 7.2 Sv. In both cases, low-
frequency variability is expected to arise. Based on the
results presented in Dijkstra and Katsman (1997) and
in this paper, it is presumed that for the purely wind-
driven flow this low-frequency variability will be caused
by nonlinear interactions of high-frequency modes,
since no low-frequency modes were detected and mul-
tiple stationary equilibria were not found to exist for
high Re either. In contrast, for the coupled wind-driven/
DWBC flow, internal modes on interannual timescales
are expected to play a role.

To get an objective measure of the variability in the
computed time series for the two cases, a statistical anal-
ysis is used to extract both the dominant timescales and
the associated spatial patterns of variability [Multivar-
iate Singular Spectrum Analysis (M-SSA): see, e.g.,
Plaut and Vautard (1994)]. In the analysis, we use both
the upper- and lower-layer flow patterns of the last 42
years of the two computed time series, sampled at in-
tervals of one week. Hence, the phase relation between
the response in the upper and lower layers is retained,
and both high- and low-frequency signals can be dis-
tinguished. The timescales and spatial patterns obtained
from the M-SSA analysis are inspected visually and
compared to the results of the linear stability analysis,
to identify the specific internal modes that contribute
most to the variability. The same approach was suc-
cessfully applied to analyze the results of time integra-
tions for the purely wind-driven flow at relatively high
friction (Katsman et al. 1998; Dijkstra et al. 1999). In
the parameter regime considered in those studies (Re ,
60 or AH . 270 m2 s21), variability on longer timescales
than intermonthly was not found.

For the purely wind-driven flow ( 5 0.0), the timeG*2
series for cSW and for the upper-layer kinetic energy at
Re 5 130 are shown in Figs. 10a and 10b. The time-
dependent behavior is characterized by high-, medium-
, and low-energy states, in accordance with the results
by McCalpin and Haidvogel (1996), Berloff and
McWilliams (1999), and Meacham (2000). Time mean
states, averaged over a high- and a low-energy period
(years 27–29 and 39–41, respectively), are shown in
Figs. 10c to 10f. In line with the studies mentioned

above, a high-energy state (low-energy state) is char-
acterized by stronger (weaker) recirculation cells and a
larger (smaller) penetration scale of the midlatitude jet.
The M-SSA analysis of this time series reveals that the
most dominant statistical modes have timescales of 2.0
months, 10 years, 6.7 years and 2.0 months, and explain
20%, 15%, 8%, and 3% of the total variability, respec-
tively. The high-frequency modes are identified as bar-
otropic Rossby basin modes (see Pedlosky 1987). For
an inviscid fluid in a closed basin, the Rossby basin
modes are the free-mode solutions of the model. They
are the equivalent of free Rossby waves in an unbounded
ocean, have intermonthly timescales and basinwide spa-
tial patterns, and propagate westward like Rossby waves
(Dijkstra et al. 1999). The low-frequency mode with the
timescale of 10 yr hardly propagates, and its spatial
pattern simply seems to display the difference between
the high- and the low-energy states. The low-frequency
mode with the timescale of 6.7 yr exhibits similar be-
havior. Their patterns do not correspond to any of the
internal modes that were detected.

For the coupled wind-driven/DWBC flow at Re 5
130, the time series for cSW is shown in Fig. 11a. During
the first few years of the integration, perturbations on
the initial state are still very small and, hence, hardly
visible. In the remainder of the time series, both high-
and low-frequency variability signals are clearly pre-
sent. Similar behavior is observed in time series of the
kinetic energy of the upper layer (Fig. 11b). In Figs.
11c to 11f, the mean states of the flow are shown (av-
erages are over years 16–18 for the high-energy state
and over years 38–39 for the low-energy state). Again,
the penetration scale of the jet is larger for the high-
energy state, and the DWBC is deflected more in the
crossover region.

The most dominant statistical mode of variability in
the time series shown in Figs. 11a and 11b explains
33% of the total variability. It is an oscillation with a
timescale of 4.0 yr. In Fig. 12, a snapshot of the spatial
pattern of this statistical mode is shown. It resembles
that of the linearly unstable mode B9 shown in Figs. 7e
and 7f: its main features are two anomalies of opposite
sign present in both layers, centered at (x, y) 5 (0.25,
0.25) and (x, y) 5 (0.25, 0.45). Moreover, the propa-
gation of the mode is similar to that of B9. Thus, we
conclude that 33% of the variability in the time series
is due to the linearly unstable mode B9. Apparently, the
timescale of the mode is slightly modified at these su-
percritical conditions (recall that at criticality, the period
of B9 is 5.1 yr). The second and third most dominant
statistical mode are both oscillations with a timescale
of 2.0 months and explain 8% and 15% of the total
variability. These are again identified as barotropic
Rossby basin modes.

So, in agreement with the hypothesis stated in the
beginning of this section, an internal mode seems to
give rise to the simulated low-frequency variability for
the coupled wind-driven/DWBC flow, whereas for the
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FIG. 10. Time series for (a) cSW and (b) the upper-layer kinetic energy, for the purely wind-driven flow ( 5 0) at Re 5 130. In (b), only the last 42 years of the total time series (i.e.,*G2

the part used for the M-SSA analysis) are plotted. [(c)–(f )] Time mean states for the upper and lower layers from the time series in (a), for [(c)–(d)] a high-energy state (average over years
27–29), and [(e)–(f )] a low-energy state (average over years 39–41). Contour interval is 0.2 in plots [(c)–(f)].
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FIG. 12. Snapshot of the spatial pattern of the most dominant statistical mode from the M-SSA analysis of the
coupled wind-driven/DWBC flow in Figs. 11a and 11b, in the (a) upper and (b) lower layers. The plots are scaled
with the maximum of the field in (a).

purely wind-driven flow the low-frequency variability
could not be linked to any known internal mode. More
support for this conclusion is obtained by analyzing the
spectra of the time series of the upper-layer kinetic en-
ergy. For both the coupled wind-driven/DWBC flow and
the purely wind-driven flow, this spectrum is shown in
Figs. 13a and 13b. On the horizontal axis, the dimen-
sionless frequency f is plotted. The dimensional period
p* (in seconds) associated with a particular frequency
f is p* 5 L/(Uf ). The highest frequency that is resolved
if f 5 50, which corresponds to a period p* of 2 weeks
(two times the sample interval), but only the frequencies
f , 20 are displayed in this figure (p* . 5 weeks). For

5 7.2 Sv, a distinct low-frequency peak is foundG*2
near f 5 0.5, which corresponds to a period of 4 yr.
This is the signature of the dominant mode of variability
derived from the M-SSA analysis, which was identified
as the mode B9. Another peak in the spectrum is found
near f 5 12 or p* 5 2 months, which is the signal of
the barotropic Rossby basin modes. For the purely wind-
driven flow, the Rossby basin modes also give a clear
signal in the intermonthly frequency band (Fig. 13b).
In the low-frequency band, the spectrum has no distinct
low-frequency peak. So, the internal mode of variability
B9 appears to dictate the timescale of the low-frequency
variability for the coupled wind-driven/DWBC flow,
whereas for the purely wind-driven flow there seems to
be no preferred low-frequency timescale.

In line with this conclusion, a histogram of the kinetic
energy distribution for the coupled wind-driven/DWBC
flow does not show a preference for a specific state (Fig.
13c) because during the low-frequency oscillation all
values have the same likeliness to occur. On the other
hand, for the purely wind-driven flow (Fig. 13d) the
distribution shows three distinct peaks, indicative of ir-
regular transitions between the high-, medium-, and
low-energy states in Fig. 10b. Unlike for the coupled
wind-driven/DWBC flow, for the wind-driven flow the

mean value of the kinetic energy is not the one that is
visited most often.

The results presented here show that at relatively low
friction, in correspondence with McCalpin and Haid-
vogel (1996), Berloff and McWilliams (1999), and Mea-
cham (2000), low-frequency variability can appear in
purely wind-driven flows due to nonlinear interactions
of unstable high-frequency modes. At a comparable val-
ue of Re, a substantial part of the low-frequency vari-
ability in the coupled wind-driven/DWBC flow is
caused by an unstable low-frequency mode. We now
have an interpretation framework for the results in Spall
(1996b) and are in a position to assess the impact of
the DWBC on low-frequency variability.

7. Discussion

In this paper, the interactions between the Gulf Stream
and a deep western boundary current (DWBC) are stud-
ied, focusing on the internal variability of the flow. The
main motivation for this study has been to understand
results in the paper by Spall (1996b), where decadal
variability is found in a numerical model of the Gulf
Stream/DWBC system. The reference point chosen is
the purely wind-driven flow, and changes in structure
of stationary solutions, instabilities, and time-dependent
behavior have been monitored using the lateral friction
and the strength of the DWBC as control parameters.

For the purely wind-driven flow, the stationary flows
are destabilized at large friction through baroclinic in-
stabilities. As a result, intermonthly timescales of var-
iability are introduced. At low friction, nonlinear inter-
actions lead to low-frequency variability through a sim-
ilar scenario as proposed by Berloff and McWilliams
(1999). Transitions between high- and low-energy states
are involved in this low-frequency variability, but the
M-SSA analysis of the time series indicates that no par-
ticular low-frequency oscillatory mode stands out.
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FIG. 13. Spectra of the time series for the upper-layer kinetic energy (a) for the coupled wind-driven/DWBC flow in Fig. 11b and (b) for
the purely wind-driven flow in Fig. 10b. On the horizontal axis, the dimensionless frequency f is plotted [the dimensional period p* 5 L/
(Uf )]. The range in f shown here is f ∈ [0.0, 20.0], corresponding to periods p* . 5 weeks. [(c)–(d)] Histograms of the distribution of
the upper-layer kinetic energy with respect to its mean value, (c) for the coupled wind-driven/DWBC flow in Fig. 11b and (d) for the purely
wind-driven flow in Fig. 10b. To construct these plots, the range in kinetic energy visited during the 42-yr time series is divided into 100
bins of equal width, and subsequently the number of samples in each bin is counted.

The presence of the DWBC has a significant impact
on the characteristics of the wind-driven flow. First, its
presence leads to the existence of unique stationary so-
lutions for the coupled Gulf Stream/DWBC flow, where-
as multiple stationary solutions were found for the pure-
ly wind-driven flow (section 4). Second, its presence
strongly favors interannual instabilities (section 5). As
was shown by the M-SSA analysis of the time series,
the variability at low friction is dominated by one of
these instabilities. Through pattern and timescale com-
parison, it was identified as the internal mode B9 (section
6).

A comparison of our results with observations of the
variability of the Gulf Stream/DWBC system, as de-
scribed for example by Pickart (1994), does not seem
appropriate at this stage. First, we do not expect our
idealized model to be capable of capturing the details
of the flow. Neglected features like bottom topography

and the shape of the coastline will certainly modify the
flow, even though they may not be essential to the basic
physical mechanisms behind the variability. A second
difficulty is that, with respect to the low-frequency var-
iability, the observational records are still simply too
short. An interesting issue that can be addressed, how-
ever, is whether an internal low-frequency mode like
the one discussed in this paper may play a role in the
variability of Gulf Stream/DWBC system as modeled
by Spall (1996b). In that study, the dominant timescale
of variability is 10 yr, considerably longer than the in-
terannual timescale of the low-frequency mode B9 dis-
cussed here. However, the timescale of the mode prob-
ably increases with the basin size, which is larger in
Spall (1996b) than in this study (3500 km 3 2500 km
versus 1000 km 3 1000 km). Tansley and Marshall
(2000) also used a quite small basin to study the inter-
actions between the Gulf Stream and the DWBC (2000
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km 3 1000 km), and mainly found variability on in-
terannual timescales, as in our study.

Next, we can compare the spatial pattern of the mode
B9 at different phases of the oscillation with the extreme
phases of the low-frequency oscillation in the 3-layer
model described by Spall (1996b). In that model, the
Gulf Stream penetrates far into the basin and is flanked
by eddy-driven recirculation gyres during the high-en-
ergy phase of the oscillation. At intermediate depth, in
the second model layer, recirculation gyres exist, which
are aligned with the Gulf Stream above. The upper
DWBC is entrained into these recirculation gyres. Dur-
ing the opposite phase, when the kinetic energy of the
flow is relatively low, the Gulf Stream penetrates less
far into the basin. Only part of the upper DWBC is
entrained in the (now weaker) recirculation gyres, while
part of it is unaffected and continues southward. We can
compare these high- and low energy phases with the
oscillatory flow that arises by adding the low-frequency
mode B9 (Figs. 7e,f) to the stationary solution for the
coupled wind-driven/DWBC flow at high Re (Figs.
8c,d). Adding the low-frequency mode at phase t̂ 5 0.0
(Fig. 7e) weakens the recirculation gyres in the upper
layer [the strongest anomalies, near (x, y) 5 (0.2, 0.25)
and (0.2, 0.4), have the opposite sign as the stationary
flow]. As a result, the upper-layer jet penetrates less far
into the basin. During the opposite phase (t̂ 5 0.5), the
sign of the perturbation streamfunction of the mode is
reversed, and the recirculation gyres are strengthened.
In the lower layer, the perturbation at t̂ 5 0.0 (Fig. 7f)
moderates the deflection of the DWBC. The opposite
occurs half a period later: the sign of the anomaly re-
verses, and stronger deflection occurs. So, based on the
spatial characteristics, the high- and low-energy phases
of the oscillation described by Spall (1996b) resemble
the t̂ 5 0.5 and t̂ 5 0.0 phases of the low-frequency
internal mode of variability described in this study, re-
spectively. Moreover, the effect of the mode on the sep-
aration point of the upper-layer jet is similar. The sep-
aration point of the stationary solution is located at y
5 0.28 (see Fig. 8c). At phase t̂ 5 0.5, the high-energy
phase, the upper-layer perturbation streamfunction is
positive at that latitude (Fig. 7e) and, hence, the sepa-
ration point shifts northward during this phase, as in
Spall (1996b).

In the transient flows at low friction discussed in sec-
tion 6, low-frequency variability is found independent
of the presence of the DWBC. As was shown in the
spectra of the time series, the low-frequency spectral
characteristics are quite different in the two situations.
In the presence of the DWBC, a single internal mode
of variability dominates the low-frequency variability,
whereas nonlinear interactions between high-frequency
signals are responsible for the low-frequency variability
when the DWBC is absent. Since low-frequency vari-
ability is found in transient flows under a wide range
of parameter settings in different model configurations
(McCalpin and Haidvogel 1996; Berloff and Mc-

Williams 1999; Meacham 2000; and this study), all lack-
ing a DWBC, it is in hindsight actually quite surprising
that in the study by Spall (1996b) low-frequency vari-
ability is absent when the DWBC transport in the second
layer is set to zero. It seems unlikely that the presence
of the third layer influences the variability character-
istics so drastically. Our speculation is that the boundary
conditions in the upper layer (i.e., the in- and outflow
conditions) affect the stability characteristics of the mid-
latitude jet. As a consequence, the nonlinear interactions
between the baroclinic modes that destabilize this jet
may be different for the specific model configuration
discussed by Spall (1996b). When these nonlinear in-
teractions of high-frequency modes are relatively weak,
it is possible that they do not give rise to low-frequency
variability in this particular parameter regime. The low-
frequency variability that is found when the upper
DWBC is present may be caused by a low-frequency
internal mode that is present only for the coupled Gulf
Stream/DWBC flow, in a similar way as discussed in
this paper.

To be able to compare the results discussed here with
those presented in Dijkstra and Katsman (1997), the
same set of parameter values was used in both studies.
However, the chosen depth of the second layer is rel-
atively shallow, which results in quite vigorous inter-
action between the wind-driven gyres and the DWBC.
Therefore, the sensitivity of the results to the depth of
the second layer was investigated shortly, in particular
with regard to the stability of the low-frequency internal
mode B9. This mode was traced at low friction (Re 5
125) while increasing D2 from its standard value of 1400
m. Two cases were considered. First, we kept the DWBC
transport fixed at 7.2 Sv, by simultaneously decreas-G*2
ing Vin while increasing D2. This appeared to have little
impact on the stability of the mode B9, as its growth
rate remained close to criticality. Its timescale varied
between 4 and 5 yr, depending on the exact value of
D2. Second, D2 was increased while keeping Vin con-
stant. As a consequence, increased with D2. ThisG*2
was found to destabilize B9 considerably, whereas its
period still remained approximately 5 yr. So, we are
confident that the existence of this unstable low-fre-
quency internal mode is robust for larger depths of the
second layer.
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