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Abstract

A four-dimensional variational method has been developed that assim-

ilates XBT and TAO sub-surface temperature data into the Hamburg

Ocean Primitive Equation model. The method decreases the misfit be-

tween model and observed ocean temperatures by adjusting the sur-

face forcing. The main goal of the assimilation scheme is to improve

ocean analyses in the tropical Pacific. As a first study, only wind stress

is adjusted in the assimilation. In two identical-twin experiments it is

demonstrated that the scheme works well in the equatorial Pacific.

The scheme is capable to reduce errors in the ocean analysis which

originate either from the wind-stress forcing or the initial state. The

impact of model errors on the data assimilation is investigated in an ex-

periment with real observations. In this experiment, the temperature

innovations near the equator are comparable to those of an Optimal

Interpolation data-assimilation scheme.
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1 Introduction

Currently more than a decade of high-quality observations of the tropical Pacific
is available. Most of the subsurface observations originate from the Tropical At-
mosphere Ocean (TAO) array of moored buoys, which has been set up during the
Tropical Ocean Global Atmosphere (TOGA) program [WCRP , 1985] and from
the expendable bathythermographs (XBT) measurements made by voluntary ob-
serving ships (VOS). These data have given an important contribution to the
knowledge of the intra-seasonal and interannual variability in the tropical Pa-
cific ocean [McPhaden et al., 1998]. For example, using the TAO and XBT data,
McPhaden [1999] monitored the evolution of the strong El Niño of 1997/1998
down to an ocean depth of 500 meter.

The availability of these observational data has given rise to a large number
of ocean data-assimilation studies for the tropical Pacific [e.g. Malanotte-Rizzoli ,
1996; Anderson et al., 1996]. The aim of these studies is to provide more ac-
curate ocean analyses, which are essential for the prediction of the large-scale,
seasonal and interannual (ENSO) variations in the coupled atmosphere ocean
system [Ji and Leetma, 1997; Stockdale et al., 1998]. Relatively simple ocean
models [e.g. Zebiak and Cane, 1987] describe the most relevant physics (which is
only weakly nonlinear) reasonably well. Therefore, early studies combined simple
ocean models with various data-assimilation methods, ranging from simple nudg-
ing methods [Zebiak and Cane, 1987] to advanced, computationally expensive
data-assimilation methods like the four-dimensional variational data assimila-
tion (4DVAR) [Sheinbaum and Anderson, 1989; Weaver and Anderson, 1996]
and the Ensemble Kalman Filter [Cane et al., 1996]. At present, several opera-
tional centres use complex Ocean General Circulation Models (OGCMs), which
are more realistic, for their experimental seasonal forecasts. So far, these mod-
els have been combined with data-assimilation methods of moderate complexity
[e.g. Alves et al., 1998; Behringer et al., 1998]. Yet, the best results are expected
from combining OGCMs with advanced data-assimilation methods [e.g. Weaver

and Vialard , 1999]. In the present paper, we consider a 4DVAR method for the
Hamburg Ocean Primitive Equation model (HOPE) OGCM [Wolff et al., 1997].

An important issue in four-dimensional ocean data assimilation is what kind
of control over the model simulation should be used to achieve the best possible
improvements in the ocean analysis. Given a four-dimensional data-assimilation
method for an ocean model and a set of observations, the analysis depends on
the initial model state and the surface forcing. To improve the analysis, most
ocean 4DVAR schemes put their controls on the initial state only and the surface
forcing is assumed to be perfect. This is a straightforward extension of previously
employed three-dimensional variational or Optimal Interpolation (OI) methods.
This approach has been useful [Sheinbaum and Anderson, 1989; Weaver and An-
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derson, 1996; Weaver and Vialard , 1999], but it also has its drawbacks and diffi-
culties. Firstly, the surface forcing is in fact poorly known [Miller and Cane, 1996]
particularly in the western equatorial Pacific. In this area, the air-sea interaction
is strongly influenced by moist convection. This is relatively poorly represented in
Atmospheric General Circulation Models, which determine flux fields from prop-
erties at and near the sea surface. Therefore, the assumption of a perfect surface
forcing is not realistic. Secondly, additional constraints and smoothing must be
added to keep updates of the initial state physically realistic and to suppress un-
wanted initialization shocks. Thirdly, in non-eddy-resolving OGCMs the impact
of an adjusted initial state on the ocean analysis decays in time. So, for longer
assimilation periods unrealistically large adjustments are often required to obtain
a correction in the ocean analysis with the right amplitude.

In this study, we have implemented a global 4DVAR data assimilation
scheme in which the surface forcings are the control variables. A weak constraint
keeps the surface forcing close to a realistic background value. Controlling the
surface forcing has several advantages. Firstly, an important advantage is the
gradual adjustment of the prognostic fields (e.g. salinity and temperature) that
is consistent with the ocean-model equations. Secondly, longer assimilation pe-
riods make sense because the effect of improved forcings on the ocean analysis
is integrated by the model rather than dissipated. However, the effective assim-
ilation period will still be limited by model errors. Thirdly, the adjusted surface
forcing is an alternative surface-flux product which can be used for intercompari-
son studies [e.g. Tziperman and Bryan, 1993; Yu and O’Brien, 1995]. Finally, the
dimension of the variational problem can be kept fairly small because the surface
forcing is made up from two-dimensional fields.

The scheme uses a strong constraint for the ocean-model equations. In a
weak model constraint approach the effects of model errors would be accounted
for by allowing corrections to the model trajectory. In our case, some model errors
can be compensated for by wind stress corrections.

The set-up of the 4DVAR scheme is global and for all type of surface forc-
ings, but we focus in this first study on the adjustment of tropical Pacific wind
stresses. We assimilate the ocean temperature measurements of the TAO buoy
array and XBTs along major ship routes. We use the HOPE OGCM version de-
scribed in Stockdale [1997]. This model is employed as the ocean component of
the seasonal forecast system of the European Centre for Medium Range Weather
Forecasts (ECMWF). Its adjoint, which is required to solve the variational prob-
lem, is documented in van Oldenborgh et al. [1999]. The model forcing is based on
the daily air-sea fluxes of the ECMWF Operational Analysis (EOA). The wind
stress is corrected in the assimilation process but the heat and freshwater flux are
applied as given. The sea surface salinity and temperature are relaxed towards
the Levitus [1982] climatology and Reynolds and Smith [1995] observations, re-
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spectively. The latter relaxation is chosen to be very strong, which means that
the effective heat flux is determined by the observed sea surface temperature.

The ultimate goal of the 4DVAR scheme is to improve ocean analyses for
seasonal predictions with a coupled atmosphere-ocean system. However, first the
efficacy of the 4DVAR scheme and the usefulness of the analyses have to be
demonstrated in both experimental and realistic settings. Therefore, in this pa-
per, we address the following basic questions. Is the 4DVAR scheme capable of
improving the ocean model trajectory? Can we make a quantitative or qualitative
statement about the usefulness of the ocean analysis at the end of the assimilation
period?

To find answers to these questions we have performed three numerical ex-
periments. Two of these are of the identical-twin type and one considers real
observations. In the identical-twin experiments, the defined ‘truth’ is an un-
perturbed HOPE model run with EOA wind stress. During this run pseudo-
observations are generated, which are the model counterparts from this run at
the actual TAO buoy and XBT measurements. In the first identical-twin ex-
periment, a ‘first-guess’ wind stress is constructed by perturbing the EOA wind
stress. In the second, perturbations are added to the initial state, not to the wind
stress. In this way, the effects of forcing and initial state errors can be studied
separately. The last experiment is done with real observations. In this case, model
errors can hamper the functioning of the 4DVAR method. Indications of a proper
convergence of the cost are analyzed and the features of the ocean analysis are
assessed qualitatively. In addition, the ocean analysis is compared with that of
the OI scheme that is used in seasonal forecasting at the ECMWF [Alves et al.,
1998].

The outline of the paper is as follows. In section 2 we briefly describe the
HOPE model and the observational data. Section 3 contains a formulation of
the variational problem and the data assimilation scheme. The identical twin
experiments and their results are presented in section 4. The experiment with
real observations follows in section 5. We discuss our results in section 6 and,
finally, the conclusions are summarized in section 7.

2 Model and Data

2.1 The HOPE Model

The Ocean General Circulation Model (OGCM) used in this study is the Ham-
burg Ocean Primitive Equation Model (HOPE). Details of the model physics
and the applied numerical scheme are described by Wolff et al. [1997]. The global
version used here is that of the ECMWFs Seasonal Forecast Project [Stockdale,
1997]. The horizontal resolution varies from 0.5◦ meridionally by 2.8◦ zonally
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near the equator to 2.8◦ by 2.8◦ in the mid-latitudes. In the vertical, 10 levels
are placed in the top 300 meters and another 10 levels cover the deep ocean. Dis-
cretization is on an Arakawa E-grid and the integration time step equals 2 hours.
The models contains a realistic bottom topography and a free surface. No sea
ice model is included. Northward of 60◦N and southward of 60◦S the prognostic
fields of velocity, salinity and temperature are relaxed towards the Levitus [1982]
climatology.

The model is forced with surface fluxes (heat, freshwater and momentum)
from the ECMWF Operational Analysis. These fields are interpolated from an
T42 spectral resolution to a regular 2.8◦ by 2.8◦ grid. The solar radiation affects
the top model levels. A very strong Newtonian relaxation (λ = 400 Wm−2K−1)
is applied to keep the model SST close to the observed data set of Reynolds and

Smith [1995]. The fresh water flux consists of precipitation minus evaporation
plus the run-off of the world’s major rivers.

In the 4DVAR optimization the adjoint of the HOPE model (adHOPE)
is used. This adjoint model has been developed for the full model equations.
An description of AdHOPE is given in van Oldenborgh et al. [1999]. Backward
integrations of this model gives the gradient of cost function with respect to
control over the surface forcing (see section 3).

2.2 XBT and TAO data

The observational data used in this study are the subsurface temperature mea-
surements by the TAO array, by the expendable bathythermographs (XBT) from
voluntary observing ships (VOS), and by several other buoys in the tropical Pa-
cific. The TAO array consists of nearly 70 ATLAS moorings spanning the width
of the equatorial Pacific Ocean. The VOS take measurements along 18 specific
lines which cross the equator at different longitudes. A more detailed description
of these observational data can be found in e.g. McPhaden et al. [1998]. We use
the quality control of the ECMWF Seasonal Forecast Project [Alves et al., 1998]
to select the observations for assimilation.

Figure 1 shows the number of assimilated temperature measurements for
a typical eight-week period. Clearly, most observations originate from the TAO
array. As a result, the equatorial region (10◦S to 10◦N) is much better sampled
than the off-equatorial regions.

3 The Variational Data Assimilation Scheme

The 4DVAR data assimilation method used in this study attempts to minimize a
cost function J that quantifies the misfit between model temperatures and obser-
vations. It is made up from a background term for the forcing and an observational
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Figure 1: Number of assimilated observations per 2.8◦× 2.8◦ grid box in the
8-week period February 12, 1995 to April 9, 1995. Note the logarithmic scale.

term for the temperature misfits ,

J(c) = Jbg(c) + Jobs(c) = cTB−1c +
(

Hx(c, x0) − z
)T

E−1
(

Hx(c, x0) − z
)

. (1)

The vector c contains the control parameters, in this case a parameterization of
the wind stress. The vector x contains the HOPE model trajectory, and z the
ocean temperature measurements during an eight-week assimilation time window.
The first term Jbg is the background term and B is the covariance matrix of the
errors in wind stress. This term penalizes for too strong deviations from the
prescribed background forcing; for c = 0 the first-guess forcing is employed.

The second term Jobs is the observation term. It is the sum of the quadratic
misfits between observed and modeled temperature values during the assimilation
time. The model temperature output depends on the initial state x0 and the
control vector c. H is the observation operator which projects the model output
on the model counterpart of the observational data. E is the observational error
covariance matrix which accounts both for the errors in the measurements and
the projection H. In the remainder of this section we will discuss the various
aspects of the cost function in further detail.
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3.1 Wind Stress Variations

In the experiments wind stress is used as control variable. The following scale
consideration has been made for the temporal resolution of wind-stress updates.
Typical scales of weather systems, upper ocean temperature anomalies, and buoy
distances are in the order of 1000 km. The fastest subsurface temperature ad-
justments in the upper ocean are by equatorial Kelvin waves, which propagate
at approximately 3 ms−1. Hence, the upper ocean is sensitive to wind-stress vari-
ations in the order of one week or longer only. Therefore, we use a two-weekly
variation of the wind stress; the wind-stress forcing is determined as the sum of
a first-guess wind stress τ

fg
i and a linear interpolation (in time) of 2 two-weekly

wind-stress corrections τ
corr
j .

τ i = τ
fg
i + αi τ

corr
j + (1 − αi) τ

corr
j+1. (2)

Index j is chosen such that the pair (τ corr
j , τ corr

j+1) brackets the ocean model time
step (index i) and αi = (tj+1 − ti)/(tj+1 − tj).

The control vector c is made up of the time sequence of (m+1) wind stress
corrections from the beginning to the end of the assimilation window

c =
(

τ
corr
0 |τ corr

1 | . . . |τ corr
m

)

. (3)

As a consequence of this set up, the assimilation time window must be taken as a
multiple of 14 days. In our applications, we have taken m = 4, so that the control
vector contains 5 × 2 two-dimensional forcing fields.

3.2 Error Covariances and Preconditioning

The performance of the 4DVAR scheme strongly depends on the specification of
the background error covariance matrix B (see equation 1). On the one hand, it
determines the importance of Jbg relative to Jobs. On the other hand, it determines
the effective dimension of the minimization problem. In general, the elements of
B, the (co)variances of the errors in two-weekly wind stress, are unknown and
have to be estimated from a motivated guess.

In a first approach, we make two simplifying assumptions which could be
replaced with more realistic approximations in later studies. The first is to ne-
glect any time dependence in the covariances. As a consequence, B has a block
structure which is based on the index j (see subsection 3.1) and a sub-matrix with
the spatial error covariances between the ocean points (x, y) and (x′, y′). These
covariances are denoted by β(x, y;x′, y′). The second is to assume that errors in
τx and τy are uncorrelated. This implies that the spatial error covariances of τx

and τy can be estimated separately.
The next issue is to obtain plausible estimates of the spatial error co-
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variances β(x, y;x′, y′). This problem can be split up in estimating the corre-
lations ρ(x, y;x′, y′) and the standard deviations σ(x, y), since β(x, y;x′, y′) =
σ(x, y)σ(x′, y′)ρ(x, y;x′, y′). We expect that the correlations in the wind stress
error decreases rapidly and smoothly with the distance between the points (x, y)
and (x′, y′). A common and theoretically convenient way to meet this expecta-
tion is to assume that ρ(x, y;x′, y′) has a Gaussian shape. Here, we presume a
symmetric Gaussian shape with the main axes in the meridional and latitudinal
direction

ρ(x, y;x′, y′) = exp

(

−
(x− x′)2

2λx(x, y)λx(x′, y′)
−

(y − y′)2

2λy(x, y)λy(x′, y′)

)

. (4)

Hence, B can be parameterized in terms of σ(x, y) and the zonal and meridional
decorrelation lengths λx(x, y) and λy(x, y).

The parameters σ(x, y), λx(x, y) and λy(x, y) are estimated from two-weekly
wind-stress differences. In fact, we have taken two-weekly averaged wind-stress
data of the ECMWF reanalysis (ERA)[Gibson et al., 1997]. From these averages
we have calculated two-weekly differences. Next, we have chosen σ(x, y) to be
20% of the standard deviation in these differences and the decorrelation lengths
λx(x, y) and λy(x, y) are determined by a fit of the distribution (4) to the cor-
relations of these differences. The resulting σ(x, y) ranges in the tropical Pacific
for both τx and τy from 0.001 Nm−2 to 0.011 Nm−2. Figure 2 shows the spatial
map of λx(x, y) for τx differences to illustrate the decorrelation lengths. λx(x, y)
for τx ranges roughly from 12◦ to 25◦ which corresponds to 4 and 9 forcing grid
boxes, respectively. λx(x, y) for τy has the same order of magnitude. The λy(x, y)
are approximately a factor 2 smaller for both τx and τy.

It is important to note that the effective dimension of the minimization
problem is reduced by the smoothness implied by this choice of B. On the basis
of the correlation lengths we estimate this dimension to be about 50 variables per
forcing field over the Tropical Pacific.

For large dimensions, direct inversion of B is computationally prohibitive.
We can circumvent this inversion with a pre-conditioning [Courtier et al., 1994]
of the variational problem as follows. With the decomposition B = AAT and the
transformation

c = Ad (5)

the background term can simply be written as Jbg = dTd. Moreover, with
Jobs(c) = Jobs(Ad), equation (1) can be minimized as a function of the vector d

rather than c.
The challenge is then to calculate the transformation A. First we separate
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Figure 2: The zonal decorrelation length lx(x, y) (in degrees) of two-weekly zonal
wind stress differences.

the contributions of σ(x, y) and ρ(x, y;x′, y′) in A as follows,

A = SL, (6)

with S = [
√

σ(x, y)σ(x′, y′) ] and LLT = [ ρ(x, y;x′, y′) ]. An exact method to
calculate c from d would be to obtain explicit expression of L. Here we use an
computationally efficient approximation for the transformation L that is valid for
slowly varying decorrelation lengths. When λx and λy are constant the elements
of the vector Ld can be written as a discretized evaluation of the continuous
convolution

∫∫

dx′ dy′ ψ(x, y;x′, y′) d(x′, y′), (7)

with

ψ(x, y;x′, y′) = exp

(

−
(x− x′)2

λ2
x

−
(y − y′)2

λ2
y

)

. (8)

This approximation is exact for an infinitely high resolution and an infinite do-
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main. Next, the convolution (7) is evaluated by means of the diffusion process

4
∂u

∂s
= λ2

x

∂2u

∂x2
+ λ2

y

∂2u

∂y2
, (9)

see e.g. Egbert et al. [1994]. This equation has the general solution

u(x, y, s) =
1

2πsλxλy

∫∫

dx′ dy′ψ(x, y;x′, y′)u(x′, y′, 0). (10)

Thus, we can obtain transformation A (see equation 5) by solving the diffusion
equation (9). Vector d must be taken as the initial condition (s = 0) and c is
obtained from a multiplication of the solution for s = 1 with the normalization
factor (2πλxλy) and with matrix S. In this study, we make a further approxima-
tion, because we solve equation (9) but with the λx = λx(x, y) and λy = λy(x, y)
from the described Gaussian fit to the ERA wind stress differences. The numerical
evaluation is done with a common finite difference method.

An important advantage of the diffusion equation approach over an exact
evaluation of A is the straightforward treatment of the lateral ocean boundaries.
The error correlations are ‘diffused’ against these boundaries as if they were solid
walls. Consequently, errors in wind stress over different basins (e.g. the Pacific and
the Atlantic basin) are uncorrelated. Another advantage of this approach is that
it results in smoother error covariances, which is beneficial for the optimization
of J .

Finally, we discuss the second term of the cost function, Jobs. This term
is determined by the observation operator H and observation error covariances
E. In this study, H is a linear interpolation from the Arakawa E grid of the
potential temperature to the position of the observation. The even and odd grid
are interpolated individually and weighted equally. In time, the observations are
assigned to the nearest ocean-model time step (every 2 hours). The HOPE model
uses potential temperature as a prognostic variable. Therefore, H contains a
conversion to regular temperatures based on the experimental formula of Bryden

[1973].
The dimension of E equals the number of observations during the assimi-

lation window. Errors in the observations are assumed to be spatially and tem-
porally uncorrelated. Therefore, the matrix E and its inverse have a diagonal
structure. In the identical twin experiments (section 4) that have perfect pseudo-
observations, the temperature error is chosen to be 0.3K for the XBTs, the TAO
and the other buoy data. This is a rough estimate of the interpolation error. For
the real-observation experiment (section 5) this value is increased to 1.0 K. This
value is the lowerbound of the range that has been used by Behringer et al. [1998]
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Figure 3: Schematic diagram of 4 assimilation cycles. Time is from left to right.
The re-use of the two-weekly wind-stress corrections from the previous assimila-
tion window is indicated by the arrows. In addition, the long arrows mark the
re-use of the model state as the initial state of the next assimilation window.

to scale the temperature variances resulting from ocean-model errors.

3.3 Set-up of the Numerical Experiments

We have set up our numerical experiments in such a way that they simulate
an operational forecasting cycle (see Figure 3). Each experiment starts from a
given initial state at t0, here January 1, 1995. A first-guess model trajectory is
then generated by integrating the model forward in time for a period of eight
weeks. This model trajectory and the (pseudo)observations are used to make a
first evaluation of the cost function J . This value of J reflects the misfit between
the first-guess (background) model trajectory and the (pseudo)observation, since
the wind-stress corrections are still zero. From here we calculate a best-guess
trajectory by constructing the five wind stress corrections (τ corr

i , i = 0, 4) that
minimize J .

Technically, the minimization is done with the Quasi-Newton routine M1qn3
of the MODULOPT library [Gilbert and Lemaréchal , 1989]. The required evalu-
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ations of the gradient (∂J/∂d) are obtained from backward integration with ad-
HOPE. These integrations are computationally expensive, approximately 5 times
a forward HOPE run. This constraints the allowable number of iterations with
M1qn3. In all the experiments, the maximum number of iterations has been set
to six.

After the first period of eight weeks is dealt with, we repeat the assimilation
cycle with a time window shifted by two weeks, see Figure 3. As initial state the
best-guess estimate (analysis) at t = t1 of the first cycle is taken, and for the
first 6 weeks the best-guess updates (τ corr

i , i = 0, 3) of the previous cycle are
reused, whereas the new τ

corr
4 is set to zero. By this, the computational cost of a

two-weekly analysis is about 5× 6× 4 = 120 times a forward run over two weeks.
Each of our numerical experiments consists of four shifted assimilation runs,

which we will denote as cycle 1, 2, 3 and 4. We will focus our discussion on, 1)
the value of J (both as a function of cycle and iteration number and as a function
of latitude), 2) the potential temperature fields at the end of cycle 4, which is at
April 9, 1995, 4 × 14 + 3 × 14 = 98 days later, and 3) the wind stress update
at the beginning of cycle 4 (February 12, 1995). This update has been optimized
through all four consecutive cycles.

4 Identical-twin Experiments

The 4DVAR scheme for the HOPE model has been tested in two identical-twin
experiments. In these experiments we compare the results of two perturbed runs
with those of a reference run (the ‘truth’ run, runT). The first perturbed run
(the background run) is made without data assimilation and the second run (the
analysis run) is made with assimilation of pseudo-observations.

In both the identical-twin experiments, runT is defined as a HOPE run
without data assimilation. The initial state at January 1, 1995 is an ocean analysis
that was created using the HOPE model and the OI scheme of the ECMWFs
seasonal forecasting group [Alves et al., 1998]. The ECMWF Operational Analysis
forcing is employed for 98 days. During this run pseudo-observations are collected.
These are defined as projections of the model temperature at the locations and
hours of the actual TAO buoy and XBT temperature measurements (see section
3.2)

zpseudo = Hx(c, x0). (11)

Thus, for runT both the observational term and the wind-stress term of the
cost function (1) equal zero. As discussed in section 1, we will only consider
perturbations in the tropical Pacific (35◦S–35◦N). Accordingly, we include only
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Figure 4: Experiment I. Convergence of Jobs/Nobs as a function of iteration and
assimilation cycle. Nobs is the number of observations in the assimilation window.
The 4 cycles are the partly overlapping (see Figure 3) assimilation windows of 8
weeks. The solid (dashed) line represents the run with (without) data assimila-
tion, which is runA1 (runBG1).

pseudo-observations in the region of 30◦S to 30◦N. The pseudo-observations are
further restricted to below 10m to avoid interference with the SST relaxation.

4.1 Experiment I.

In this experiment, the wind-stress forcing in the tropical Pacific (35◦S–35◦N)
is perturbed to test the capability of the 4DVAR scheme to reduce resulting
potential-temperature perturbation in the upper ocean and the forcing pertur-
bation itself. Ideally, both the wind-stress and upper-ocean perturbation will be
nullified. Yet, the cost cannot become exactly zero, because the background term
Jbg will always have a positive value. The (perturbed) first-guess wind stress τ

fg
i

is chosen as 80% of the original 1995 wind stress plus 20% of the 1996 wind stress
in the tropical Pacific. In this way, the perturbation is large enough to have
considerable impact on the upper ocean, but not so large to make the forcing
unrealistic. In the areas 35◦S–25◦S and 25◦N–35◦N a lateral linear interpolation
is used to match the first-guess to the true wind stress in a continuous way. For
both background run (runBG1) and the analysis run (runA1), the initial state
at January 1, 1995 is equal to that of the truth run. In runBG1 τ i = τ

fg
i is em-

ployed over the 98 days, while in runA1 this forcing is updated in the consecutive
assimilation cycles.

First we compare the cost of the background and analysis run. The obser-
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Figure 5: Experiment I. Jobs/Nobs as a function of latitude on a logarithmic scale.
Nobs is the number of observations in the assimilation window. Values are for the
assimilation cycle 4, ending on April 9,1995 (see Figure 3). The solid (dashed) line
represents the run with (without) data assimilation, which is runA1 (runBG1).

vational cost of both runs is normalized with the number of observations (Nobs)
in the assimilation window over which the cost function is defined. The results
as a function of iteration and cycle are shown in Figure 4. In the initial cycle,
data assimilation gives a big decrease in Jobs/Nobs with most of the effect in the
first 3 iterations. For the next 3 iterations convergence is slower. Shifting the
assimilation window results in an increase of Jobs/Nobs for runBG1, because the
model state for January 15, 1995 has been perturbed already by τ

fg over the
period January 1–14, 1995. However, for runA1 the increase in Jobs/Nobs is much
smaller, because the initial state is the runA1 analyzed state for January 15, 1995
and partly optimized wind stress are used over the first 6 weeks, see Figure 3.
Subsequently, the 6 iterations of this assimilation cycle account for a small re-
duction of the Jobs/Nobs. The difference between runA1 and runBG1 is enlarged
in the next 2 cycles in a similar manner.

The final (fourth assimilation cycle, ending on April 9, 1995) total cost of
runA1 normalized with Nobs amounts to 0.025. This is a strong reduction when
compared with the background value of 0.33. From Figure 5, it can be seen that
the largest reductions are in the equatorial region (17◦S–12◦N). The final total
cost for runA1 is still for nearly 75% due to Jobs. In fact, the background term
Jbg (not shown) remains less than quarter of Jobs throughout the assimilation.
Figure 5 also shows that large contributions of the remaining costs are from the
large number of observations in the equatorial region. The most likely reasons
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for the remaining residuals are the coarse resolution of the wind-stress innovation
and the short length of the assimilation window. These aspects will be discussed
in more detail in section 6.

Next we compare the ocean analysis at April 9, 1995 of runA1 and runBG1
with that of runT. Figure 6 shows the difference in potential-temperature in the
tropical Pacific at a depth of 100 m, along the equator, and along the 180◦W
meridian. The run with data assimilation (runA1) is much closer to the true
ocean state (runT) than in the run without data assimilation (runBG). The
largest improvement are obtained between -10◦S and 10◦N. For example, the large
positive perturbation eastward of New Guinea has disappeared completely (see
top panels of Figure 6). However, after data assimilation (top right panel) there
are still some isolated, positive and negative anomalies in this region. In some
cases the sign of these anomalies is opposite to that of the original perturbations
(top left panel). This suggests that these anomalies might result from a too coarse
resolution of the innovated wind stress which will be discussed in section 6.

In off-equatorial regions (35◦S–15◦S and 10◦N–35◦N), the potential temper-
ature innovations are small, see Figure 6. For example, the positive perturbation
near 25◦N, 170◦W, (top panels) remain in the order of magnitude of those of
runBG1. The middle and bottom panels of Figure 6 demonstrate that the equa-
torial improvements go down to the depth of at least 240 m, which means that
the errors induced by the wind-stress perturbations are strongly reduced in the
complete equatorial wave guide.

Finally, we discuss the wind-stress innovation. Figure 7 shows the wind-
stress perturbation with (middle panel) and without (top panel) data assimila-
tion for the period February, 12 –18 1995. For this week, the wind stress of runA1
has been updated in all 4 assimilation cycles. The plotted perturbations are aver-
ages weighted according to the linear interpolation of equation 2. The difference
(runBG1-runA1) is depicted in the bottom panel. Near the equator (5◦S–5◦N),
the data assimilation has recaptured most of the true wind stress. The differ-
ences are less than 0.005 Nm−2 (10%). The good performance in this region is
in accordance with the results found for the ocean initial conditions in Figure 6.
However, the off-equatorial wind-stress perturbation are hardly better with data
assimilation. A positive exception is the north-western part of the warm pool
area (northward of 5◦N and westward of 150◦E) with a reduction in wind-stress
differences up to a factor two. In this area the number of observations is higher,
see Figure 1.

4.2 Experiment II

In this identical-twin experiment it is attempted to compensate for perturbations
in the initial state by an wind-stress update. An important question is, can the
upper-ocean temperature misfits disappear with a wind-stress innovation that
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Figure 6: Experiment I: Potential temperature differences (K) at the end of as-
similation cycle 4 (April 9, 1995). The differences are between (left panels) the
background run and the truth run and (right panels) between the analysis run
(runA1) and the truth run. The 100 m layer differences are in the top panels.
The differences along the equator and the 180◦W meridian are in the middle and
bottom panels, respectively. Data of the top layer are not included.
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Figure 7: Experiment I: (Top panel) true wind-stress perturbation, (middle panel)
wind-stress perturbation after assimilation, and (bottom panel) the wind-stress
update. The plots are weighted time averages for the first week of the fourth as-
similation cycle (February 12–18, 1995, see Figure 3). The weighting is according
to the linear interpolation of equation 2. Note the different scaling of the bottom
panel.
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Figure 8: Experiment II. Convergence of Jobs/Nobs as a function of iteration and
assimilation cycle. Nobs is the number of observations in the assimilation window.
The 4 cycles are the partly overlapping (see Figure 3) assimilation windows of 8
weeks. The solid (dashed) line represents the run with (without) data assimila-
tion, which is runA2 (runBG2).

differs from the true wind stress within the order of the assumed error bound?
A positive answer this question would mean that difficulties with updating the
initial state (see section 1) can be circumvented.

The perturbed initial state is defined as 80% of the January 1, 1995 analyzed
state (with the ECMWFs OI scheme) plus 20% of the state of January 1, 1996.
In the areas 35◦S–25◦S and 25◦N–35◦N a lateral linear interpolation is used to
match the perturbed with the true ocean state. The first-guess forcing τ

fg
i is the

original EOA wind stress. Again, pseudo observations are used for the analysis
run (runA2) and the output of this run is compared with that of runT and a first
guess run (runBG2).

In this experiment, it is not realistic to expect that the initial-state pertur-
bations can be nullified, because the upper-ocean perturbations are not the effect
of a change in forcing.

First we discuss the cost function. In Figure 8 the convergence of Jobs/Nobs

for runA2 and runBG2 is shown. As in experiment I, the initial iterations of
the first 2 assimilation cycles reduce most the costs of runA2. In contrast to
experiment I, the cost of the first-guess run (runBG2) decreases at the shifts of
the assimilation window due to a loss of memory of the initial-state perturbations.
Nonetheless, runA2 is able to preserve a reduction with respect to runBG2 to the
last assimilation window. This indicates an improved ocean analysis with data

19



Analysis

Background

Experiment II: Jobs/Nobs (latitude)

Latitude

30◦20◦10◦0◦−10◦−20◦−30◦

1

10−1

10−2

10−3

10−4

10−5

Figure 9: Experiment II. Jobs/Nobs as a function of latitude on a logarithmic scale.
Nobs is the number of observations in the assimilation window. Values are for the
assimilation cycle 4, ending on April 9,1995 (see Figure 3). The solid (dashed) line
represents the run with (without) data assimilation, which is runA2 (runBG2).

assimilation. The final (fourth assimilation window, ending on April 9, 1995) total
cost accounts 0.29 is for approximately 90% due to the misfits in the equatorial
region, see Figure 9.

The differences in potential temperature for April 9, 1995 are in Figure
10. In the central equatorial Pacific (10◦S – 15◦N) a substantial reduction of the
misfit is achieved (see also Figure 9). Thus, the 4DVAR method has skill in the
equatorial wave guide. However, in other parts of the tropical Pacific the data
assimilation does not result in an improved ocean model state. A comparison
of all the panels of Figure 10 with those of Figure 6 confirms the expectation
that the 4DVAR scheme is better suited for correcting the effects of wind-stress
perturbation than of initial-state errors.

The wind-stress update (not shown) varies from zero to 25% of the first-
guess wind stress, which is in agreement with the bounds of assumed standard
deviation of the wind-stress error, discussed in section 3.

5 Assimilating real observations

In Experiment III the real XBT and buoy data in the region of 30◦S to 30◦N
are assimilated for the 98 days considered. In this experiment, the data assimila-
tion is counteracting errors in the initial state, the forcing and the ocean model.
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Figure 10: Experiment II: Potential-temperature differences (K) at the end of
assimilation cycle 4 (April 9, 1995). The differences are between (left panels) the
background run and the truth run and (right panels) between the analysis run
(runA1) and the truth run. The 100 m layer differences are in the top panels.
The differences along the equator and the 180◦W meridian are in the middle and
bottom panels, respectively. Data of the top layer are not included.
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Figure 11: Experiment III. Convergence of Jobs/Nobs as a function of iteration
and assimilation cycle. Nobs is the number of observations in the assimilation
window. The 4 cycles are the partly overlapping (see Figure 3) assimilation win-
dows of 8 weeks. The solid (dashed) line represents the run with (without) data
assimilation, which is runA3 (runBG3).

Therefore, the expected residuals are larger. The assumed standard deviation for
the observation error is set to 1.0K (see section 3), because we do not expect that
the model is able to come much closer to the observations in a realistic way. The
results of the 4DVAR scheme are compared with those of the OI analysis of Alves

et al. [1998]. Both the first-guess wind stress (EOA) and the initial state (from
the ECMWFs OI analysis) are applied as given. The runs with and without data
assimilation are runA3 and runBG3, respectively.

Again, we first consider the observational costs. These are depicted in Fig-
ure 11. The final value 1.84 differs from one, which is the expected value for per-
fect error estimates. A closer inspection of the distribution of the cost function
reveals that this difference is partly caused by very large residuals for frequent
observations in a few grid boxes. One example is the strong peak near 32◦N in
Jobs/Nobs as a function of latitude (Figure 12). This peak is in fact located in
one grid box at 135◦E, 32◦N (in the Kuroshio current), where two buoys give
daily profiles (see Figure 1). The HOPE model representation of the Kuroshio
is too wide and too shallow in this area due to the coarse grid. Consequently,
the modeled thermocline in this grid box is approximately at 350 m, whereas in
reality the thermocline is much deeper. A profile of the residuals is depicted in
Figure 13. The largest residuals exceed 6 K. These residuals add up to 30% of
Jobs. This model error leads to unrealistic wind-stress innovations in a wider area

22



Analysis

Background

Experiment III: Jobs/Nobs (latitude)

Latitude

30◦20◦10◦0◦−10◦−20◦−30◦

1

0.1

0.01

Figure 12: Experiment III. Jobs/Nobs as a function of latitude on a logarithmic
scale. Nobs is the number of observations in the assimilation window. Values
are for the assimilation cycle 4, ending on April 9,1995 (see Figure 3). The solid
(dashed) line represents the run with (without) data assimilation, which is runA3
(runBG3).
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Figure 13: The averaged temperature residuals (observation−runA1) of the best-
guess analysis of the last assimilation cycle in the grid box centered at 135◦E,
32◦N. The averaging is over the complete assimilation window. (The HOPE model
has a thermocline that is much shallower than reality).
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Figure 14: Experiment III. Convergence of Jobs/Nobs between 7◦S and 7◦N as a
function of iteration and assimilation cycle. Nobs is the number of observations in
the assimilation window. The 4 cycles are the partly overlapping (see Figure 3)
assimilation windows of eight weeks. The solid (dashed) line represents the run
with (without) data assimilation, which is runA3 (runBG3).

around this point.
Another problematic spot is at 138◦E, 7◦N. Time series analyses of buoys

in the vicinity (not shown) reveal a very strong January cold anomaly in the
thermocline with a very sharp front between the cold and warm water. In this
study, we assume a zonal decorrelation length λx(x, y) of τx in the order of 5–7
grid boxes, (about 18◦). This is too large to have an effect on structures of such
a small scale. Thus, this kind of residual structures cannot be resolved.

The wind-stress response of the 4DVAR method to the large residuals is to
make large updates. This affects the optimization process. In all the assimilation
cycles, the background constraint Jbg becomes active in early stage of the as-
similation. After a few iterations the number of function evaluations required by
the M1QN3 routine increases very rapidly, while the achieved innovation is very
marginal. This suggests that the optimization already approaches a (local) mini-
mum. At this point, the continuation of the optimization becomes unreasonable,
because the computational burden is very large. Therefore, we have halted the
optimization, whenever M1QN3 requires more than three function evaluations
per iteration. The break is after 4, 4, and 3 iterations for the second, third and
fourth assimilation cycle, respectively.

Despite these difficulties, the convergence behavior for the equatorial Pacific
(7◦S–7 ◦N) is fairly similar to the experiment I and II (compare the Figures 14, 4
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and 8). This suggests that the 4DVAR method has performed as expected from
the identical-twin experiments.

Next we consider updates for the ocean-model state of April 1, 1995, eight
days before the end of the fourth assimilation window. Figure 15 depicts the
difference between the background (runBG3) ocean state with that of the OI
scheme (left panels) and the 4DVAR state (right panels). In the equatorial region
(roughly between 12◦S and 12◦N), the large-scale difference patterns are fairly
similar among the two data-assimilation methods. This can be seen in the top,
middle and bottom panels of Figure 15. However, the effects of the 4DVAR scheme
are limited to the top 180 m in the central Pacific, along the equator (see middle
right panel). Another dissimilarity between the methods is that the OI method
resolves smaller scale structures. Some of these structure originate from isolated
measurements. For example, in the layer between 120 m and 180 m depth several
isolated anomalies can be seen (middle left panel of Figure 15) for the OI method,
while 4DVAR update is much smoother for this layer.

In the other (off-equatorial) regions, the 4DVAR data-assimilation scheme
does not have any impact, whereas the innovation of the OI method is large.

We also consider the wind-stress update (Figure 16). As in experiment II,
the wind-stress update varies from zero to 20% of the first-guess wind stress
(top panel). The wind-stress response is consistent with ocean-model physics.
For example, the wind-stress update along the equator in the central Pacific
(160◦W to 120◦W) enhances the trade winds. As a result, more warm water of the
upper layers is pushed westward which results in the higher (lower) temperatures
westward (eastward) of 145◦W (see Figure 15, middle panel).

The wind-stress update has also been compared with the differences be-
tween the TAO observations and the ECMWF operational analysis that was used
as the first guess. The latter has assimilated the TAO winds as if they had been
measured at 10m, whereas the measurement height is in fact 4m, so the analyzed
wind(stress) is lower than in reality. Along the equator the update indeed tends
to compensate for this bias.

Finally, we compare the currents in the two assimilation schemes with ob-
servations. During this time the only TAO data that can be compared with the
model are from the buoy at EQ,140◦W with current meters at 10m, 25m, 45m,
80m, 120m and 200m. In Figure 17 (top-left) the u measurements are shown for
the first three months of 1995. The top-right panel gives the first-guess values for
this period. In the bottom-left and bottom-right panels, the results of the 4DVAR
and OI assimilation are plotted, respectively. The model always underestimates
the strength and the depth of the undercurrent. Compared to the first guess, the
4DVAR data assimilation increases the strength of the undercurrent during this
period. The agreement with the TAO observations is better than in the OI run,
which has weaker currents. Further research is needed to show whether this is a

25



Figure 15: Experiment III: Potential-temperature differences (K) at April 1, 1995
(near the end of fourth assimilation cycle). The differences are between (left pan-
els) the background run and the analyzed state by the Optimal Interpolation
scheme, and (right panels) between the background run and the 4DVAR assim-
ilation run. The 100 m layer differences are in the top panels. The differences
along the equator and the 180◦W meridian are in the middle and bottom panels,
respectively. Data of the top layer are not included.
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Figure 16: Experiment III: (top panel) first-guess wind stress and (bottom panel)
update of wind stress by data assimilation. The plots are weighted time averages
for the first week of the last assimilation cycle (i.e. February 12–18, 1995, see
Figure 3). The weighting is according to the linear interpolation of equation 2.
Note the different scaling of the panels.
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Figure 17: Zonal currents at EQ,140◦W in early 1995. Top-left: 5-daily TAO
current meters at 10m, 25m, 45m, 80m, 120m and 200m. Top-right: weekly first-
guess values. Bottom-left: weekly values in the 4DVAR experiment III. Bottom-
right: two-daily values in the OI assimilation.
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consistent feature of this 4DVAR data assimilation scheme.

6 Discussion

6.1 Efficacy

The experiments of the previous sections have shown that the relevant innova-
tions of both the wind stress and upper-ocean temperatures are confined to the
Equatorial Pacific (10◦S–10◦N). In the off-equatorial regions the innovation in
wind stress is not necessarily zero, but the effects on the ocean-model analysis
are small. Therefore, the performance of the method in the equatorial and the
off-equatorial regions are discussed separately. There are two reasons for the good
performance of the 4DVAR method in the equatorial region. These reasons are
not independent. The first reason is that disturbances in the upper ocean are
guided along the equator. The most important example are Kelvin waves. Kelvin
waves are triggered by wind-stress variations near the equator and travel east-
ward with a phase speed of about 2 − 3 ms−1. This means that many locations
can be reached within an eight-week period. The upper ocean temperature differ-
ences (residuals) associated with these waves are translated into changes to the
observational cost. The 4DVAR method propagates this information backward in
time to make the appropriate equatorial wind-stress innovations and hence the
desired innovations to the ocean model trajectory.

The second reason is simply the availability of a dense, uniformly dis-
tributed observational network that assures that (propagating) disturbances are
indeed observed and translated into a substantial contribution to the observa-
tional cost. 70% of the total number of observations are located between 10◦S
and 10◦N and these dominating the cost function (see Figures 5, 9 and 12). In
fact, one of the prime goals of TAO array is to observe the equatorial trapped
wave activity. In an eight-week period a fast Kelvin wave will pass at least 6
lateral TAO arrays.

In the off-equatorial region (outside 10◦S–10◦N) the 4DVAR using wind
stress control is not very effective (see e.g. the top and bottom panels of Figure
15). In this case, both reasons of the good performance in the equatorial region are
lacking. Disturbances are propagated by higher-order Rossby waves. However, the
speed of these waves is an order of magnitude smaller than that of Kelvin waves.
Therefore, a very dense network is required for wind stress to have a significant
impact on sub-surface observations. In reality, the number of observations in the
off-equatorial regions is low and the denser coverage is confined to coastal areas
where most of the ship tracks are located, see Figure 1.
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6.2 Optimality

A remaining question is the optimality of 4DVAR data assimilation. Many pa-
rameters in the current configuration of the 4DVAR method are from motivated
guesses. This implies that some modifications might lead to an improved perfor-
mance. Some of the modifications are technical, others may have a more physical
nature. For instance, in subsection 4.1, it was noted that after data assimilation
there still is an observational cost Jobs (mainly due to equatorial residuals) of 7%
of the background value. This value might be lowered with a modification of e.g.
the length of assimilation window. To clarify this further studies are needed, pos-
sibly with some withheld observed data to have an independent measure for the
improvements. This is beyond the scope of this article. Instead, we will discuss
some general properties of important parameters in more detail.

Firstly, an essential aspect of any 4DVAR system is the proper modeling
of the error covariances. Experiments I, II and III have shown that the assumed
magnitude of errors in wind stress and upper ocean temperature are reasonably
in balance. For example, in experiment III, the background term constraints the
wind-stress innovations when the related residuals are too large as a result of
model deficiencies. However, the current guess of the decorrelation lengths may be
somewhat large, in particular λx(x, y) of τx, see Figure 2. An additional analysis
run has been made for experiment I but with λx,y(x, y)/2 for both τx and τy. This
run (not shown) results indeed in larger corrections on smaller scales and hence
in an improved ocean analyses. In this case, the observational cost after data
assimilation is 5% of the background value (instead of 7%). However, care should
be taken not to create new difficulties with too small decorrelation lengths, such
as mutually compensating wind-stress innovations in adjacent grid boxes and a
cost function with many local minima.

Secondly, an obvious way to improve the 4DVAR method is to enlarge the
assimilation window. An improved performance in the equatorial regions can be
expected for the same reasons as discussed in the previous subsection. However,
this would increase the computational burden considerably. To have an impact in
the off-equatorial region the assimilation window should be extended to several
months or even years.

Thirdly, the quadratic shape of the cost function might be reconsidered.
Experiment III has demonstrated that large localized ocean model errors, like
in the Kuroshio, can have an undesired large effect on the data assimilation
and hence the ocean analysis. Solutions to problems of this kind are to ignore
some observations or to introduce a more tailored weighting of large residuals.
For example, a multiplication factor 1/(1 + (|Tres| − 5)2) can be employed for
discarding temperature residuals Tres larger than 5K [e.g. Behringer et al., 1998].

Finally, we address some aspects of the minimization. The re-use of wind-
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stress control in consecutive assimilation windows has proven to be beneficial.
For example, the low observational cost in the second assimilation window of
Figure 4 could not have been achieved with a restart of the minimization from
the first-guess wind stress. Most of the feasible reduction is obtained in less than
5 iterations. Another aspect is globality of the minimum. In general, it is hard to
prove that the best-guess wind stress is the global minimizer. However, it is likely
that our updates are for the global optimum, because our first-guess wind stresses
are realistic and the cost function is a fairly smooth functions of the control.

6.3 Comparisons and possible extensions

It is interesting to compare the performance of this 4DVAR scheme with other
data-assimilation techniques and other ocean models. In experiment III, a first
comparison is given between the OI and 4DVAR method (see Figure 15). In
the equatorial region the large-scale innovation of the OI and 4DVAR method
are remarkably similar. For the off-equatorial regions the wind stress adjusting
4DVAR method is not yet an alternative.

The 4DVAR scheme of this study is implemented for all the HOPE surface
forcings over the global ocean. Therefore, natural extensions are 1) to include the
heat (and possibly the freshwater flux) in the experiments and 2) to assimilate
ocean observations globally. The adjustment of the heat flux requires additional
considerations with respect to the SST relaxation which is also adjusting the effec-
tive heat flux. An additional cost term for the SST observations can be introduced
to replace the relaxation term. The results of experiment III in the off-equatorial
regions indicate that expectations with respect to the innovation of global forcing
and upper ocean fields should be moderate. Current ocean observations are still
too sparse for a feasible length of assimilation window.

A very promising way forward is to combine initial-state and surface-forcing
control in the 4DVAR method. In this way, the advantages of both approaches of
control can be exploited and the initialization and forcing errors can be considered
more individually. However, before we get into this stage, more direct compar-
isons with 4DVAR methods controlling the initial state are needed to assess the
merits and drawbacks of the surface forcing control in further detail. Weaver and

Vialard [1999] have developed an incremental 4DVAR method that controls the
initial state in the tropical Pacific. They use a different OGCM, but the same ob-
servational data set. It would be interesting to compare our results with those of
Weaver and Vialard [1999] for an agreed time period and region in the equatorial
Pacific. A relevant and objective test of comparing ocean 4DVAR methods would
be the predictive skill of a coupled model with the same atmosphere model.

Finally, another promising way forward is the assimilation of other ob-
servational data. Obvious candidates are satellite altimeter data and salinity
measurements. Katz et al. [1995] have shown that sea level observation of the
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TOPEX/Poseidon satellite are a good proxy for the dynamical height in the
tropical ocean. The density of altimeter measurements is high, which means that
also off-equatorial regions in the tropical Pacific can be sampled, because more
locations can be influenced by observations within an eight-week period. Other
studies [e.g. Cooper , 1988; Vossepoel and Behringer , 1999] demonstrate that as-
similation of salinity and altimeter data improves analysis of the salinity vari-
ability, which has an appreciable impact on the density distribution in the upper
ocean [Lukas and Lindstrom, 1991]. In a variational approach, the inclusion of
these data is straightforward.

7 Conclusions

A 4DVAR data assimilation scheme that adjusts the ocean-surface forcing of a
OGCM has been implemented for the HOPE OGCM. Two identical-twin exper-
iments and an experiment with real observation show that adjusting wind stress
with the 4DVAR scheme is an effective way to correct errors in the upper ocean
analysis and in the wind stress over the tropical ocean.

The re-use of wind stress control in consecutive assimilation windows results
in a good convergence of the 4DVAR scheme with a limited number of cost
function evaluations.

In the equatorial Pacific, a large reduction in wind-stress and upper-ocean
temperature misfits can be achieved using an assimilation window of eight weeks.
The main reason is that the equatorial region combines a high ocean-model sen-
sitivity to short term disturbances with a high number of observations which are
uniformly distributed. In off-equatorial regions of the Pacific this combination is
lacking and the performance of the 4DVAR method is not that well.

Improvements of the efficacy in both the equatorial and off-equatorial re-
gions are expected from longer assimilations windows and new estimates of the
wind stress error covariances.
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