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SUMMARY

Singuiar vectors are computed which are consistent with 3D-Var (three-dimensional variational) estimates
of analysis error statistics. This is achieved by defining the norm at initial time in terms of the full Hessian of the
3D-Var cost function, At final time the total energy norm is used. The properties of these Hessian singular vectors
(H5Vs) differ considerably from total energy singular vectors (TESVs) in such aspects as energy spectrum and
growth rate. Despite these differences, the leading 25 TESVs and HSVs explain nearly the same part of the 2-day
forecast error.

Two experimental ensemble configurations are studied. One configuration uses perturbations based on HSVs
in the computation of initial perturbation, the other uses TESVs and 2-day linearly evolved singular vectors
(ESV5) of two days before. The latter approach provides a way to include more stable and large-scale structures
in the perturbations. Ten pairs of ensembles are compared to the operational Furopean Centre for Medium-
Range Weather Forecasts Ensemble Prediction System. The ensembles using ESVs perform slightly better. The
ensembles based on HSVs show a slightly worse performance and are lacking some spread in the medium range.
Possibie directions to improve the computation of HSVs are discussed.

KEYWORDS: Ensemble forecasting Hessian singular vectors Medium-range forecasting  Numerical
weather prediction

I. INTRODUCTION

Since December 1996, the operational Ensemble Prediction System (EPS) at the
European Centre for Medium-Range Weather Forecasts (ECMWF) comprises 50 non-
linear integrations of the 77 159 operational model version (using linear grid), with as
initial conditions the 1200 UTC analysis perturbed along growing directions. The de-
velopment of the EPS is documented in Palmer e al. (1992), Molteni et al. (1996) and
Buizza er al. (1998a); recent findings indicate that its performance is useful (Palmer
et al. 1998b). Three other numerical weather prediction (NWP) centres run an EPS on
a daily basis, namely the US National Centers for Environmental Prediction (NCEP),
the Canadian Meteorological Centre (CMC) and the Fleet Numerical Meteorological
and Oceanographic Center (FNMOC) of the US Navy. The approaches followed by the
various NWP centres to define their EPS differ considerably. The breeding method is
used at NCEP (Toth and Kalnay 1997) and FNMOC (Rennick 1995) to create initial
perturbations, while CMC generates initial perturbations by running various assimila-
tion schemes using perturbed observations, but also takes into account model errors by
allowing different model configurations in the ensemble (Houtekamer e al. 1996).

At ECMWF singular vectors (SVs) are used to define initial perturbations for the
EPS (Buizza and Palmer 1995), as they are believed to sample the unstable linear
subspace as efficiently as possible. Two sets of SVs at horizontal resolution T42 and
vertical resolution 31 (T42L31) are computed, targeted respectively at the northern and
southern hemisphere extratropics (the tropics being defined as 30°S to 30°N) and with
an optimization time of 2 days. From these, 25 perturbations are generated for each
hemisphere separately (Molteni ef al. 1996), and then the two sets of perturbations are
added to yield extratropical perturbations. By adding and subtracting the extratropical

perturbations to and from the 1200 UTC analysis the 50 perturbed initial conditions for
the EPS are defined.

* Corresponding author: Buropean Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, Berk-
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In order to obtain the forecast probability distribution function (PDF) under the as-
sumption of a perfect forecast model, ideally, one would like to integrate the appropriate
Liouville equation (Epstein 1969; Ehrendorfer 1994), However, the large dimension of
NWP models makes this impossible. The SV approach provides a possibility of search-
ing for directions in phase space where the errors in the initial condition will amplify
rapidly. Nevertheless, the interpretation of results as derived from the EPS is not straight-
forward. The large discrepancy between the size of the ensemble (50) and the dimension

of NWP models (10 to 107) may lead to sampling errors in describing the forecast PDF:
initial directions in phase space which result in improved forecasts may easily be missed.
In fact, estimates of the dimension of the linear unstable subspace for a 1449-varnable

T21L3 QG (quasi-geostrophic) model are of order 10% to 10° (Palmer et al. 1998a).
Another difficulty is that the SVs are computed to produce large growth in the first 2
days of the forecast. It is possible that slower growing SVs become more important in
the medium range when error growth has become nonlinear. This was indeed the case
for perturbations which were specifically defined to trigger the onset of weather regimes
at forecast day 5 in the context of a 3-level QG model (Oortwijn and Barkmeijer 1995).
In addition to this, medium-range forecast errors cannot solely be attributed to errors in
the initial condition. Experiments show that model errors can become equally important
in causing forecast errors (Harrison ef al. 1995; Richardson 1998). Research s under
way to complement the SV approach by allowing the model perturbations curing the
actual time integration of each ensemble member (Buizza et al. 1998b).

In this paper we assume a perfect-model approach and we shall focus on defining
SVs in accordance with analysis error statistics. The specification of the initial and, to
a lesser extent, the final norm plays a crucial role in this. In the ECMWF operational
EPS, SVs are computed with the so-called total energy norm at initial and final time (see
section 2 for more details). It can be shown that among simple norms, the total energy
norm provides SVs which agree best with analysis error statistics (Palmer et al. 1998a).
In Barkmeijer et al. (1998) a method is proposed to incorporate analysis error statistics
directly in the SV computation. This is done by taking the full Hessian of the 3D-Var
(three-dimensional variational) cost function as an approximation to the inverse of the
analysis error covariance matrix, and using it to define a norm at initial time. The inverse
of the analysis error covariance matrix A is not explicitly known. It suffices to be able to

compute y = A~ 1x for a given input vector x. By doing so the SV computation becomes
consistent with the 3D-Var procedure to determine the analysed state. The total energy
norm is still used at optimization time. We call SVs calculated in this way Hessian
singular vectors (HSVs). Ehrendorfer and Tribbia (1997) state that such an approach to
determine SVs provides an efficient way to describe the forecast error covariance matrix
when only a limited number of linear integrations are possible. In their SV computations,
however, explicit knowledge of the analysis error covariance matrix is used, which is
unavailable in an operational data-assimilation system. It is this complication which
requires an efficient generalized eigenvalue problem solver to compute SVs.

The purpose of this paper is to report on properties of these HSVs defined with
an initial norm given by the full 3D-Var Hessian, and to describe their impact on the
performance of the ECMWF EPS. To that end 10 ensembles starting from days in
December, January, February 1996/97 are compared, where initial perturbations are
created with either total energy singular vectors (TESVs) or HSVs. Parallel to this we
also investigate an easy way to complement perturbations based on initial TESVs with
more stable and large-scale directions. For this third set of ensembles, the 2-day linearly
evolved initial TESVs computed from two days before were used. The perturbations
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generated by the evolved singular vectors (ESVs) were simply added to perturbations
based on initial SVs,

The organization of the paper is as follows. In the next section we introduce the
computation of the HSVs. The comparison of the HSVs and TES Vs is given in section 3.
Results from the three sets of ensembles are presented in section 4. The paper concludes
with a brief summary of the results and possible areas for future work. In the appendix
one of the statistical verification methods, the relative operating characteristic (ROC), is
briefly described.

2. USE OF THE 3D-VAR HESSIAN

The computation of SVs requires the specification of a norm at initial time fg and at
optirmization time #;. In this paper we consider SVs, &, which maximize the ratio

(Pe(t;), EPe(t1))
(e(t0), Ce(to))

Here (, ) denotes the Euclidean inner product {x, y} = > x;y;. The positive definite and
symmetric operators  and E induce a norm at initial and optimization time respectively.
The projection operator P sets a vector to zero outside a given domain, e.g. south of
30°N as 1in this paper. The first singular vector SV1 maximizes the ratio (1), the second
singular vector SV2 maximizes (1) in the subspace C orthogonal to SV1, and so forth.
The evolved SVs e(f)) = Me(#g) form an E-orthogonal set at optimization time, where
M is the propagator of the tangent linear model. Alternatively, the SVs defined by (1)
are solutions of the following generalized eigenvalue problem

M*P*EPMx = ACx, (2)

(D

where A is the eigenvalue corresponding to x. The adjoint operators M* and P* are
determined with respect to the Euclidean inner product.

In the computation of the TESVs, the total energy metric is used at initial and
optimization time, 1.e. K and C are identical and:

1 1
(x, By) = Ef f (m**lgx-m-lgy +VvA~iD, .- vA~lD,
g JI

Cp dp 1
T, an 2 /s

with (¢, Dy, T,, In ) being the vorticity, divergence temperature and logarithm of the
surface pressure components of the state vector x, ¥ denotes integration over a sphere,
p{n) is pressure at level n (0 = the surface; 1 = top of atmosphere), ¢, is the specific
heat of dry air at constant pressure, Ry is the gas constant for dry air, 7, =300 K is a
reference temperature and P, = 800 hPa is a reference pressure.

In the TESYV case C has the form of a diagonal matrix and the square root of C can be
readily determined. Multiplying both sides of (2) with the inverse of the square root of
C, yields an equation which can be solved using the Lanczos algorithm (Partlett 1980).
Palmer ef al. (1998a) study the impact on SVs of choosing different simple metrics
at initial time, while keeping the total energy metric at optimization time. They were
interested in initial metrics so that the spectra of the dominant SVs was not inconsistent
with the spectra of an estimate of analysis error variance. Inconsistency is meant in the
sense that spectra of SVs are dominant in a wave-number band for which the analysis
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error variance is small. It turns out that, of the simple metrics considered, the total
energy metric satisfies this consistency condition. In Barkmeijer et al. (1998) a method
is proposed to make the singular vector computation fully consistent with analysis error
statistics by employing the Hessian of the 3D-Var cost function.

In the incremental formulation of 3D-Var a cost function § of the form

F(6x) = 26x" B~ 16x + 3(Héx — )" R~ (Héx — d) 4)

is minimized (Courtier ef al. 1998). The increment 5x®, which minimizes §, provides
the analysis x* which is defined by adding §x? to the background x°

x* = x® + 5x°. (5)

The matrices B and R are covariance matrices for background errors (x? — x') and
observation errors (y° — H(x")) respectively with y° the observation vector and x' the
true state of the atmosphere, H is the linear approximation of the observation operator
H in the vicinity of x and d is the innovation vector

d=y°— Hx (6)
The Hessian VV ¢ of the cost function 1s given by
vve=B"1+H'R'H (7

Provided that the background error and observation errors are uncorrelated, it can be
shown that the Hessian of the cost function is equal to the inverse of the analysis error
covariance matrix (see Rabier and Courtier 1992; Fisher and Courtier 1995).

In the HSV computation the inverse of the analysis error covariance matrix is used
to define the norm at initial time. The operator C is specified to be equal to the full

Hessian of the 3D-Var cost function. The operator C =B~ + H' R~'H is not known
in matrix form and determining its square root is not feasible. In order to solve (2), a
generalized eigenvalue problem solver, called generalized Davidson algorithm, is used
(Barkmeiier et al. 1998). This algorithm can solve (2) efficiently and requires only the
ability to calculate y = Sx, where S is any of the operators appearing in (2). No explicit
knowledge of any operator is needed. In the following we assume that the total energy
metric is always used at optimization time.

To improve the convergence of the generalized Davidson algorithm a coordinate
transformation ¥ = L~1x is carried out with LL” = B. Applying the transformation L,
the Hessian becomes equal to the sum of the identity and a matrix of rank less than or
equal to the dimension of the vector of observations (see also Fisher and Courtier 1993).
Thus, when no observations are used in the cost function, the transformed operator
(L~HTCL! is the identity and the generalized Davidson algorithm becomes equivalent
to the Lanczos algorithm (Barkmeijer er al. 1998).

3. HESSIAN SINGULAR VECTORS

For 10 days from winter 1996/97, T421.31 SVs were computed using an initial norm
derived from the full Hessian of the 3D-Var cost funchion and with an optimization
period of 2 days. Since the SVs will also be used to create EPS perturbations, we
selected an equal number of initial days with below as with above 1996/97 winter
average ensemble spread and ensemble control forecast error at day 3 over the northern
hemisphere (NH). The final norm in the defining equation (2) is the total energy
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Figure 1. (a) and (b) The total energy spectrum, and (c} and (d) the vertical distribution of the total energy
spectrum, of fotal energy singular vectors and Hessian singular vectors respectively. Values at initial (final) time

are given by dashed (solid) lines. At initial time the total energy (m”s~2) has been multiplied by a factor of 100.

norm (3). The solutions of this generalized eigenvalue problem will be referred to as
HSVs. In evaluating the Hessian, we used the new formulation of the background error
covariances described by Bouttier et al. (1997), together with most of the conventional
observations (SYNOP, AIREP, SATOB, DRIBU, TEMP, PILOT, SATEM and PAOB)
for NH. The necessary gradient computations of the cost function and the slower
convergence of the generalized Davidson algorithm make the HSVs around 5 times
computationally more expensive to determine than TESVs.

The HSVs have properties considerably different from TESVs which use the total
energy norm also at initial time. Figures 1(a) and (b) give the TESV and HSV spectrum
in terms of total energy averaged over the 10 cases, each consisting of 25 SVs. Clearly,
the TESVs are initially (dashed line) more small-scale than HSVs, with a dominant
wave number around 30 compared with 10. The spectra at final time (solid line) for
both sets of SVs peak around wave number 10. Decreasing the horizontal diffusion for
vorticity, divergence and temperature by a factor of 4 (damping times are 60 h, 24 h and
60 h respectively) slowed little impact on the spectra, in contrast to findings for TESVs
(Buizza 1998). Also the vertical structures of HSVs and TESVs are quite different,
see Fig. 1(c) and (d). Most of the HSV total energy is initially confined to the levels
around 300 hPa, whereas TESVs have most of the energy near the jet steering level
(700 hPa). At optimization time the vertical energy distributions of TESVs and HSVs
are comparable. The total energy amplification of HSVSs is smaller, as indicated by the
area under the solid curves in Figs. 1(a) and (b).

On average TESVs grow approximately twice as fast as HSVs in terms of total
energy. Figure 2 shows the total energy amplification of the 15 leading HSVs and TESVs
for a particular day with a 2-day optimization period. Observe that, as a consequence
of using different norms at initial and final time, the ordering of the HSVs no longer
corresponds with their total energy growth,
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Figure 2. Typical total energy amplification of a total energy singular vector (solid) and Hessian singular vector
{dashed).

The large-scale structure and energy distribution of HSVs is to a large extent
determined by the formulation of the background error covariance matrix B. Essential
in defining the B matrix are error statistics derived from the difference between 2-day
and 1-day forecasts verifying at the same day (commonly known as the NMC method;
Parrish and Derber 1992). The statistics obtained for a period of 90 consecutive days
extending from December 1992 to February 1993 are described in Rabier ef al. (1998).
Power spectra of the error statistics indicate that the energy spectrum peaks around total
wave number 10. The vertical distribution of the background error variance reaches a
maximum near the jet level. Both these properties are reflected in the metric defined by
the Hessian. Also, the background error covariance matrix is specified to have broad
horizontal and vertical correlations, and thus penalizes the occurance of baroclinic
structures in the analysis error. Hence we may suspect that the 3D-Var Hessian metric
penalizes the small-scale and baroclinic perturbation patterns in the areas which are
picked up by the TESV computation. Thépaut et al. (1996) have compared power
spectra of 3D-Var and 4D-Var analysis increments in the vicinity of an extratropical
storm, Although their results must be regarded as indicative and depend on, for instance,
the background error covariance matrix, the 4D-Var approach clearly allowed for more
energy in larger total wave numbers, peaking between wave number 7 and 135. Also
the slope of the 4D-Var increments’ power spectrum increased to 6, as compared to
3 for 3D-Var. The flat spectrum that occurs for initial TESVs up to the truncation
limit, see Fig. 1(a), is not observed. The NMC method is well suited for statistical data
assimilation in that it provides a good estimate of the time averaged global background
error covariances. However, it is likely that the average covariance structures are not
optimal in dynamically unstable areas.

The differences between HSVs and TESVs can also be exhibited by using a
similarity index (Buizza 1998), which measures how parallel subspaces are spanned
by the leading HSVs and TESVs. Values of the similarity index range from 0 to 1
and increasing values mean that the subspaces become increasingly parallel. Figure 3
shows for each of the 10 cases the similarity index between the unstable HSV and
TESV subspaces at initial and optimization time when 10 or 25 SVs are used to span the
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Figure 3. Similarity index between total energy singular vector and Hessian singular vector unstable subspaces
at {a) inifial and (b) final time. Dashed (solid) lines indicate that 10{25) singular vectors are used in spanning the
subspace.

unstable subspace. It is clear from Fig. 3(a) that the unstable TESV and HSV subspaces
are almost orthogonal at initial time. At final time the subspaces have become more
parallel although the similarity index is still quite low.

Given such small similarity indices, one wonders whether the two sets of SVs
describe different parts of the forecast error, To investigate this, the operational 2-day
NH forecast error £ {(48) was projected onto the 2-day hinearly evolved HSVs and TES Vs
for each of the 10 cases. In the projection 25 SVs were used. We denote the portion of
the forecast error thus explained by €(48) and the associated so-called pseudo analysis
error by €(0) (see also Buizza et al. 1997):

25
€(48) = Z a;M(SV;) = Me(0), (8)
=1

where M is the tangent model. The percentage of the total energy of £(48) as explained
by €(48) is given in Fig. 4 for TESVs and HSVs. Both types of SVs describe nearly the
same fraction of £(48) in terms of total energy.

Despite their very different structures, TESVs and HSVs also describe similar
geographical patterns of the 2-day forecast error when 25 SVs are used in the expansion
(8). Figure 5(a) and (b) shows for 1200 UTC 18 January 1997 the pseudo analysis error
€(0) at 500 hPa in geopotential height using 25 TESVs and HSVs respectively; the
corresponding €(48) is given in Fig. 5(c) and (d). The actual 2-day forecast error is
given in Fig. 5(e). For both sets of SVs the projected forecast error €(48) is almost
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Figure 4. Explained part of the 2-day northern bemisphere forecast error in terms of total energy. The dashed
(solid) line indicates that the 25 leading total energy singular vectors (Hessian singular vectors) are used.

indistinguishable (the correlation coefficient is 0.93). The patterns of £(0) are more
different (correlation 0.59), although the centres of most of the maxima are located at
the same positions. The amplitude of 2(0) when using HSVs in the expansion is larger
than €(0) obtained with TESVs (note the different contour interval). The corresponding
£(0) and €(48) for temperature yield similar results, with correlations of 0.62 and 0.95
at initial and final time respectively, see Fig. 6. This result holds for all the cases and
shows that, despite their different structures, TESVs and HSVs explain the same part of
the forecast error.

When the number of SVs is decreased, differences between the explained part of the
forecast error become visible, see Fig. 7. Here the 2-day forecast error from 1200 uTc 30
January 1997 is projected onto 10 evolved SVs. The TESVs explain better the forecast
error over the Atlantic, whilst the HSVs describe some of the errors over Europe.

Note that in Fig. 6 the temperature amplitude of the pseudo analysis error #(0)
computed with TESVs is larger than for HSVs. It is a direct consequence of the
different distribution of total energy over the four components of the SV state vector:
vorticity, divergence, temperature and logarithmic surface pressure. For TESVs most of
the total energy is in the temperature component, while HSVs have a dominant vorticity
component, see Fig. 8.

4. HESSIAN AND EVOLVED SINGULAR VECTORS IN THE ECMWF EPS

For the 10 days for which HSVs were available, alternative ensembles have been
integrated using the same setting as the operational ensemble: 50 + 1 (control) 10-day
T 159131 nonlinear integrations. In creating the 30 initial perturbations, now based on
HSVs, the same methodology was followed as for the operational ensemble, see Molteni
et al. (1996), except that the initial amplitude was set so that both TESV and HSV
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Figure 5. (a) Pseudo analysis 2(0) in geopotential height at 500 hPa for total energy singular vectors, (b) As (a)

but for Hessian singular vectors. (¢) As {a) but for corresponding #(48). (d) As (b) but for corresponding £(48).

(e) 2-day geopotential height forecast error (m) from 1200 UTC 18 Januwary 1997, Solid (dashed) lines denote
positive (negative) values. Contour interval {ct}) is given above each panel.
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Figure 6. As Fig. 5 but for temperature forecast error (K) at 500} hPa.
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Figure 7.  As Fig. 5 but for 1200 uTcC 30 January 1997 and using 10 singuiar vectors.
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to total energy singular vector (Hessian singular vector).

based ensemble configurations have a nearly equal spread with respect to the control
over NH at day 2. This was done by tuning a parameter o that sets the amplitude
of the initial perturbations. Here « represents the maximal acceptable ratio between
the imitial perturbations and an estimate of analysis error variances. Perturbations are
compared to analysis error variances at 5 pressure levels and for zonal and meridional
wind and temperature. In practice, the analysis error variances of temperature put the
strongest constraint on the perturbation amplitude. Because of the completely different
growth rate for HSVs and the different distribution of total energy over the state vector
components, in particular temperature, this parameter o had to be changed significantly.
It was reduced from 0.6 for the operational TESV perturbations to 0.25 for perturbations
based on HSVs. As a third EPS configuration we exploited the use of evolved TESVs
in creating initial perturbations. In addition to the perturbations, p;, of the operational
EPS, 50 perturbations, ep;, are computed in a similar manner (and using the same initial
amplitude) but now based on the 2-day linearly evolved singular vectors computed two
days before. The imtial perturbations, pert;, are defined by adding the two sets:

pert, =p; +ep;, i=1,...,50 (9)

The use of evolved SVs provides an easy way to include more stable and large-
scale directions in the generation of EPS perturbations. See Fig. 1(a) for the spectra of
initial and evolved TESVs. In the following we refer to this configuration as the ESV
ensemble.

Figure 9(a) shows, as a function of forecast time, the root-mean-square (r.m.s.) error
of the control forecast for NH and the r.m.s. spread of the ensemble with respect to the
control for the three EPS configurations, averaged over the 10 cases. Notice that the
perturbations based on HSVs cannot create as much spread in the medium range as is
present in the operational ensemble. Other verification areas show the same deficiency
in spread in the medium range for the HSV ensemble. Although evolved singular vectors
are in the more stable directions of the analysis error, they lead to an increased spread in
the ESV ensembile not only during the quasi-linear stage but up to day 10. There is little
difference between the skill of the ensemble mean for all three configurations in terms
of the r.m.s. error as can be seen in Fig. 9(b). The ensemble mean of the HSV (ESV)
ensemble 1s on average slightly worse (better) for the medium range.
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Figure 9. (a) Average root mean square (r.m.s.) height error (m) of the Ty 159131 (see text) ensemble control

forecasts (chain-dashed), the average r.m.s. spread of the operational (solid), the Hessian singular vector (HSV;

dashed) ensembles and the evolved singular vector (ESV; dotted) ensembles. (b) Average r.m.s. etror of the

ensemble mean for the operational (solid), HSV (dashed) and ESV (dotted) ensembles. All values are refative
to 500 hPa geopotential height over the northern hemisphere.

In fact, ensemble means of the three configurations reveal a quite similar spatial
pattern for each individual case. Figure 10 shows the difference between the ensemble
mean and the control forecast at forecast day 5 for an arbitrarily chosen HSV and
operational ensemble. For a more detailed discussion on this issue see Hersbach ef al.

(1998).

(a) Brier skill score and relative operating characteristics

Brier skill scores (Brier 1950; Stanski et al. 1989) have been computed for prob-
ability predictions of geopotential height anomalies exceeding certain thresholds (25
and 50 m positive/negative anomalies at 500 hPa) and analogously for temperature (4
and 8 K high/low anomalies at 850 hPa). Figure 11 gives the Brier skill score as a
function of forecast time for a 50 m positive anomaly threshold at 500 hPa. The Brier
skill score compares the skill of the probabilistic forecast to climatology: 1t 1s 1 for a
perfect forecast, 0 when the probabilistic forecast does not perform better than clima-
tology, and negative for even worse forecasts. All three ensemble configurations give
indistinguishable results up to day 4, after which the ESV ensemble performs slightly
better. The same conclusion holds for the other thresholds and for the Brier skill scores
for temperature at 850 hPa.
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Figure 11. Brier skill score of the operational (solid), Hessian singular vector (dashed) and evolved singular
vector (dotted) ensembile at different forecast times for a geopotential height anomaly threshold of 50 m at 500 hPa
over the northern hemisphere.

From signal-detection theory (Mason 1982; Stanski e al. 1989) so-called relative
operating characteristics (ROC) have been computed for the same variables and thresh-
olds as the Brier skill score; see also the appendix. A convenient measure associated with
the ROC is the area under the curve. It ranges from 1 for a perfect forecast system (i.e.
a forecast system with zero false alarms) to 0. A value of 0.5 is produced by a useless
forecast system which cannot discriminate between occurrences and non-occurrences of
events. Figure 12 gives the ROC area for a negative geopotential height anomaly of 50 m
at 500 hPa over NH. Other thresholds and ROC areas for temperature at 850 hPa give
stmilar results, a slightly better performance of the experimental ensembles up to day
3. After day 4 the ESV ensembles continue to give the best results; the HSV ensembles
show a deterioration in the performance compared to the operational ensembles. This
confirms the results obtained with the Brier skill score.
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Figure 12. Relative operating characteristics area of the operational (solid), Hessian singular vector (dashed)
and evolved singular vector {(dotted) ensemble for a negative geopotential height anomaly of 50 m at 500 hPa over
the northern hemisphere at different forecast times.
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Figure 13. Percentage of analysis outliers for the operational (solid), Hessian singular vector {dashed) and
evolved singular vector (dotted) ensembles as a function of forecast time for geopotential height at 500 hPa for:
{a) the northern hemisphere, and (b) Europe.

(b) Percentage of analysis outliers

At each grid point the 50 ensemble values partition the real line into 51 mtervals.
Under the assumption of no model errors and a random sampling of the analysis error
PDF, each interval is equally likely to contain the analysis value (when averaged over
a verification area). Figure 13 gives the percentage of analysis values lying outside
the ensemble forecast range for geopotential height at 500 hPa over NH and Europe
(averaged over the 10 cases). When all ensemble members are equally likely, then

the percentage of analysis outliers 1s % x 100%. Model errors and wrong sampling
of the initial perturbations may cause the actual percentage of analysis outliers to be
considerably larger than the expected value. The experimental ensembies have less
outliers than the operational ensemble for the short range with respect to NH. This
coincides with the larger spread in the experimental ensembles during the first two days,
see Fig. 9(a). Areas where ensembles produce less spread than the operational ensemble,
such as Europe (not shown) for the HSV ensembles, yield larger percentages of analysis
outliers. The ESV ensembles gave the smallest percentage of outliers. This i1s because
the orthogonality of initial and evolved SVs results in a more uniform perturbation
coverage, especially during the first few days.
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5. FINAL REMARKS

In this paper so-called Hessian singular vectors (HSVs) are computed which, at
initial time, are constrained by an estimate of the analysis error covariance metric. Up
to now the calculation of SVs as used in the ECMWF EPS is based on an energy metric
at mitial time which may be considered as a first approximation of the analysis error
covariance metric (Palmer et al. 1998a). In computing HS Vs the full Hessian of the cost
function of the variational data assimilation is used as an approximation to the analysis
error covariance matrix. In this way the calculation of singular vectors and the analysed
state in 3D/4D-Var become consistent.

The HSVs are solutions of a generalized eigenvalue problem, and by using a
generalization of the Davidson algorithm (Davidson 1975; Sleijpen and Van der Vorst
1996) the leading SVs can be determined. It only requires that the propagators of the
linear and adjoint model and the Hessian of the 3D-Var cost function are available in
operator form, i.e. y = Sx can be computed, where S is any of these operators and x is
an mput vector. The computation of 25 HSVs, as needed for the ensemble perturbations,
is of the order of 5 times more expensive than the computations of the same number of
TESVs.

Earlier results obtained with a T21L35 PE model (Barkmeijer et al. 1998) already
indicated significant differences between HSVs and TESVs. In the present study these
results are confirmed for SVs with a resolution at T421.31. At initial time the horizontal
structure of HSVs is more large scale than TESVs, with energy spectra attaining their
maximurm at wave numbers 10 and 30 respectively. The energy spectra at optimization
time are comparable. Also the vertical structure of HSVs and TESVs show a striking
difference in terms of the energy distribution. Most of the HSV energy is at initial time
confined to the jet level, instead of peaking around the barochinic steering level as TESV
energy. At final time both type of SVs show the same vertical energy distribution. The
growth rate of TESVs in terms of total energy is typically twice as large as for HS Vs,

The large-scale structure and the vertical energy distribution of HSVs are to a large
extent determined by the formulation of the background error covariance matrix B.
The first-guess error statistics are based on the difference between the 2-day and 1-day
forecast valid for the same day (the so-called NMC method; Parrish and Derber 1992).
The B matrix defined in this way lacks a realistic description of flow-dependent small-
scale error structures. Also the broad horizontal and vertical correlations will penalize
the occurrence of baroclinic structures in the analysis error. From this it is clear that an
SV computation using the 3D-Var Hessian is not optimal in dynamically unstable areas.

A first improvement in making B more realistic would be to relax its static char-
acter by including some flow-dependent error covariances. This approach is attempted
at ECMWEF by experimenting with a simplified Kalman filter in an operational envi-
ronment (Fisher 1998; Rabier ef al. 1997). Here the B matrix is modified foreach 6 h
analysis cycle in the unstable subspace spanned by the leading HSVs. Parallel to this, a
full Kalman filter is being developed in the context of a T21L.3 quasi-geostrophic model
(Ehrendorfer 1998; Ehrendorfer and Bouttier 1998).

Finally, the impact of HSVs in the ECMWF EPS was investigated, Perturbations
based on HSVs were determined in a similar way as for the operational ensemble.
Both the operational and HSV ensemble configurations use perturbations that give
comparable spreads at day 2 for NH relative to geopotential height at 500 hPa. In
addition to this, the use of evolved SVs was investigated. These 2-day linearly evolved
SVs (ESVs), computed two days before, provide an easy way to add large-scale
structures to the EPS perturbations. The initial perturbations for the ESV ensembles are
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defined by adding the operational perturbations to perturbations based on the evolved
SVs (using the same initial amplitude as nsed for the operational perturbations).

Results show that the HSV perturbations give slightly less spread over NH in the
medium range compared to the operational ensemble. This is in contrast to the ESV
ensembles where the spread is slightly larger up to day 10. The percentage of analysis
outliers over NH has decreased for the experimental ensembles up to day 3. For longer
lead times the ESV ensembles have the smallest percentage of outliers. Statistical
verification methods, such as ROC and Brier skill score, for geopotential height at
500 hPa and temperature at 850 hPa do not show large differences between the three
ensemble configurations. The impact of the HSV or ESV perturbations is neutral or
positive for forecasts up to day 3; after day 4 the ESV ensembles show a slightly
better performance. Additional experimentation with ESV perturbations confirmed a
small but consistent improvement using the Brier skill score and ROC, and a substantial
decrease in the percentage of analysis outliers. From 25 March 1998 onwards the ESV
perturbations are used in the operational ECMWF EPS (the parameter o was slightly
reduced from (.6 to 0.5).
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APPENDIX

The relative operating characteristic (ROC) originating from signal-detection theory
is briefly described here. The reader is referred to Stanski ef al. (1989) for a more
detailed definition. Consider a two-category contingency table:

Forecast = Yes  Forecast == No  Total Observed

Observed = Yes X Y X4+Y
Observed == No Z w L+ W
Total Forecast X+2Z Y+ W

The two entries X and Z can be referred to as ‘hits’ and ‘false alarms’ respectvely.
The hit rate is then given by X/(X + Y) (percentage of correct forecasts) and the false
alarm rate by Z/(Z -+ W) (percentage of forecasts of the event, given that the event did
not occur).

Signal detection theory generalizes the concept of hit and false alarm rates to
probability forecasts. Suppose a forecast distribution is stratified into probabikity cat-
egories 10% wide, and non-occurences, ¢;, and occurences, b;, of an event are tabulated
for each category. Here the j-th category is related to a forecast probability between
(j = 1) x 10% and j x 10%. For a certain probability threshold, j x 10%, the entries
a; and b; can be summed to give the four entries of the two-by-two contingency table,
the hit and false alarm rate calculated and a point plotted on a graph. The four entries are
givenby W =37 a;, Y= S by, Z = Z?ﬂ;H a; and X = .}gj“ b;. By repeat-
ing this process for all thresholds j x 10%, j =1, ..., 10, a curve is obtained called
the ROC.
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A convenient measure associated with the ROC is the area under the curve, which
decreases from 1 to O as the false-alarm rate increases. In this approach a useless

probability forecast has an area of 0.5, because such a system cannot discriminate
between the occurrences and non-occurrences of events.
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