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ABSTRACT

Parameterizations of the eddy-induced velocity that advects tracers in addition to the Eulerian mean flow are
traditionally expressed as a downgradient Fickian diffusion of either isopycnal layer thickness or large-scale
potential vorticity (PV). There is an ongoing debate on which of the two closures is better and how the spatial
dependence of the eddy diffusivity should look like. To increase the physical reasoning on which these closures
are based, the authors present a systematic assessment of eddy fluxes of thickness and PV and their relation to
mean-flow gradients in an isopycnic eddy-resolving model of an idealized double-gyre circulation in a flat
bottom, closed basin. The simulated flow features strong nonlinearities, such as tight inertial recirculations, a
meandering midlatitude jet, pools of homogenized PV, and regions of weak flow where b/h dominates the PV
gradient. It is found that the zonally averaged eddy flux of thickness scales better with the zonally averaged
meridional thickness gradient than the eddy flux of PV with the PV gradient. The reason for this is that the
two-scale approximation, which is often invoked to derive a balance between the downgradient eddy flux of
PV and enstrophy dissipation, does not hold. It is obscured by advection of perturbation enstrophy, which is
multisigned and weakly related to mean-flow gradients. On the other hand, forcing by vertical motions, which
enters the balance between the downgradient eddy flux of thickness and dissipation in most cases, acts to dissipate
thickness variance. It is dominated by the conversion from potential to kinetic energy and the subsequent
downgradient transport of thickness. Also, advection of perturbation thickness variance tends to be more single-
signed than advection of perturbation enstrophy, forcing the eddy flux of thickness to be more often down the
mean gradient. As a result, in the present configuration a downgradient diffusive closure for thickness seems
more appropriate to simulate the divergent eddy fluxes than a downgradient diffusive closure for PV, especially
in dynamically active regions where the eddy fluxes are large and in regions of nearly uniform PV.

1. Introduction

Modeling the ocean circulation implies calculation of
a solution to a particular set of equations (e.g., the prim-
itive equations) that describes the motion of the resolved
scales, with source/sink terms added that contain pa-
rameterizations of the unresolved scales. Until recently,
these parameterizations consisted of a diffusion of tracer
and momentum along the coordinate directions, with
the vertical diffusion much smaller than the horizontal.
For most global ocean models the unresolved scales that
contain the most energy are the mesoscale eddies. Dif-
fusion of momentum in the horizontal by the eddies is
questionable, as part of the momentum transport occurs
nonlocally through pressure forces. Also, the eddy mo-
mentum transport is often observed to be upgradient
(e.g., Schmitz 1977; McWilliams et al. 1978). In an
integral sense, however, horizontal momentum diffusion
is associated with the enstrophy cascade from larger to
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smaller scales and should be downgradient. For a down-
gradient formulation of the eddy transport of tracer ex-
ists more support, but here the direction should be
aligned with isopycnals instead of the coordinate direc-
tions in nonisopycnic coordinate models.

The notion that eddies provide an advective transport
of tracers in the atmosphere (e.g., Andrews et al. 1987;
Plumb and Mahlman 1987) preceded oceanographic ap-
proaches. In the oceanographic literature, Gent and
McWilliams (1990) and Gent et al. (1995) were the first
to show that an additional advection of tracers arises
from the correlation of the eddy components of layer
thickness and velocity, which then defines a bolus or
eddy-induced transport velocity. The Gent and Mc-
Williams scheme has been implemented successfully in
coarse-resolution models. For instance, Danabasoglu
and McWilliams (1995) and Hirst and McDougall
(1996) show that the simulated water mass distribution
improves significantly when the scheme is applied.
Also, more tentative results have been reported (Duffy
et al. 1995; England 1995). Later, the relation between
the eddy-induced advection and eddy quantities has
been refined by McDougall and McIntosh (1996) and
McDougall (1998), and a link with the residual-mean
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theory of Andrews and McIntyre (1976) was estab-
lished. A parameterization of the eddy-induced advec-
tion is then established if it is expressed in mean field
quantities. Gent and McWilliams (1990) favored a
downgradient Fickian diffusion of isopycnal layer thick-
ness. This was motivated as to mimic the domain-av-
eraged effect of baroclinic instability. It provides a neg-
ative definite sink of large-scale potential energy, which
is assumed to be converted into eddy energy and sub-
sequent frictional losses. Further developments along
this line have been given by, for example, Visbeck et
al. (1997).

An alternative proposal relating eddy-induced trans-
port to potential vorticity (PV) gradients has been ad-
vocated by, for example, Treguier et al. (1997), Lee et
al. (1997), and Killworth (1997). Here, the argument is
that PV is conserved by fluid particles in an ideal fluid,
while layer thickness is not. As a result, in a steady state
the divergence of the eddy PV flux will be balanced by
the advection by the mean flow of the mean PV gra-
dients. Also, under certain scaling assumptions, in the
equation for perturbation enstrophy the cross-gradient
eddy flux of PV is balanced by dissipation and at most
places both terms should be negative. This suggests that
a diffusive closure in PV should work better than in the
case of layer thickness transports.

A host of arguments exists pro or contra one of these
closures. For instance, PV is observed to be homoge-
nized within gyres on subsurface isopycnal surfaces
(McDowell et al. 1982; O’Dwyer and Williams 1997).
A closure of the eddy PV flux can form the basis for a
closure of the eddy momentum transport (Greatbatch
1998). It is observed to perform better than an eddy
layer-thickness flux closure in channel models (Lee et
al. 1997; Treguier 1999; Marshall et al. 1999). Against
this it can be argued that the ocean is not an ideal fluid,
that closures based on PV mixing appear to be singular
at the equator (the quasigeostrophic approximation has
to be valid). The role of eddy fluxes in a gyre circulation
where zonal asymmetries exist is completely different
from those in channel models (Rhines and Holland
1979; Holland and Rhines 1980). The spatial inhomo-
geneity of eddy momentum transport causes the eddy
flux of relative vorticity to be small scale and seemingly
unrelated to the large-scale PV gradient (Holland and
Rhines 1980).

In the present study we aim at improving the physical
reasoning on which the closures for eddy fluxes pre-
viously discussed are based. To this end, we perform a
systematic assessment of eddy fluxes and their relation
to mean flow gradients in an isopycnic eddy-resolving
model of an idealized double-gyre circulation in a flat
bottom, closed basin. Before evaluating the eddy fluxes
we decompose them into a rotational and divergent part.
In zonal averages of meridional fluxes in a periodic
channel flow, the rotational part of the flow vanishes.
In that case, one may diagnose the eddy-induced transfer
velocity itself and compare it with the parameterizations

[this has been done by, e.g., Lee et al. (1997)]. In a
closed basin the rotational fluxes do not vanish and may
even dominate the divergent fluxes (Marshall and Shutts
1981). As only the divergent component of the flux
contributes to the divergence of the eddy transports, it
is only this part that needs to be parameterized.

This study emphasizes flow with moderately high
Reynolds numbers (i.e., the basinwide variation in up-
per-layer depth is of the order of the average layer depth
itself, but outcropping does not occur) for which the
quasigeostrophic assumption may not be valid in the
western boundary currents and midlatitude jet. As eddy
fluxes tend to peak where the variability is high (Stam-
mer 1998; Wunsch 1999), we feel that it is pertinent to
test these closure schemes where we expect them to be
most important. A corrolary of this model configuration
is that much of the physical reasoning used in the studies
discussed above may no longer be valid, as they are
(partly) based on assumptions and approximations that
do not hold for this type of flow. In the present paper
we emphasize the more fundamental aspects of eddy
mixing of PV and isopycnal layer thickness by high-
lighting the processes that cause well-, or less well-
behaved downgradient eddy transports. In a companion
paper we will address the spatial structure of the effec-
tive eddy diffusivity and test the performance of several
closure schemes in a coarse-resolution model.

This paper is organized as follows. In section 2 we
review briefly the theoretical framework. In section 3
we address the model formulation, the forcing, and the
mean fields. In section 4 the eddy transports are de-
composed into rotational and divergent parts, and from
the latter the cross-gradient and along-gradient prop-
erties are discussed. Next, we evaluate the zonally av-
eraged flux-gradient relations (section 5) and discuss the
physics that cause departures from simple Fickian
downgradient diffusion (section 6). Finally, in section
7 the conclusions are given.

2. Theoretical background

In this section we review briefly the problem of eddy
parameterization. An incompressible, adiabatic, Bous-
sinesq flow in isopycnal coordinates is considered.
When a layer formulation is used (i.e., homogeneous
layers of constant density), the vertical integral of the
continuity equation between two isopycnal surfaces re-
sults in a layer thickness equation:

]h
1 = · (uh) 5 0, (1)

]t

with u 5 (u, y) the horizontal velocity and h the layer
thickness. Similarly, for a tracer t we can write

](ht)
1 = · (uht) 5 0. (2)

]t

In coarse-resolution ocean models, only the large-scale
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mean flow is resolved. In order to study the effect of
the unresolved eddies we define a time mean (averaged
over several eddy cycles, denoted by an overbar) and
an eddy part that is the departure from the mean (de-
noted by a prime) of the flow. This results in the fol-
lowing equations for the mean thickness:

]h
1 = · (u h 1 u9h9) 5 0, (3)

]t

and for tracer:

](h t 1 h9t9)
1 = · (u h t 1 u9h9 t )

]t

5 2= · [ (uh)9t9]. (4)

From these equations the time mean tracer equation can
be derived (Gent et al. 1995):

]t
1 (u 1 u*) · =t 5 = · (kh=t )/h, (5)

]t

and equivalently for thickness,

]h
1 = · [h(u 1 u*)] 5 0. (6)

]t

Here, u* 5 u9h9 /h is an eddy-induced advection term,
often called the bolus velocity. So, there is an eddy-
induced transport u9h9 in addition to the mean transport
uh . In deriving Eq. (5) it is assumed that the eddy cor-
relation between thickness and tracer is small and that

2= · [ (uh)9t9 ]/h 5 = · (kh=t )/h. (7)

Now, the bolus velocity u* can be parameterized as-
suming downgradient diffusion of layer thickness by the
eddy fluxes (Gent et al. 1995; Visbeck et al. 1997), from
which it immediately follows that

khu* 5 2 =h. (8)
h

Also, the bolus velocity u* can be parameterized as-
suming downgradient diffusion of PV by the eddy fluxes
(Treguier et al. 1997; Lee et al. 1997):

u9q9 5 2k =q. (9)q

If, in addition, it is assumed that PV (q) can be ap-
proximated by f/h, Eq. (9), becomes

2 f u9h9 f =h = f
5 k 2 . (10)q2 2[ ]h h h

From the definition of u*, u* 5 u9h9 /h , it follows that
u* becomes

k h= fq
u* 5 2 =h 2 . (11)1 2h f

Arguments for the downgradient diffusion of the eddy
fluxes can be derived from the equations for the per-
turbation (potential) enstrophy q92 and perturbation

thickness variance h92 . In steady state, the perturbation
enstrophy equation becomes (Rhines and Holland 1979;
Treguier et al. 1997)

2 2=q9 = · u9q9
u9q9 · =q 5 2D9q9 2 F9q9 2 u · 2 .q q 2 2

(12)

Here Fq is the forcing of PV and Dq the dissipation.
With a constant wind stress q9 will be small ( aris-F9 F9q q

ing from variations in upper-layer depth). The advection
of eddy variance by the mean flow and the self-advec-
tion of eddy variance are assumed to be O(gq), or small-
er (Rhines and Holland 1979). Here, gq is the ratio of
particle displacement to the length scale of the q field.
Then for gq smaller than one, Eq. (12) can be written
as

u9q9 · =q 5 2D9q9 1 O(g ). (13)q q

When the dissipation Dq consists of biharmonic fric-
tion, it is not guaranteed that q9 is positive, althoughD9q
the basin-integrated sum of this term should be. Rhines
and Holland (1979) remark, that when friction acts to
dissipate relative vorticity with no, or much less, atten-
dant dissipation of thickness perturbations, in a state of
minimum potential enstrophy friction can increase the
potential enstrophy. We note here that dissipation of
relative vorticity will tend to dominate dissipation of
thickness perturbations. Likewise as in all ocean models
the diffusion of horizontal momentum, or relative vor-
ticity, is chosen to be larger than the diffusion of tracer,
or layer thickness. The domination of relative vorticity
dissipation over dissipation of thickness perturbations
will be more severe in places where the Reynolds num-
ber is large; the western boundary currents and mid-
latitude jets, exactly those places where the eddy fluxes
tend to be the largest. Moreover, in these places the
spatial scale of the q field becomes small and gq becomes
large: O(1). The spatial scale of the q field is now set
by the width of the jet and boundary currents. As the
relative vorticity becomes more important, the scale of
the q field becomes even smaller. So, in regions of high
eddy fluxes the assumptions that support a downgradient
eddy transport of PV are not valid and a downgradient,
diffusive closure becomes questionable.

In steady state, the equation for perturbation thickness
variance becomes (Holland and Rhines 1980):

2 2=h9 = · u9h9
u9h9 · =h 5 2D9h9 2 w9h9 2 u · 2 .h 2 2

(14)

Here Dh is the dissipation of layer thickness anomalies,
and w9 5 (h= · u)9. The advection of eddy variance by
the mean flow and the self-advection of eddy variance
are now assumed to be O(gh), or smaller, where gh is
the ratio of particle displacement to the length scale of
the h field. The term w9h9 appears in Eq. (14), while
an equivalent term is absent in Eq. (12) because q is
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conserved; dq/dt 5 0, and h is not conserved; dh/dt 5
2h= · u. Equation (14) can also be written as

u9h9 · =h 5 2D9h9 2 w9h9 1 O(g ). (15)h h

We note that h9 will more often tend to be positiveD9h
than q9 , as the latter consists of possible competingD9q
effects between relative vorticity dissipation and dis-
sipation of thickness perturbations. On the other hand,
the term w9h9 complicates the interpretation of Eq. (15).
Holland and Rhines (1980) note, however, that this term,
being a conversion from potential to kinetic energy, is
often associated with downgradient eddy heat transport.
Subsequently, w9h9 tends to be positive when baroclinic
instability dominates. It tends to be negative in regions
where eddies return energy to the mean flow. In general,
the regions where w9h9 are positive, dominate. Also, the
spatial scale of the h field tends to be larger than the
scale of the q field in those places where they both
become small: the western boundary currents and mid-
latitude jets. As a consequence, in those places gq will
go quicker to one than gh. So beforehand, we cannot
anticipate whether a downgradient transport of PV by
the eddies is a more robust feature of the flow and occurs
on larger spatial scales than a downgradient transport
of layer thickness. We will use a numerical eddy-re-
solving model to answer this question by investigating
the balance in Eqs. (12) and Eq. (14).

3. The model experiment

a. Model formulation

We use a three-layer isopycnal primitive equation
model. The model is based on the code of Bleck and
Boudra (1986). The domain of the model is rectangular
(2500 km 3 2500 km), and the bottom is flat (depth is
4000 m). The horizontal resolution is 10 km. The re-
duced gravity at the layer interfaces is 5 0.012 mg91
s22, 5 0.014 m s22. The mean layer thicknesses areg92
h1 5 625 m, h2 5 450 m, and h3 5 2925 m. The present
upper-layer thickness, together with the applied wind
forcing, allows for depth variations of the order the
average layer thickness, but outcropping is prevented.
This enables us to study a flow regime that is no longer
constrained by the quasigeostrophic approximation,
while singularities associated with outcropping are pre-
vented, as they are connected to diabatically forced
flows for which the eddy closures we discuss here are
not intended.

In the model a momentum and a layer thickness equa-
tion are solved for both layers. The layer integrated
horizontal momentum equations are (n 5 1, 2, 3)

2]u un n1 = · 1 (z 1 f )k 3 un n]t 2

1 g
2 25 2=M 2 ¹ · (A h ¹ u ) 1 Dt . (16)n M n nh hn 1,3

Here = 5 ]/]x 1 ]/]y, u 5 (u, y) is the horizontal
velocity, z 5 ]y /]x 2 ]u/]y is the vertical component
of the relative vorticity, k is the vertical unit vector, M
5 gz 1 pa is the Montgomery potential (a 5 1/r is
the specific volume, p is the pressure on the isopycnic
surface, z is the depth of the interface of the isopycnic
surface), g is the gravity acceleration, AM is the lateral
eddy viscosity parameter, h is the layer thickness, and
t 5 (t x, t y) are the wind and bottom-drag-related vis-
cous stresses. A quadratic drag relation parameterizes
the bottom drag with a drag coefficient CD 5 0.003. It
is applied to the lower 25 m of the ocean. A classical
cosine zonal wind stress is used with a maximum am-
plitude of 1.5 3 1021 N m22. With this forcing and
basin geometry a double-gyre circulation is simulated.
The continuity equation is applied to the vertically ho-
mogeneous layers. This results in a layer thickness equa-
tion:

]hn 41 = · (u h ) 5 2A ¹ h . (17)n n h n]t

The terms on the left-hand side arise from the adiabatic
continuity equation. The third term is the lateral dif-
fusion, which parameterizes subgrid-scale processes
(lateral mixing); Ah is the isopycnal diffusivity. The lat-
eral diffusion is 5 3 109 m4 s21. The lateral viscosity
has a minimum background value of 5 3 109 m4 s21,
but otherwise scales with the absolute value of the total
deformation of the horizontal flow field (Smagorinsky
1963; Bleck and Boudra 1981). The model equations
are complemented by a hydrostatic balance (p is the
pressure on the isopycnic surface):

]Mn 5 p . (18)n]a

Lateral boundary conditions are free slip and a zero flux
for all quantities. For more details on the model de-
scription we refer to Bleck and Boudra (1986) and Drij-
fhout (1994).

b. General characteristics

The model has been spun up for 30 years at a reso-
lution of 25 km. Then, the model fields were interpolated
to the 10-km horizontal grid size and the model was
run for another 22 yr. Data from the last 10 years are
used in the following sections.

In Fig. 1 the average barotropic streamfunction to-
gether with the layer-integrated streamfunctions for the
nondivergent flow in each layer are shown. The stream-
functions show that the model simulates strong western
boundary currents, a midlatitude jet, and tight recircu-
lation cells around the jet. The maximum barotropic
transport is 65 Sv (Sv [ 106 m3 s21). We note that the
circulation is far more asymmetric compared to the fa-
miliar double-gyre flows in quasigeostrophic models
(Holland and Rhines 1980; Holland et al. 1984). The
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FIG. 1. Streamfunction in Sverdrups (Sv [ 106 m3 s21): (a) barotropic streamfunction, (b) streamfunction of layer 1, (c) streamfunction of
layer 2, and (d) streamfunction of layer 3.

subpolar gyre shows a marked C-shaped structure in the
upper two layers. At the separation point the jet flows
southeastward, and associated with this feature the in-
ertial recirculation in the subtropical gyre is stronger
than the recirculation in the subpolar gyre. Such an
asymmetrical ‘‘jet down’’ solution was also found by
Jiang et al. (1995) in a reduced-gravity model. It is
associated with a pitchfork bifurcation that arises when

the ratio of forcing over dissipation parameters (or non-
linearity of the flow) exceeds a critical value. The typical
shrinking of the gyres with depth is most clearly visible
by comparing the streamfunctions for layers 1 and 3.

In Fig. 2 the average PV for the three layers, together
with an instantaneous view of the PV in the upper layer
are shown. The PV in the upper layer is dominated by
the thickness variations and relative vorticity. In the
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FIG. 2. Potential vorticity (m21 s21): (a) mean PV of layer 1, (b) mean PV of layer 2, (c) mean PV of layer 3, and (d) instantaneous PV
of layer 1.

subtropical gyre PV is relatively well homogenized, di-
vided by a sharp front at the location of the midlatitude
jet. The structure of the subpolar gyre reflects a flow
regime in which nonlinearities are important. Associated
with the C-shaped structure in the flow field is a second
strong front where the upper-layer thickness drops to a
minimum (see Fig. 3). In the middle layer PV is rather

well homogenized within the subpolar and subtropical
gyres, with strong fronts near the western, northern, and
southern boundaries, and weaker fronts in the midlati-
tude jet and near the northeastern and southeastern cor-
ners of the basin. PV is most homogenized in the middle
layer as wind forcing occurs in the upper layer and
bottom drag in the bottom layer, in the middle layer
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FIG. 3. Layer thickness (m): (a) mean thickness of layer 1 and (b) mean thickness of layer 2.

FIG. 4. Eddy-induced overturning streamfunction in Sverdrups: f
5 # y

*
dz (the north is to the right and positive numbers indicate

clockwise overturning, and y
*

5 y9h9 /h).

forcing is absent and dissipation weak. In the lower layer
beta (df/dy) dominates. The instantaneous field shows
that the flow is unstable. There is abundant eddy activity
around the midlatitude jet. The eddies grow on the east-
ward flowing midlatitude jet and around the C-shaped
structure. After pinching off they follow the tight re-
circulations of both gyres. The mean thickness fields

for the upper two layers (Fig. 3) indicate that layer
thickness is less well homogenized than PV.

In the midlatitude jet the meridional PV gradient in
the second layer is opposite to the PV gradient in the
upper layer (Fig. 2). This suggests that baroclinic in-
stability is important. The associated downgradient
transport of heat and thickness perturbation is apparent
from the overturning streamfunction derived from the
meridional eddy transport (y9h9) (Fig. 4). The clock-
wise, overturning at the midlatitude jet implies a flat-
tening of the isopycnals by the eddy transports.

4. Local eddy fluxes

a. Divergent and rotational part of fluxes

Usually, when eddy closures are tested in eddy-re-
solving models, the parameterized fluxes are compared
with the diagnosed eddy fluxes. However, as noted by
Marshall and Shutts (1981), the diagnosed eddy fluxes
have a large rotational component. As the eddy trans-
ports arise inside the advection operator [Eqs. (3) and
(4)], this part is zero by definition. So locally, one should
diagnose only the divergent component of the eddy flux-
es when validating eddy closures or diagnosing effective
eddy diffusivities. It is only the divergent contribution
of the eddy fluxes that must be parameterized.

According to Helmoltz’s theorem, any vector field can
be separated into its divergent and rotational part, for
example, for the eddy thickness flux:

u9h9 5 u9h9 1 u9h9 , (19)R D

such that
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= · u9h9 5 0 and = 3 u9h9 5 0. (20)R D

The rotational part can be expressed in a streamfunc-
tion c:

u9h9 5 k 3 =c. (21)R

Here, u9h9 5 2]c/]y, y9h9 5 ]c/]x. From Eq. (21) it
follows that

2k · = 3 u9h9 5 ¹ c. (22)

For a square basin, the Poisson equation [Eq. (22)] can
be solved easily to obtain the (unknown) streamfunc-
tion. In fact, in the model code a similar procedure is
followed for the barotropic streamfunction. The rota-
tional part of the flow can be deduced from the stream-
function such as defined above, the divergent part fol-
lows from Eq. (19). This procedure can be applied to
any tracer (e.g., PV). In that case, the function c cannot
be interpreted as a streamfunction, as it is otherwise
dimensioned.

Solving Eq. (22) is only possible if a boundary con-
dition for c is supplied. In principal, it is ambiguous
what this should be. For the total (divergent plus ro-
tational) mass flux a zero flux condition across the solid
boundaries is demanded. The same holds for any other
flux. It seems most natural to demand that for the sep-
arate divergent and rotational components of the mass
flux a zero flux condition also holds. With this boundary
condition we have solved Eqs. (22), (21), and (19). This
boundary condition is being separately applied to the
eddy induced and time-mean flow.

The results of the decomposition for the eddy thick-
ness flux are shown in Fig. 5. Fluxes are evaluated from
the 10-yr average. Note that the length of the vectors
differ per panel in order to highlight the direction of
the flow. The divergent part of the flow appears to be
of the same order of magnitude in each layer, while the
rotational part is much larger in the directly forced upper
layer. In all layers the rotational part dominates the eddy
fluxes.

The signatures of meanders and rings are present in
the rotational part of the eddy thickness flux (Figs. 5b,d).
The effect of individual eddies does not appear in the
divergent part of the flow (Figs. 5a,c). However, the
impact of the eddy thickness fluxes on the thickness
tendency is remarkably clear. In the upper layer the
divergent component of the eddy thickness flux is di-
rected toward the north at the midlatitude jet (Fig. 5a).
This flow acts to weaken the slope of the isopycnals
there. The steep slope implies a large amount of avail-
able potential energy, which, in the process of baroclinic
instability, is transfered to kinetic energy by weakening
the slope of isopycnals. In the lower layer the divergent
part of the flow is directed southward, compensating the
upper-layer flow. In the middle layer (not shown) the
flow is weak. Southward flow at the midlatitude jet dom-
inates, but the velocities are small compared to the upper
and lower layer. This circulation induced by the diver-

gent eddy thickness fluxes is in agreement with the
eddy-induced overturning in Fig. 4.

Figure 6 shows that the eddy PV flux generally flows
in the opposite direction of the eddy thickness flux (Fig.
5), in agreement with the fact that the mean fields of
PV and thickness have opposite gradients (Figs. 3 and
2). It is also clear from Figs. 6a,c that the divergent
eddy PV flux tends to be of smaller scale than the di-
vergent eddy thickness flux. The eddy PV flux is dom-
inated by large values in the region of confluence of the
western boundary currents and separation of the mid-
latitude jet. In the second layer the eddy PV fluxes are
small. In Fig. 7 the upper-layer eddy PV flux is decom-
posed into contributions from a relative vorticity term
and a stretching term; resulting from the decomposition
q 5 z/h 1 f/h. This figure demonstrates that the large
eddy PV fluxes near the jet separation result from the
relative vorticity contribution. Where the flow is strong
(midlatitude jet, western boundary currents, and C-sha-
ped structure), the relative vorticity term and stretching
term are of equal importance in the eddy fluxes. The
important role of the relative vorticity is associated with
the scale of the eddies. The large-scale PV field is dom-
inated by the stretching term; it is controlled by thick-
ness variations and toward the eastern boundary by the
planetary vorticity gradient.

The ratio of z and f is the Rossby number, which is
everywhere small, apart from the western boundary cur-
rents and the western part of the midlatitude jet. But
also there it is smaller than one. The same holds for the
total flux of PV and the flux of PV by the mean flow
(not shown), but now the relevant nondimensional num-
ber is a gradient Rossby number, namely the minimum
of =z/b and h=z/ f=h. In general the latter term is the
smallest. Here h=z/ f=h can be written as z/ f 3 Lh/Lz,
where Lh and Lz are the lengthscales of h and z, re-
spectively. For the gyre-scale flow where the Rossby
number is low, Lh/Lz is larger than one and the relevant
gradient Rossby number for the fluxes is larger than the
Rossby number for the mean flow. For the midlatitude
jet where the Rossby number is larger, however, Lh and
Lz are both determined by the jet width and their ratio
is one. So, both for the mean flow and mean fluxes the
(gradient) Rossby number is maximized by U/( fL)jet .
The ratio of the eddy fluxes of z/h and f/h is again
h=z/ f=h. Now, the = terms denote eddy quantities
while the h in the numerator is assigned to a mean flow
quantity. The relevant gradient Rossby number for the
eddy fluxes becomes U/( fL)eddy 3 hjet/heddy, which is
much larger than the mean flow Rossby number sug-
gests. As a result, the eddy fluxes possess a much larger
Rossby number than the mean flow fluxes.

b. Eddy fluxes and mean gradients

The divergent eddy fluxes can be decomposed into
cross- and along-gradient contributions. Figure 8 shows
that in the upper layer the downgradient eddy fluxes (pos-
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FIG. 5. Divergent and rotational part of the eddy thickness flux. Maxima are stated between brackets. Largest vector in the plot corresponds
to the maximum; vectors are plotted every fifth grid point. (a) Divergent layer 1 (4.9 m2 s21), (b) rotational layer 1 (41.4 m2 s21), (c)
divergent layer 3 (2.4 m2 s21), and (d) rotational layer 3 (8.5 m2 s21).

itive values) dominate the upgradient transfer for both
PV, f/h, and layer thickness. Only the fluxes in the central,
western part of the basin are shown. Outside this area
the fluxes are small. Again, we note that the downgradient
flux of PV is more confined to the jet separation, due to
the relative vorticity contribution. The downgradient flux-
es of both f/h and thickness extend farther eastward in

the midlatitude jet. It is also clear from Fig. 8 that along-
gradient components for both PV and f/h are more im-
portant than in the case of the thickness fluxes. This
would suggest that the effect of eddy fluxes on the mean
flow tends to be more local in case of layer thickness
than in case of PV. This would be an argument in favor
of a local diffusive closure for layer thickness.
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FIG. 6. Divergent and rotational part of the eddy PV flux; vectors are plotted every fifth grid point. (a) Divergent layer 1 (7.6 3 1029

s22), (b) rotational layer 1 (25.6 3 1029 s22), (c) divergent layer 3 (0.4 3 10210 s22), and (d) rotational layer 3 (0.3 3 1029 s22).

There are a number of possible explanations for an
increased importance of along-gradient fluxes in case of
PV. Following Rhines and Holland (1979) we write the
eddy flux of q by integrating the (eddy) vorticity equa-
tion, following the fluid, and multiplying all terms with
the eddy velocity u9 and taking a time average. This
becomes

t]q
u9q9 5 2k 1 u9 (F 2 D ) dt9 1 O(g ), (23)i ij i E q q q]xj 0

where kij 5 (x, t)[xj(t) 2 xj(0)] 5 ; x(t) or xj(t),u9 u9x9i i j

is the Lagrangian position of a fluid particle at time t
and is the particle displacement.x9j

One possible cause for large along-gradient fluxes is
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FIG. 7. Divergent part of the separate terms in the eddy PV flux for layer 1, scaled with the largest vector of the the divergent eddy PV
flux (7.6 3 1029 s22): (a) z/h and (b) f/h.

a skew k ij; for instance, when u9q9 5 2k12]q /]y (ne-
glecting the forcing and dissipation). From Eq. (23) we
see that this arises when u9y9 and y9x9 are large. Note,
that u9 and y9 here only describe the divergent flow.
Also, (Fq 2 Dq) dt9 can give rise to departurestu9 #i 0

from a local diffusive closure. In the discussion we will
address this further.

The eddy diffusivity for PV and layer thickness is
shown in Fig. 9. Locally, very high point values can occur
with diffusivities larger than 10 000 m2 s21. To display
the overall pattern of the diffusivity we used cutoff values
of plus and minus 500 m2 s21. Also, we smoothed all
values with a boxcar average with a width of five grid
points. On the average the values for the eddy diffusivity
are smaller than calculated in Holland and Rhines (1980),
as we consider only the divergent fluxes. The eddy dif-
fusivity for layer thickness shows roughly the same struc-
ture for each layer. In the eastern part of the midlatitude
jet the diffusivity of thickness is negative, also to the
north and south of the jet and in the central parts of the
wind-driven gyres the diffusivity is negative. These are
the main areas of eddy decay. In general, regions of
positive eddy diffusivity dominate. Moreover, in regions
of negative eddy diffusivity the mean flow and eddy
fluxes are weak. Most important regions of positive eddy
diffusivity are the midlatitude jet in the western three-
quarters of the domain and the northern and southern part
of the basin where the slow westward recirculation of
the wind-driven gyres takes place. Regions with a pos-
itive eddy diffusivity are associated with eddy produc-
tion. In most cases, eddy production is accomplished by
baroclinic instability. The conversion from mean to eddy

potential energy is accomplished by a thickness transport
down the mean thickness gradient. In regions where eddy
activity is dying away, upgradient eddy fluxes are to be
expected (Rhines 1977). The eddy potential energy is
converted back to mean potential energy and the eddy
thickness flux is up the mean gradient.

In the upper layer, the pattern of the eddy diffusivity
for PV is very similar to that for thickness, but the overall
structure is somewhat noisier, and the regions with a
negative diffusivity are larger. In the second layer where
PV homogenization is most outstanding, the pattern of
diffusivity is dominated by smaller scale features. The
overall pattern of diffusivity in the third layer deviates
most from that in the first layer, with very weak diffu-
sivities in the eastern part and very low diffusivities in
the northern and southern part of the basin. The pattern
of diffusivity and the enhanced variance on smaller scales
is also visible in the diffusivity of the f/h part of the PV
(not shown). The diffusivity patterns for f/h and PV are
rather similar, apart from the western boundary currents.
Here, the diffusivity of PV is more determined by the
diffusivity of z/h. This suggests that, where the gradients
are weak and the relevant quantity is well-mixed, or ho-
mogenized, the eddy diffusivity is less well determined
and becomes noisier. As PV is better homogenized than
layer thickness the eddy diffusivity for PV is noisier. In
itself, this does not imply that the PV closure is wrong.
The same problem would occur for layer thickness if the
layer thickness was forced to be nearly uniform. In the
real ocean, however, there is more support for the oc-
currence of large regions of nearly uniform PV than of
nearly uniform layer thickness (McDowell et al. 1982).
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FIG. 8. Down- and along-gradient components of the eddy fluxes in the upper layer for the central western part of the basin: x 5 0–1000
km; y 5 750–1750 km. (a) Downgradient eddy flux of PV in 10210 s22, (b) along-gradient eddy flux of PV, (c) downgradient eddy flux of

5. Zonally averaged flux–gradient relations

a. Zonally averaged profiles

The zonally averaged (divergent) eddy thickness
transport is presented in Fig. 10, together with the zon-
ally averaged meridional thickness gradient. As near the
boundaries the flux–gradient relation may be affected
by the boundary effects we have left out the upper and

lower 250 km of the (2500 km) basin. Figure 10 reveals
the picture that already emerged from section 4. In the
upper layer, the meridional eddy thickness flux is pos-
itive at the midlatitude jet (Fig. 10a). The positive eddy
transport can be understood from the meandering of the
jet. A northward displacement of the jet will result in
anomalous northward transport of relatively thick water
columns: y9h9 . 0. A southward displacement results
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FIG. 8. (Continued ) f/h, (d) along-gradient eddy flux of f/h, (e) downgradient eddy flux of thickness in m2 s21, and (f ) along-gradient
eddy flux of thickness. Figures are contoured with about 10% of the maximum absolute value.

in an anomalous southward transport of anomalous thin
layers, so also y9h9 . 0. The eddy flux in the upper
layer is mainly compensated in the lower layer. The
middle layer is relatively inactive. Zonally averaged, the
eddy flux in the second layer also compensates partly
the eddy flux in the upper layer. In general, the zonally
averaged mean meridional gradients roughly has the
same shape as the zonally averaged (divergent) eddy
fluxes.

Similar features are visible in the eddy flux of PV
(Fig. 11), but the transport and gradient are in the op-
posite direction, which is expected given how PV and
thickness fluxes relate on the large scale. In the upper
layer, the slope in PV across the northern jet associated
with the C-shaped inertial recirculation in the subpolar
gyre is much stronger compared to the slope in thick-
ness, as especially the inverse of the layer depth be-
comes large there (cf. Figs. 10a, 11a and Figs. 2a, 3a).
It is apparent from Fig. 11a that the eddy flux of PV
does not scale with the meridional PV gradient in the
subpolar gyre, especially at the internal front associated
with the C-shaped structure of the inertial recirculations.
Also, the peaks in PV gradient and eddy flux of PV are
displaced with respect to each other, most noticeably in
the upper layer. This is primarily caused by the eddy
transport of z/h. This eddy flux does not scale very well
with either the meridional gradient in PV or in z/h itself.

Almost everywhere the zonally averaged eddy fluxes
are down the mean gradient. Despite the good corre-
spondence of the shape of the curves of zonally aver-
aged eddy fluxes and mean gradients, the amplitude of

the inversely derived eddy diffusivity, that is, the ratio
of eddy flux and mean meridional gradient, varies great-
ly. It is clear that k is much larger at the latitude of the
midlatitude jet than away from the jet. A second max-
imum in the eddy diffusivity exists near the return flow
of the C-shaped inertial recirculation in the subpolar
gyre, but only for layer thickness.

b. Least squares fits

The effective eddy diffusivity can be determined by
a linear (least squares) fit between the eddy fluxes and
the mean meridional gradient. We do not show pointwise
scatterplots as these are too noisy. Instead, scatterplots
of the zonally averaged data are shown (see Fig. 12).
When calculating eddy diffusivities and correlation co-
efficients we omit low values in either flux or gradient,
that is, when the absolute values are less than one per
mill of the maximum. We do so, in order that the cal-
culations are not flawed by excessive noise associated
with extremely low values in either component. In the
upper layer we find an effective eddy diffusivity of 550
m2 s21, with a correlation coefficient of 0.92. For the
second layer we get kh 5 280 m2 s21. However, the
correlation coefficient is smaller (0.72). For the third
layer the largest value of kh is found: 700 m2 s21 (cor-
relation 0.92). All correlations mentioned here and in
the following are significant at the 99.9% level accord-
ing to a Student’s t-test. For all three layers the best fit
is obtained in the midlatitude jet (diamonds) where the
fluxes and gradients are large. Within the gyres the flux–
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FIG. 9. The effective eddy diffusivity (in m2 s21); a cutoff value of 500 m2 s21 has been used. (a) For thickness in layer 1, (b) for PV in
layer 1, (c) for thickness in layer 2, (d) for PV in layer 2, (e) for thickness in layer 3, and (f ) for PV in layer 3.

gradient relation shows multifunctional behavior, the
gradients, however, are very small. Rix and Willebrand
(1996) evaluated eddy diffusivities from the WOCE–
CME model and found kh 5 1000 m2 s21. They inves-
tigated a limited domain of the North Atlantic, south of
308N. Analyses of both observations and more com-
prehensive ocean models suggest that the eddy diffu-

sivity is related to the mean flow and varies with the
eddy energy (Stammer 1998; Bryan et al. 1999).

The larger diffusivity in the lower layer and weaker
diffusivity in the middle layer is associated with the fact
that the return flow of the eddy-induced meridional over-
turning occurs on deeper levels than the decrease of the
isopycnal slope with depth suggests. Apparently, in the
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FIG. 9. (Continued )

vertical the eddy fluxes are partly determined by integral
constraints and not only by local gradients. Moreover,
the vertical structure of the eddies is determined by the
vertical profiles of density and Brunt–Väisälä frequency.
Also, they tend to become more barotropic between the
phase of linear growth and nonlinear equilibration in ac-
cordance with the theory of geostrophic turbulence (Rhi-
nes 1977). Killworth (1997) and Treguier et al. (1997)
stressed the vertical dependence of the eddy diffusivity.
Our results do not confirm, however, the vertical profiles
found in the channel models of Killworth (1998) and
Treguier (1999), that is, maximal diffusivity at middepth.
This may be associated with the different geometry
(channel vs closed basin) and flow regime, our study
being the more nonlinear. It also could be that the low
vertical resolution used in the present model is not able
to resolve the vertical profile of the eddy diffusivity ad-
equately. A minimum value at middepth, however, as
found here, is absent in their calculations.

Also, the eddy flux of PV is better represented by the
gradient of the mean PV in the upper and lower layer
than in the middle layer (see Fig. 13). For the upper
layer we obtain a value of 630 m2 s21 (correlation co-
efficient of 0.71). Figure 13a shows two lines of points.
In the anticyclonic gyre the gradients are very small and
nearly all points (asterisks) cluster around the (0,0)
point. The cyclonic gyre is divided in a northern and
southern part by a strong PV front; see Fig. 2a. In the
southern part the fluxes are weak. The points (plus signs)
form a nearly horizontal line in Fig. 13a. In the northern
part the diffusivity is larger and the points fall along
the average regression line. The midlatitude jet (dia-
monds) shows a distinct multifunctional flux–gradient

relation. The stronger diffusivities are found at the
northern flank, the weaker at the southern flank. For the
middle layer we obtain kq is 290 m2 s21 (correlation
0.58). Here the eddy fluxes vary considerably while the
mean gradient remains weak. In the lower layer we get
a kh of 690 m2 s21 (correlation 0.80).

The significance for the differences in correlation for
the thickness closure versus the PV closure using
Fisher’s z transformation (Press et al. 1986) is larger
than 0.999 for the upper layer, 0.988 for the middle
layer, and larger than 0.999 for the third layer. So, al-
though the values of kq and kh are roughly the same,
as well as their variation with depth, the fit for kq is not
so good as it is for kh. The eddy fluxes of z/h show a
much weaker correlation with the mean PV gradient,
which negatively biases the correlation for kq, for in-
stance, 0.47 in the upper layer. On the other hand, the
correlation for the eddy diffusivity of f/h only margin-
ally improves on that of kq; 0.75 versus 0.71 in the
upper layer, respectively, and it is still much weaker
than the correlation for kh (0.90).

In principle, a weaker correlation in estimating a linear
fit between eddy fluxes and mean-flow gradients does not
disclaim the possibility of a good closure relation be-
tween the two. It only disclaims that this can be done
with a constant diffusivity factor. Figure 13a, for instance,
clearly shows the existence of different regimes with a
different kq. Now, if the scatterplot would have shown
a strongly curved line, this would have suggested that a
local closure exists, but with a flow-dependent kq. Figure
13a shows more a bilinear, or even elliptic curve. This
means that a given meridional gradient in the PV field
can give rise to two completely different eddy fluxes,
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FIG. 10. Zonally averaged divergent eddy thickness fluxes and
the meridional gradient of the mean layer thickness in (a) layer
1, (b) layer 2, and (c) layer 3. The x axis displays the gridpoint
number, counting from the south (250 km) to the north (2250
km). Note that the meridional gradient of layer thickness (right-
hand y axis) is dimensionless.

depending on either a nonlocal feature, or, another flow
characteristic that has not been accounted for. This sug-
gests the possibility that within a more limited domain
with more homogeneous flow characteristics or a weaker
relative vorticity, a better linear fit between eddy fluxes
of PV and mean PV gradients can be found.

We have intensively searched for regions in which the
fit between between PV fluxes and PV gradients was as
good, or even better than the fit between thickness fluxes
and gradients. It appears that such regions exist, but only
if the mean PV gradient is either not too weak or not too
strong. If it is too weak, for instance, in the third layer

where b dominates the PV gradient, or within the ho-
mogenized pools in the middle layer, the flux gradient–
relation for PV becomes too noisy and a flux–gradient
relation for thickness is better defined. If the PV gradient
becomes too strong, for instance in the midlatitude jet
and most parts of the subpolar gyre in the two upper
layers, the role of relative vorticity becomes too important
in the eddy PV fluxes, and the flux–gradient relation gets
flawed. In between is a regime where the eddy PV fluxes
still can be approximated by the flux of f/h, but gradients
in h are so strong that they dominate the mean PV gra-
dient: 10214 m22 s21 , |]q/]y| , 10213 m22 s21.
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FIG. 11. Zonally averaged divergent eddy PV fluxes and the
meridional gradient of the mean PV in (a) layer 1, (b) layer 2,
and (c) layer 3.

This condition is fulfilled in the northern half of the
cyclonic gyre. In the upper layer, PV gradients are weak
in the subtropical gyre and the southern half of the cy-
clonic gyre, but well away from the midlatitude jet (Fig.
2a). In the northern half of the cyclonic (subpolar) gyre
a definite flux–gradient relation exists while the gradi-
ents are either not too weak and not too strong. In the
middle layer, gradients become moderately weak where
the homogenized pool is bounded by a region where the
upward doming of isopycnals is weakening toward the
northern boundary (Figs. 2b and 3). Figure 14 displays
scatterplots for the eddy diffusivity in PV and thickness
for these regions. Here, kq for layer 1 and 2 are 474 m2

s21 and 840 m2 s21, with correlation coefficients of 0.94
and 0.97, respectively; kh for layers 1 and 2 are 527 m2

s21 and 700 m2 s21, with correlation coefficients of 0.88
and 0.90. The significance for the differences in cor-
relation is 0.929 for the upper layer and 0.999 for the
second layer. Note that in this flow regime a maximum
diffusivity at middepth occurs, in accordance with the
results of Killworth (1998) and Treguier (1999).

6. Discussion

Since the introduction of a parameterization by Gent
and McWilliams (1990) for the eddy-induced velocity
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FIG. 12. Scatterplots of zonally averaged eddy thickness fluxes
vs zonally averaged mean thickness gradient (dimensionless) in
(a) layer 1, (b) layer 2, and (c) layer 3. The plus signs denote the
region from y 5 1350 to 2250 km (cyclonic gyre), the diamonds
denote the region from y 5 1050 to 1350 km (midlatitude jet),
and the asterisks denote the region from y 5 250 to 1050 km
(anticyclonic gyre).

that advects tracers in addition to the Eulerian mean
flow, there is an ongoing debate on whether this param-
eterization should be equivalent to downgradient dif-
fusion of thickness or downgradient diffusion of PV. In
some reentrant channel models it was found that down-
gradient diffusion of PV is a better description of the
effect of eddies on the mean flow than a downgradient
diffusion of thickness (Lee et al. 1997; Killworth 1998;
Treguier 1999; Marshall et al. 1999). In the present

closed basin study we do not confirm this result. In the
contrary, a downgradient diffusion of thickness appears
to be a better description of the divergent eddy fluxes
than a downgradient diffusion of PV. It is not completely
clear what causes this difference. It has been observed
that within closed basins another PV and enstrophy bal-
ance occurs than within channel models (Holland and
Rhines 1980). The mean PV field is more curved and
zonally asymmetric, with eddy generation in the west
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FIG. 13. Scatterplots of zonally averaged eddy PV fluxes vs
zonally averaged mean PV gradient in (a) layer 1, (b) layer 2,
and (c) layer 3. For the meaning of the symbols, see Fig. 12.

and eddy decay in the east of the midlatitude jet, and
with additional eddy generation areas in the westward
return flows. Also, the balance between cross-gradient
eddy transport of PV and dissipation [Eq. (13)] is less
exact within closed basins.

A further difference is that we consider a more non-
linear flow regime in which ageostrophic effects are
more important. This may explain at least some of the

discrepancies between our findings and previous results,
as for moderate PV gradients a closure for PV works
as well or even better than a closure for layer thickness.
For stronger gradients this is not the case due to the
increasing role of the relative vorticity contribution to
the eddy PV flux. The flux of relative vorticity (divided
by layer thickness) does not scale with the mean PV
gradient. On the other hand, also for weak gradients a
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FIG. 14. Scatterplots of zonally averaged eddy fluxes vs zonally averaged mean gradients between 250 and 750 km from the southern
boundary. (a) Potential vorticity in the upper layer, (b) thickness in the upper layer, (c) PV in layer 2, and (d) thickness in layer 2. Note
that the thickness gradient is dimensionless.

PV closure does not work well in our study. The flux–
gradient relations become much noisier for PV than for
thickness, which is not that well homogenized in some
regions as is PV. This could give rise to the apparent
paradox that, although eddy fluxes may be weak and
very loosely constrained by mean flow gradients in ho-

mogenized regions, to obtain this homogenization one
needs much larger and strongly constrained eddy fluxes.
For instance, to obtain nearly uniform PV fields in a
non-eddy-resolving model PV closure might work better
than a thickness closure, although once nearly uniform
PV fields have been obtained, a thickness closure better
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simulates the divergent eddy fluxes than a PV closure.
The extent to which parameterizations in eddy less mod-
els that are based on eddy flux relations in eddy-re-
solving models drive the mean states in the former mod-
els toward those of the eddy-resolving models is still
largely untested. We do not test the skill of eddy pa-
rameterizations here, but we will pursue this issue in a
following paper.

To elucidate the reasons why the eddy flux of PV in
some regions is rather well correlated with the mean
gradient of PV, but in other regions less well and also
much worse than the linear correlation between the eddy
flux of thickness and the mean gradient of thickness,
we have to analyze the budgets of Eqs.(12) and (14).
Often it is assumed that wind forcing in the upper layer
complicates a downgradient eddy flux of PV and that
only subsurface layers should be investigated in this
respect. Equation (12) shows that this is not the case.
Only the variable part of the forcing, and then only that
part that is correlated with the eddy variability itself,
affects the downgradient eddy flux of PV. The upper-
layer wind forcing constrains the flow to cross PV con-
tours also in the absence of significant eddy fluxes, but
it does not affect the downgradient character of these
fluxes themselves. The upper-layer PV balance of the
present model consists of an approximate balance be-
tween eddy fluxes and advection by the mean flow, with
the wind forcing playing a lesser important role (not
shown). Here, mainly the eddy fluxes constrain the flow
to cross PV contours.

Equation (12) is based on the assumption of a non-
divergent velocity field, which holds in z coordinate
models but not in isopycnic coordinate models. Ac-
cordingly, we have to rewrite Eq. (12) to be consistent
with the model equations. In the present model this
becomes

2 2= · u q9 = · u9q9
q9= · u9q 5 2D9q9 2 F9q9 2 2 ,q q 2 2

(24)

which we rewrite as

2 2= · u q9 = · u9q9
u9q9 · =q 5 2 2 2 D9q9q2 2

2 F9q9 2 q q9= · u9. (25)q

Note that Eq. (25) now contains the term 2qq9= · u9 ,
which is zero in z coordinate models because u and u9
are nondivergent. Equation (25) is consistent with the
balance in Eq. (13) when the rhs is dominated by q9 .D9q
In Fig. 15 the last three terms of the rhs of Eq. (25) are
denoted as ‘‘rest.’’

Figure 15 shows that the main balance in the eddy
enstrophy equation is not in agreement with Eq. (13).
Apparently, the two-scale approximation invoked to ar-
rive at this equation is not valid. In general, when the
eddy fluxes are large, gq also becomes large. Largest

eddy fluxes are found where the PV field quickly varies
in space and time. In that case both particle displace-
ments become large and the scale of variation of the
PV field becomes small. Then, gq, the ratio between the
two, quickly becomes large, that is, O(1), and the ad-
vection of perturbation enstrophy cannot be neglected
in Eq. (24). Also, when the fluxes are very small, Eq.
(13) does not hold. In that case gq is small, say O(e),
but as the weak eddy fluxes are associated with weak
PV gradients, either because PV is homogenized within
a gyre or because the PV gradient is dominated by plan-
etary vorticity, their product and all other terms in Eq.
(24) become of O(e), and again the advection of per-
turbation enstrophy cannot be neglected.

Figure 15 shows that, although the zonally averaged
eddy PV flux is downgradient almost everywhere, the
advection of perturbation enstrophy is a first-order quan-
tity. Moreover, it has a multisigned character and does
not scale well with mean-flow gradients. As a result,
locally the eddy PV flux is less well related to mean-
flow gradients and features larger areas of upgradient
transport than suggested by the balance of Eq. (13). Only
in the flow regime where PV gradients are modestly
weak/large the balance of Eq. (13) holds, and a diffusive
closure for the eddy flux of PV is valid. Rhines and
Holland (1979) argue that the restriction that gq is small
is more easily satisfied for parallel flow than for curved
flow, as in the latter case particle displacements from
their rest latitude can be large, even when the eddy
displacements themselves are small. Therefore, for a
reentrant channel flow the regime for which Eq. (13)
holds is much larger than for a closed basin double-
gyre flow, and subsequently, a diffusive closure for the
eddy PV flux works much better. This, at least partly,
explains the discrepancy between our results and those
of Lee et al. (1997), Killworth (1998), and Treguier
(1999). It should be noted that Marshall and Shuts
(1981) attempted to account for curvature and argued
that a redefined eddy flux is still downgradient. How-
ever, if gq becomes large due to curvature, the eddy
diffusivity becomes a function of curvature and the re-
lation between eddy fluxes and mean flow gradients
becomes obscure.

Unlike PV, layer thickness is not conserved and a
balance like Eq. (13) never holds for the variance of
perturbation thickness. There always is an additional
forcing by vertical motions; 2w9h9 ; see Eq. (15). This
forcing term, however, acts in most cases to dissipate
thickness variance (Fig. 16), as it is dominated by the
conversion from potential to kinetic energy that results
from baroclinic instability and the subsequent down-
gradient transport of heat and layer thickness. In the
middle layer this is not the case, but there the advection
of perturbation thickness variance secures the down-
gradient transport of the eddy thickness flux. Apart from
the middle layer where the flow is weakest, gh appears
to be smaller than gq, reflected by a less important role
of advection of thickness variance compared to advec-
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FIG. 15. Zonally averaged enstrophy balance in 10222 m21 s22;
see Eqs. (24) and (25) (here, U is u ). (a) Layer 1, (b) layer 2,
and (c) layer 3.

tion of enstrophy. Also, the advection of perturbation
thickness variance is more single signed and mean flow
related than the advection of perturbation enstrophy,
which is mainly caused by the relative vorticity contri-
bution to the latter. As a result, the downgradient dif-
fusive closure for layer thickness appears to simulate
the divergent eddy fluxes better than a downgradient
diffusive closure for PV in the double-gyre flow con-
sidered here.

A cautionary remark should be made when discussing
closure relations for the bolus transport within an iso-
pycnic model. Such a closure is not always straightfor-
wardly translated into a closure for a z coordinate model.
Within a z coordinate model the definition for the bolus
velocity becomes u* 5 (u9r9 /r z)z instead of u* 5
u9h9 /h . Now, advection of density by the sum of the
Eulerian mean and bolus velocity does not strictly con-
serve density as layer thickness, where mass flux di-
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FIG. 16. Zonally averaged balance of thickness variance in m2

s21; see Eq. (14) (here, U is u , and H is h ). Terms that are not
shown (dissipation and trend) are negligible. (a) Layer 1, (b) layer
2, and (c) layer 3.

vergences are calculated from the sum of the Eulerian
mean and bolus velocity. A forcing term enters the den-
sity equation of the form (u9r9 · =r /r z)z. When the
downgradient eddy flux of density is small, in the equa-
tion for perturbation density variance [Eqs. (12) or (24),
with q replaced by r] this term is primarily balanced
by dissipation; that is, for perturbation density variance
a balance like Eq. (13) holds. In that case, the forcing
of the density equation can be neglected as eddy density
fluxes primarily act along density surfaces. It is on this
assumption that the Gent and McWilliams parameteri-
zation is based.

McDougall and McIntosh (1996) and McDougall
(1998) argue that a balance like Eq. (13) does not hold
for perturbation density variance and that the advection
of density variance by the mean flow has to be included
in this balance. In that case, a transformed residual mean
velocity can be defined that consists of the sum of the
Eulerian mean flow, the bolus velocity, and an extra
term that negates the influence of the advection of den-
sity variance. Now, density is conserved when advected
with the transformed residual mean velocity up to third
order in perturbation amplitude. However, Gille and Da-
vis (1999) notice that in their model simulations of both
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the Eady problem and a wind-driven reentrant channel,
self-advection of perturbation density variance becomes
a first-order quantity. This implies that the perturbation
amplitude becomes large and that density is not con-
served when advected by the transformed residual mean
velocity. Although we do not carry a prognostic equa-
tion for density in our isopycnic model the equation for
the perturbation density variance is equivalent to the
equation for thickness variance when the terms
u9h9 · =h and w9h9 in Eq. (14) are taken together. We
see from Fig. 16 that, in general, advection of thickness
variance by the mean flow dominates dissipation, so the
extension of McDougall and McIntosh (1996) and Mc-
Dougall (1998) to the Gent and McWilliams parame-
terization is important, if not essential. However, in most
cases self advection of thickness variance becomes as
important as advection of thickness variance by the
mean flow, consistent with the findings of Gille and
Davies (1999), and the parameterization of McDougall
(1998) has to be extended to account for this.

7. Conclusions

We have investigated eddy fluxes of PV and laver
thickness in an idealized isopycnic eddy-resolving
ocean model with a high horizontal resolution (10 km)
and low vertical resolution (three layers). The model
simulates a wind-driven double-gyre flow within a flat
bottom, closed basin. Variations in upper-layer depth
were of O(1), but outcropping did not occur. Fluxes have
been decomposed into divergent and rotational parts and
only the divergent contribution was examined. In this
study we have not tested the skill of certain parame-
terizations but discussed the rationalization of PV and
thickness closures in the present configuration. We
found the following features:

1) The divergent eddy PV flux tends to be of smaller
scale signature than the divergent eddy thickness flux.
Both are dominated by large values near the separation
of the midlatitude jet. The relative vorticity contribution
to the eddy PV flux becomes important here, which
causes the smaller scales to become more dominant.

2) The eddy diffusivity for both thickness and PV
yields negative values in the eastern part of the mid-
latitude jet and in the center of the tight recirculation
cells, where eddies decay. Everywhere else they are
positive. The eddy diffusivity for PV is noisier, and the
regions with a negative diffusivity are larger.

3) The zonally averaged eddy flux of thickness scales
better with the zonally averaged meridional thickness
gradient than the eddy flux of PV with the PV gradient,
especially near the midlatitude jet where the relative
vorticity contribution to the latter becomes important.
The amplitude of the inversely derived eddy diffusivity
varies greatly, both in the horizontal and vertical.

4) When the mean PV gradient is either not too weak
or not too strong, a diffusive closure for PV can work
better than for thickness. If it is too weak, the flux–

gradient relation for PV becomes too noisy compared
to thickness, which generally is less well homogenized.
If the PV gradient is too strong, the role of relative
vorticity in the eddy PV fluxes becomes important and
the flux–gradient relation is flawed.

5) Advection of perturbation enstrophy generally dis-
turbs the balance between the cross-gradient eddy flux
of PV and dissipation on which the diffusive closure is
based. When the flow is strong, curvature, a mean field
scaling with the jet width, and large-scale meandering
makes this term of O(1). When the flow is weak, ho-
mogenization of PV makes the first-order terms small
and curvature enhances the higher order terms. All terms
become of equal importance: O(e).

6) Forcing by vertical motions in most cases acts to
dissipate thickness variance, as it is dominated by the
conversion from potential to kinetic energy and the sub-
sequent downgradient transport of thickness. In addi-
tion, advection of perturbation thickness variance is
more simply related to mean flow gradients than ad-
vection of perturbation enstrophy. As a result, in the
present configuration a downgradient diffusive closure
for thickness seems more appropriate to simulate the
divergent eddy fluxes than a downgradient diffusive clo-
sure for PV, especially in dynamically active regions
where the eddy fluxes are large and in regions where
PV is nearly uniform.
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