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SUMMARY

Model tendency perturbations can, like analysis perturbations, be an effective way to influence forecasts.
In this paper, optimal model tendency perturbations, or forcing singular vectors, are computed with diabatic linear
and adjoint T42L40 versions of the European Centre for Medium-Range Weather Forecasts’ forecast model.
During the forecast time, the spatial pattern of the tendency perturbation does not vary and the response at
optimization time (48 hours) is measured in terms of total energy. Their properties are compared with those
of initial singular vectors, and differences, such as larger horizontal scale and location, are discussed. Sensitivity
calculations are also performed, whereby a cost function measuring the 2-day forecast error is minimized by
only allowing tendency perturbations. For a given number of minimization steps, this approach yields larger cost-
function reductions than the sensitivity calculation using only analysis perturbations. Nonlinear forecasts using
only one type of perturbation confirm an improved performance in the case of tendency perturbations. For a
summer experiment a substantial reduction of the systematic error is shown in the case of forcing sensitivity.
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1. INTRODUCTION

The search for sensitive structures in weather forecasting is usually associated with
the implications of sensitive dependence on initial conditions, commonly called ‘the
butterfly effect’ (Gleick 1987). Many numerical weather-prediction (NWP) centres have
now developed approaches to find fast-growing perturbations of the initial state and to
use this knowledge in their ensemble forecasting. However, although such a technique
is an essential tool to gain insight into possible weather scenarios, it is more and more
recognized that solely perturbing the initial condition is not entirely adequate and that
uncertainties in the mathematical description of subgrid-scale processes should also be
treated in a probabilistic manner (see Houtekamer et al. (1996), Buizza et al. (1999) and
Mylne et al. (2002)).

Modern NWP models are based on the equations of motion, truncated at a certain
spatial scale, combined with an intricate balance of physical parametrizations, which
describe complex processes, such as the formation of clouds. During the last few
decades, substantial progress has been made in improving the quality of forecasts
(see, for example, Simmons and Hollingsworth (2002)). Nevertheless, uncertainty in
parametrization schemes will always limit forecast accuracy.

Tendency errors can be considered as a measure of instantaneous model error.
They are defined as R in the following equation

dxo/dt = dxm/dt + R, (1)

where xm denotes a prognostic model variable and xo denotes the same variable
as resulting from observations. Klinker and Sardeshmukh (1992) studied one-step
model integrations to obtain estimations of tendency errors. By switching off various
parametrizations, they were able to isolate the contribution of different terms to the
tendency error. On longer time-scales, a basic requirement of an NWP model is to
possess realistic long-term flow statistics. A typical example of systematic error, i.e. the
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difference between the model climate and the observed climate, is an excessively zonal
mid-tropospheric circulation; this can become a dominant source of forecast inaccuracy
for the seasonal time-scale (Branković and Palmer 2000). It is not straightforward to
determine which physical parametrizations in the model require adjustment in order to
improve the model climate. A procedure which is sometimes used for simple models to
reduce systematic errors is to compute a time-independent forcing of model tendencies
based on observed fields. By writing the model in the form

dx/dt = G(x) + f, (2)

where G is the total model tendency, the additional forcing f is computed by inserting
observed fields for x. Following Roads’s (1987) ‘residual tendency’ procedure, the
forcing f can actually be computed by requiring that, for a long series of observed fields,
the mean tendencies become negligible. With this technique it is possible to obtain a
satisfactory model climate even for relatively simple models. See, for example, Marshall
and Molteni (1993) who successfully applied it in the context of a three-level quasi-
geostrophic model.

The forcing term f as defined by Roads’s procedure can be interpreted as a crude
way to account for processes that are not explicitly or not entirely correctly described
by the model equations. There are of course various ways to represent model error and
several other approaches have been developed which have sometimes become part of
operational weather-prediction models (for an overview see Palmer (2001)). An example
of representing the uncertainty in model parametrization schemes is formulated by
Buizza et al. (1999). Their approach (‘stochastic physics’) is to add stochastic noise
in regions where the subgrid parametrization schemes are active. By splitting G into
two terms, D and P , associated with tendencies of the adiabatic model component and
physical parametrizations respectively, they propose a model forcing f of the form:

f(t) = λP (x), (3)

where λ is a stochastic variable drawn from a uniform distribution in [−0.5, 0.5].
The scheme is used in the Ensemble Prediction System (EPS) at the European Centre
for Medium-Range Weather Forecasts (ECMWF) with random drawings constant over
a time range of 4.5 h and in a spatial domain of 10◦ × 10◦ latitude/longitude with each
ensemble member using a different realization of λ (Buizza et al. 1999). In a study of
the performance of the ECMWF EPS with special focus on tropical cyclones (Puri et al.
2001), the impact of stochastic physics was quite noticeable. The ensemble showed
sensitivity to the different realizations of stochastic physics used in each ensemble
member and, in particular, with respect to the intensity of tropical cyclones.

In this paper, we are interested in model forcings f, which are constant in time
but, when used as tendency perturbations, result in large perturbation growth in some
measure during a given forecast period. In view of this, such f structures will be referred
to as forcing singular vectors. D’Andrea and Vautard (2000) study similar structures
as a way to reduce systematic error in a quasi-geostrophic model. So-called stochastic
optimals used by Moore and Kleeman (1999) in a coupled ocean–atmosphere model
of the El Niño Southern Oscillation (ENSO) bear resemblance to forcing singular vec-
tors but allow for time-dependent forcings f(t). By introducing stochastic optimals in
the ENSO model, they obtained variability on seasonal-to-interannual time-scales with
spectral characteristics similar to those seen in nature. However, their approach is not
feasible in a realistic high-dimensional NWP model even for time-independent stochas-
tic optimals because of their explicit computation in matrix form of the propagator of
the linear model and its adjoint.
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In section 2, the concept of forcing is illustrated with two examples which are
usually associated with defining sensitive patterns in the initial condition: the singular
vector and sensitivity computation. The impact of forcing in those two applications is
discussed in sections 3 and 4. In section 5, conclusions and some perspectives for future
use of model forcing are presented.

2. FORCING LINEAR MODELS: TWO APPLICATIONS

Suppose an operational NWP model can be written in the following form:

dx/dt = G(x). (4)

The sensitive dependence on initial conditions x(0) of Eq. (4) is of particular con-
cern for operational weather centres. Small differences in the analysis x(0) may result
in entirely different forecasts. Therefore, knowledge about fast-growing perturbations
with respect to the analysis is of great importance. One approach to finding such pertur-
bations, and which has been adopted at the ECMWF, is to compute so-called singular
vectors (SVs) of the associated tangent linear system of Eq. (4). Perturbations based on
SVs can then be used in ensemble forecasting to inform about the likelihood of different
weather scenarios (Molteni et al. 1996; Buizza et al. 1998). Other approaches of design-
ing an ensemble forecast system are described by, for example, Toth and Kalnay (1997)
and Houtekamer et al. (1996).

SVs provide an efficient tool to search for fast-growing perturbations of the analy-
sis. It is even possible to define initial perturbations which are consistent with analysis-
error statistics. This is of particular interest for predictability studies and it requires
(see below for SV definition) an initial norm based on an estimate of the analysis-error
covariance matrix. The Hessian or second derivative of the four-dimensional variation
(4D-Var) cost function can be used to define such an initial norm. The final norm is
less crucial and may depend on the meteorological phenomenon one is interested in
(Ehrendorfer and Tribbia 1997; Barkmeijer et al. 1998; Palmer et al. 1998).

In addition to fast-growing perturbations of the analysis such as SVs, the forecast
quality will also depend on the model formulation. Various components of operational
forecast models, such as the parametrization of physical processes or the form of exter-
nal forcing terms, allow for a certain degree of uncertainty. Suitable initial perturbations
may compensate for certain model deficiencies and vice versa and ideally one would like
to address the relative importance of both sources of forecast error. Harrison et al. (1999)
and Evans et al. (2000) studied ensembles comprising members using the ECMWF and
United Kingdom Meteorological Office (UKMO) model and analyses. The inclusion
of either a second model or a second analysis improved the ensemble skill, but the
greatest benefit resulted from using both models and analyses. Richardson (2001) found
that especially the use of different operational analyses was beneficial for defining an
ensemble strategy; the additional benefits of including different models was less clear.

In this paper, we adopt a simple approach to account for forecast error attributable
to model error. We assume that the possible shortcomings in the model formulation can
be described by a perturbation f of the model tendencies, whose spatial pattern is kept
constant in time. In other words, the linear evolution of a perturbation ε satisfies:

dε/dt = Lε + f, (5)

where L denotes the time-dependent Jacobian of G evaluated along a solution of Eq. (4).
Model tendency perturbations, usually of stochastic nature, are a familiar tool in various
applications to describe unpredictable small-scale variability (e.g. Hasselman 1976;
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DelSole and Farrell 1995; Moore and Kleeman 1999; Buizza et al. 1999; Vannitsen
and Toth 2002). Solutions of Eq. (5) take the form:

ε(T ) = M(0, T )ε(0) +
∫ T

0
M(s, T )f ds, (6)

where M(s, T ) is the propagator from time s to time T of Eq. (5) without forcing: f = 0.
The vector M(0, T )y is obtained by integrating Eq. (5) with f = 0 from time t = 0 to
time t = T starting with an arbitrary initial condition y. In the following, we set the
integration (or optimization) time to 48 hours and simplify the notation accordingly.
SVs are usually characterized as structures that maximize the ratio between norms at
initial and optimization time, as given by:

〈PMx, C1PMx〉
〈x, C0x〉 . (7)

Here 〈 , 〉 denotes the Euclidean inner product 〈x, y〉 = ∑
xiyi . The operator P is

a projection operator that sets a vector to zero outside a given domain. The positive
definite and symmetric operators C0 and C1 define a norm at initial and optimization
time. The first singular vector, SV1, maximizes the ratio in Eq. (7), the second, SV2,
maximizes this ratio in the subspace C0-orthogonal to SV1, and so forth. Thus, the SVs x
define a C0-orthogonal set at initial time. The evolved SVs Mx form a C1-orthogonal
set at optimization time in the projection domain defined by P. Alternatively, these SVs
are solutions of the following generalized eigenvalue problem

M∗P∗C1PMx = λC0x. (8)

The adjoint operators M∗ and P∗ are defined with respect to the Euclidean inner
product. In the following, P denotes a projection operator onto the northern hemisphere
(NH) extratropics (30◦N–90◦N) and C0 and C1 are identical diagonal operators with
total energy weights on the diagonal. The associated inner product reads as:

〈x, C0y〉 = 1

2

∫ 1

η=0

∫
�

(∇�−1ζx · ∇�−1ζy + ∇�−1Dx · ∇�−1Dy)

+ cp

Tr
TxTy d�

(
∂p

∂η

)
dη + 1

2

∫
�

RdTrPr ln πx · ln πy d� (9)

with (ζx, Dx, Tx, ln πx) being the vorticity, divergence, temperature, and logarithm of
the surface pressure components of the state vector x, and cp is the specific heat of
dry air at constant pressure, p(η) the pressure at η-levels (0 = surface and 1 = top
of atmosphere), Rd is the gas constant for dry air, Tr = 300 K is a reference temperature,
and Pr = 800 hPa is a reference pressure. For this choice of C0, Eq. (8) can be readily
written as a regular eigenvalue problem. First by multiplying both sides of Eq. (8) to the

left by C
− 1

2
0 :

C
− 1

2
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1
2
0 x (10)

and then by observing that

C
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1
2
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0 (C
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2
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Combining Eqs. (10) and (11) and writing v = C
1
2
0 x results in

C
− 1

2
0 M∗P∗C1PMC

− 1
2

0 v = λv.

This is a symmetric eigenvalue problem suitable for the Lanczos algorithm (Parlett
1980), even when the involved operators are not known explicitly.

(a) Forcing singular vectors
Forcing singular vectors (FSVs) can be defined analogously to initial SVs. Instead

of searching for ε(0) which yield large perturbation growth we are interested in struc-
tures, f, with ε(0) = 0, which will produce large ε(T ) (in some norm) as defined by
Eq. (6). Ideally, one would like to constrain f with a norm that reflects in some manner
the uncertainty in model physics tendencies, as initial SVs can be defined with an initial
norm that corresponds to analysis uncertainty (e.g. Barkmeijer et al. 1998). In this paper,
both f and its response ε(T ) are measured in terms of total energy E. As such the defin-
ing norms are the same as used for initial SVs. We have no evidence that such an energy
norm reflects the uncertainty in the model physics. By writing E for the operators C0
and C1, FSVs f satisfy the following eigenvalue problem:

E− 1
2 M∗P∗EPME− 1

2 f = λf with M =
∫ T

0
M(s, T ) ds. (12)

For an arbitrary forcing f, the vector y = Mf is simply determined by integrating Eq. (5)
to time t = T with initial condition ε(0) = 0. To derive the adjoint of M it is instructive
to write Eq. (5) in the form of a 2 × 2-matrix system:

d

dt

(
ε
f

)
=

(
L I
O O

) (
ε
f

)
, (13)

where I and O are the identity and zero operator respectively. The adjoint of Eq. (13)
reads as:

− d

dt

(
ε̂

f̂

)
=

(
L∗ O
I O

) (
ε̂

f̂

)
. (14)

By writing the above system again as coupled system

− d

dt
ε̂ = L∗ε̂ (15)

− d

dt
f̂ = ε̂ (16)

it follows how to determine M∗y for a given input vector y:

1. Integrate the regular adjoint model as given by Eq. (15) backward from time t = T
to time t = 0 with ε̂(T ) = y.

2. Integrate Eq. (16) backward in time from time t = T using the intermediate fields
of the adjoint integration (15) as tendencies for the corresponding time step and
f̂(T ) = 0. Integrating to time t = 0 yields M∗y = f̂(0).

An alternative procedure to evaluate M∗ was derived by D’Andrea and Vautard
(2000). Observe that the above two steps 1 and 2 can easily be performed simultaneously
and that therefore the computational costs for determining FSVs is the same as for
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initial SVs. In fact, allowing the forcing f in Eq. (5) only to act for the first time step
results in FSVs that are equivalent to SVs. A special case is where the basic state,
required to run the linear models, is constant in time. Instead of applying the above
scheme, M∗ can also be obtained by integrating a forced adjoint equation backward in
time, similarly to Eq. (5) for computing M.

(b) Forced sensitivity calculations
In the sensitivity calculation, operational at the ECMWF since 1995 (Rabier et al.

1996; Klinker et al. 1998), the goal is to find a posteriori an analysis perturbation that
results in an improved forecast. The same approach which was followed to define FSVs
can also be applied to such a sensitivity calculation. That is, instead of searching for
analysis perturbations that improve the forecast, possibly by reducing both analysis and
model errors, one searches for tendency perturbations that improve the forecast. Central
in the sensitivity calculation is the minimization of a cost function of the form:

J (ε) = 1
2(Mε − z)TPTC1P(Mε − z), (17)

where the operators P and M are as in the SV computation, i.e. a projection operator
and the propagator of the linear model respectively, and the superscript T stands for
transpose of an operator. The field z is the 2-day forecast error, which the linear
integrated analysis perturbation Mε tries to decrease. Note that the same sensitivity
procedure can also be used to produce prescribed flow regimes in the forecast with
suitable perturbations (Oortwijn and Barkmeijer 1995; Corti and Palmer 1997).

The gradient used in the minimization procedure of J depends on the constraint on
ε, here 〈C0ε, ε〉 is constant, and is given by:

∇J = C−1
0 M∗P∗C1P(Mε − z). (18)

Using a standard quasi-Newton minimization package, the cost function J is
minimized. Typically three iterations in the minimization procedure suffice to achieve
a reasonable reduction of the cost function. As is clear from Eq. (18), the final analysis
perturbation (commonly called key analysis error) strongly depends on the initial inner
product induced by C0 (see, also, Klinker et al. (1998)).

In the forced sensitivity calculation, the only way to decrease the cost function is by
applying time independent tendency perturbations. This means that the linear model for
evolving perturbations is given by Eq. (5), and during each iteration in the minimization
process Eq. (5) is integrated with ε(0) = 0 and with the forcing f found in the previous
iteration. The gradient direction used in the minimization during each iteration is given
by

C−1
0 M∗P∗C1P(Mε − z), (19)

where M and M∗ are as defined in section 2(a). In the experiments described below C0
and C1 are identical and equal to the total energy operator E.

3. COMPARISON OF INITIAL AND FORCING SINGULAR VECTORS

For two weeks, 1–7 January 2000 and 1–7 July 2000, daily initial and forcing
SVs have been computed starting at 1200 UTC and with an optimization time of
48 hours. As already pointed out, perturbation growth is measured in terms of the total
energy inner product (see Eq. (9)) and consequently FSVs are solutions of Eq. (12).
Initial SVs satisfy a similar equation, but with M replaced by the usual propagator M.
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Figure 1. Stream-function fields around 500 hPa for the two leading (a) and (b) singular vectors and (c) and
(d) forcing singular vectors (multiplied by time factor 1 s) starting from 1200 UTC 3 January 2000. Contour

interval is 0.004 m2s−1 with negative values shown by dashed lines.

Both computations are performed with a horizontal resolution T42 and a vertical
resolution of 40 levels. The nonlinear trajectories required to run the linear models are
produced by a low-resolution T42 version of the operational ECMWF forecast model.
The linear models are used in their diabatic configuration and comprise linear versions
of most of the important physics packages of the ECMWF forecast model (Mahfouf
1999).

An example of SVs and FSVs is shown in Fig. 1 for a calculation starting from
1200 UTC 3 January 2000. The two top and bottom panels show the stream-function
fields of the leading two SVs and FSVs, respectively, at nearly 500 hPa. The leading SV
and FSV are located in the same region, and the second FSV seems somewhat larger
in scale. The latter will be confirmed below when the horizontal spectrum is considered
(see Fig. 5). The occurrence of larger scale structures in FSVs is probably because only
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Figure 2. As Fig. 1, but the linear response after two days for (a) and (b) singular vectors and (c) and (d) forcing
singular vectors. Contour interval in (a) and (b) is 0.06 m2s−1 and in (c) and (d) 4000 m2s−1. Negative values are

shown by dashed lines.

constant tendency perturbations are allowed during the optimization time. This means
that an FSV contributes to perturbation growth during the entire optimization time
(see Eq. (12)). In the forced sensitivity calculations also, large scale structures were
observed (see Fig. 9(b)). The corresponding evolved vectors are shown in Fig. 2.
Components of the second FSV display an almost in situ growth which is rarely
seen for initial SVs. The latter feature is also noticeable in root-mean-square patterns
given by the leading SVs or FSVs for the winter and summer cases. Figures 3 and 4
show for the seven winter and summer cases, respectively, root-mean-square stream-
function fields based on the ten leading SVs or FSVs and their associated evolved
vectors. Each vector is weighted by a factor σi/

∑10
k=1 σk, with σi the singular value

corresponding to vector i. In addition to regions where initial SVs are located, it appears
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Figure 3. Root-mean-square stream-function fields around 500 hPa for the seven winter cases (see text) and
based on the ten leading (a) singular vectors (SVs), (b) evolved SVs, (c) forcing singular vectors (FSVs)
(multiplied by time factor 1 s) and (d) evolved FSVs and weighted by the corresponding singular value. Contour

interval in (a) and (c) is 0.00035 m2s−1, (b) 0.01 m2s−1 and (d) 250 m2s−1. The shading has no significance.

as though the FSVs also seem to favour the area west of the Iberian Peninsula and
between 40◦E–100◦E and 50◦N–80◦N. The response Mf of FSVs f initiating from those
areas show only small propagation.

To quantify possible differences between SVs and FSVs, total energy spectra
and vertical distributions of total energy were determined as shown in Figs. 5 and 6.
The average was taken over the leading 25 SVs and FSVs and associated evolved vectors
for the seven winter and summer cases. Note that the evolved forcing singular vector f
is given by Mf and that SVs and FSVs are normalized with unit total energy norm.

The vertical distribution of total energy for SVs and FSVs and evolved vectors are
quite similar. The maximum amplitude for SVs and FSVs is mainly in the potential
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Figure 4. Same as Fig. 3 but for the seven summer cases (see text). Contour interval in (a) and (c) is
0.00035 m2s−1, (b) 0.006 m2s−1 and (d) 220 m2s−1.

energy component around 600 hPa, and the evolved vectors show an upward perturba-
tion growth with maximum amplitude around 300 hPa, dominated by the kinetic energy
component. However, the horizontal spectra differ considerably. The upscale cascade
of perturbation growth that is clearly visible in the SV spectra is absent for FSVs.
There is more energy at the larger scales for FSVs with maximum amplitudes around
wave number 12 and 15 in winter and summer, respectively. The evolved vectors have
maximum amplitude around wave number 14. The difference in perturbation growth for
SVs between the winter and summer period is clearly indicated by the area under the
curves for the evolved vectors; for FSVs the seasonal dependence of perturbation growth
is much smaller. Figure 7(a) presents the square root of the leading singular value for
each winter and summer case. Note that the FSV singular values are scaled by a factor
1/(OT)2 with OT the optimization time (48 hours) in seconds. This was done because
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Figure 5. Vertical energy profiles for (a) singular vectors (SVs) and (b) forcing singular vectors (FSVs) and
horizontal total energy spectrum for (c) SVs and (d) FSVs averaged over the seven winter cases (see text).
Total (kinetic) energy for SVs and FSVs is plotted with a dashed (dotted) line. Total (kinetic) energy results
for evolved vectors are plotted in full (dashed-dotted) lines. Values for SVs and FSVs are multiplied by a factor

of 100; values for evolved FSVs are multiplied by 10−8.
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Figure 6. Same as Fig. 5 but for the seven summer cases (see text).

a forcing singular vector f invariant under M, i.e. M(0, s)f = f for 0 ≤ s ≤ OT, would
yield a singular value of (OT)2. The variability of leading singular value is quite similar
for SVs and FSVs in winter; for the summer cases the FSVs singular values display less
variability. In Fig. 7(b) the singular value spectrum for the leading 25 SVs and FSVs is
given averaged over the summer and winter cases. Again the small seasonal dependence
of FSV values is noticeable.

Another method to reveal differences between SVs and FSVs is to use a similarity
index (Buizza et al. 1998) which measures how parallel are the subspaces spanned by
the leading SVs and FSVs. Values of the similarity index vary from 0 to 1, and increasing
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Figure 7. (a) The top two curves show the square root of the leading singular vectors (SVs) singular values for
the seven winter (full line) and summer (dashed line) cases; the bottom two curves show scaled results for forcing
singular vectors (FSVs) (see text for more details). (b) Leading 25 square-root singular values (averaged) for the

winter (top two curves) and summer cases (bottom two curves). Full (dashed) lines denote SV (FSV) values.

TABLE 1. SIMILARITY INDICES BETWEEN UNSTABLE SUBSPACES SPANNED BY THE LEADING 25
SINGULAR VECTORS (SVS) AND FORCING SINGULAR VECTORS (FSVS) AND SPANNED BY THE ASSOCIATED
EVOLVED VECTORS FOR THE WINTER AND SUMMER 2000 CASES. ALSO FOR EACH PERIOD SIMILARITY

INDICES BETWEEN CONSECUTIVE UNSTABLE SUBSPACES ARE GIVEN FOR SVS AND FSVS.

Winter Summer
2000 cases SV–FSV Evolved SV FSV 2000 cases SV–FSV Evolved SV FSV

1 January 0.29 0.61 0.10 0.24 1 July 0.34 0.57 0.15 0.40
2 January 0.28 0.58 0.13 0.25 2 July 0.29 0.52 0.20 0.39
3 January 0.26 0.55 0.09 0.22 3 July 0.33 0.60 0.15 0.37
4 January 0.25 0.57 0.07 0.20 4 July 0.36 0.59 0.18 0.42
5 January 0.22 0.51 0.06 0.27 5 July 0.39 0.69 0.17 0.37
6 January 0.24 0.48 0.08 0.31 6 July 0.38 0.71 0.12 0.33
7 January 0.24 0.5 7 July 0.34 0.6

values mean that the subspaces become more and more parallel. Table 1 gives for each
of the seven winter and summer cases the similarity between the subspaces spanned by
the leading 25 SVs or FSVs and their associated evolved vectors. It shows that both
computations explore different unstable subspaces, yet describe similar subspaces at
optimization time. For comparison, the similarity indices are given between consecutive
(1-day difference) unstable subspaces for SVs and FSVs. Clearly, there is more simi-
larity between consecutive unstable subspaces in summer than in winter both for SVs
and FSVs. The special FSV property of being time independent during the optimization
period probably introduces some memory of FSV computation started one day earlier,
resulting in increased similarity indices.

Because the SV and FSV unstable subspaces are dissimilar, it is possible that the
two sets of vectors describe different parts of the forecast error. To investigate this, the
operational 2-day NH T42L40 forecast error e(48) was projected onto the 2-day linearly
evolved SVs and FSVs for each of the seven winter and summer cases. In the projection,
the leading 25 leading evolved vectors of type SV or FSV were used. Denote by ẽ(48)
the portion of the forecast error thus explained and the associated pseudo inverse error
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TABLE 2. THE EXPLAINED PART OF 2-DAY NORTHERN
HEMISPHERE FORECAST ERROR IN TERMS OF TOTAL ENERGY
USING THE 25 LEADING SINGULAR VECTORS (SVS) OR

FORCING SINGULAR VECTORS (FSVS)

Winter Summer
2000 cases SV FSV 2000 cases SV FSV

1 January 0.22 0.24 1 July 0.13 0.18
2 January 0.22 0.19 2 July 0.08 0.08
3 January 0.13 0.14 3 July 0.19 0.16
4 January 0.22 0.25 4 July 0.14 0.13
5 January 0.16 0.16 5 July 0.14 0.13
6 January 0.13 0.14 6 July 0.1 0.12
7 January 0.1 0.15 7 July 0.15 0.15

(Gelaro et al. 1998) by ẽ(0):

ẽ(48) =
25∑
i=1

aiT(SVi) = Tẽ(0) (20)

where ai is the projection coefficient associated with the ith evolved vector and T can
be either M, the propagator of the tangent model, or M = ∫ 48h

0 M ds. The percentage of
the total energy of e(48) as explained by ẽ(48) using SVs or FSVs is given in Table 2.
Both types of vectors are able to describe nearly the same fraction of e(48) in terms of
total energy.

Although, in general, the part of the forecast error described by SVs or FSVs is
also spatially similar, regional differences may occur. Figure 8 shows the analysis or
tendency perturbation ε̃(0) based on SVs or FSVs, respectively and the associated ε̃(48),
the projection onto the evolved SVs or FSVs of the 2-day 500 hPa geopotential height
error for forecasts started from 1200 UTC 1 January 2000. The full 2-day forecast error
is given in Fig. 8(e). Both analysis and tendency perturbation, as shown in Figs. 8(a)
and (b), respectively, evolve to describe large parts of the forecast error in a similar
manner (see Figs. 8(c) and (d)). However, there are also differences, notably between
40◦E–80◦E. Inspection of the leading 25 evolved SVs (results not shown here) reveals
that all have only small amplitude in this area. It seems that tendency perturbations
are more efficient in reducing the forecast error in this area. Of course, by increasing
the number of SVs used in Eq. (20), this part of the forecast error will eventually be
captured by the evolved SVs. It turns out that around 40–50 SVs are required to describe
this regional forecast error to the same extent as the leading 25 FSVs.

4. IMPACT OF FORCING ON SENSITIVITY CALCULATIONS

Sensitivity calculations were performed for a 7-day period: 24–30 October 2000.
The models used in determining the cost function (Eq. (17)) and its gradient (Eq. (18))
had a horizontal resolution of T63, 60 levels in the vertical and were run in their diabatic
configuration. The default sensitivity calculation seeks the analysis perturbation that
yields the largest forecast-error reduction, by minimizing the cost function for a limited
number of gradient computations. In the results shown here, six gradient computations
were allowed and the forecast period was set to 2 days. The actual forecast error z which
has to be reduced in the minimization process is the difference between the T63L60
2-day forecast and the verifying operational ECMWF analysis truncated at T63 and
projected onto the NH extratropics (30◦N–90◦N) by P.
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(a)

(c)

(e)

(b)

(d)

Figure 8. Pseudo inverse error ẽ(0) (see text for more details) in geopotential height at 500 hPa for (a) singular
vectors and (b) forcing singular vectors; (c) and (d) show corresponding ẽ(48) and (e) 2-day geopotential
height forecast error from 1200 UTC 1 January 2000. Contour interval in (a) is 1 m, (b) 2.0 × 10−5 m s−1 and

(c)–(e) 20 m, with negative values shown dashed.
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TABLE 3. THE EXPLAINED FRAC-
TION OF 2-DAY NORTHERN HEMISPHERE
FORECAST ERROR MEASURED IN TERMS
OF TOTAL ENERGY FOR DEFAULT AND

FORCED SENSITIVITY COMPUTATIONS

Date (2000) Default Forced

24 October 0.19 0.45
25 October 0.42 0.62
26 October 0.34 0.57
27 October 0.36 0.59
28 October 0.41 0.60
29 October 0.41 0.59
30 October 0.29 0.53
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Figure 9. (a) and (b) Temperature perturbations at model level 44 (around 700 hPa) for 12 UTC 24 October
2000 after six iterations with the (a) default and (b) forced sensitivity calculation. (c) and (d) Corresponding
linearly evolved temperature fields at model level 39 (around 500 hPa). Contour interval used in (a) is 0.1 K,

(b) 1.0 × 10−5 K s−1 and in (c) and (d) 1 K, with negative values shown dashed.
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Figure 10. Two-day forecast error for temperature at model level 39 for the T63 forecast started from 1200 UTC
24 October 2000. Contour interval is 1 K with negative values shown dashed.

As explained in section 2(b), the same procedure of the default sensitivity calcula-
tion can be adapted to determine the model tendency perturbation f which, given certain
constraints such as the number of gradient computations, results in the greatest forecast-
error reduction. Table 3 compares the reduction in the cost function after six iterations
for the default and forced sensitivity calculations. Clearly, in each of the seven cases the
tendency perturbations are better at reducing the forecast error than the so-called key
analysis errors. The additional explained fraction of the total forecast error in terms of
total energy is at least 20% more for the forced sensitivity calculation. Note that the
tendency perturbation does not vary with time and is applied every time step during
the integration. A trivial choice for a time-varying tendency perturbation f(t) that would
reduce the cost function to zero immediately would be to set f(t) = 0, apart from the final
time step when f(t) = z/�t , with z the 2-day forecast error and �t the model time step.
Such a forcing f is, however, physically not realistic. The search for physically more
acceptable time-varying forcing structures, for example by demanding some correlation
in time, is beyond the scope of this paper. The necessary generalization of the procedure
outlined in section 2(a) will be addressed in a follow-up study.

The perturbations determined by both sensitivity calculations are quite different
from the forecast error that has to be corrected. The average correlation in terms of total
energy between the forecast error and analysis or tendency perturbation is 2.2 × 10−3
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Figure 11. Average northern hemisphere (seven cases) total energy (TE) and kinetic energy (KE) of the full T63
model tendencies (upper lines) and of the forcing perturbations (lower lines) as functions of forecast time for

10-day forecasts every 12 hours.

TABLE 4. TOTAL ENERGY RATIO OF LINEAR
AND NONLINEAR EVOLVED PERTURBATIONS FOR
DEFAULT AND FORCED SENSITIVITY (AND THEIR

CORRELATION)

Date (2000) Default Forced

24 October 1.69 (0.47) 1.43 (0.73)
25 October 1.82 (0.71) 1.34 (0.81)
26 October 1.82 (0.77) 1.34 (0.84)
27 October 1.84 (0.74) 1.36 (0.81)
28 October 1.72 (0.77) 1.34 (0.83)
29 October 2.06 (0.69) 1.44 (0.80)
30 October 1.69 (0.69) 1.36 (0.80)

and 3.1 × 10−3 for default and forcing sensitivity respectively. Figure 9 shows for
1200 UTC 24 October 2000 the analysis and tendency temperature perturbation at model
level 44 (around 700 hPa) together with the associated linearly evolved temperature
perturbation at level 39 (around 500 hPa) for the default and forced sensitivity calcu-
lation. The better reduction of the cost function in the case of the forcing calculation
becomes apparent when the linearly evolved fields in Figs. 9(c) and (d) are compared
with the actual T63 2-day forecast error (see Fig. 10). The forecast error over the At-
lantic region, particularly to the west of the Iberian Peninsula is nicely captured by
the forcing perturbation, as is the forecast error over the (60◦E–100◦E; 20◦N–60◦N)
region.

In order to have some understanding of the relative size of the tendency perturba-
tions compared with the full tendencies, their amplitude over the NH was determined.
The averaged NH total energy and its kinetic-energy component (cf. Fig. 5) of full
and perturbation tendencies are plotted in Fig. 11 for 10-day forecasts every 12 hours.
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Figure 12. Average T63 forecast performance (seven cases) for northern hemisphere geopotential height in terms
of (a) and (c) anomaly correlation and (b) and (d) root-mean-square error at (a) and (b) 1000 hPa and (c) and (d)
500 hPa. The lines in each panel represent unperturbed forecasts (full lines), with analysis perturbations (dashed

lines) and tendency perturbations (dotted lines).

Most energy of the full model tendencies is in the kinetic-energy component of total en-
ergy; for forcing perturbations the potential-energy component is the largest. The latter
agrees well with the energy distribution for FSVs (see Fig. 5). Although the magnitudes
of the model tendencies and forcing perturbations are difficult to compare, it is clear
from Fig. 11 that forcing perturbations are substantially smaller than model tendencies
in terms of NH kinetic and potential energy (note the logarithmic scale). Another in-
dication whether linearly computed tendency perturbations are sufficiently small is to
consider how well linear and nonlinear integrated perturbations compare. Table 4 gives
total energy correlations between linear and nonlinear 2-day integrated perturbations
for default and forcing sensitivity and their total energy ratios. Clearly, the perturbations
grow faster in the linear model as indicated by the larger-than-one total energy ratio.
For most of the cases, the linear and nonlinear evolutions resemble each other quite
well. This is, in particular, the case for forcing perturbations.

The average performance for geopotential height at 500 hPa of nonlinear forecasts
using default and forcing perturbations is displayed in Fig. 12. The extent to which
forecasts improve is in accordance with results obtained in a linear context such as the
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Figure 12. Continued.

cost-function reduction. Notice that although the forcing perturbation is applied during
the entire forecast period it does not seem to have a deteriorating effect on the forecast
performance after the optimization time of 2 days. Forecasts whereby the forcing is
switched off after the optimization time show similar results (not shown). After the
optimization time, the forcing perturbations have become sub-optimal, and they will
probably have similar impact as random forcing perturbations, without necessarily
having the capability to perturb the forecasts substantially.

To study the behaviour of forcing sensitivity also in summer, initial and forcing
sensitivity computations were done for the period 1 May–8 June 2001 (39 cases).
With the same configuration as the winter experiment we found basically the same
performance as in winter. For example, a 19% more reduction of the cost function
after six iterations in the case of forcing sensitivity (averaged over 39 cases). Figure 13
shows the impact on the 2-day systematic error for the initial and forcing sensitivity
during this summer period. The systematic error was determined by taking the mean
of all differences between the 2-day forecast and the verifying ECMWF analysis.
Both sensitivity configurations are able to reduce systematic error but the reduction in
the case of forcing sensitivity is much larger. The systematic error in the North Atlantic
region has almost vanished, and over North America the systematic error has decreased
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Figure 13. Systematic error (m) at 48 hours in terms of 500 hPa geopotential height during 1 May–8 June 2001
(39 cases) for (a) TL511 forecasts, (b) T63 forecasts, (c) initial sensitivity T63 forecasts, and (d) forcing sensitivity

T63 forecasts.

substantially with maximum positive values of 25.7 m reduced to 13 m. The impact on
the 100◦E–180◦E sector is less for both configurations. For comparison the systematic
error for TL511 forecasts is also shown. It indicates that systematic error does not
depend very much on model resolution and that even T63 computations as used above
may help to understand and to reduce systematic error of models with much higher
horizontal resolution.

5. CONCLUSIONS

In this paper a simple approach has been taken to accommodate sources of model
error, such as uncertainties in the parametrization of physical processes. We assumed
that during a certain forecast period the model error can be described by a time
independent perturbation of the model tendencies. Note that the inclusion of an addi-
tional forcing term to the model equations is quite common in modelling to incorporate
subgrid-scale dynamics in the model or to ensure a more realistic model climate (Roads
1987; Marshall and Molteni 1993).
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Like initial singular vectors describe structures in the initial state that will grow
rapidly (in some norm), it is also possible to define sensitive forcing perturbations.
Two model integrations starting from identical initial conditions and satisfying the same
model equations apart from such a forcing perturbation can produce entirely different
forecasts in a few days. The constraint on forcing perturbations not to vary in time
during the entire optimization time influences the structure of these optimal forcing
perturbations or forcing singular vectors (FSVs). In fact, allowing forcings which are
only active during the first time step results in identical initial and forcing singular
vectors. In case the tendency perturbations are active and time independent during the
entire optimization time (here 48 hours), FSVs become different from initial SVs as can
be concluded by comparing unstable subspaces spanned by the leading SVs and FSVs.
Also noticeable is the larger scale structure of FSVs. The typical horizontal total energy
spectrum for SVs compared with the total energy norm showing a large contribution
from total wave numbers around the truncation limit (T42) is absent for FSVs. Instead,
FSVs and their linear response at optimization time have horizontal spectra peaking
around wave number 12; there is no upscale perturbation growth as seen for SVs. In that
respect the structure of FSVs is more similar to SVs which are constrained at initial
time by estimates of analysis-error statistics (Barkmeijer et al. 1998; Palmer et al.
1998). However, experimentation with the Hessian norm in the sensitivity calculation
(results not shown here) gave similar cost-function reduction as the regular sensitivity
calculation employing the total energy norm.

The computation of FSVs may provide alternative mechanisms to explain forecast
errors. Projecting forecast errors onto the subspace spanned by evolved leading SVs
or FSVs showed that differences in the described part of the forecast error may occur.
This became particularly noticeable when tendency perturbations were applied in the
sensitivity calculation. Not only did the forced sensitivity computation result in a
substantially larger reduction of the cost function which measures forecast error, the
forecast also improved over areas that were not captured by the initial sensitivity.
The larger cost-function reduction does, however, not imply that a constant forcing
during an optimization time of 48 hours is a good approximation for model error,
nor does it mean that model error plays a dominant role in producing forecast errors
(Orrell et al. 2001). Nevertheless, one could envisage a system where initial and
forced sensitivity were combined in a sequential fashion. First by searching for a
suitable analysis modification and then by determining the tendency perturbation that
decreases the remaining cost function. Preliminary tests in the framework of 4D-Var
showed that there is scope for such an approach in that the fit to data was better
when tendency perturbations were allowed, see also Derber (1989). There is also the
possibility of minimizing the cost function by simultaneously allowing analysis and
tendency perturbations. This, however, requires a careful balance between the analysis-
error and model-error covariances.

Another area where tendency perturbations may be applied is in ensemble fore-
casting. Experimentation has already been performed (not shown) with the 50 member
TL255L40 EPS at the ECMWF by combining analysis and tendency perturbations, the
latter based on FSVs with computations starting from the operational forecast at day 3
and with an optimization period of 2 days. During the time integration of each ensemble
member, a tendency perturbation comprising a mix of the leading 25 FSVs was acti-
vated from forecast day 3 onward. Averaged over 14 cases it resulted in, for example,
larger ensemble spread as given by the average distance between ensemble members
and ensemble mean, and improved probability scores during forecast day 3 to day 5 for
geopotential height at 500 hPa.
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