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SUMMARY

Nadir ozone profiles retrieved from the GOME (Global Ozone Monitoring Experiment) instrument are
assimilated with a global three-dimensional atmospheric ozone model. The assimilation procedure is based on
the Kalman filter equations, and is an extension of an existing assimilation procedure for total ozone columns. As
a novelty, a three-dimensional covariance model is developed using a single parameterisation for correlations in
all directions, instead of the usually applied separation in horizontal and vertical directions. The parameterisation
is anisotropic in all directions, accounting for the different correlation lengths of ozone with respect to altitude,
latitude, and longitude. The assimilation procedure includes full use of the averaging kernel information provided
with the GOME retrieval product. The averaging kernels account for the smaller sensitivity of the GOME instrument
below the ozone maximum and the limited vertical resolution. A singular value decomposition of the kernels is
used to reduce the large data volume. A one year data set of GOME ozone profiles is assimilated for the year 2000.
Independent data from ozone sondes is used to validate the results. A case study shows that the assimilation of
GOME profiles is able to improve the simulation of the vertical ozone distribution even in case of strong vertical
gradients.
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1. INTRODUCTION

A detailed knowledge of ozone is important for atmospheric chemistry and climate
research (IPCC 2001; WMO 2003; EC 2003). Ozone absorbs harmful uv-radiation, plays
a central role in the chemistry of smog formation, and contributes to global warming as
a greenhouse gas. Numerical weather prediction centres are interested in ozone for the
heating of the atmosphere by the stratospheric ozone layer. On a time scale of hours to
days, ozone may also be useful as a passive tracer to derive stratospheric wind vectors
(Riishøjgaard 1997).

Ozone has been observed by several satellite instruments over the last decades.
The longest time series of total ozone columns is provided by the TOMS (Total Ozone
Mapping Spectrometer) instruments, and forms an almost continuous record since the
end of the seventies. The total ozone columns measured by TOMS and more recent
nadir viewing instruments as GOME (Global Ozone Monitoring Experiment, (Burrows
et al. 1999)) have provided valuable information on stratospheric ozone, in particular on
Antarctic ozone depletion. Information on the vertical distribution of ozone is required
for the study of stratosphere/troposphere exchange, formation and breakup of the
polar vortex, and, ultimately, the tropospheric and stratospheric ozone budgets. Vertical
information has been provided by the nadir viewing SBUV/SBUV2 (Solar Backscatter
UV) instruments, operational since the end of the seventies. The SBUV measurements
provide information on the ozone profile with a resolution of roughly 8 km in the
upper stratosphere, between 25 and 45 km. Limb-viewing instruments such as MLS
(Microwave Limb Sounder) and occultation instruments such as HALOE (HALogen
Occultation Experiment), SAGE (Stratospheric Aerosol and Gas Experiment), or POAM
(Polar Ozone and Aerosol Measurement), provide ozone profiles with a higher vertical
resolution and accuracy, but these measurements are characterised by a low horizontal
resolution or coverage.
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The GOME instrument improves on both TOMS and SBUV through its better spectral
resolution and coverage, respectively. The earth-shine spectrum measured by GOME
contains more profile information than the SBUV spectrum, especially in the lower
stratosphere and the troposphere. GOME ozone profile retrieval algorithms have been
reported by Munro et al. (1998), Hoogen et al. (1999), Hasekamp and Landgraf (2001),
and Van der A et al. (2002). The vertical resolution of these retrieval techniques is
about 5 km around the ozone maximum and worse below and above. The ability of the
instrument to infer the vertical ozone distribution is described by the averaging kernels
of the retrieval. These provide the relation between the true and the retrieved profile.
To correctly interpret the retrieved ozone profiles, it is essential to take into account
the averaging kernels when comparing with model simulations or sonde measurements
(Meijer et al. 2003).

Ozone measurements are nowadays assimilated by various research groups and
operational weather forecast centres. The KNMI (Royal Netherlands Meteorological
Institute) has been providing daily global ozone forecasts since early 2000 based on
assimilation of total ozone from GOME (Eskes et al. 2003), and currently does so
based on SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric
CartograpHY). The ECMWF (European Centre for Medium-range Weather Forecasts)
assimilated TOMS total ozone and SBUV data during the 40-year reanalysis (Dethof
and Hólm 2002), and has recently started to provide ozone forecasts as an operational
product, first based on GOME, SBUV and MIPAS (Michelson Interferometer for Passive
Atmospheric Sounding) data, and currently SCIAMACHY measurements. NASA’s Global
Modelling and Assimilation Office (GMAO) assimilates TOMS and SBUV data offline in
GEOS (Goddard Earth Observing System) (Štajner et al. 2001). Limb measurements
from MLS have been assimilated by for example Levelt et al. (1998), Khattatov et
al. (2000), Struthers et al. (2002), and Fierli et al. (2002). Ozone assimilation as
part of more extensive chemical analysis has been performed in various studies. A
variational approach for assimilation of multiple stratospheric trace gas observations
was introduced in Fisher and Lary (1995), and later on applied by for example Errera
and Fonteyn (2001). Elbern and Schmidt (2001) applied the variational approach for
regional air pollution forecasts.

This paper describes the assimilation of GOME ozone profiles and a global atmos-
pheric ozone model. The aim is to build an assimilation system that is able to provide the
best possible three dimensional fields of ozone based on profiles measured by GOME,
and in future its successors. In an online application, such an assimilation system would
be able to provide more information on the vertical distribution of ozone than the current
ozone forecast systems, that assimilate total ozone columns only. High quality strato-
spheric ozone fields form also the key data for retrieving tropospheric ozone data from
satellite instruments. In addition, an assimilation system is useful to quantify the un-
certainty of the observation. This knowledge may initiate improvements in the satellite
retrievals.

The assimilation system described in this study is based on the existing total ozone
column assimilation described in Eskes et al. (2003) and the experiences with ozone
profile assimilation described in El Serafy and Kelder (2003). The first step to be made
when develloping such a system is to study the quallity of the satellite profiles. Biases
between the profiles and model simulations should be identified, as well as the overall
uncertainty in the profiles with respect to location, altitude, and season. The second step
is to construct an analysis system that makes optimal use of the information present in
the ozone profile retrievals. Important issues are the modelling of vertical correlations,
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the treatment of the averaging kernels in the profile product, and efficiency in view of
the large data volume.

The assimilation system is based on the Kalman filter. An atmospheric model and
the GOME measurements are the most important components of the system, together
with other elements such as a covariance model and an observation operator. Since the
components of the system are closely related to each other, it is fairly impossible to
introduce one component without having a modest idea about the others. The Kalman
filter equations are therefore summarised first in section 2. The components of the
system are then described in more detail: the atmospheric model (section 3), the
covariance model (section 4), the forecast equations of the Kalman filter (section 5),
the ozone profiles retrieved from GOME (section 6), the observation operator simulating
ozone profiles from the model state (section 7), and the analysis equations of the Kalman
filter (section 8). A one-year data set of GOME ozone observations is assimilated for the
year 2000. Section 9 describes the resulting assimilated ozone data set and the error
statistics obtained by comparison with sonde measurements.

2. KALMAN FILTER - INTRODUCTION

The aim of a data assimilation system is to obtain the best possible estimate of
the true state, given measurements and all previous knowledge of the evolution of the
state and known constraints on the state vector. In particular, the Kalman filter provides
the best estimate of a state at a certain time, given all measurements that have become
available up to that time and the physical constraints implemented in a model.

Let x[k] denote the true state of the atmosphere, described in a vector, defined for the
time tk. In this study, x describes the global ozone concentration field. Further, let y[k]

denote a vector of measurements. The first step in the implementation of a Kalman filter
is to identify models for the atmosphere and the measurements. They have the general
form

x[k] = M(x[k−1], tk−1, tk) + w[k−1] , w[k−1] ∼N (o, Q[k−1]) (1a)
y[k] = H(x[k], tk) + v[k] , v[k] ∼N (o, R[k]) . (1b)

Equation (1a) describes the evolution of the state from tk−1 to tk with the aid of the
model M . In our study, the model is the global atmospheric chemistry model TM3
(Transport Model, version 3), described in detail in section 3. Since a model is never
perfect, the true state x[k] will not be equal to M(x[k−1]), even if x[k−1] would be known
exactly. The error made by the model is represented by the stochastic vector w, which is
supposed to have a normal distribution (N ) with zero mean o and covariance Q. We will
not implement the model error covariance Q directly, but rather use a parameterisation
for the operation in which Q is involved. Measurement vector y contains the measured
data, in our case the GOME ozone profiles. The information content of y is described in
section 6. Representation operator H describes how the measured data can be derived
from the state vector. For the analysis step in the Kalman filter it is necessary to have a
linearisation of H around an a-priori state x0 of the form

H(x, tk) ≈ H(x0, tk) + H[k]
(
x[k] − x0

)
(2a)

= H0[k] + H[k] x[k]. (2b)

The actual measurements y will differ from H(x) because x is only a discrete repre-
sentation of the true atmosphere where the measurement is taken, our model H of the
measurement technique may not be perfect, and because of random measurements errors
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of the instrument. The difference is described by a stochastic vector v which is assumed
to be unbiased (zero mean) and to have a known covariance R. The representation op-
erator H , the error covariance R, and the assumption of an unbiased error are discussed
in section 7.

In the context of the Kalman filter, the range of most likely values that the true
state can have is expressed in terms of a Gaussian probability distribution. A Gaussian
probability distribution is completely defined by a mean and covariance, here denoted
by x̄ and P respectively:

x[k] ∼ N (x̄[k], P[k]) (3)

The implementation of a full covariance matrix P is in practice compuationally far too
expensive. The emphasis of this article is therefore on the parameterisation of P, which
is described in detail in section 4.

The Kalman filter computes the best estimate of the mean and covariance at a
certain time in two steps. The forecast step computes a mean and covariance given the
latest mean and covariance and other entities available for a previous time:

x̄f
[k] = E [ x[k] | tk−1 ] (4a)

Pf
[k] = E

[

(x[k] − x̄[k])(x[k] − x̄[k])T | tk−1

]

(4b)

where E [ . ] denotes the expectation. The analysis step computes a conditional mean
and covariance given measurement data, as soon as this becomes available:

x̄a
[k] = E [ x[k] | y[k] ] (5a)

Pa
[k] = E

[

(x[k] − x̄a
[k])(x[k] − x̄a

[k])T | y[k]

]

. (5b)

The forecast equations are described in detail in section 5 after description of model
and covariance, and the analysis equations in section 8 after description of observations
and observation model.

3. ATMOSPHERIC CHEMISTRY MODEL

The atmospheric model with parameterised ozone chemistry used in this study is
adapted from the global atmospheric chemistry model TM3 (Transport Model, version
3), as described by Eskes et al. (2003).

TM3 is an off-line model driven by meteorological fields from ECMWF (Bregman
et al. 2003). The horizontal resolution is 3◦×2◦ deg. (lon×lat). In the vertical, the
model has 44 hybrid sigma-pressure layers with a top at 0.1 hPa. The sigma-pressure
levels considered are a subset of ECMWF’s operational 60 layer configuration. In the
stratosphere, the levels match exactly with the ECMWF levels, while in the troposphere,
some of the original layers are combined. The choice of vertical levels is related to the
focus of the assimilation on producing accurate stratospheric ozone fields.

The stratospheric ozone formation and loss is parameterised using a simple gas-
phase chemistry (Cariolle and Déqué 1986, McLinden et al. 2000) and a heterogeneous
chemistry based on chlorine activation, the so-called ’cold tracer’ scheme (Hadjinico-
laou and Pyle 2004). Tropospheric chemistry is not included; instead, the tropospheric
ozone profile is relaxed toward a climatology (Fortuin and Kelder, 1998) with a long
relaxation time scale of two weeks. A simple deposition term accounts for the ozone
loss at the surface.
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4. COVARIANCE MODEL

The covariance matrix describes the probability of the true state x to be different
from our best estimate x̄:

P[k] = E
[

(x[k] − x̄[k])(x[k] − x̄[k])T
]

. (6)

The dimension of the covariance matrix P is large: the square of the number of elements
in the state x. For large atmospheric models such as used for ozone simulations it is
practically impossible to work with or even to store a full covariance matrix. Lyster et al.
(1997) implemented a Kalman filter for an atmospheric model with full covariance, but
only with the aid of massive parallel computing. A number of methods can be applied
to deal with the size problem.

The dimension of the covariance matrix can for example be reduced by defining it in
a space of reduced dimension, for example on a reduced grid, or in two rather than three
dimensions. An interpolation routine should map the reduced field back to the original
state. In Eskes et al. (2003) for example, ozone column measurements are analysed in
two dimensions. The resulting ozone column analysis was subsequently distributed over
the vertical layers proportional to the ozone profile.

Another method to reduce the size of P is to parameterise its contents. The
covariance between two state elements can for example be described by their standard
deviations and a spatial correlation based on their distance. El Serafy and Kelder
(2003) neglected the spatial correlations and implemented a simplified Kalman filter
for the analysis of GOME profiles that analysed the variance field only. In Eskes et
al. (2003), the spatial correlation in total ozone was parameterised as a function of
the horizontal distance. A 3D parameterisation is described in Štajner et al. (2001),
based on horizontal distance and vertical pressure differences. An elegant method
is used to make the horizontal correlations anisotropic, by applying a geometrical
transformation that projected the earth’s surface on a new body. The use of anisotropic
correlation models becomes more and more popular, since it accounts for the differences
in correlation lengths with respect to latitudinal and vertical position and direction.
In (Riishøjgaard 1998) for example, flow dependent correlations were constructed by
measuring distances in terms of differences in potential temperature and potential
vorticity rather than location.

In this study, a full 3D anisotropic covariance matrix is built following the concept
of a geometrical transformation as described in Štajner et al. (2001), generalised to
all three dimensions. It will provide a simple parameterisation from which correlations
between all possible pairs of grid points can be computed quickly.

(a) Covariance parameterisation
A suitable method to compute a covariance matrix is to define a continuous

covariance function first, and then to form a matrix by evaluating the function on a
discrete grid. Here we define a covariance function in the following way. Let ξ1 and
ξ2 be two vectors pointing to locations in the atmosphere. The covariance function
P : IR3 × IR3 → IR is written in the form

P (ξ1, ξ2; tk) = σ(ξ1; tk) C(ξ1, ξ2) σ(ξ2; tk) (7)

where σ : IR3 → IR+
0 is a 3D time dependent standard deviation field, and C : IR3 ×

IR3 → [−1, 1] a constant correlation field. The chosen decomposition in standard devi-
ation σ and constant correlation C implies that temporal changes in P are to be applied
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Figure 1. Illustration of the NMC method. A set of model forecasts is made for time t0 for different time lags.
The differences between the model forecasts at t0 provide information on the correlations in the model state.

on σ rather than on C . The correlation C may be weakly time dependent however, for
example different for each month.

A simple method to form a valid correlation function C is to parameterise it as a
function of distance:

C(ξ1, ξ2) = γ (‖ξ1 − ξ2‖) (8)

where γ : IR → [−1, 1] is a correlation function on IR, and ‖.‖ is the Euclidean norm on
IR3. The correlation is thus determined by the distance between ξ1 and ξ2, where the
distance is the length of a straight line, possibly through the earth’s interior. In this way,
a covariance matrix based on evaluation of the above function is always positive definite
(Gaspari and Cohn 1999).

Often, the correlation between two points does not depend on their distance only,
but also depends on their position. To take this into account, a fundamental lemma
of correlation function theory is used, which says that for a one-to-one transformation
τ : IR3 → IR3 the function

C(ξ1, ξ2) = γ (‖τ (ξ1) − τ (ξ2)‖) (9)

is still a correlation function. The aim is to define the transformation τ such that
the distances after transformation match with the required correlation. Thus, if in a
certain area of the domain the grid points are correlated strongly, their distance in
transformed space should be smaller, and vice versa. The problem is thus how to shrink
or stretch the original grid in such a way that the Euclidean distance between grid points
becomes proportional to the correlation. In our study, the distances should represent the
correlations in the ozone tracer distribution. The problem is solved by optimising the free
parameters in a grid transformation such that the resulting distances represent observed
correlations in ozone. The observed correlations are taken from model simulations using
the NMC method, which will be explained first, followed by a description of the grid
transformation.

(1) NMC method
The NMC method is named after the US National Meteorological Center’s analysis

system, described in (Parrish and Derber 1992). To obtain a correlation model for the
error in a numerical weather model, the model should be started from different initial
states, for example forecast and analysis states. Due to the different initial conditions,
the model forecasts will deviate from each other (Fig. 1). The spatial scales of the
differences between the model forecasts could then be used as a measure for the
correlation lengths described by the model, and, as such, for the correlations in the
atmosphere.

The NMC method is applied to the TM3 global ozone model described in section 3.
A data base with ozone simulations is created for April 2000. For computational reasons
the NMC experiment is carried out for a single month only. The month of April is chosen
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Figure 2. Horizontal correlation of total ozone as a function of horizontal distance between grid points. Derived
with the NMC method, for selected forecast lags of one day, three days, and nine days. The best-fit parameterised

correlation function are drawn too. The thick line is the parametrised correlation found by Eskes et al. (2003).

since it is a more or less average month in the atmosphere, without strong Antarctic
polar vortex and other features that lead to differences between the hemispheres. For
a correlation model that is constant in time and assumes hemispheric symmetry, as
described later on, performing the experiment during the month April only is a suitable
choice.

The NMC method consists of the following steps. A reference run is made using 6
hourly meteorological forecasts. The reference run produces for each day in March and
April an initial state valid at 1200 UTC. Each of this initial states serves as the start point
for a forecast run over 9 days, driven by a 9 days meteorological forecast. This provides
a data base in which for each day in April a set of 9 global ozone forecasts is available.
Each is valid at 1200 UTC, and is produced by model forecasts started 1 to 9 days earlier.
Differences between the ozone forecasts arise due to the different meteorological inputs.
The spatial scales of the differences describe correlations between the uncertainties due
to imperfect dynamics; uncertainty in the chemistry parameterisation is not accounted
for.

Various kinds of statistics can be derived from the data base, for example standard
deviations and correlation lengths. Both standard deviations and correlation lengths
grow with the forecast lag due to accumulation of differences over longer time periods.
As an example, Fig. 2 shows the growth of the horizontal correlation length in total
ozone for different forecast lags. Since the GOME instrument has an overpass frequency
of once every three days, the statistics for a forecast lag of three days are chosen to
describe the correlations in this study. This choice is validated by comparison of the
correlation lengths found with the NMC method with those found by Eskes et al. (2003)
to be optimal for assimilation of GOME total ozone, also shown in Fig. 2.

(2) Correlation model
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We assume that the correlation between two ozone concentrations is a function of
their latitudes, altitudes, and distance. To study the differences, the earth is divided into
15 zonal bands with a width of 12 degrees latitude each. For each of these bands, the
correlations are sampled between all pairs of cells that have the same:

1. level and latitude (for horizontal east/west correlations);
2. level and longitude, with at least one cell in the considered zonal band (for

horizontal north/south correlations);
3. longitude and latitude (for vertical cross correlations).

A geometrical transformation is searched that best fits the sampled correlations.
An iterative process of trial and error leads to a transformation of the zonal geometry
(latitude and level) into a new geometry of the following form:

• the correlation function γ in (8) is a member of the family of compactly supported
correlation functions described by Gaspari and Cohn (1999), with shape parameter
a = −1.0;

• the transformation is limited to the latitude-altitude plane, longitude is unchanged;
• the new geometry is symmetric about the equator, thus the Northern and Southern

latitudes are the same;
• the vertical axis is mapped from the 44 model levels to a coordinate relative

to log(pressure), and is restricted to be strictly increasing with the pressure; a
different axis is chosen for the equator band and for each of the 7 pairs of latitude
bands opposite about the equator, leading to 8 × 44 = 352 unknowns;

• the latitudes of the centre of a zonal band are mapped to a new position; the new
latitudes are linear functions of log(pressure), leading to 2 additional unknown
parameters for each pair of opposite latitude bands (14 in total);

• spline interpolation is used to map locations intermediate to the central latitudes of
the bands.

The 366 unknown parameters in the transformation are optimised to obtain the best
fit with the sampled correlations from the NMC experiments. Figure 3 illustrates the
result. The Euclidean distances in the new geometry represent many typical features of
the correlations in ozone.

• Horizontal correlations in the east/west direction (Fig. 3, lower left) as well as the
north/south direction (Fig. 3, upper left) become stronger at higher model levels.
Here, atmospheric dynamics is dominated by large scale horizontal motions such
as planetary waves. In the new geometry, this is achieved by a taking a pressure
scale along the radial axis, leading to smaller radius of the ’circles’ near the origin
that represent the upper atmosphere.

• The ’egg’ shape with smaller radius around the equator leads to east/west horizon-
tal correlations that are relatively stronger in the tropics than at mid latitudes (at
a specific level). This represents the overall stronger east/west circulation in the
tropics. A stretched latitudinal axis around the equator prevents the north/south
correlations from becoming stronger too.

• Vertical correlations between levels are weaker in the stratosphere due to its
greater vertical stability. In the transformed geometry, the vertical correlations are
completely defined by the distances between the levels, and these are larger near
the origin representing the upper atmosphere (Fig. 3, upper right).

The atmospheric volume that is correlated with a vertical profile has a cone shape,
with a small radius in the troposphere and a large radius at higher altitudes (globe
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Figure 3. Illustration of the geometry used for the correlation model. The original spherical geometry is
displayed in the lower right panel. In the new geometry, the radial axis has the interpretation of a pressure, leading
to a transformed earth that is turned ’inside out’ with the outer space at the origin and the solid earth at the outside.
The Euclidean distances in the new geometry represent the correlations in ozone. The graphics surrounding the
sphere show selected correlations based on the new geometry (solid lines) as well as the NMC sample correlations
to which they are fit (squares). The globe at the right illustrate the horizontal length scales at the equator. The

contour lines enclose the areas that are correlated with the centre.

at middle right of the Fig. 3). In the longitudinal direction, the ozone concentrations
become more or less uncorrelated at distances over about 1,500 km in the troposphere,
and over 5,000 km in the stratosphere. In the latitudinal direction, the length scale of the
correlation is about one third of the longitudinal length scale.

(3) Matrix formulation
For the covariance model in matrix form, we introduce the vector σ and matrix C

for the evaluations of the standard deviation field σ and the above described correlation
model C on the grid. The covariance matrix is then formed by:

P[k] = D(σ[k]) C D(σ[k]). (10)
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where the matrix D(σ) denotes a diagonal matrix with the elements of σ on the main
diagonal.

5. KALMAN FILTER - FORECAST EQUATIONS

As described in section 2, the first step in the Kalman filter is to compute forecasts
for mean and covariance given previous computed entities. According to the Kalman
filter equations, the best forecast of the mean statex̄ at a future time is a propagation of
the original mean x̄a by the model M :

x̄f
[k] = M(x̄a

[k−1]). (11)

The covariance between the true state and this new mean is given by:

Pf
[k] = M Pa

[k−1] MT + Q[k−1], (12)

where Pa
[k−1] is the covariance of the true state around x̄a at time tk−1. With covariance

model (10), this becomes:

Pf
[k] = (M D(σa

[k−1])) C (M D(σa
[k−1]))T + Q[k−1]. (13)

There are two problems associated with this propagation. First, the original covariance
model (10) is not preserved due to the adding of Q, and will lead to a full matrix P
which is too large to handle. Second, the model operator M has to be applied once
for each column of the diagonal matrix D(σa), each representing a field that is zero
everywhere except for one point where it has the value of a standard deviation. For a
model with only advection, this is the same as advection of the standard deviation field,
based on the idea that an error in the estimation of the ozone field is probably unchanged
when transported downwind. However, for our model also errors due to uncertainty in
the parameterised ozone chemistry should be taken into account.

To avoid both problems, we replace the Kalman covariance propagation (13) by a
new, two step process. The first step gives the propagation of the standard deviation field
by the advection operator of the model:

σ
f
adv [k] = Madv σa

[k−1]. (14)

The second step describes the temporal growth of the standard deviation due to uncer-
tainties in chemistry and meteorological input. It is modelled in a similar manner as
the error growth in the total ozone column assimilation (Eskes et al. 2003). The growth
is applied on the two-dimensional standard deviation field σadv,tot of the total ozone
column:

(σf
tot[k])3 = (σf

adv,tot [k])3 + c · (tk − tk−1) . (15)

The relative growth of the total column field from σ
f
adv,tot to σ

f
tot is then applied to

each individual layer of the three-dimensional field σ
f
adv . The constant c depends on the

season and the latitude.

6. GOME OZONE PROFILES

The GOME instrument on board of the ERS2 satellite measures the sunlight
backscattered by the atmosphere (Burrows et al. 1999). The satellite is placed in a sun-
synchronous orbit over the poles. A global coverage is reached within 3 days.
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(a) Profile product
Ozone profiles are derived from the radiance spectra measured by GOME using the

OPERA (Ozone ProfilE Retrieval Algorithm) retrieval code (Van Oss et al. 2002). The
algorithm is applied to spectra integrated over 12 sec. time intervals, leading to pixels
with a size of approximately 960 × 100 km. A set of retrieved profiles is available for
the year 2000; for computational reasons, profiles have only been calculated for one
third of the observations (about 60-70 profiles for each single satellite track).

For each single pixel, the OPERA profile product consists of:

• nt true levels, defined between nt + 1 pressure levels;
• nr retrieval levels, defined between nr + 1 pressure levels;
• yta : true a-priori profile (nt);
• yra : retrieved a-priori profile (nr);
• A : averaging kernel matrix (nr × nt);
• S : error covariance matrix (nr × nr);
• yr : retrieved profile (nr).

We now introduce the true profile yt, as the true, area averaged, vertically discretized
profile. The true profile is defined on the true layers specified in the profile product.
Each of the points in the true profile is the average ozone concentration in a slab of air
between two pressure levels. The true profile is related to the retrieved profile yr by the
averaging kernel (Rodgers 2000):

yr = yra + A
(
yt − yta

)
+ ε , ε ∼N (o, S) . (16)

The true and retrieved profiles are not necessarily the same. GOME is for example
not sensitive to rapid variations in the vertical, and a retrieved profile will therefore
not represent these variations but rather a smoothed distribution. The smoothing is
described by the averaging kernel matrix A. The number of significant singular values
of the kernel is often much lower than the number of points in the true profile, and
the multiplication with A therefore removes the high frequencies. Some parts of the
kernel may be equal or close to zero, indicating that the instrument is not sensitive
at certain levels; in that case, the retrieved profile is equal to the a-priori profile. The
a-priori profiles are first guesses of the true and retrieved profiles. For OPERA, they
are set to the Fortuin-Kelder climatology (Fortuin and Kelder 1998). A-priori profiles
serve as reference profiles for linearisations; the retrieval algorithm assumes that the
true profile is not too different from the a-priori. The OPERA profiles are defined on
the same nr = nt = 40 layers, such that in the profile product yra = yta. The reason
for distinguishing a retrieved a-priori from a true a-priori profile is to account for the
possibility that the retrieved product is transformed, as will be done in section 7.

(b) Comparison with ozone sondes
To obtain insight in the quality of the GOME profiles, the retrieved profiles are

compared with ozone sonde measurements. For the year 2000, a set of more than
two-thousand ozone sondes is available from the WOUDC (World Ozone and UV
Data Centre) archive. The stations from which the sondes are launched are distributed
globally, with the majority located at mid latitudes in the northern hemisphere (Fig. 4). A
sonde should have reached the 10 hPa level to be accepted. For each available sonde, we
collected all GOME profiles retrieved for the day of sonde launch within 500 km from the
launch site. A sonde profile can only be meaningfully compared with GOME profiles if
it is convolved with the correct averaging kernel. Hence, a ’true’ sonde profile is formed
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Figure 4. Locations of sonde stations used for validation. The stations are grouped in zonal bands of 20 degrees
width.

by averaging the measurements over the pressure layers defined for true profiles, and
extension of the profile to the model top by a scaled a-priori profile. A set of ’retrieval’
sonde profiles is formed by convolution of the ’true’ sonde profiles with the averaging
kernels of the selected pixels as in Eq. (16).

Figure 5 shows the bias and standard deviation of the difference between GOME
profiles and ozone sondes, as a function of latitude, pressure, and season. The figure
shows that strong biases exist in two regions. In the tropical troposphere, a structurally
large positive bias of about 2 mPa (about 100%) ozone partial pressure is found.
This is of the same order as the standard deviation and therefore not negligible. The
inaccuracy of the tropospheric ozone column is not unexpected, since nadir viewing
instruments such as GOME are less sensitive for information from altitudes below the
ozone maximum. For our study this bias is not dramatic since the focus is on providing
high quality stratospheric ozone fields. The second large difference between retrieved
profiles and sondes is found in the polar regions during winter conditions. Retrieval of
ozone profiles is more difficult here due to the larger solar zenith angles. With a large
solar zenith angle, the pathway of solar radiation travelling through the atmosphere to
the instrument is much longer, such that only a small amount of the radiation actually
reaches the instrument. Only a small number of retrieved GOME profiles is available
for large solar zenith angles, and those differ largely from the sondes (right side of
upper panels and left side of lowest panels). Furthermore, the extremely low ozone
concentrations in the Antarctic winter are not completely captured by the a-priori
profiles used in the retrieval, leading to relative large errors too. The standard deviation
between retrieved GOME and sonde profiles is rather constant with location and season:
around 2 mPa partial pressure, as seen in the right panels. A large part of this spread can
be explained from collocation and representation errors between sondes and satellite
profiles.

The comparison with sondes indicates that the basic assumptions about the error
in the GOME profiles made in (16) are not always completely valid. If we regard the
sondes as the ’truth’ (they are at least closer to the true state than the satellite profiles),
then the difference between the GOME profiles and the true profiles is not unbiased.
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Figure 5. Bias and standard deviation between retrieved GOME ozone profiles and sonde measurements con-
volved with the averaging kernels, as a function of latitude and season. Pairs of sondes and satellite profiles are
collected in latitude bands of 20 degrees; if less than 10 pairs are available, no data is plotted. The dotted lines

show the contours of the average ozone partial pressure according to the convolved ozone sondes.
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Besides, the difference is larger than what can be expected from the error covariance S
in the profile product. The covariance S describes the errors due to uncertainties in the
measured radiances and in the retrieval algorithm, but not the representation errors. For
the assimilation scheme we need a proper description of the measurement error however,
preferably unbiased, and with a representative covariance error. A possible way to obtain
this is to subtract the observed bias from the retrieved profiles, and to replace the error
covariance S in the profile product by the remaining observed covariance. This method
would require a lot of sonde measurements to provide a representative S, and detailed
investigation of why certain sonde measurements differ from the GOME profiles and
whether this is persistent or not. Such an investigation is beyond the scope of this study,
and therefore left for future improvements of the retrieval algorithm. Instead, a simple
but effective algorithm is applied. The bias is simply regarded as a part of the total error,
and the error covariance S in the profile product is replaced by values representative for
the total error. A large error is therefore accepted where the GOME profiles are strongly
biased compared to the sondes, and as a result, the information in these profiles will
hardly be used in the assimilation.

A new error covariance matrix R is formed to replace S, by scaling the rows and
columns of S such that the new standard deviations are equal to the RMS (root-mean-
square) errors between GOME profiles and sondes. The RMS error can be interpreted
as the sampled standard deviation of the error ε in (16). RMS values are obtained on a
latitude/pressure/season grid in the same way as the bias and standard deviations of Fig.
5. The cross-correlations in R are the same as in the original S provided by the retrieval.
An estimate of the cross-correlations could be extracted from the observed GOME-sonde
differences too, but the number of sondes is too limited to obtain these with the desired
accuracy.

7. OBSERVATION OPERATOR

With both the model state and the measurements defined, it is now possible to
define an observation operator. The observation operator should simulate a retrieved
GOME ozone profile given the model state x following (2b). Eq. (16) describes what is
retrieved from GOME if it observes the true profile yt. Therefore, a simple method to
build an observation operator is to set yt to the profile described by the model state:

yt = B G x. (17)

Operator G denotes a horizontal interpolation of the TM3 profiles. The result is a single
profile defined at the vertical model levels. For convenience, the horizontal interpolation
is a simple bi-linear interpolation from the surrounding grid cells to the centre of the
satellite footprint. This method suffers slightly from the fact that the GOME footprints
are rather broad (about 960×100 km) . However, involving much more TM3 grid cells
in the horizontal interpolation than the 4 that are surrounding the footprint centre would
significantly increase the computational demand for the calculation of correlations
between a GOME profile and other profiles. Operator B denotes vertical projection from
the TM3 model layers to the nt true layers of the GOME profile.

To form an observation operator following (2b), convolution (16) is applied to (17):

H(x) = yra −Ayta

︸ ︷︷ ︸

H0

+ ABG
︸ ︷︷ ︸

H

x + v , v ∼N (o, R) . (18)

The observation error covariance R is therefore set to the scaled retrieval error covari-
ance Sn obtained from the comparison between retrieved GOME profiles and sondes as
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described in the previous section. We assume that the representation error between the
model profile computed with the BG operator and the GOME profiles is comparable
with the representation error between sondes and GOME profiles.

The number of data elements in H(x) is much larger (about 40) than the actual
degree of freedom in the retrieved product (about 5). The large amount of data points
is undesired, since the costs of some analysis operations in the Kalman filter grow
quadratically with the number of data elements. To limit the number of data points,
the retrieved profile should be reduced to a smaller vector without losing information.
An appropriate method to do this is via the averaging kernel matrix A. Equation (16)
shows that retrieved profiles are computed as a linear combination of the columns of
A. Since the singular values of A quickly decay to zero, the retrieved profiles can be
approximated by a linear combination of a limited number of well chosen vectors. The
left singular vectors of A are an appropriate choice. Let A ≈UΣVT be the singular
value decomposition of A, truncated at a number of singular vectors equal to the actual
degrees of freedom of the profile (part of the profile product). A transformed retrieved
profile is formed byỹr = UTyr which has a number of elements equal to the degree of
freedom. The elements represent coefficients in a space spanned by the columns of U.
The corresponding observation operator H̃ is similar to (18):

H̃(x) = ỹra − Ãyta + ÃBG x + ṽ , ṽ ∼N
(

o, R̃
)

. (19)

where ỹra = UTyra, Ã = ΣVT , ṽ = UTv, and R̃ = UTRU.

8. KALMAN FILTER - ANALYSIS EQUATIONS

Whenever measurements are available, the forecasts of mean and covariance de-
fined in section 5 are replaced by an analysis incorporating the new information. In this
study, all profiles retrieved during a single orbit of GOME are collected into a track,
which is treated as a single measurement, valid for a mean time. A track contains pro-
files that are retrieved for solar zenith angles less than 75 degrees. The reason for not
analysing the retrieved profiles one by one is twofold. First, the computational costs
would be much larger, since analysing profiles one by one would imply an update of
the state elements for each profile again instead of only once. Second, the analysis
equations will be applied to the variance field only to maintain the chosen covariance
parameterisation, which introduces a small error in comparison with an analysis applied
to a full covariance matrix; analysing the profiles one by one will lead to accumulation
of this error. It is therefore common practise to analyse a large amount of measurements
together at once, although they are strictly speaking not all observed at exactly the same
time. For convenience, the notations ỹ, H̃, R̃ etc. will be used from now on to describe
entities that refer to a complete track, instead of just a single profile.

The first step in the analysis stage of the Kalman filter is the analysis of the mean
state using a linear gain:

x̄a = x̄f + K ( ỹr − H̃(x̄f ) ). (20)

The forecast of the mean is adapted relative to the difference between the retrieved track
ỹr and the simulated track H̃(x̄f ). The gain matrix K acts as a point-spread function,
distributing the update toward the retrieved track over the elements of the state. For the
gain we use the common used Kalman gain:

K = PfH̃
T

(H̃PfH̃
T

+ R̃)−1. (21)
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The second step in the analysis is to compute the covariance of the true state around the
analysed mean:

Pa = (I−KH̃)Pf (I−KH̃)
T

+ KR̃KT (22)

where I denotes the identity matrix. In our covariance model defined in Eq. (10),
operations are to be performed on the standard deviation field, while the correlation
function is constant. It is therefore sufficient to compute the impact of (22) on the
variance field only:

(σa)2 = diag
(

(I−KH̃)Pf (I−KH̃)
T

+ KR̃KT
)

(23a)

= diag
(

Pf
)

− 2 diag
(

KH̃Pf
)

+ diag
(

K[H̃PfH̃
T

+ R̃]KT
)

. (23b)

The Kalman gain Eq. (21) is regarded as statistically optimal since it minimises the
variance described by (22). Matrix K can be solved from the matrix-matrix equation

implied by (21). A complication is that the matrix H̃PfH̃
T

+ R̃ is badly conditioned.
Due to the strong spatial correlations between the pixels in a track, the eigenvalue
spectrum of the matrix consists of only a few large eigenvalues and many smaller ones.
To make the matrix better conditioned one could choose to add a diagonal matrix to R̃.
This is equivalent to assigning extra representation errors to all elements of ỹ, that are
not correlated with any other element. Unfortunately, a good choice for such an extra
representation error for ỹ is hard to make, since the associated representation error for
y (that follows from the backward transformation with singular vectors of the averaging
kernel) is rather unrealistic.

To overcome these problems, the measurements are projected on a subset of the

eigenvectors of H̃PfH̃
T

+ R̃. Computation of the largest eigenvalues is relatively
cheap using standard linear algebra libraries. The matrix is approximated by an eigen-
value decomposition, truncated at a number of eigenvalues (about 30-50%) representing
98% of the original trace (empirical choice):

H̃PfH̃
T

+ R̃ ≈ ÊΛ̂Ê
T
. (24)

After this reduction, the ’condition’ number (largest eigenvalue divided by smallest non-
zero eigenvalue) is of the order 102. The original model state projection (19) is now
replaced by:

Ĥ(x) = Ê
T
(ỹra − Ãyta) + Ĥx + v̂ , v̂ ∼N

(

o, R̂
)

. (25)

where ŷ = Ê
T
ỹ, Ĥ = Ê

T
H̃T

T

, and R̂ = Ê
T
R̃Ê. The gain matrix can then be solved

from the simple diagonal equation

Λ̂ K̂
T

= ĤPf (26)

and the analysis equations become:

x̄a = x̄f + K̂ ( ŷr − Ĥ(x̄f ) ) (27a)

(σa)2 = (σf )2 − 2 diag
(

K̂ĤPf
)

+ diag
(

K̂Λ̂K̂T
)

. (27b)
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9. ASSIMILATION RESULTS

The one year data set of GOME ozone profiles available for the year 2000 (see
section 6) is assimilated with the above described assimilation system. The assimilation
is initialised with a 3D ozone and standard deviation field taken from a total ozone
assimilation.

(a) Internal consistency
An important test for the quality of an assimilation is whether the differences

between model forecast and observations satisfy the assumed statistics. The assumed
statistics can be summarised in the requirement that the actual innovations (differences
between observation and their model forecast) have a Gaussian distribution (Ménard
and Chang 2000):

y −Hx̄f ∼ N
(

o, HPfHT + R
)

. (28)

The zero mean and covariance HPfHT + R at the right hand side follow directly from
the assumptions about the true state and the observations (distributed around the mean
state and observations with zero mean and covariance Pf and R respectively). That the
observed innovations match with the assumed statistics is a minimum requirement for
having a consistent covariance model.

Figure 6 shows an example of the average bias between observations and model
forecasts, obtained for the months of March-May. In here, the observations consist of the
GOME retrieved ozone profiles in their native form (without any projection on modes that
is required for solving the analysis equations); the model forecast is the corresponding
TM3 ozone profile after convolution with the averaging kernels. The figure shows that
the bias oscillates around zero with respect to altitude. The absolute amplitude of the
fluctuation is about 0.5 mPa in ozone partial pressure, which is small with respect to
the spread (shaded area in figure) in most of the atmosphere. The smallest bias is found
for the lower and middle stratosphere, roughly from tropopause to about 8 hPa. The
ozone maximum in the assimilation product is therefore on average in good agreement
with the GOME profiles. Relative large biases are found for the troposphere and above
8 hPa. For the troposphere this is no surprise, since a large representation error is
assigned to the GOME profiles here as a result of the validation with sondes from section
6(b). Tropospheric information from the GOME profiles is therefore hardly used in the
assimilation. At the top of the atmosphere, the relative strong fluctuation in bias and
small spread indicates a persistent difference between the model and the GOME profiles.
A possible explanation is that the chemistry timescale is rather short at these altitudes,
and the assimilation of measurements only once per day is unable to remove a bias
between model and observations. Another possible explanation is that the climatology
used for the parameterised ozone chemistry slightly differs from the a-priori profiles
in the retrieval, or is not exactly valid at the overpass time of GOME. The impact of
the use of climatologies at different stages of the total assimilation system is subject of
further study. The best approach to avoid the use of different climatologies is to directly
assimilate the radiances measured by GOME. The retrieval step from radiance spectra to
retrieved profiles is then replaced by an incorporation of the forward radiative transfer
model in the observation operator. This requires detailed knowledge of the instrument
and the measured spectra however, and this expertise is not easily embedded in an
assimilation system. For the future, assimilation of radiances is however an interesting
option.
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Figure 6. Observation-minus-forecast mean±std.dev. for the retrieved (including kernels) GOME ozone profiles
during assimilation. Taken over all available profiles for March-May 2000. The solid line shows the mean retrieved

profile.

A small bias between forecast and observation is acceptable if it is not too large in
comparison with the uncertainty assigned to the forecast and the observation. A simple
check to judge whether this is true is to apply (28) for all individual measurements i by
computing the ratio between observed residue and forecasted standard deviation, which
should have a standard normal distribution:

omf
σ(omf)

=
yi − hi

Txf

√

hi
TPfhi + rii

∼ N (0, 1) (29)

where hi
T is a row of H and rii a diagonal element of R. Figure 7 shows histograms

of the computed ratio’s for altitudes below 300 hPa (’lower troposphere’), between 300
and 10 hPa (’ozone layer / UTLS (upper troposphere/lower stratosphere)’), and above 10
hPa (’upper stratosphere’). In the region of ozone layer/UTLS, the sample distribution
of the ratio is close to the expected standard normal distribution. The OMF samples are
perfectly unbiased, indicating that the assimilation is doing a good job at these altitudes.
The number of realisations with a large ratio is only a little larger than what it should
be. This indicates a small under estimation of the observation-minus-forecast standard
deviation, which is not unusual in assimilations (Ménard and Chang 2000). For the
bottom and top of the atmosphere, clear biases are left. In the lower troposphere, more
than 90% of the observation-minus-forecast realisations is positive. This bias is related
to the large overestimation of the ozone values in the tropical troposphere, as seen in Fig.
5. To account for this bias, a relative large representation error covariance is assigned
to the observations (rii in Eq. (29)). This is visible in Fig. 7 by the fact that the sample
probability density for the troposphere is peaked or less broad than a standard normal
distribution, related to the large denominators in the omf/σ(omf) ratios. In the upper
stratosphere, two peaks are visible in the probability density, caused by an oscillation
in observation-minus-forecast with respect to altitude as seen in Fig. 6. The density
is also rather broad. Above 10 hPa, no sonde data is used to assign a representation
error covariance to the observations, and the chosen a-priori value under estimates the
true representation error. The expected standard deviation of observation-minus-forecast
is therefore under estimated, and this leads to large ratio’s in Eq. (29) for the upper
stratosphere.
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Figure 7. Sample probability density functions of ratio between actual observation-minus-forecast and the
expected standard deviation. The samples are taken over March-May 2000 and three vertical regions. The

theoretical distribution is a standard normal one, which is plotted as a dashed line.

(b) Comparison with GOME total ozone retrievals
Figure 8(a) shows the distribution of observation-minus-forecast of total ozone, as

a function of latitude. The OPERA ozone profiles are summed to a total column, and
compared with the model forecast just before assimilation. The shaded area in the figure
shows the bias and the spread in the differences. The bias is in general small: 5-10
DU while the standard deviation is in the order of 10-20 DU. The only exception is
the tropics, where the OPERA total columns on average exceed the model forecasts due
to the overestimation of the tropospheric profile (see section 6(b)). Figure 8(b) shows
the forecast bias in total ozone for two other GOME products: KNMI’s NRT (Near Real
Time) product (Valks et al. 2003) and the ESA GDP3 (GOME Data Processor) (Spurr
et al. 2002) product. Although all products are based on measurements from the same
instrument, the total ozone estimates differ from each other due to differences in the
retrieval algorithms. The NRT product is known to have a negative bias for large solar
zenith angles, which is visible in the OMF statistics. The GDP product is extensively
validated in (Lambert et al. 2002). The OPERA total column is systematically larger
than the other total columns. As can be expected from the fact that the OPERA profiles
are assimilated, both the bias as well as the spread are the smallest for this set.

(c) Validation with ozone sondes
The assimilated ozone fields are compared with the ozone sondes described in

section 6(b). For this, the ozone profile above the launch site of a sonde is extracted
from the analysis. Figure 9 shows the bias and standard deviation between sondes and
assimilation, as a function of latitude and season. In this comparison, neither the sondes
nor the model simulations are convolved by averaging kernels. This is the best way
to judge the quality of the analysed fields, since it is a direct comparison with high
resolution independent data. However, it is difficult to relate observed biases between
analysis and sondes to biases between GOME and sondes as shown in Fig. 5, since
the later is based on convolved profiles. To illustrate the effect of the convolution with
averaging kernels, three different validations with sondes are plotted in Fig. 10.

The results in Fig. 9 show that the relatively smallest biases between analysed fields
and ozone sondes are found around the ozone layer (except for the polar regions). The
absolute bias is here in general less than 0.5 mPa ozone partial pressure, which is about
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(a) (b)

Figure 8. (a) ’Observed GOME total ozone’ minus ’TM3 total ozone forecast’ over March-May 2000, for different
GOME total ozone data sets. The enclosed areas represent the mean plus/minus standard deviation.

(b) mean observed GOME total ozone for same period.

4% of the ozone concentration and which is small in comparison with the standard
deviation of 0.5-1.5 mPa (about 10%). In the lower stratosphere (below the ozone layer),
both the bias and the standard deviation are somewhat larger: about 0.5-1.5 mPa (10%)
and 1.5-2.5 mPa (20%) respectively.

The largest absolute differences between assimilation and sondes occur in the polar
regions in winter, especially at the south pole (bottom figures). The number of GOME
profiles available for this region and season is limited, and measurement data is therefore
hardly incorporated in the assimilation here. Besides, the limited vertical resolution of
the GOME profiles hampers the removal of this particular biases. Fig. 10 shows that the
strong oscillation in the bias that is found when comparing assimilation with sondes
directly (lower left), is not present after convolution with averaging kernels (middle
left). The small scale bias is therefore not visible during the assimilation, and can not be
corrected for.

Relative large biases in the analysed fields are also found in the tropical troposphere,
similar as seen in Fig. 5 for the comparison between GOME and sondes. The assimilated
ozone profiles exceed the sonde measurements with 1-2 mPa partial pressure here.

Comparison of the validation results for GOME vs sondes and assimilation vs sondes
(upper rows in Fig. 10) shows that the assimilation has an added value over the GOME
data especially outside the tropics. At mid latitudes, both the biases and the standard
deviations are strongly decreased. In the Arctic region, the large scale oscillation in the
bias that is sometimes present in the GOME profiles disappears almost completely after
assimilation. The model simulation clearly adds information to the analysis in these
regions. In the tropics, the added value is much smaller. Retrieval and model are in
agreement with each other here: both overestimate the sonde measurements in more or
less the same way. Thus, the GOME profiles hardly have impact on the assimilation here,
even if a small representation error covariance is assigned rather than the large value
that is assigned in our experiments. The reason for assigning a large error covariance
has to do with the large bias observed in the retrieved profiles, and that is not changed
by the fact that model and retrieval are biased in the same way.
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Figure 9. Bias and standard deviation between assimilated fields and ozone sonde measurements as a function
of latitude and season. The dotted lines show the average ozone concentration according to the ozone sondes.
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Figure 10. Illustration of difference between validation against ’retrieved’ ozone sondes (convolved with
averaging kernels) and ’raw’ sondes. Top: GOME ozone profiles vs sondes (retrieved); same as Fig. 5. Middle:
analysed state interpolated to GOME profiles vs sondes (retrieved). Bottom: analysed state vs sondes (raw); same

as Fig. 9.
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(d) Impact of ozone profiles in assimilation: a case study
In comparison with assimilation of total ozone, the assimilation of ozone profiles

is much more expensive due to the larger data volume. For the extra expense on
computational resources, we expect at least a better representation of the vertical ozone
distribution. To test whether assimilation of ozone profiles adds value to an assimilation
of the total column only, a case study is carried out for April 2000. Around 12 April,
an intrusion of ozone rich air from the Arctic is visible over Europe (Fig. 11(a)). Sonde
measurements show the intrusion as a pronounced secondary maximum in the ozone
profile around 150 hPa (Fig. 11(b)).

Starting at 1 April from an analysed initial field from the one-year assimilation run,
three TM3 simulation runs are created: 1) without any assimilation; 2) with assimilation
of GOME ozone profiles summed to total columns; 3) with assimilation of the GOME
ozone profiles. In both assimilation runs, all available pixels are used instead of only
one third, which was necessary for the one year run. The assimilation of total columns is
implemented by a summation of the rows of the averaging kernels in the profile product,
similar as the projection on singular vectors described in section 7. The kernel of the total
column is a row vector specifying the sensitivity of the retrieval for ozone at different
pressure levels. In the stratosphere it has a value of 1.0, while it decreases to zero toward
the troposphere where the instrument is hardly sensitive to ozone.

The vertical structure in the model forecast without assimilation is already close
to the profile measured by sondes, as shown for the sonde launched from Payerne in
Fig. 11(b). The vertical shape of the ozone profile seems to be well described by the
wind and temperature fields of the ECMWF model and simple parameterised ozone
chemistry (Eskes et al. 2004). The forecast of the total ozone column by the model
is already rather good: an under estimation of the top ozone maximum is compensated
by a minimum between the two maximums that is over estimated. Assimilation of the
total ozone column therefore helps to limit the amplitude of the vertical variations, but
does not provide extra information during the intrusion. However, assimilation of ozone
profiles leads to an analysed profiles that almost exactly follow the available sonde
measurements. The maximums and the minimum are much more pronounced, despite
the limited (about 5 km) vertical resolution of the GOME profiles. The only explanation
is a structural better simulation of the stratospheric ozone maximum and the Arctic
intrusion during the days before the launch of the sondes. Leaving the perturbation
of the tropospheric profile for future study, the example suggests that information on
strong vertical ozone gradients in middle and lower stratosphere can be obtained from
assimilation of ozone profiles retrieved from GOME.

10. CONCLUSIONS

An assimilation system for ozone profiles retrieved from the GOME satellite instru-
ment has been presented. The system is based on the Kalman filter equations and is an
extension of a total column assimilation to three dimensions.

A three dimensional anisotropic covariance model has been developed using the
NMC method. The model accounts for the different correlation scales in ozone with
respect to altitude and longitude. Further fine tuning of the covariance model will be
performed during multi-year assimilations. Possible improvements are for example a
seasonal dependence, and an error growth that is specially tuned for the new covariance
model. Such tuning experiments will be used to study the impact of the anisotropic
covariance model in comparison with isotropic models.
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(a) (b)

Figure 11. (a) Intrusion of ozone rich air from the Arctic over Europe at a height of 150 hPa, 12 April 2000
1100 UTC. (b) Ozone profiles measured and simulated at Payerne at the same time. Similar profiles are found for

sondes launched from Uccle, Hohenpeisenberg, and Prague.

Including the averaging kernels of the GOME profile product in the observation
operator is essential for correctly use of the observations during comparison of modelled
or measured profiles with the satellite profiles. Beside, the kernels provide an efficient
method to reduce the data volume by projection of the measurements on their singular
vectors.

The GOME ozone profiles provide useful information on the ozone distribution.
After assimilation, an overall error of 1.5-2.5 mPa in ozone partial pressure remains
between assimilated ozone and sonde measurements around the ozone maximum.
Improvements have to be made in the troposphere and in the polar regions under winter
conditions, where a relative large representation error has to be assigned to the GOME
profiles. A case study concerning an intrusion of Arctic air over Europe suggests that the
assimilation of GOME profiles improves the simulation of the ozone distribution even in
the case of strong vertical gradients.
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Cariolle, D. and D équ é, M. 1986 Southern hemisphere medium-scale waves and total ozone distur-
bances in a spectral general circulation model. J. Geophys.
Res., 91 10825–10846
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