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ABSTRACT

Tests for equality of variances of monthly climate data using resampling techniques are discussed. The
application of a jackknife test to spatially correlated time series is worked out in this paper. Besides this spatial
extension, it is also possible to combine the data for the individual calendar months into a single seasonal or
annual test statistic. The derivation of the critical values of the test statistic from Student’s t-distribution in such
multivariate applications is investigated. A modification to improve the use of the t-distribution is given for the
case that the distribution of the data is close to the normal distribution. The power of the simple jackknife test
is compared with that of a permutation test.

The test is illustrated with a comparison of the variances of monthly temperatures and precipitation amounts
in the anomaly simulation, with enhanced greenhouse gas concentrations, and in the control simulation of the
high-resolution transient experiment with the Hadley Centre coupled ocean–atmosphere general circulation
model. Three regions are considered: central North America, southern Europe, and northern Europe. For a
number of regions and seasons the differences between the variances of the two simulations are significant at
the 5% level. In particular, a significant increase in the variance of monthly precipitation over northern Europe
is found in the anomaly simulation for winter, summer, and autumn. Limitations of the use of the test to monthly
precipitation time series containing a large proportion of zeros are identified.

1. Introduction

The study of changes in the variance of meteorolog-
ical variables is of recent interest. It is now well rec-
ognized that climate change may not be restricted to
changes in the mean alone. Several authors have com-
pared the variances of monthly and seasonal values of
observed data or simulated data from general circulation
models (GCMs). The determination of the statistical sig-
nificance of observed differences meets, however, dif-
ficulties. Rind et al. (1989), Mearns et al. (1990), Cao
et al. (1992), and Gordon and Hunt (1994) used the F
test for this purpose. The F test assumes that the data
are independent and normally distributed. Furthermore,
the test often fails to discover meaningful differences
in the variances due to lack of degrees of freedom.
Zwiers and Thiébaux (1987) tried to overcome the low
power of the F test by deriving the interannual vari-
ability from the spectral density function of the daily
values. Their test requires a careful elimination of the
annual cycle in the mean. Moreover, the distribution of
the test statistic has been studied only for (daily) samples
from a normal distribution.
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The above tests refer to data at a single location.
GCM data consist, however, of a large number of cor-
related time series on a spatial grid. Wigley and Santer
(1990) presented a number of tests to compare the var-
iances of such multivariate data. Resampling tech-
niques using computer-intensive Monte Carlo methods
were proposed to decide whether a result is significant
or not.

Buishand and Beersma (1996) discussed the use of
the jackknife for the comparison of daily variability in
observed and simulated climates. The jackknife meth-
od is a resampling technique that does not require Mon-
te Carlo methods. The resulting tests are reasonably
robust against nonnormality of the data. The critical
values can generally be based on Student’s t-distri-
bution both for univariate testing with data at a single
location and for multivariate testing with data on a
spatial grid.

The present paper focuses on the use of the jackknife
for testing equality of variances of monthly values. Sec-
tion 2 presents an overview of tests for equality of var-
iances using resampling techniques. Particular attention
is given to the jackknife method in the multivariate sit-
uation. The method is illustrated in section 3 with sim-
ulated monthly temperatures and precipitation amounts
from the high-resolution transient experiment (UKTR)
with the Hadley Centre coupled ocean–atmosphere
GCM (Murphy 1995; Murphy and Mitchell 1995). Sec-
tion 4 concludes the paper with a discussion.
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2. Tests based on resampling

For estimating standard errors, resampling techniques
are often good alternatives to analytic approximations.
They also provide tests of significance in situations that
the validity of the normal distribution is questionable.
Several papers in the statistical literature have discussed
the use of the jackknife and the bootstrap for testing
equality of variances. An attractive property of these
tests is that rather simple multivariate versions for sam-
ples on a spatial grid or samples of different seasons
can be obtained. A correction of a standard jackknife
test is proposed for such multivariate applications.

a. Univariate tests

In this section we confine ourselves to the monthly
means (or totals) at a single location. A sample for J
successive years (e.g., January average temperatures) is
represented as x1, x2, . . . , xJ. The sample mean is
denoted as x and the unbiased sample variance s2 is
given by

J1
2 2s 5 (x 2 x ) . (1)O jJ 2 1 j51

The statistic s2 is an unbiased estimate of the true var-
iance s 2 of the monthly values xj if these data are in-
dependent, a quite common assumption for monthly data
from different years. Tests for equality of variances are
often based on 5 ln(s2) rather than on s2 itself, becauseû
the distribution of is usually closer to the normal dis-û
tribution than that of s2. For independent data, var(û)
can be approximated as (O’Brien 1978)

2 1 g2var(û) ø , (2)
J

where g2 is the kurtosis (a standardized fourth-order
moment). For the normal distribution g2 5 0. An es-
timate of can be obtained by replacing g2 by thevar(û)
sample kurtosis:

J

4J (x 2 x )O j
j51

ĝ 5 2 3. (3)2 2J

2(x 2 x )O j[ ]j51

Some caution is needed, however, because can beĝ2

seriously biased (see appendix B). The jackknife pro-
vides a distribution-free alternative estimate of .var(û)

Although s2 is an unbiased estimate of s 2 for inde-
pendent and identically distributed data, 5 ln(s2) isû
a biased estimate of u 5 ln(s 2). The bias is of order
1/J (O’Brien 1978):

21 2 2g2bias(û) ø . (4)
J

1) THE JACKKNIFE

In the jackknife method the statistic is recomputedû
for each subsample of size J 2 1. Let be the valueû2j

of the statistic after omitting xj. From and a pseu-û û2j

dovalue can be formed as

u* 5 û 1 (J 2 1)(û 2 û ).j 2j (5)

Although the pseudovalues can be seen as estimatesu*j
of u, they have a much larger variance than However,û.
their mean,

J1
û 5 u*, (6)Ojack jJ j51

which is known as the jackknife estimate of u (Miller
1968), can be a good alternative to The jackknifeû.
estimate reduces the bias in estimating ln(s 2) to order
1/J 2.

Unlike the 2j values, the pseudovalues exhibit littleû
correlation (section 2c). Jackknife tests treat the pseu-
dovalues as independent normal variables. Tests for
equality of variances are then similar to those for equal-
ity of means in normal populations using Student’s t-dis-
tribution. These tests need and its estimated vari-ûjack

ance:
J1

2V̂ 5 (u* 2 û ) . (7)Ojack j jackJ(J 2 1) j51

From the jackknife estimates a number of different
statistics can be derived to test for equality of the var-
iances s 2(I) and s 2(II) of two mutually independent
time series of monthly climate data. Let ,û (I)jack

be jackknife estimates of ln(s2) and V̂jack(I),û (II)jack

V̂jack(II) their estimated variances, then the usual two-
sample pooled t-statistic can be represented as

1/2
JK(J 1 K 2 2)

T 5a [ ]J 1 K

û (II) 2 û (I)jack jack
3 , (8)

1/2ˆ ˆ[J(J 2 1)V (I) 1 K(K 2 1)V (II)]jack jack

with J and K the number of years for climate I and
climate II, respectively. Under the null hypothesis of
equal variances, the distribution of Ta is approximated
by Student’s t-distribution with J 1 K 2 2 degrees of
freedom. For the case of equal sample sizes, Miller
(1968) demonstrates that this approximation works well
for sample sizes as small as J 5 10. The test is also
quite robust against nonnormality. However, for J ± K,
Monte Carlo experiments show that the critical values
of the test should be larger than those obtained from
Student’s t-distribution, especially for long-tailed dis-
tributions (Brown and Forsythe 1974; Boos and Brown-
ie 1989). Besides the earlier mentioned assumptions
about the normality and correlation of the pseudovalues,
there are two additional complications in the case of
unequal sample sizes that limit the use of Student’s t-
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distribution with J 1 K 2 2 degrees of freedom
(O’Brien 1978). First, the pseudovalues have different
variances in climate I and climate II if J ± K. Second,
the fact that depends on J implies that thebias(u )jack

mean of the numerator of the test statistic slightly differs
from zero under the null hypothesis. Furthermore, the
two-sample Student test becomes less robust against
nonnormality if the sample sizes are unequal (Kendall
and Stuart 1973).

Keselman et al. (1979) suggested the use of Welch’s
t-statistic to cope with variance heterogeneity of the
pseudovalues in case of unequal sample sizes. The test
statistic reads

û (II) 2 û (I)jack jack
T 5 . (9)b 1/2ˆ ˆ[V (I) 1 V (II)]jack jack

Buishand and Beersma (1996) used a similar statistic
to compare the daily variability in observed and sim-
ulated climates. The critical values of Tb are derived
from Student’s t-distribution with an effective number
d* of degrees of freedom:

2ˆ ˆ[V (I) 1 V (II)]jack jack
d* 5 . (10)

2 2ˆ ˆV (I)/(J 2 1) 1 V (II)/(K 2 1)jack jack

For equal sample sizes, Tb 5 Ta, but d* tends to be
smaller than J 1 K 2 2. Besides unequal sample sizes,
differences in kurtosis g2 for the two climates also lead
to variance heterogeneity. A correction of the test for
correlation between pseudovalues is presented in section
2c.

2) PERMUTATION AND BOOTSTRAP PROCEDURES

Permutation procedures are computer-intensive tech-
niques to determine the statistical significance of a re-
sult. The method is free of assumptions about the para-
metric form of the distribution of the data. A pooled
permutation procedure can be used to test for equality
of variances of two climate time series {x1, . . . , xJ}
and {y1, . . . , yK}. The means x and y have to be sub-
tracted first (Boos and Brownie 1989). The method then
assumes that under the null hypothesis each permutation
of the combined sample {x1 2 x , . . . , xJ 2 x , y1 2 y ,
. . . , yK 2 y} is equally likely. A permutation sample
is obtained by taking a sample of size J without re-
placement to represent the centered data for climate I;
the remaining K values represent the centered data for
climate II. For each permutation sample the ratio of the
sample variances s2(I) and s2(II) is computed. Com-
paring the distribution of this ratio in the permutation
samples with the observed ratio gives the achieved sig-
nificance level.

In contrast to this permutation test, the pooled boot-
strap procedure in Boos and Brownie (1989) resamples
with replacement from the combined sample of centered
data. The two techniques are further identical. Downton
and Katz (1993) applied the pooled bootstrap technique

to test for discontinuities in the variance in long-term
records of seasonal mean maximum temperatures. They
observed that a test at the 10% level can detect changes
of 25%–30% in the standard deviations of seasonal
mean maximum temperatures in records of 10 yr or more
and that such a test is generally not sensitive enough to
be able to detect changes less than 20%.

For the bootstrap it makes sense to consider student-
ized statistics like Ta and Tb instead of the ratio of the
sample variances (Boos and Brownie 1989). The actual
rejection rate of the null hypothesis is then closer to the
desired significance level. Boos and Brownie show that
bootstrapping the jackknife statistic Ta results in an im-
provement compared with the use of Student’s t-distri-
bution with J 1 K 2 2 degrees of freedom, in particular
if J ± K.

Pooled permutation and bootstrap procedures are not
robust against unequal kurtoses. It is possible to achieve
asymptotic correct significance levels in that case by
bootstrapping the scaled samples {x1/s(I), . . . , xJ/s(I)},
{y1/s(II), . . . , yK/s(II)}, separately (Boos et al. 1989).
Because convergence is slow, the test cannot be applied
to small and moderate samples (say J, K # 50).

b. Multivariate extensions

The jackknife procedure allows for a multivariate test
for equality of variances in two different climates using
data at several grid points in a region. Such a multi-
variate extension is presented in Buishand and Beersma
(1996). First, the pseudovalues , , . . . , are cal-u* u* u*1 2 J

culated for each grid point separately. These pseudo-
values are then averaged over the various grid points,
giving , , . . . , . The jackknife statistic Ta or Tbu* u* u*1 2 J

is finally obtained by applying (6) and (7) to these av-
erage pseudovalues. This combined test will be more
powerful than that for an individual grid point when the
differences between climate I and climate II have the
same sign across the whole region because of the larger
sample size. The test is not suitable for very large re-
gions (e.g., a hemisphere) where areas with negative
differences may compensate those with positive differ-
ences.

The above multivariate extension compares spatial
averages of the logarithms of the variances. This is
equivalent with a comparison of the geometric means
rather than the arithmetic means as in the SPRET1 sta-
tistic of Wigley and Santer (1990):

SPRET1 5 s2 (I)/s2(II), (11)

where s2(I) and s2 (II) are the spatial averages of the
sample variances1 for climate I and climate II, respec-

1 In contrast to the unbiased estimate in Eq. (1), Wigley and Santer
divide the sum of the squared deviations about the mean by J rather
than J 2 1. This choice does not influence the outcome of a per-
mutation test and the value of the jackknife statistics Ta and Tb is
affected only in case of unequal sample sizes.
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TABLE 1. Actual rejection rates of the null hypothesis of equal
variances for two-sided tests based on the jackknife statistic Tb (5000
simulations). The pseudovalues in the test statistic are averaged over
N independent sequences. The critical values of Tb are obtained from
Student’s t-distribution with d* degrees of freedom.

Distribution J K N

Significance level

0.100 0.050 0.010

Normal 5 5 1 0.074 0.035 0.009
3 0.055 0.025 0.005
5 0.051 0.021 0.003
9 0.055 0.021 0.002

10 10 1 0.099 0.050 0.012
3 0.074 0.037 0.008
5 0.077 0.032 0.005
9 0.074 0.031 0.005

Exponential 10 10 1 0.169 0.107 0.037
3 0.129 0.071 0.017
5 0.123 0.066 0.016
9 0.119 0.062 0.012

tively, for a particular calendar month. There is, how-
ever, not a simple approximation to the distribution of
SPRET1 under the null hypothesis. Wigley and Santer
(1990) used the pooled permutation procedure of Preis-
endorfer and Barnett (1983) to determine the statistical
significance of the observed value of SPRET1. The
method is usually unnecessarily restricted to equal sam-
ple sizes only. As for the univariate tests in section 2a,
it is also necessary here to adjust the monthly values
for differences in the means of the two climates (Santer
and Wigley 1990). Otherwise the kurtosis in each per-
mutation would differ from that in the original series,
resulting in an incorrect significance level.

The data for the individual (calendar) months can be
combined into a single seasonal or annual test by av-
eraging the monthly pseudovalues in a similar way.
There is a gain in power when the sign of the differences
in variance for the two climates is the same for the
months under consideration. On the other hand the com-
bined test may fail when the sign of the differences
varies over the year.

c. A corrected jackknife test

In section 2a it was noted that in case of equal sample
sizes the t-approximation of the null distribution did
quite well in a jackknife test for sample sizes as small
as 10. Correlation between the pseudovalues and the
fact that their distribution deviates from the normal dis-
tribution, even if the data come from a normal distri-
bution, limits the use of the t-distribution for smaller
sample sizes. The situation is different in the multivar-
iate extension of section 2b because spatial averaging
influences the distribution of the pseudovalues. The ef-
fect of spatial averaging on the validity of the t-ap-
proximation for the test based on the statistic Tb has
been investigated in a Monte Carlo experiment. Table
1 considers both the situation of two single climate time
series and that of averaging the pseudovalues of N in-

dependent sequences. This averaging does not affect the
correlation between the pseudovalues, while the effect
of nonnormality of the pseudovalues decreases with in-
creasing N. For N large enough the distribution of Tb

therefore no longer depends on N. The empirical sig-
nificance levels for samples from the normal distribution
are for large N much lower than the nominal values
because of the negative correlation between the pseu-
dovalues (O’Brien 1978). The situation is in fact better
if N 5 1 because then the correlation effect is coun-
teracted by the nonnormality of the pseudovalues. For
the case J 5 K 5 10 the two effects just compensate.
In the generated samples from the exponential distri-
bution the correlation between the pseudovalues is pos-
itive (O’Brien 1978). Because of this positive correla-
tion and nonnormality of the pseudovalues the test is
progressive, that is, the null hypothesis is rejected too
frequently.

Like the F test our jackknife statistic Tb has little
power to detect differences in the variances of two short
independent climate time series at a single location. Av-
eraging over successive months or grid points is there-
fore necessary to obtain a meaningful test. Through the
averaging procedure the effect of nonnormality of the
pseudovalues is small. Departures from the assumed t-
distribution are then mainly due to correlation between
the pseudovalues. These pseudovalues are equicorre-
lated, that is,

Corr( , ) 5 ru* u*i j (12)

for all i ± j. If r is known, the test statistic can easily
be corrected for this type of correlation (Walsh 1947).
The main point behind the correction is that V̂jack in Eq.
(7) does not provide a purely unbiased estimate of

, but such an estimate is given byvar(û )jack

1 1 (J 2 1)r˜ ˆV 5 V , (13)jack jack1 2 r

leading to the modified test statistic:

û (II) 2 û (I)jack jack
T̃ 5 . (14)b 1/2˜ ˜[V (I) 1 V (II)]jack jack

From the Satterthwaite procedure in Welch (1938), it
follows that the variance estimate Ṽjack should also be
used in Eq. (10) for the degrees of freedom. Table 2
shows that the null distribution of the corrected statistic
T̃b is generally much better approximated by Student’s
t-distribution than that of the jackknife statistic Tb. The
corrected test even works well in case of unequal sample
sizes despite the differences in the means of the jack-
knife estimates in the numerator of Eq. (14) under the
null hypothesis.

Table 2 also presents estimates of r. Details about the
derivation of these estimates are given in appendix A.
The table shows that the values of are rather small.r̂
Nevertheless this correlation may have a considerable
effect on the distribution of the test statistic, because it
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TABLE 2. Actual rejection rates of the null hypothesis of equal
variances for two-sided tests based on the jackknife (2500 simulations
for J 5 10, K 5 30; 5000 simulations in the other cases). The results
in the first row refer to the jackknife statistic Tb and those in the
second row to the corrected jackknife statistic T̃b. The pseudovalues
in the test statistics are averaged over N 5 9 independent sequences.
The estimated correlation coefficients between these pseudovalues in
climate I and climate II are denoted as (I) and (II), respectively.r̂ r̂
The critical values of Tb and T̃b are obtained from Student’s t-distri-
bution with d* degrees of freedom.

Distribution J K (I)r̂ (II)r̂

Significance level

0.100 0.050 0.010

Normal 5 5 20.063 20.064 0.055 0.021 0.002
0.095 0.048 0.008

10 10 20.017 20.020 0.074 0.031 0.005
0.098 0.050 0.010

5 15 20.066 20.010 0.067 0.030 0.006
0.111 0.054 0.015

10 30 20.015 20.003 0.073 0.037 0.006
0.100 0.049 0.013

Exponential 5 5 0.021 0.018 0.106 0.047 0.007
0.090 0.037 0.006

10 10 0.014 0.014 0.119 0.062 0.012
0.098 0.050 0.008

TABLE 3. Estimated correlation coefficients between the pseudoval-
ues of sequences of J independent observations from the normal and
other distributions (10 000 simulations for J 5 5 and J 5 10; 2500
simulations for J 5 30). As in Table 2 the correlation coefficients
are derived from average pseudovalues taken over N 5 9 independent
sequences.

Distribution
Skew-
ness Kurtosis

r̂

J 5 5 J 5 10 J 5 30

Uniform 0 21.2 20.101 20.040 20.005
Normal 0 0 20.064 20.019 20.003
Laplace 0 3 20.013 0.002 0.002

2x4 Ï2 3 20.002 0.009 0.002
Exponential 2 6 0.020 0.014 0.004

does not decrease with increasing separation in time.
Unfortunately, the procedure on which the estimates of
r in Table 2 are based does not apply to a single real-
ization. Moreover, the amount of data is generally not
sufficient to obtain a sensible estimate of r directly. The
value of r is determined by the sample size and the
underlying distribution. This dependence was examined
in order to obtain a suitable modification of the jackknife
statistic Tb.

Table 3 presents estimates of r for J 5 5, 10, and 30
for a number of distributions. These values increase with
increasing kurtosis g2 of the distribution. Both for the
symmetric Laplace distribution and the skewed dis-2x4

tribution the effect of correlation on the distribution of
the test statistic can be neglected. The kurtosis of these
distributions is, however, as large as 3. The monthly
means of climatic data generally have kurtosis close to
zero. It is therefore often sufficient to apply a correction
to the test statistic valid for the normal distibution. The
estimates of r for the normal distribution in Table 3 can
be approximated as

5 2J21.7.r̃ (15)

Substitution of in Eq. (13) gives the desired correction.r̃
Unfortunately, it is difficult to verify the validity of this
correction. The sample kurtosis in Eq. (3) has a very
strong bias in small samples from distributions with
positive kurtosis, the so-called leptokurtic distributions
(see appendix B). In the examples in section 3, the kur-
tosis for a single grid point was estimated as

n Js

4n J (x 2 x )O Os i, j i ·
i51 j51

ĝ 5 2 3, (16)2 2n Js

2(x 2 x )O O i, j i ·[ ]i51 j51

where xi,j is the value of the ith calendar month for year
J, x i · is the average of that calendar month, and ns is
the number of calendar months in the season of interest.
The pooling over successive months reduces the bias
because of the larger sample size. The estimate in Eq.
(16) is, however, sensitive to a systematic variation of
the variance within the season of interest.

d. Power of tests for equality of variances

A Monte Carlo experiment was performed to study
the performance of the proposed jackknife test. The
SPRET1 statistic of Wigley and Santer (1990) was also
considered in that experiment. To demonstrate the effect
of spatial averaging, one set of data was generated for
univariate tests on the variances at a single location, and
another set was generated for multivariate tests on the
variances of N 5 30 sequences. In the latter case, vectors
of length 30 were generated from a multivariate normal
distribution analogous to a Monte Carlo experiment of
Zwiers (1987), where the correlation coefficient be-
tween the ith and jth sequence was set equal to the lag
k autocorrelation coefficient of a second-order autore-
gressive process:

r 5 1 0 
r 5 f /(1 2 f ) , (17)1 1 2 
r 5 f r 1 f r , k $ 2k 1 k21 2 k22

with k 5 |i 2 j|, f 1 5 1.6, and f 2 5 20.8. This
correlation function represents a damped sine curve. It
can be seen as the one-dimensional analog of the spatial
correlation function of a climate variable exhibiting te-
leconnection patterns. From the Monte Carlo experi-
ment it turns out that averaging the pseudovalues over
N 5 30 correlated sequences leads to a reduction in the
standard error of of 66%, which is comparable toûjack

the effect of averaging over nine independent sequences.
The standard deviations, s(I) in climate I and s(II) in
climate II, were taken to be the same for every sequence.

Table 4 presents the results for two-sided tests at the
5% level in samples of size 10. The power is low in
the univariate case (N 5 1), in agreement with the dis-
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TABLE 4. Power of tests for equality of variances for various ratios
of the standard deviations in climate I and climate II (1000 simula-
tions, and 1000 permutations of each combined sample for the two
climates to determine the statistical significance of the SPRET1 sta-
tistic). The values of the power refer to a two-sided test at the 5%
level for samples of size 10 (J 5 K 5 10) from a univariate (N 5
1) or a multivariate (N 5 30) normal distribution.

s(II)/s(I)

N 5 1

Tb SPRET1

N 5 30

T̃b SPRET1

1.2 0.077 0.076 0.273 0.262
1.5 0.176 0.175 0.808 0.842
2.0 0.434 0.399 0.996 0.994

TABLE 5. Mean, variance, and kurtosis of monthly near-surface
temperature for central North America (CNA), southern Europe
(SEU), and northern Europe (NEU). Here C refers to the control
simulation and A to the anomaly simulation of the UKTR experiment:
Dec–Feb (DJF), Mar–May (MAM), and etc.

Area Data DJF MAM JJA SON Year

Mean (8C)
CNA C 29.73 6.48 22.58 10.74 7.52
CNA A 24.96 8.95 27.00 15.55 11.63
SEU C 21.89 6.42 20.41 10.33 8.82
SEU A 0.80 9.39 24.29 14.19 12.17
NEU C 222.04 25.86 12.91 22.70 24.42
NEU A 217.34 21.52 15.47 0.95 20.61

Variance (8C2)
CNA C 13.39 5.65 4.28 4.98 7.07
CNA A 11.58 4.70 7.30 4.84 7.10
SEU C 11.74 6.19 4.38 4.24 6.64
SEU A 11.90 3.94 5.33 3.63 6.20
NEU C 17.49 11.01 2.92 8.09 9.88
NEU A 23.16 6.53 3.73 5.37 9.70

Kurtosis
CNA C 0.16 1.66 0.34 0.64 0.70
CNA A 20.55 20.21 0.29 20.23 20.18
SEU C 20.08 1.15 0.07 1.90 0.76
SEU A 20.11 20.24 0.53 20.08 0.02
NEU C 20.36 0.00 0.17 1.20 0.25
NEU A 20.54 20.01 0.35 0.55 0.09

TABLE 6. Ratios of the sample variances of monthly near-surface
temperature in the anomaly simulation to those in the control sim-
ulation and results of jackknife tests for equality of variances.

Area Statistic DJF MAM JJA SON Year

CNA ratio 0.86 0.83 1.71 0.97 1.00
CNA T̃b 20.56 0.05 2.54* 20.26 1.01
SEU ratio 1.01 0.64 1.22 0.86 0.94
SEU T̃b 0.10 21.41 0.96 20.47 20.43
NEU ratio 1.32 0.59 1.28 0.66 0.98
NEU T̃b 1.84 25.18* 0.74 20.89 20.75

* Differences significant at the 5% level (two-sided test).

cussion on the power of the F test in Zwiers and Thié-
baux (1987). Even if s(II)/s(I) is as large as 2 more
than 50% of the cases passes the test. A large gain in
power is achieved with the multivariate tests. About
80% of the cases is declared significant if s(II)/s(I)5
1.5. It is further seen in Table 4 that the power of the
simple jackknife test is comparable with that of a com-
puter-intensive permutation test using the SPRET1 sta-
tistic.

3. Examples

The multivariate jackknife test in the previous section
was applied to simulated time series of monthly mean
near-surface temperature and precipitation from the
UKTR climate change experiment with the Hadley Cen-
tre coupled ocean–atmosphere GCM (Murphy 1995;
Murphy and Mitchell 1995). Data of the last 10 yr of
the 75-yr integration from the control simulation (with
constant CO2 concentration) are compared with those
from the anomaly simulation for the same decade (with
an increase in CO2 of 1% per year, resulting in an ef-
fective CO2 doubling after 70 yr). The land areas of
three regions are considered: central North America
(CNA; 358–508N, 858–1058W), southern Europe (SEU;
358–508N, 108W–458E), and northern Europe (NEU;
508–708N, 108W–608E). The first two regions were pre-
viously selected for analysis of regional climate change
simulation by the Intergovernmental Panel on Climate
Change (IPCC 1990, 1996). The latter region was in-
troduced by Raisanen (1995) and later also considered
by IPCC (1996). The monthly mean near-surface tem-
perature is obtained by averaging the monthly mean
maximum and minimum temperature. Results for
monthly mean maximum and minimum temperature
separately are similar to those for monthly mean tem-
perature and are therefore not presented. The precipi-
tation amounts considered are the sums of large-scale
and convective precipitation.

a. Near-surface temperature

Table 5 summarizes some relevant sample statistics.
The values in this table are averages of monthly esti-

mates over a season or year and over the land grid points
in the region. The kurtosis estimates are generally close
to zero. Exceptions occur in spring and autumn. Values
of . 1 in those transition seasons are rather due toĝ2

systematic differences between the temperature vari-
ances of successive calendar months than to leptokurtic
distributions. Equation (15) was therefore used to cor-
rect for correlation between the pseudovalues in the
jackknife test for equality of variances.

In the anomaly simulation the average temperature is
about 48C higher for most seasons. For the three regions
the variances are larger in summer but smaller in spring
and autumn. However, these changes in the variance
resulting from enhanced greenhouse gas concentrations
are statistically significant for only two cases; the 71%
increase in summer for CNA and the 41% decrease in
spring for NEU (Table 6). In winter the temperature
variance changes have different signs.

Note that it is possible that the variance ratio indicates
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TABLE 7. Mean, variance, and kurtosis of monthly precipitation for
CNA, SEU, and NEU. Here C refers to the control simulation and
A to the anomaly simulation of the UKTR experiment.

Area Data DJF MAM JJA SON Year

Mean (mm day21)
CNA C 1.16 3.00 3.07 1.52 2.19
CNA A 1.30 3.05 2.73 1.44 2.13
SEU C 2.98 2.31 2.01 1.93 2.30
SEU A 3.01 2.32 1.61 1.76 2.18
NEU C 1.34 1.72 2.34 2.24 1.91
NEU A 1.68 1.95 2.51 2.58 2.18

Variance (mm2 day22)
CNA C 0.31 1.03 1.63 0.76 0.93
CNA A 0.34 1.47 1.79 0.92 1.13
SEU C 0.91 0.82 1.17 0.85 0.93
SEU A 1.37 0.76 1.11 0.81 1.01
NEU C 0.29 0.44 0.67 0.46 0.46
NEU A 0.47 0.48 0.92 0.68 0.64

Kurtosis
CNA C 0.62 20.03 20.11 0.47 0.21
CNA A 1.19 0.20 0.12 0.33 0.46
SEU C 0.29 20.08 0.60 0.26 0.27
SEU A 0.16 20.06 1.49 0.79 0.59
NEU C 20.19 20.07 20.03 20.22 20.13
NEU A 20.06 0.08 0.06 0.14 0.06

TABLE 8. Ratios of the sample variances of monthly precipitation
in the anomaly simulation to those in the control simulation and
results of jackknife tests for equality of variances.

Area Statistic DJF MAM JJA SON Year

CNA ratio 1.09 1.44 1.09 1.22 1.21
CNA T̃b 1.10 2.25* 0.50 1.15 2.36*
SEU ratio 1.50 0.93 0.95 0.95 1.09
SEU T̃b 1.36 21.85 20.53 20.48 0.04
NEU ratio 1.61 1.09 1.37 1.49 1.37
NEU T̃b 3.72* 1.03 2.61* 3.01* 4.77*

* Differences significant at the 5% level (two-sided test).

a decrease in variance whereas the test statistic indicates
an increase in variance (see, e.g., CNA in spring) or the
other way around. However, this usually happens only
when the test statistic is close to zero (and thus far from
the critical value). It generally requires that the arith-
metic mean is much different from the geometric mean,
which occurs if the variance shows large seasonal or
spatial variation.

b. Precipitation

The distribution of monthly precipitation generally
differs more from the normal distribution than that of
monthly temperature. The largest departures from nor-
mality are found in areas or seasons where completely
dry months frequently occur. If at a particular grid point
the monthly mean preciptation is zero for the whole
period considered, the sample variance is clearly also
zero but the pseudovalues, since they involve ln(s2), are
undefined. Similarly, when only one of the monthly
mean precipitation values in a time series is larger than
zero, one of the pseudovalues is undefined. Both situ-
ations are found in a small number of the grid points
in SEU in summer and autumn. Furthermore, time series
containing many zeros have a strong effect on the spatial
kurtosis estimate. To avoid problems related to such
situations only those grid points are considered for
which the monthly mean precipitation time series con-
tains at least four values larger than zero.

It should further be noted that the precipitation in
GCM simulations has often been regarded as being rep-
resentative of the average over the grid box concerned
(Reed 1986; Gregory and Mitchell 1995). The distri-

bution of a spatial average of monthly precipitation is
less skewed and has a lower kurtosis than that of month-
ly precipitation at a point.

Table 7 summarizes the sample statistics for precip-
itation in the same way as for temperature in section
3a. For NEU the monthly mean precipitation in the
anomaly simulation is for all seasons 5%–25% higher
than in the control simulation. This increase in the mean
is accompanied by an increase in the variance. Table 8
shows that the changes in variance vary between 10%
(spring) and 60% (winter), and are, except for spring,
statistically significant. For CNA the anomaly simula-
tion shows an increase in mean winter precipitation of
about 10% and a decrease in mean summer precipitation
of about 10%; for SEU there is a 20% decrease in mean
precipitation in summer and an almost 10% decrease in
autumn (Table 7). For these two regions the changes in
the mean are not accompanied by similar changes in the
variance. The largest changes in the variance are found
in other seasons, namely a statistically significant in-
crease of 44% in spring for CNA and an increase of
50% in winter for SEU (Table 8).

In the statistical tests above, a correction for corre-
lation between pseudovalues was applied using Eq. (15)
for the normal distribution. The kurtosis estimates in
Table 7 support this correction for most cases. Excep-
tions are CNA in winter and SEU in summer and au-
tumn. In particular for the SEU precipitation, the pos-
itive kurtosis cannot be attributed to within-season var-
iations of the variance only. According to the simulation
results in appendix B, a spatial average of in theĝ2

range of 1–1.5 indicates that g2 ø 3, so that a correction
for correlation between pseudovalues would not be
needed. For the cases mentioned above the correction
had only a small effect; the values of the test statistic
Tb without correction are 0.99 for CNA in winter, 20.47
for SEU in summer, and 20.43 for SEU in autumn.

c. Comparison with other GCM simulations

The results for the UKTR experiment only partly
agree with those of Rind et al. (1989), Gordon and Hunt
(1994), and Liang et al. (1995) for mixed layer models.
In contrast to a coupled model, as used in the UKTR
experiment, a mixed layer model cannot produce vari-
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ability associated with dynamical ocean processes such
as the Atlantic thermohaline circulation and the El
Niño–Southern Oscillation. Since such processes con-
tribute to the interannual variability, they should be in-
cluded in experiments that investigate the response of
atmospheric variability to enhanced greenhouse gas
concentrations, as is demonstrated by Meehl et al.
(1994). They found that the changes of (interannual)
temperature variability in a mixed layer version of their
model differed from those in a coupled version, partic-
ularly in the Tropics.

However, particular responses, that can be understood
from physical relationships, seem quite robust. Exam-
ples are reduced temperature variability over areas
where sea ice retreats (Gordon and Hunt 1994; Meehl
et al. 1994; Liang et al. 1995), enhanced summer tem-
perature variability in areas of reduced soil moisture
(Meehl et al. 1994; Liang et al. 1995), and enhanced
precipitation variability due to the enhanced hydrolog-
ical cycle and greater atmospheric moisture content in
the extratropics (Rind et al. 1989; Liang et al. 1995).

Liang et al. (1995), for example, found increased
summer temperature variability over CNA, which they
ascribe to reduced soil moisture. In UKTR there is an
increased temperature variability over CNA in summer,
which is accompanied by a reduction in mean precip-
itation, and this generally leads to reduced soil moisture
in a warmer climate. With respect to enhanced precip-
itation variability, all substantial changes in precipita-
tion variance (larger than 10%), in the three areas con-
sidered, are increases. Increases in precipitation vari-
ability over CNA in spring and summer similar to those
in UKTR were also reported by Liang et al. (1995).

4. Discussion

A test for equality of variances based on the jackknife
has been described that is suitable for correlated time
series of monthly climate data on a spatial grid (e.g.,
those produced by GCMs). In contrast to other resam-
pling techniques the method does not require computer-
intensive simulation to derive the statistical significance
of observed differences in variances. The null distri-
bution of the test statistic can be approximated by Stu-
dent’s t-distribution with an effective number of degrees
of freedom. For a test on multivariate data this approx-
imation can be improved by a correction for correlation
between the pseudovalues in the jackknife procedure.
The proposed correction does, however, not apply if
there are strong departures from the normal distribution
as is for instance the case for monthly precipitation data
containing a considerable fraction of zeros.

Besides the reported nonnormality of monthly pre-
cipitation during the dry season in SEU, more serious
problems were encountered with the application of the
jackknife procedure to monthly precipitation in South-
east Asia (58–408N, 608–1018E). Even for the wet mon-
soon the distributions of the monthly precipitation at

several grid points in the area appeared to be very lep-
tokurtic. The area-average kurtosis can be reduced by
excluding the relatively dry grid points from the anal-
ysis. Disregarding grid points with mean monthly pre-
cipitation smaller than 0.5 mm day21 yields an 18%
increase in monthly precipitation variance in summer
(June–August) and a 25% increase in the monsoon sea-
son (June–September). Both increases are significant at
the 5% level. These results are in line with the increase
in interannual variability of the area-averaged south
Asian or Indian monsoon precipitation reported by
Meehl and Washington (1993) and Bhaskaran et al.
(1995).

Like the traditional F test, the jackknife test in this
paper assumes that the monthly values from different
years are independent. If there is a positive correlation
between the values in successive years, then the jack-
knife variance tends to underestimate the true variance,
which results in a progressive test.

Tests for equality of variances are known to have little
power for typical sample sizes encountered in climate
change experiments. In a jackknife test the low power
is due to variability of . The averaging of the pseu-ûjack

dovalues over calendar months and/or grid points in a
region leads to a considerable reduction in the standard
error of . Because monthly data generally exhibitûjack

no or only weak autocorrelation, averaging over three
successive calendar months reduces the standard error
of by about 40%. In the application to the monthlyûjack

values in the UKTR experiment, spatial averaging over
the grid points in each of the three regions yields a
reduction in standard error of about 50% for temperature
and 65% for precipitation. For temperature, the total
reduction in standard error is comparable with that in
the Monte Carlo experiment in section 2d. Despite these
reductions in standard error quite substantial differences
in variances can pass the test. For instance, for the
monthly temperatures of NEU the changes in variance
for the four seasons are 32%, 241%, 28%, and 234%,
respectively. Only the largest of these changes (corre-
sponding to a change in standard deviation of about
20%) is significant at the 5% level. Furthermore, for
precipitation the observed changes in the variance of
37% (NEU, summer), 44% (CNA, spring), and 49%
(NEU, autumn) are statistically significant at the 5%
level, but this is not the case for the observed increase
of 50% in the variance of monthly precipitation in SEU
during winter.

The paper focused on monthly values. The presented
jackknife procedure can, of course, also be used to com-
pare the variances of seasonal values. However, for near-
ly normally distributed data, a test on the seasonal values
(e.g., winter temperatures) has only about the same pow-
er as a test on the values for a particular calendar month
(e.g., January temperatures). This is because øvar(û)
2/J for both the monthly and seasonal values. For lep-
tokurtic data, a seasonal mean or total will have much
smaller kurtosis than the individual monthly values. It
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TABLE B1. Mean (first row) and standard deviation (second row)
of kurtosis estimates for sequences of independent observations from
various distributions (5000 simulations).

Distribution Kurtosis

2, Eq. (3)ĝ

J 5 5 J 5 10 J 5 30

2,ĝ
Eq. (16)
J 5 10,
ns 5 3

Uniform 21.2 21.11 21.01 21.11 20.97
0.53 0.54 0.26 0.33

Normal 0 21.00 20.54 20.19 20.21
0.50 0.76 0.71 0.69

2x12 1 20.98 20.42 0.26 0.17
0.53 0.95 1.35 1.21

2x4 3 20.94 20.16 1.12 0.89
0.56 1.21 2.12 1.86

Laplace 3 20.87 0.08 1.41 1.15
0.54 1.13 1.86 1.67

Exponential 6 20.88 0.19 2.27 1.88
0.62 1.46 2.94 2.56

is therefore possible that the proposed correction for
correlation between pseudovalues can be applied to the
variances of seasonal values but not to the variances of
monthly values. Furthermore, will be smaller forvar(û)
the seasonal values due to their reduced kurtosis. This
is advantageous for the power of a jackknife test on the
seasonal variances.

Although there is strong evidence of an increase in
the variance of monthly precipitation over NEU in the
anomaly simulation, the relative variability or coeffi-
cient of variation (standard deviation divided by the
mean) shows much less change. In principle, a test for
equality of variation coefficients can be developed along
the same lines as that for the variance in this paper. In
case of absence of zero values, a test on the relative
variability can also be obtained by applying the jack-
knife procedure to the variance of the logarithms of the
monthly precipitation amounts.
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APPENDIX A

Estimation of Correlation between Pseudovalues

The estimates of the correlation coefficients r in Ta-
bles 2 and 3 were obtained from the Monte Carlo ex-
periment as follows. Let be the average pseudovalueu*j,m
for year j in the mth simulation (j 5 1, . . . , J; m 5 1,
. . . , M), taken over N independent sequences. A natural
estimate of r is then

M J i21

2 (u* 2 u* )(u* 2 u* )O O O i,m j,m
m51 i51 j51

r̂ 5 , (A1)
MJ(J 2 1)ŷ

where
J M1

u* 5 u* andO O j,mJM j51 m51

J M1
2ŷ 5 (u* 2 u* ) .O O j,mJM j51 m51

For computational purposes it is more convienient to
obtain by (Koch 1983)r̂

,r̂ 5 (Jŷ 2 ŷ)/[(J 2 1)ŷ]b (A2)

where
M1

2ŷ 5 (u* 2 u* ) , (A3)Ob · mM m51

with
J1

u* 5 u* (A4)O· m j,mJ j51

the mean of the pseudovalues in the mth simulation.
Equation (A2) cannot be used to estimate r from a single
record, because the result 5 21/(J 2 1) for M 5 1r̂
does not depend on the true value of r.

APPENDIX B

Properties of Kurtosis Estimates

In a Monte Carlo study, Pearson (1935) observed that
kurtosis estimates can be heavily biased. For the normal
distribution, it can be shown (Cramér 1946) that

5 26/(J 1 1). Table B1 compares the mean ofE(ĝ )2

with the true kurtosis g2 for sample sizes encounteredĝ2

in this paper. For leptokurtic distributions (g2 . 0) the
true kurtosis is seriously underestimated. The bias grows
with increasing g2. For J 5 5, ø 21 for allE(ĝ )2

distributions considered in Table B1, no matter their true
kurtosis. This bias is partly caused by the boundedness
of . Expressions for the bounds of standardized sam-ĝ2

ple moments are given in Dalén (1987). The upper
bound of is 0.25, 5.11, and 25.03 for J 5 5, 10, andĝ2

30, respectively. The sample kurtosis of a sample of size
5 from a Laplace distribution is thus always smaller
than the true kurtosis.

The last column in Table B1 gives the mean of the
pooled estimate in Eq. (16) for ns 5 3 samples ofĝ2

size 10 from the same distribution. The bias is roughly
of the same order as that in a single sample of size 30.
Note that for this sample size, ø 1 for the twoE(ĝ )2

distributions with g2 5 3.
Besides the bias, the large variability of kurtosis esti-

mates is a point of concern. For the leptokurtic distribu-
tions in Table B1, the standard deviation of increasesĝ2

with increasing J as a result of the growth of its upper
bound. It is only for larger samples than those in Table
B1 that becomes proportional to 1/J. Further, thevar(ĝ )2

standard deviation of the pooled estimate of 3 3 10 ob-
servations is somewhat smaller than that of a single sample
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of size 30. Spatial averaging over grid points will strongly
reduce the standard deviation of .ĝ2
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