2490

JOURNAL OF CLIMATE

VOLUME 6

Jackknife Tests for Differences in Autocorrelation between Climate Time Series

T. A. BUISHAND AND J. J. BEERSMA
Royal Netherlands Meteorological Institute (KNMI),* De Bilt, the Netherlands
10 June 1992 and 3 May 1993

ABSTRACT

Two tests for differences in the lag | autocorrelation coefficient based on jackknife estimates are proposed.
These tests are developed for the pooled sample of all daily values in a certain calendar month (e.g., ail January
data). Jackknife estimates of the autocorrelation coefficients and their standard errors from such a sample are
obtained by omitting each year once and recomputing the autocorrelation estimates. Monte Carlo results for
several distributions show that the critical values of the test statistics can be based on the Student’s t distribution.
Regional analogs of these test statistics are derived from the jackknife estimate of the mean lag 1 autocorrelation
coefficient for the sites of interest. In a similar way one can get a single test statistic for a season or the whole
year. As an illustration it is shown that the lag | autocorrelation coefficients of the simulated daily temperatures
of the Canadian Climate Centre second-generation general circulation model are significantly below those of
the observed temperatures at De Bilt for most seasons. Over western Europe there is no statistical evidence of
differences in autocorrelation between the 1 X CO, and 2 X CO, runs of this model.

1. Introduction

Autocorrelation is a measure of the strength of linear
dependence between successive values in a climate time
series. A consequence of climate change can be that
this dependence might become stronger or weaker. This
may have a serious impact on society, because it affects
the frequency and duration of extreme events. Thus,
there is a need to test for differences in autocorrelation
coefficients in climate experiments, and it is also im-
portant to know how faithfully general circulation
models (GCMs) can reproduce the autocorrelation in
observed records.

Autocorrelation coefficients of GCM simulated time
series have rarely been computed. A few exceptions are
Reed (1986), Rind et al. (1989), Wilson and Mitchell
(1987), and Mearns et al. (1990). The latter two re-
moved the autocorrelation from their data (prewhit-
ening) to test for a change in variability as suggested
by Katz (1988). The autocorrelation coefficients
themselves have, however, never been subjected to sta-
tistical tests.

In this paper a procedure is presented for testing for
differences in autocorrelation coefficients. The proce-
dure requires the estimated autocorrelation coefficients
with their standard errors. In this method it is not nec-
essary to specify the form of the underlying distribution
nor to model the autocorrelation structure.
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First the estimation of autocorrelation coefficients
for seasonally varying data is considered. The jackknife
is introduced as a technique to reduce bias and to obtain
standard errors of the estimated autocorrelation coef-
ficients. This leads to simple statistics for testing for
differences in autocorrelation coefficients of two in-
dependent time series. The method is then extended
to test for a regional change in autocorrelation with
data from several locations. The use of the tests is il-
lustrated with an observed record of daily temperatures
in the Netherlands and with data generated by the Ca-
nadian Climate Centre (CCC) second-generation GCM
(McFarlane et al. 1992; Boer et al. 1992) for the present
CO; level and a doubling of the CO, level.

2. Estimation of autocorrelation coefficients

For ease of presentation it is assumed that time series
of daily values are available. The lag k autocorrelation
coefficient, p,, then represents the correlation between
two values separated by an interval of k — 1 days. The
estimation of the autocorrelation coefficients should
be done with some care, because the systematic annual
cycle may introduce serious bias. A popular method is
to estimate the autocorrelation coefficients for each
calendar month separately. Let x;; denote the value
ondayi(i=1,-- -, n)of a certain month in year j
(j=1,++-,J). Then the lag k autocovariance is es-
timated as

J n—k

1
Cx = I—V— > 2 (xi,j — XY (Xisx,j — X)),

k j=1 i=1

k=0,1,---

(1)
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TABLE 1. Empirical means of the estimates ry jack and ry of the
autocorrelation coefficient p; for an AR1 process with p; = 0.8 (J
= 10, n = 30, 5000 simulations).

lag Pk E(ry 1acx) E(ry)

1 0.800 0.800 0.789

2 0.640 0.641 0.621

5 0.328 0.327 0.297

10 0.107 0.107 0.076
where x is the mean over all daily values

l J n
X = —J Z Z Xi.j (2)

Quite often N, is set equal to the total number of days,
N, = nJ for all k (Katz 1982; Trenberth 1984). In this
paper, however, N, = (n — k)J, which results in less
biased estimates. The values of the test statistics in sec-
tion 4 do not depend on the choice of N;. For k = 0,
¢, represents the sample variance. The estimated au-
tocorrelation coeflicients are obtained as

k=0,1,--- (3)

In the jackknife method the required statistic is recom-
puted a large number of times after successive deletion
of a group of observations from the entire dataset
(Efron 1982). To obtain simple tests it is necessary
that the data in different groups are almost indepen-
dent. For the climatic data considered here, it is there-
fore most appropriate to delete a complete year each
time. The jackknife estimate of p; then reads

k=0,1,---

re = ¢/ co,

Fegack = Jre — (J — 1)1y,

(4)

where

1 J
rk<.>=32rkg>, (3

with ry(;) the estimate of py after omitting the data for
year j. The use of the jackknife results in almost un-
biased estimates of p,. Table 1 demonstrates this for
10-year samples of 30 daily values generated by a nor-
mal first-order autoregressive (AR 1) process with p,
= 0.8. For the AR1 process p, = pX, k=0, 1,+ -« -,
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To derive the jackknife estimate, it is convenient to
rewrite Eq. (1) as

N { P = S[SLx + Srx — (n— k)S/nl/(nd)},
k

k=0,1,--+, (6)
where
J n—k J n
= 2 2 ( xz,jxi+k,j), S= E 2 Xijs
j=1 i=1 J=1 i=1
J n—k J n—k
Spx= > Xi,js Z 2 Xitk,j-

~
It
Il

The estimate r,(;) in the right-hand side of Eq. (5) is
then easily obtained by subtracting the contribution of
year j from the quantities Py, S, Sz &, and Sk .

3. Standard errors of estimated autocorrelation
coefficients

The jackknife is not only a method of bias reduction.
The recomputed statistics 7, (; can also provide a dis-
tribution-free estimate of the standard error. The jack-
knife estimate of the variance of r, is given by (Efron
1982)

n J—1
Ui,JACK =T 2 [’ku)

- (M)

2
rk(.)] .

For the generated 10-year samples of the AR 1 process
in the previous section, Table 2 compares the mean of
ok jack With the standard deviations o(7yjacx) and
a(ry) of rjack and r,. The table also presents these
results for an AR2 process with the same value of p,
as the AR process (0.8 ) but with a much smaller value
of p> (0.45 instead of 0.64). The statistic o jack yields
an almost unbiased estimate of o(7;). It slightly under-
estimates o(7ry jack ), in particular for large lags. This
is consistent with Efron (1982) where Eq. (7) is con-
sidered to provide an estimate of var(r,) rather than
of var(7i yack).

There are marked differences between the values of
the standard errors for the two autoregressive processes
in Table 2. For the AR2 process the standard error of
ry is only 60% of that for the AR1 process.

TABLE 2. Empirical mean of the estimate 6y jack compared with the empirical standard deviations of r; jack and 7, for an AR1 process

with p, = 0.8 (p; = 0.64) and an AR2 process with p, = 0.8 and p, = 0.45 (J = 10, n = 30, 5000 simulations).
AR process AR2 process
Lag E(611ack) o(rk,1a0K) o{ry) E(6)5ack) (I, 1acK) o(re)
1 0.038 0.039 0.038 0.022 0.023 0.023
2 0.065 0.067 0.065 0.053 0.055 0.054
5 0.108 0.115 0.107 0.097 0.102 0.098
10 0.134 0.147 0.135 0.112 0.117 0.113
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For the jackknife method it is not necessary to specify
a time series model. Resampling of the residuals of a
fitted autoregressive model can also provide an estimate
of the standard error of the autocorrelation coefficients
(Efron and Tibshirani 1986). This estimate generally
has a smaller variance than our jackknife estimate. The
estimate from a fitted time series model is, however,
sensitive to model misspecification (Kiinsch 1989) and
is more difficult to obtain.

4. Testing for differences at a single site

Table 2 shows that the estimated lag 1 autocorre-
lation coefficient has a much smaller standard error
than the higher-order autocorrelation coefficients. A
systematic difference in the values of p, for two climates
(e.g., a1l X CO, run and a 2 X CO; run) is therefore
better detected than differences in the other autocor-
relation coeflicients. In addition tests for differences at
more than one lag do not give independent results be-
cause the autocorrelation estimates at neighboring lags
are correlated. For these reasons only the lag 1 auto-
correlation coefficient is considered. Let p,(I) and
p1(II) be the theoretical lag 1 autocorrelation coeffi-
cients for climate I and climate II, respectively. A test
for differences in autocorrelation can then be based on
their jackknife estimates 7, jack (1), 71.3ack (11) and the
jackknife estimates o jack (1), 7, 5ack (II) of the stan-
dard errors of the autocorrelation estimator from Eq.
(7). A possible test statistic is

T, = ruack (1) = 7y jacx (1)
1 = a2 ~ 172 *
[67sack(I) + 67 5ack (IT)]

A similar statistic was used by Miller ( 1968) to test for
differences between the variances of two independent
samples. Another possibility is (Davis 1979)

_ 1/2
7 = [JK(J+ K 2)]

(8)

J+ K
> [ Figack (I — 7y jack (1) }
[J(J = 1)6%jack () + K(K — 1)57 jack (ID]'/?
9

with J and K the number of years for climate I and
climate 1I, respectively. The statistic 7', is the analog
of the two-sample Student’s t-statistic for testing dif-
ferences in the mean. Statistics 7, and 7', are the same
if J = K, but they are different for unequal sample
sizes. Under the null hypothesis, p;(I) = p,(II), the
statistic T, is approximately a Student’s t-variable with
J + K — 2 degrees of freedom. The quality of the ap-
proximation depends on J, K, the group size n, and
the probability distribution of the climate variable in-
volved. It is not valid, however, to derive the critical
values of T from this Student’s distribution if J # K.
Under the null hypothesis it is expected that this sta-
tistic behaves approximately as
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x(1/J + 1/1<)"/2
{XF1/1J(J — D]+ Xd=1/[K(K — 1)]}'/?

where X is a standard normal variable, x3., and
X%_, are two independent chi-squared variables with
J— 1 and K — 1 degrees of freedom, also independent
of X. To make use of Student’s z-distribution, the sum
of the two chi-squared variables in the denominator of
Eq. (10) is approximated as

(10)

X‘zl_l X}(—l NZ(j
JJ-1) K(K—-1) d

The mean of both sides equals 1/J + 1/ K. The number
d of effective degrees of freedom is chosen such that
the variances are also equal, giving

_ (J + K)?
TKYT- D)+ K1)

This method of approximation is known as the Sat-
terthwaite method (Gaylor 1988). Note that d = J
+ K—2=2(J—1)if J = K, whereas d tends to be
smaller than J + K — 2 if J # K. The approximation
of Eq. (10) by a Student’s t-variable with d degrees of
freedom works quite well (Tanburn 1938; Welch
1949). For noninteger d the ¢ distribution is still defined
through its relation with the beta distribution. The
critical values of the test statistic can be obtained nu-
merically or by interpolation in a table of Student’s t
distribution. :

The approximation of the null distributions of 7'
and T, by the Student’s t distribution has been checked
by a Monte Carlo experiment with different AR1 pro-

(1/J+ 1/K). (11)

(12)

TaBLE 3. Empirical significance levels of two-sided tests for a dif-
ference in the lag 1 autocorrelation coefficient p, (n = 30; 2500 sim-
ulations for J = 10, K = 30; 5000 simulations in the other cases).
The critical values Cy 19, Coos and Cpo; of the test statistic are based
on the Student’s t distribution. For the generated AR processes p;
= (.8, whereas for the AR2 processes p, = 0.8 and p, = 0.45. N refers
to the normal distribution, E to the exponential distribution, and L
to the Laplace distribution.

Process Statistic J K Co.10 Coos Coo1
N ARI Ty, T, 5 5 099 .047 010
N ARI T,, Ty 10 10 .100 054 013
N AR1 T, 5 15% 099 .045 .008
N ARI T, 5 15 120 062 016
N ARI T, 10 30* 097 053 014
N ARI T 10 30 .100 049 017
N AR2 T, T, 5 5 .100 051 011
N AR2 T, T, 10 10 .102 049 010
E AR1 T, T, 5 5 135 069 017
E ARI T, 5 15% 120 054 009
E ARI T, 5 15 151 084 023
L ARI T, T, 5 5 .109 058 014
L ARI T, 5 15* 112 053 011
L ARI T, 5 15 126 .069 019

*d=689(J=5K=15)andd = 15.47 (J = 10, K = 30), critical
values obtained from Gardiner and Bombay (1965).
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cesses and the normal AR2 process in Table 2. The
main results of this experiment are summarized in Ta-
ble 3. The generation of the AR1 processes with ex-
ponential and Laplace (double exponential ) distribu-
tions was based on Lawrance (1981). For the normal
and Laplace distributions the empirical significance
levels are close to the nominal values. The largest dis-
crepancies occur with the use of 7', when J = 5 and
K = 15. For small samples of unequal lengths the test
based on 7’| becomes progressive. This has also been
found with a similar jackknife test statistic for testing
for differences in variances ( Brown and Forsythe 1974;
Boos and Brownie 1989). For the generated exponen-
tial processes the null distributions of 7', and T'| deviate
more from the Student’s t distribution. The exponential
distribution is, however, a very skewed distribution.
Climate variables with strong autocorrelation generally
exhibit less skewness.

In the light of the results in Table 2 some simulations
were also done with the autocorrelation estimate r; in
the numerator of the test statistics instead of 7 jack.-
The discrepancies in the exponential cases then dis-
appear, but the empirical significance levels are signif-
icantly below the nominal values for the 5-year samples
(J = K = 5) from the normal AR 1 process. Simulation
further indicates that Jenkins’s arc sine transformation
of the autocorrelation estimate (Kendall et al. 1983,
48.20) has little effect.

5. Increasing the power of the test by combining
several samples

_ For GCM runs of limited length the statistics 7', and
T, can only detect quite substantial differences in au-
tocorrelation. For two normal AR 1 processes with p; (1)
= 0.8 and p,(II) = 0.7, the probability of a significant
result at the 5% level is about 0.35 if J = K= 10 (group
size n = 30). A more powerful test is possible by com-
bining the samples at several grid points within a region.
Regional analogs of the test statistics T, and 7', are
derived as follows. For each grid point the estimates
T, iy, - .., Fq) are calculated. Taking averages
over the grid points results in 7y, 7y(,), . . ., Fi¢). The
jackknife estimates in the test statistic 7', (or T, ) are then
obtained by applying Eqgs. (4), (5), and (7) to these
average autocorrelation estimates. The value from Eq.
(4) then represents an estimate 7, jack Of the mean lag
1 autocorrelation coefficient p | for the grid points under
consideration. This estimate is almost unbiased. The
increase in power results from the fact that 7 jack has
a smaller standard error than the autocorrelation es-
timate for a single grid point.

An alternative regional autocorrelation estimate
would be obtained by averaging the lag 1 autocovari-
ance and variance estimates separately over the grid
points. This regional estimate can, however, strongly
differ from p,; when the second-order moments vary
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over the grid. Because the estimate then has no easy
interpretation it is not considered further.

It should be noted that p, is not necessarily equal
to the lag 1 autocorrelation coefficient pT of the spatial
average of the data. The latter also depends on the lag
1 cross-correlation coefficients between the various
samples. There is no guarantee that a jackknife estimate
of p’f will have a smaller standard error than the au-
tocorrelation estimates at the individual grid points.

By a similar averaging procedure one can get a single
test statistic for the December, January, February
(DJF) period and other seasons, as well as for the whole
year. In the latter case, the group of deleted observations
contains a number of days that are directly adjacent
to those left in. It is unlikely that this will impair the
use of the jackknife procedure, because only a limited
number of the daily values in two subsequent years are
significantly correlated. A simultaneous test on the re-
sults for individual calendar months is also possible
using the binomial distribution or by means of Fisher’s
test (Sneyers 1990). These methods, however, assume
independence among the values of the test statistics in
successive months.

6. Results for daily mean surface air temperatures

In this section the proposed method is illustrated
with the 1961-1990 temperature record at De Bilt
(52°06'N, 5°11'E) and generated time series over Eu-
rope of the CCC GCM. Ten-year samples for both the
1 X CO, and 2 X CO, simulated climates were made
available over a grid of 3.75° X 3.75°.

Table 4 presents autocorrelation estimates for the
De Bilt record and the GCM 1 X CO; run at two grid
points. Because the time series have unequal lengths,
both 7', and T, are given. For the GCM data the au-
tocorrelation coefficients are systematically lower than
those for the observed temperatures. This leads to very
significant differences in the lag 1 autocorrelation coef-
ficients averaged over the year. For the individual sea-

TABLE 4. Tests for differences in the lag 1 autocorrelation coefi-
cients of daily temperature observations at De Bilt (1961-1990) and
daily temperatures for the 1 X CO, climate of the CCC GCM (10
years). B refers to De Bilt, W and E refer to the nearest grid point
west and east of De Bilt, respectively. The DJF values for De Bilt are
based on the 29 complete winters in the 30-year period.

Statistic DJF MAM JJA SON Year
Fiyack (B) 0.85 0.82 0.79 0.78 0.81
Fiaack (W) 0.73 0.73 0.73 0.69 0.72
Ty(B, W) —3.46" 224  —239* —3.42! —5.391
Ty(B, W) —4.17" -326" =227 451 —6.96"
Friack (E) 0.75 0.77 0.73 0.71 0.74
T\(B, E) -3.23" -1.65 —2.15* = -2.51* —4.96'
T,(B, E) —3.63"1  —2.15¢  —2.27% -3.30" —-5.85t

* O differences significant at the 5% (1%) level.
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sons the underestimation is also significant, except for
the spring temperatures of the grid point east of De
Bilt when the statistic 7', is used. The result for the
statistic 7' is often more significant than that for 7.
A Monte Carlo experiment with normal AR 1 processes
shows that the former statistic is slightly more powerful
in the situation of Table 4. This is caused not only by
the larger number of degrees of freedom, but also by
the fact that the shortest samples have the smallest lag
1 autocorrelation coefficients.

To test for differences in autocorrelation between
the generated 1 X CO; and 2 X CO; temperature data
an area of 25 grid points around the Netherlands (ex-
tending from 40.8° to 59.4°N latitude and 5.6°W to
13.1°E longitude) was considered. The area includes
Great Britain, Denmark, France, Germany, and parts
of Spain and Italy. Sixteen grid points have been des-
ignated as land points, the other nine are sea points.
Land and sea points were treated separately. The au-
tocorrelation estimates are summarized in Table 5. For
both the land and the sea points the standard error of
the autocorrelation estimate is reduced by a factor 1.7
as a result of spatial averaging. This reduction is com-
parable to that obtained by averaging over three con-
secutive calendar months. Table 5 shows that the sta-
tistics based on the regional seasonal averages are only
significant for the land points in winter (DJF) and for
the sea points in summer (JFA). According to the bi-
nomial distribution the joint result for the four seasons
is not significant at the 5% level. There is also no sta-
tistical evidence of differences in the annual mean of
the lag 1 autocorrelation coefhcient. This agrees with
results in Rind et al. (1989) for a transient climate
experiment.

7. Discussion

In the present paper it is demonstrated that the jack-
knife can be used to reduce the bias in autocorrelation
estimates of climate time series and to calculate the
standard errors of these estimates. The examples in
Tables 4 and 5 show that tests based on the jackknife
perform quite well. From Table 4 it is seen that these
tests are able to detect differences in the range of 0.05
10 0.10 between the seasonal autocorrelation estimates
of the 30-year observed temperature record and a 10-
year GCM simulation. Table 5 indicates that changes
in autocorrelation larger than 0.05 would generally be
significant at the 5% level when 10-year samples over
a region of ~2.5 X 10® km? are combined.

The method is not suitable for very short GCM sim-
ulations. For sample sizes smaller than those in Table
3, Student’s t distribution does not always provide a
good approximation to the critical values of the test
statistics Ty and 7. But, even if this distribution can
be used, the critical values will be large as a result of
lack of degrees of freedom. Unfortunately, averaging
of monthly values does not lead to more degrees of
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TABLE 5. Tests for differences in the lag 1 autocorrelation coeffi-
cients between the 1 X CO, (C) and 2 X CO, (D) daily temperatures
of the CCC GCM (both 10 years) for an area of 25 grid points around
the Netherlands.

Statistic DIJF MAM JJA SON Year
Land grid points (16)
riaack (C) 0.70 0.72 0.74 0.68 0.71
Fi.ack (D) 0.63 0.70 0.76 0.70 0.70
T, —2.63* -0.37 0.77 0.92 —0.85
Sea grid points (9)
F11ack (C) 0.81 0.84 0.87 0.86 0.85
7ack (D) 0.85 0.84 0.91 0.88 0.87
T, 1.00 -0.19 2.26* 1.23 1.49

* differences significant at the 5% level.

freedom. Because of this and the relatively large stan-
dard errors the tests are then unable to detect mean-
ingful changes in autocorrelation.

An extension of the jackknife procedure of estimat-
ing standard errors to the case of a stationary sequence
X1, ..., xy of correlated data has been proposed by
Kiinsch (1989). In this extension an estimate of the
lag 1 autocorrelation coefficient is obtained from
regression of x;,; onx; (i =1, -+, N— 1) and jack-
knifing takes place through deletion of a single pair
(xi, x:+1) or a group of / consecutive pairs. The standard
error is obtained by an expression similar to Eq. (7).
Simulations as in Table 2 indicate that the method
performs quite well even for small sample sizes (e.g.,
J = 2 and n = 30). The choice of the group size / is
important. For an AR1 process / = 1 is optimal, but
for other processes Kiinsch (1989) demonstrates that
a serious bias can be incurred with this choice. Because
a relatively small amount of data is deleted for jack-
knifing there are sufficient degrees of freedom. It is not
clear for which sample sizes Student’s t distribution or
the normal distribution can be used in tests for differ-
ences in autocorrelation with this method. A closely
related bootstrap procedure is also presented in Kiinsch
(1989). This procedure does not make use of a fitted
time series model.

Our jackknife approach requires much less computer
time than other resampling techniques, especially when
use is made of Eq. (6) to obtain the various autocor-
relation estimates. Other statistical properties of climate
time series can also be investigated with this technique.
In particular, a jackknife estimate of the variance is
easily obtained from the estimation procedure of the
autocorrelation coefficients. Tests for differences in
variability can therefore be conducted in the same way.
It is sometimes possible, however, to obtain more pow-
erful tests by prewhitening the data first. A paper on
this topic is in preparation.
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