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Abstract 

Nearest-neighbour resampling is used here for the joint simulation of daily rainfall and 
temperature at 36 stations in Germany, Luxemburg, France and Switzerland all situated in the 
Rhine basin. The daily temperatures are used to determine snow accumulation and melt in 
winter. A major advantage of a non-parametric resampling technique is that it preserves both 
the spatial association of daily rainfall over the drainage basin and the dependence between 
daily rainfall and temperature without making assumptions about the underlying joint 
distributions. Both unconditional simulation of daily rainfall and temperature and conditional 
simulations of these variables on the atmospheric flow are discussed. In particular the 
unconditional simulations reproduce the standard deviations and autocorrelation coefficients 
and properties of extreme 10-day rainfall and snowmelt well. The largest 10-day rainfall 
amounts in 1000-year simulations are up to 40% larger than those in the historical record 
(1961-1995).  

1   Introduction  

The Rhine is the most important river in the Netherlands. Large parts of the river, which 
originates in the Swiss Alps, are situated in Switzerland, Germany, France and the 
Netherlands. Small parts of Austria, Belgium and almost the whole country of Luxemburg 
also drain to the river. Protection against flooding is a point of continuous concern. 
According to safety standards, laid down in the Flood Protection Act, measures against 
flooding in the non-tidal part of the Rhine in the Netherlands have to withstand a discharge 
that is exceeded on average once in 1250 years. Traditionally this design discharge has been 
obtained from a statistical analysis of peak discharges at Lobith, where the river enters the 
country. Several probability distributions have been fitted to the discharge maxima of that 
record. The long return period requires an extrapolation far beyond the length of the observed 
discharge record. Different distributions then usually lead to quite different design 
discharges.  

During a re-evaluation of the design discharge at Lobith, there was a strong feeling that the 
uncertainties of extrapolation could be reduced by taking the physical properties of the river 
basin into account. It was suggested to develop a hydrological/hydraulic model for the whole 
basin. The development of a stochastic rainfall generator was also required in order to 
produce long-duration rainfall series over the basin. The use of synthetic rainfall series in 
combination with a hydrological/hydraulic model does not only provide the peak discharges 
but also the durations of these extreme events. This may lead to a better insight into the 
profile of the design flood.  

In this paper nearest-neighbour resampling models are considered for simulation of multi-site 
daily precipitation and temperature time series in the Rhine basin. Temperature is needed to 
account for the effects of snow(melt) and frozen soils on large river discharges. The 



reproduction of second-order moment statistics of temperature and precipitation and 
properties of extreme winter precipitation and snowmelt are examined. Results of 1000-year 
simulations with these models are presented. In these simulations much larger multi-day 
precipitation maxima occur than the historical ones. More details, including several 
alternative nearest-neighbour resampling models, can be found in Wójcik et al. (2000).  

2   Nearest-neighbour resampling  

Nearest-neighbour resampling was originally proposed by Young (1994) to simulate daily 
minimum and maximum temperatures and precipitation. Independently, Lall and Sharma 
(1996) discussed a nearest-neighbour bootstrap to generate hydrological time series. 
Rajagopalan and Lall (1999) presented an application to daily precipitation and five other 
weather variables. Basically the same method is used for generating daily precipitation and 
temperature in the Rhine basin. Especially for multi-site simulations summary statistics are 
needed to avoid problems with the high dimensional data space (Buishand and Brandsma, 
2000).  

In the nearest-neighbour method weather variables like precipitation and temperature are 
sampled simultaneously with replacement from the historical data. To incorporate 
autocorrelation, resampling depends on the simulated values for the previous day in the 
works of Young (1994) and Rajagopalan and Lall (1999). Therefore, one first searches the 
days in the historical record that have similar characteristics as those of the previously 
simulated day. One of these nearest neighbours is randomly selected and the observed values 
for the day subsequent to that nearest neighbour are adopted as the simulated values for the 
next day t. A feature vector (or state vector) Dt is used to find the nearest neighbours in the 
historical record. In Rajagopalan and Lall (1999) Dt was formed out of the standardized 
weather variables generated for day t - 1. The k nearest neighbours of Dt were selected in 
terms of a weighted Euclidean distance. For two q-dimensional vectors Dt and Du the latter is 
defined as: 
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where vtj and vuj are the jth components of Dt and Du respectively and the wj's are scaling 
weights.  

A discrete probability distribution or kernel is required to select one of the k nearest 
neighbours. Lall and Sharma (1996) recommended a kernel that gives higher weight to the 
closer neighbours. For this decreasing kernel the probability pn that the nth closest neighbour 
is resampled is given by:  
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From the above description it is clear that apart from creating a feature vector (see Section 5), 
the user has to set the values of the number k of nearest neighbours and the weights wj. A 
sensitivity analysis in Brandsma and Buishand (1999) showed that k = 5 usually works well. 
In this study we also use this value of k. A more difficult issue is the choice of the weights wj. 
Tuning the weights can be very time consuming especially if the dimension of the feature 
vector is high. In Wójcik et al. (2000) an alternative approach is introduced that avoids 



specification of the weights by using the Mahalanobis distance.  

3   Data description  

Daily temperature and precipitation data from 36 stations were used. The stations are 
distributed all over the Rhine basin: 25 stations in Germany, 1 station in Luxemburg, 4 
stations in France and 6 stations in Switzerland (see Fig. 1). For the 35-year study period 
(1961-1995) the data were provided by the "International Commission for the Hydrology of 
the Rhine Basin''.  

 

Figure 1: Location of Lobith in the Netherlands and the 36 stations in the drainage area of the 
river Rhine used in this study. 

Most stations in Germany, Luxemburg and France are lowland stations with annual mean 
rainfall ranging from 500 to 900 mm. However, two stations in Germany, Kahler Asten and 
Freudenstadt, have a much larger annual mean rainfall (�1500 mm). For the Swiss stations 
mean annual rainfall ranges from about 800 mm for Basel to almost 2400 mm for Säntis. The 
latter is an exceptional station lying at an altitude of 2500 m. 

Because precipitation P and temperature T depend on the atmospheric flow, three daily 
circulation indices are also considered: (i) relative vorticity Z, (ii) strength of the westerly 
flow W and (iii) strength of the southerly flow S. These circulation indices were computed 
from daily mean sea-level pressure data on a regular 5° latitude and 10° longitude grid. The 
derivation of the circulation indices is similar to that in Jones et al. (1993), except that the 
grid was centered at the Rhine basin instead of the British Isles.  



4   Standardization procedure  

Before resampling the data were deseasonalized through standardization. The daily 
temperatures and circulation indices were standardized by subtracting an estimate md of the 
mean and dividing by an estimate sd of the standard deviation for the calendar day d of 
interest: 
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where xt and tx~ are the original and standardized variables for day t, respectively, and J is the 

total number of years in the record. The estimates md and sd were obtained by smoothing the 
sample mean and standard deviation of the successive calendar days.  

Daily precipitation was standardized by dividing by a smooth estimate md,wet of the mean wet-
day precipitation amount:  

 ( ) 1365mod1     ;365,,1        ,/~
, +−=== tdJtmxx wetdtt

�  (4) 

A wet day was defined here as a day with P ≥ 0.1 mm.  

To reduce the effect of seasonal variation further, the search for nearest neighbours was 
restricted to days within a moving window, centered on the calendar day of interest. The 
width of this window was 61 days as in Brandsma and Buishand (1999).  

5   Model identification  

5.1 The feature vector  

Daily P and T observations were available for the 36 climatological stations in Fig.1 Because 
of their rather extreme weather characteristics, the two Swiss mountain stations Davos and 
Säntis are not included in the feature vector. It is, however, still possible to simulate values 
for these stations passively (i.e. the simulated values for the passive stations have equal 
historical dates as those simulated for the stations used in the feature vector). To keep the 
dimension of the feature vector low, a small number of summary statistics was calculated for 
the remaining 34 stations. Both for P and T the arithmetic mean of the standardized daily 
values was used. In addition, the fraction F of stations with P ≥  0.1 mm was considered. F 
helps to distinguish between large-scale and convective precipitation. To keep the notation 
compact, the above components of the feature vector will be referred to as a sub-vector 
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5.2 Three simulation models  

Basically two different kinds of simulations can be distinguished: unconditional simulations 
and conditional simulations on the atmospheric flow indices. 
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Figure 2: Components of the feature vector (solid boxes) for unconditional simulations 1), 2) 
and conditional simulation 3). The dashed boxes relate to variables to be resampled. The 
asterisks indicate that the corresponding variables are resampled values of the previous time 
steps. 

In the unconditional simulations the feature Dt comprises generated variables for the previous 
day as shown in Fig. 2 (cases 1 and 2). Conditional simulation on the atmospheric flow 
requires that the circulation indices for day t are included in the feature vector as 
schematically represented in the upper panel of case 3 in Fig. 2. The conditional model 
presented here uses simulated circulation indices obtained with a second-order model 
(circ2.5) described in Beersma and Buishand (1999) (see Fig. 2 lower panel of case 3). 
Conditional nearest-neighbour resampling is closely related to the analogue method used in 
climate change studies (Zorita and von Storch, 1999). Details of the three models are given in 
Table 1.  

Table 1: Definition of models for unconditional and conditional simulation. The weights for 

the circulation indices apply to all three components of C
~

. P
~

 and T
~

 denote respectively the 
standardized precipitation and temperature averaged over 34 stations, and F denotes the 
fraction of these stations with P ≥  0.1 mm. An asterisk indicates that a value was resampled 
in a previous time step. 
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6   Reproduction of standard deviations and autocorrelation  

Extreme river discharges in the lower part of the Rhine basin are mostly caused by prolonged 
heavy rainfall in winter. The reproduction of the standard deviations of daily temperature and 



precipitation, the standard deviations of the monthly average temperature and the monthly 
precipitation totals, and the autocorrelation coefficients is therefore only presented for the 
winter half-year (October - March). To reduce the influence of the annual cycle these 
statistics were first calculated for each calendar month separately. For each of the 34 stations 
the winter estimates were obtained by taking the arithmetic mean of the six winter months 
(October, ..., March).  

Twenty-eight runs of 35 years were generated to investigate the performance of the 
resampling procedure. For each station i, the standard deviations and autocorrelation 
coefficients were first estimated for each simulation run separately and then averaged over 
the 28 runs. The average estimates *

D is , *
M is , )(* lri  for the daily and monthly standard 

deviations and the lag l autocorrelation coefficient respectively, were compared with the 
estimates isD , isM , )(lri  for the historical data. The average relative difference Ds∆  

between the observed and simulated daily standard deviation is calculated using  
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with a similar equation for the average relative difference Ms∆  of the monthly standard 

deviation, and  
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for the average difference )(lr∆  of the lag l autocorrelation coefficient.  

In order to evaluate the statistical significance of Ds∆ , Ms∆  and )(lr∆  standard errors se 

were calculated for the historical record. A criterion of 2 × se was used to indicate significant 
differences between the historical and simulated values. Table 2 presents Ds∆ , Ms∆  and 

)(lr∆  for the models defined in Table 1. 

Table 2: Percentage differences between the mean standard deviations of monthly and daily 
values, and absolute differences between the mean lag 1 and 2 autocorrelation coefficients in 
the simulated time series (twenty-eight runs of 35 years) and the historical records (1961-
1995), averaged over 34 stations. Bottom lines: average historical estimates (standard 
deviations in mm for precipitation and in °C for temperature). Values in bold refer to 
differences more than 2 × se from the historical estimate. 

  
Ms∆   

Ds∆   )1(r∆   )2(r∆  

Model  P T  P T  P T  P T 

UE  0.3 -1.1  0.2 0.2  -0.019 -0.032  -0.001 0.006 

UEc  -1.7 -8.2  -1.2 -1.9  -0.018 -0.036  0.001 -0.020 

CE  -6.4 -18.8  -2.3 -7.0  -0.052 -0.087  -0.022 -0.050 

Historical  35.7 2.1  4.2 4.2  0.283 0.826  0.144 0.639 

se  4.53 6.16  2.45 2.49  0.008 0.007  0.009 0.015 

 



For the unconditional model which incorporates only the large-scale features of the P and T 
fields (model UE) the precipitation and temperature statistics are well reproduced. A slight, 
though statistically significant, bias is present in the lag 1 autocorrelation coefficients. 
Incorporation of the circulation indices into the feature vector (model UEc) generally worsens 
the reproduction of daily temperature statistics. The results for precipitation are, however, 
similar to those obtained in the unconditional model without circulation indices. The latter 
insensitivity is in line with the results in Buishand and Brandsma (2000).  

Conditional resampling of P and T on simulated circulation indices (model CE) lags behind. 
In Beersma and Buishand (1999) it was also shown that this occurs for simulations 
conditional on historical circulation indices. All temperature statistics and the lag 1 and 2 
autocorrelation coefficients for precipitation are significantly underestimated.  

7   Reproduction of 10-day winter maximum precipitation  

Three quantities are considered to verify the reproduction of the 10-day winter maximum 
precipitation amounts: (i) the maximum MAX of the 10-day winter maxima (highest 10-day 
precipitation amount in the record), (ii) the upper quintile mean QM5 of the 10-day winter 
maxima and (iii) the median M of the 10-day winter maxima. QM5 refers to the mean of the 
data beyond the highest quintile (upper 20%).  

Analogous to equation (5), we calculated for each of the three quantities the percentage 
differences between the values for the simulated and historical data averaged over the 34 
stations. Table 3 presents the results for the three models.  

There is always an underestimation of the extreme-value properties, which is, however, not 
more than 2% for the unconditional models. Conditioning the resampling procedure on 
circulation indices (model CE), results in a bit larger underestimation of the extreme-value 
statistics than in the unconditional cases. This is in agreement with the poorer reproduction of 
second-order moment statistics for conditional simulations as observed in Table 2.  

Table 3: Percentage differences between the maxima (MAX), upper quintile means (QM5) 
and medians (M) of the 10-day winter (October-March) precipitation maxima in the 
simulated data (twenty-eight runs of 35 years) and the historical records (1961-1995), 
averaged over 34 stations. Bottom line: average historical estimates (mm). 

Model MAX (%) QM5 (%) M (%) 

UE -1.4 -0.6 -0.2 

UEc -0.9 -2.0 -1.9 

CE -5.5 -5.3 -4.5 

Historical 138.5 111.1 75.2 

 

8   Reproduction of 10-day maximum snowmelt amounts  

Snowmelt generally, contributes to extreme river discharges in the lower part of the Rhine 
basin. It is, however, only for the highest stations Kahler Asten, Freudenstadt, Kl. Feldberg , 
Disentis, Davos and Säntis that a considerable part of the winter precipitation falls in the form 
of snow. For these six stations the reproduction of extreme-value properties of 10-day 
snowmelt has been analysed.  



Historical estimates and simulated values of snowmelt were derived from the historical and 
generated daily precipitation and temperature, respectively. It was assumed that precipitation 
accumulates if T < 0 °C (snow cover) and that snowmelt is proportional to T (T > 0 °C) with 
the constant of proportionality equal to 4 mm/°C. The 10-day winter maxima were taken 
from the calculated snowmelt amounts. As in the previous section, the statistics MAX, QM5 
and M of these extremes were used to assess the reproduction of these maxima.  

Table 4 presents the average percentage differences between the values of MAX, QM5 and M 
for the three models and the values of these statistics for the historical data for the six stations 
of interest. The extremes are satisfactorily reproduced by model UE. The largest 
discrepancies here are found for Kahler Asten and Davos (overestimation of the median of 
the 10-day maxima). A similar overestimation is found for model UEc. Conditional 
simulation (model CE) results, for most stations, in a relatively large underprediction of the 
extreme-value properties of 10-day snowmelt. This phenomenon can partly be explained by 
the considerable negative bias in the daily temperature autocorrelation coefficients, which 
reduces the likelihood that snow accumulates over long periods and thus the probability of 
extreme multi-day snowmelt.  

The historical winter snowmelt maxima at the Swiss stations are not higher than those at 
Kahler Asten and Freudenstadt. In particular for Säntis there is, however, a lot of snowmelt 
outside the winter period. For example, the maximum 10-day snowmelt amount (MAX) 
calculated for the whole year at this station is as high as 444.8 mm, while for the winter 
period it is only 198.0 mm.  

Table 4: Percentage differences between the maxima (MAX), upper quintile means (QM5) 
and medians (M) of the 10-day snowmelt extremes for the simulated data (twenty-eight runs 
of 35 years) and the historical records (1961-1995) for six stations in the Rhine basin. The 
columns denoted with Hist. give the historical values (mm). 

 MAX (%)  QM5 (%)  M (%) 

Station UE UEc CE Hist.  UE UEc CE Hist.  UE UEc CE Hist. 

Kahler -12.1 -12.8 -20.9 287.2  2.6 2.8 -7.3 184.6  20.7 20.3 9.2 86.6 

Freudenstadt -10.0 -6.4 -31.6 234.7  -11.2 -10.5 -30.2 180.4  -6.7 -8.8 -22.5 93.7 

Kl. Feldberg 5.6 2.2 -18.4 151.6  -1.7 -6.0 -22.3 121.7  -6.5 -11.0 -23.0 71.3 

Disentis -13.6 -3.4 -34.2 171.8  -7.0 -3.3 -35.2 119.1  -7.6 -8.6 -23.0 67.8 

Davos -6.7 -4.9 -15.1 176.4  -4.8 -3.7 -12.8 137.8  11.0 14.5 8.7 63.6 

Säntis 1.1 -5.8 -22.0 198.0  -13.6 -16.2 -29.2 157.0  -0.5 -1.9 -11.7 63.9 

 

9   Long-duration simulations  

For three 1000-year simulations Fig. 3 shows Gumbel plots of the 10-day winter precipitation 
maxima for the average of the 34 stations used in the feature vector.  



 

Figure 3: Gumbel plots of 10-day winter precipitation maxima for observed and simulated 
data (runs of 1000 years) 

There is a reasonable correspondence between the historical and simulated distributions. The 
figure clearly shows the underestimation of the extreme-value properties for the conditional 
model CE, discussed in Section 7. Furthermore, in Fig. 3, a large part of the curve for the 
conditional 1000-year simulation lies below the curves for the unconditional 1000-year 
simulations. Realistic multi-day precipitation amounts much larger than the largest historical 
precipitation amounts are generated in all simulation experiments shown in Fig. 3.  

10   Conclusions  

The unconditional simulations preserved the second-order moment statistics of daily and 
monthly precipitation and 10-day maximum precipitation well. The lag 1 autocorrelation 
coefficients for daily precipitation and temperature were, however, significantly 
underestimated. The reproduction of the second order moments of temperature became worse 
in simulations where atmospheric circulation indices were added to the feature vector. 
Despite this deficiency the reproduction of 10-day maximum snowmelt was satisfactory.  

Multi-site simulation of P and T conditional on simulated atmospheric circulation indices 
performed somewhat poorer than the unconditional simulations. Especially for temperature 
the reproduction of second-order moment statistics became worse. As a result a significant 
underestimation (up to 20-30%) of the median and the upper quintile mean of 10-day 
snowmelt amounts was observed for four high-elevation stations (Freudenstadt, Kl. Feldberg, 
Disentis, Säntis).  

The ability of both unconditional and conditional models to generate realistic unprecedented 
multi-day rainfall events was demonstrated with simulation runs of 1000 years. Especially 



those extreme events may cause large peak discharges of the river Rhine in the Netherlands. 
A single simulation run of 1000 years does not provide, however, an accurate estimate of a 
1000-year event. More simulations are needed for that purpose and even then a considerable 
uncertainty remains due to the use of a relatively short 35-year historical record for 
resampling.  
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