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Abstract

The Netherlands are situated at the downstream end of the Rhine River. A
large part of the country can be supplied with water from the river in the case
of precipitation deficits. For the assessment of the economical damage due to
drought it is necessary to consider the rainfall and river inflow simultaneously.

Transformed normal distributions as well as Gumbel distributions have been
fitted to the observed precipitation and discharge deficits. The sensitivity of joint
probabilities to the choice of the marginal distributions, the dependence structure
and the ‘failure region’ is investigated. It is found that the bivariate normal dis-
tribution underestimates the probability that both the rainfall and runoff deficit
are extreme due to its asymptotic independence.

Introduction

A large part of the Netherlands is situated in the delta of the Rhine River, the
largest river in northwestern Europe (drainage area 185000 km?). The Rhine
rises in the Swiss Alps and flows via France and Germany to the Netherlands,
where it divides a number of times. As a result, large parts of the country can be
supplied with water from the river in the case of precipitation deficits. The Rhine
plays a major role in the overall water balance of the Netherlands; the amount of
Rhine water that flows through the Netherlands is on average twice as large as
the amount of water that the country receives as precipitation.

This paper considers the probability of drought in the Netherlands. The water
balance indicates that it is important to consider the precipitation and the fresh
water inflow from the Rhine simultaneously. Therefore particular attention is
given to the joint distribution of the precipitation deficit (a measure of the local
drought) and the discharge deficit (a measure of the lack of fresh water inflow).



To describe the joint distribution of precipitation and discharge deficits, bi-
variate probability distributions are fitted to 95 years of historical data. Uni-
variate probability distributions are fitted first to the precipitation and discharge
deficits separately. Subsequently those univariate distributions are combined into
bivariate probability distributions. Particular attention is given to the choice be-
tween the dependence structure of the bivariate normal distribution and that of
a (limiting) bivariate Gumbel distribution.

For a number of extreme years in the historical record, the return period of
joint exceedances of the observed precipitation and discharge deficit is estimated
with different bivariate distributions. These estimates are compared with the
return periods obtained from a failure region based on the economical damage.

Drought characteristics

Two drought characteristics are considered; the precipitation deficit in the Nether-
lands and the discharge deficit of the Rhine River in the Netherlands. The pre-
cipitation deficit is defined as the cumulative difference between precipitation
and grass reference evaporation, from April, 1 onward. When the precipitation
deficit becomes negative it is reset to zero. The annual maximum precipitation
deficit is the largest precipitation deficit that occurs between April, 1 and Octo-
ber, 1. Both for precipitation and evaporation daily values were available for the
period 1906-2000, giving 95 independent annual maximum precipitation deficits.
For practical reasons the daily data were transformed to decad data prior to the
analysis. Decad data were obtained by dividing each calendar month into three
decads; the first two decads of a month always consist of 10-day values and the
third decad covers the remaining days.

Average precipitation for the Netherlands was obtained by averaging the pre-
cipitation sums from 13 stations spread over the country. The grass reference
evaporation was derived from temperature and sunshine duration at a represen-
tative station.

The discharge deficit of the Rhine River was based on discharge measurements
at the German-Netherlands border. Only decads for which the discharge was be-
low 1800 m?/s contribute to the discharge deficit. The discharge deficit was also
calculated for the period April, 1 until October, 1 and was available for the same
period (1906-2000) as the precipitation deficit.

Probability distributions for the precipitation deficit

Two distributions were fitted to the largest precipitation deficit in each year; the
Gumbel distribution and the lognormal distribution. The parameters of these
distributions were estimated by the maximum likelihood (ML) method.

Figure 1 presents Gumbel plots of the historical maxima, and the fitted dis-
tributions. Compared to the Gumbel distribution the lognormal distribution has
a longer upper tail. The fitted distributions were subjected to the Anderson-
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Figure 1: Ordered historical annual maximum precipitation deficits, and the fitted
Gumbel and lognormal distributions

Darling (A-D) test (as in Stephens, 1986a) and the ‘probability plot correlation
coefficient’ (ppcc) test (Vogel, 1986). These tests are sensitive to deviations in
the upper tail. Both tests gave for the lognormal distribution a significant result
at the 5%-level, but not at the 1%-level, while the Gumbel distribution passes
both tests at the 5%-level. Thus, although the lognormal distribution seems to
fit better in the tail of the distribution these tests indicate that over the whole
domain the lognormal distribution does not properly fit the data while the Gum-
bel distribution does.

Probability distributions for the discharge deficit

The Gumbel distribution was also fitted to the annual discharge deficits. Instead
of a lognormal distribution it is now assumed that the square root of the data
are normally distributed.

To avoid a large influence of small values of the discharge deficit on the esti-
mated parameters the sample was censored at a low threshold of 0.03 x 10° m3
in the fit of the sqrt-normal distribution and at 0.6 x 10° m? in the case of the
Gumbel distribution. For data below the threshold only the information that
they are smaller than the threshold is used rather than their actual values. The
parameters were estimated by the ML method, see e.g. Shumway et al. (1989) for
a transformed normal distribution and Leese (1973) for the Gumbel distribution.

In Figure 2 the probability distributions of the historical data and the fitted
distributions are presented. For values larger than 1.0 x 10 m?, the fitted Gumbel
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Figure 2: Ordered historical annual discharge deficits, and fitted Gumbel and

sqrt-normal distributions

and sqrt-normal distributions are nearly indistinguishable. Because of the cen-
soring the goodness-of-fit tests used in the previous section can not be applied.
Both the Gumbel and the sqrt-normal distribution pass the adapted ppcc test
for censored data in Stephens (1986b) at the 5%-level.

Bivariate probability distributions

So far univariate probabilities were considered. In the introduction it was already
noted that from a drought impacts point of view it is much more interesting
to look at joint exceedance probabilities. Drought events that have the largest
economical impact are those events that have both a large precipitation deficit
and a large discharge deficit. The latter makes compensation of the local water
shortage by water from elsewhere in the Rhine basin very difficult.

A logical way to proceed is to combine the univariate (marginal) probabil-
ity distributions into a bivariate probability distribution. In the case that the
maximum precipitation deficit is described by a lognormal distribution and the
discharge deficit by a sqrt-normal distribution it would be natural to consider the
bivariate normal distribution. The joint density of the standardized transformed
precipitation and discharge deficits is then given by:

1 1
————exp |~ (2" — 2pazy + 1) (1)
2m\/1 — p? 2(1—p?)

where p is the correlation coefficient of the transformed values.

¢2(x7 y) =



A family of bivariate extensions of the Gumbel distribution is provided by
the theory of multivariate extremes (e.g. Coles, 2001). A popular model in this
family is the logistic model:

F(z,y) =Pr(X <z,Y < y) =exp [~ (e + e7¥/*)"] (2)

where o characterizes the strength of the dependence between X and V; a =1
corresponds with independence and o = 0 with perfect positive dependence.

The dependence structure of the bivariate normal distribution is quite different
from that of the bivariate Gumbel distribution in Eq. (2). A classical result for the
bivariate normal distribution with p < 1is that its components are asymptotically
independent (Sibuya, 1960), i.e.

lim Pr(Y >u|X >u)=0. (3)
U—0Q0
For the bivariate Gumbel distribution, however, Pr(Y > u | X > u) tends to
2 —2% and this distribution is therefore asymptotically dependent if & < 1. Note
that asymptotic dependence holds for all limiting bivariate extreme value distri-
butions.

Dependence structure. Dependence measures for bivariate extremes have been
discussed by Coles et al. (1999). To remove the influence of the marginal distri-
butions the variables X and Y are transformed to standard uniform variables,
via U = Fx(X) and V = Fy(Y). For the data (x;,y;), i = 1,..., N this can be
achieved in a similar way using the empirical distribution functions:
_FHy's <y

and v; = Fy (y;) = TNE1 (4)
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One measure of dependence suggested by Coles et al. (1999) is the quantity
x(u) defined by:

C InPr(U <w, V <w)
InPr(U < u)

x(u) = for 0 <u < 1. (5)
Independence corresponds with x(u) = 0 and complete positive dependence with
X(u) = 1. For the bivariate logistic Gumbel distribution in Eq. (2), x(u) = 2—2°.
Further, for sufficiently large u:

X(u) ~Pr(V >u|U > u) (6)

and thus x(u) — 0 as u — 1 for asymptotically independent distributions like the
bivariate normal distribution. x(u) is not influenced by a monotonic increasing
transformation of the data such as the log and sqrt transformation applied to the
precipitation and discharge deficits to achieve normality.

An estimate of y(u) can be constructed by substituting empirical estimates
of the probabilities in the right-hand side of Eq. (5). Figure 3 presents such an
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Figure 3: Dependence measure x(u) for the historical data and the fitted bivariate
distributions

estimate of x(u) and the theoretical values for the fitted bivariate distributions.
The parameters p and « in these distributions were estimated by the ML method,
taking into account the censoring of low discharge deficits as described e.g. in
Ledford and Tawn (1996). The figure shows that x(u) is almost constant for the
historical precipitation and discharge deficits. For large u, this plot of x(u) is
more in line with x(u) for the bivariate Gumbel distribution than x(u) for the
bivariate normal distribution. For the latter x(u) gradually decreases, but for u
near 1 it abruptly drops to zero. From a physical point of view, this behavior is
not very realistic since a severe drought typically extends over a large area and
will thus affect the precipitation in the Netherlands as well as in the upstream
Rhine catchment.

The question whether the data are asymptotically dependent or not can be
investigated further by calculating for each year T; = min[—1/(1—u;), —1/(1—v;)].
For large z, the probability that 7; > z can be approximated by the Pareto
distribution (Ledford and Tawn, 1996):

Pr(T; > 2) ~ ¢z~ /" (7)

where ¢ and 7 are the scale and shape parameters. For the bivariate Gum-
bel distribution n = 1, whereas for asymptotically independent data n < 1;
n = (14 p)/2 = 0.74 for the bivariate normal distribution. Here n was estimated
from the 70 largest values of T; using the ML method (Hill estimator). This
resulted in 7§ = 1.12 with a standard error of 0.13, which supports the bivariate
Gumbel distribution.



Table 1: Mean return periods (yr) of joint exceedances of the observed precipita-
tion and discharge deficits in given years for different bivariate distributions.

Year  Precipitation Discharge Normal Gumbel Normal
deficit deficit w. logistic
(mm) (109 m?) dependence

1921 321.6 12.1 824 318 281

1976 361.1 10.7 760 296 221

1959 351.7 5.1 143 139 90

1947 296.1 7.8 142 78 65

1949 226.7 9.2 111 72 68

Return periods of joint exceedances. Both the dependence structure and the
choice of the marginal distributions have an influence on the joint exceedance
probabilities. Besides the bivariate normal distribution and the bivariate Gumbel
distribution a third bivariate distribution is considered, namely a bivariate normal
distribution with a logistic-Gumbel dependence structure. The latter is a logical
combination of the other two bivariate distributions and is obtained from the
bivariate Gumbel model, using the transformations:

X = Ay [GX(X)] and ¥ = H;! [GY(Y)] 8)

where G x and Gy are the fitted Gumbel distributions, and H X, lf[y the fitted log-
normal and sqrt-normal distributions, respectively. Since these transformations
are monotonic increasing, ()~( , }7) has the same logistic dependence structure as
(X,Y).

For 5 extreme years in the historical record the return periods of joint ex-
ceedances of the observed precipitation and discharge deficit, i.e. T'=1/Pr(X >
x;, Y > y;) were determined. Table 1 compares the estimates of 17" from the dif-
ferent bivariate models. The return period for the most extreme years 1921 and
1976 is about 800 years for the bivariate normal distribution. These long return
periods are mainly due to the asymptotic independence of this distribution. The
return periods for 1921 and 1976 reduce to about 250 years if a bivariate normal
distribution with logistic-Gumbel dependence structure is assumed.

Failure regions

In the previous section return periods were found for the most extreme years
that are considerably longer than the length of the historical records from which
they were derived. Besides lack-of-fit and sampling variability this is due to the
fact that the probability that two different variables exceed some high level si-
multaneously is smaller than the marginal exceedance probabilities for each of
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the two variables. For the fitted normal distribution with logistic-Gumbel depen-
dence the magnitude of this effect was estimated with a Monte-Carlo experiment
in which 10000 samples of 95 years from that distribution were generated. For
each 95-year sample the return periods of the joint exceedances of the simulated
precipitation and discharge deficits were determined. The median of the longest
return period in the 95-year samples is 320 years which is very close to the 280
years for 1921 in Table 1.

In practical applications, the joint probability that X and Y lie in a ‘failure
region’ different from the rectangle defined by (X > x, Y > y) might be of
interest. Structures e.g. often fail if a combination of the constituent variables
becomes extreme. This combination then marks the boundary of the failure
region. For the assessment of droughts in the Netherlands it is useful to base the
failure region on the economical damage Dg.

The economical damage from 7 historical years (1949, 1959, 1967, 1976, 1985,
1995 and 1996) reveals that Dg can be approximated as:

Dy =azx+by+c (9)

with x the precipitation deficit and y the discharge deficit. The regression co-
efficients a, b and ¢ were estimated by a least-squares fit. Let x; and y; be the
observed precipitation and discharge deficits for the year of interest. Events with
a precipitation and discharge deficit in the region above the line through (z;,y;)
and with slope —a/b should then be considered as more extreme in terms of
economical damage. For the years 1976, 1959 and 1949, Fig. 4 compares the
boundary of this failure region with the rectangle (X > x;, Y > ;). The slope
of the bounding line indicates that the economical damage is relatively more sen-
sitive to the precipitation deficit, which was not unexpected. Table 2 presents,
for each of the historical years in Table 1, the return periods of joint events in
the failure region based on Eq. (9). The estimated return periods in Table 2 are
much shorter than those in Table 1, in particular for 1921 and 1976. Using a
failure region related to the economical damage gives on average the longest re-
turn period for 1976 while in Table 1 the longest return period is found for 1921.
This is a result of the relatively smaller contribution of the discharge deficit to
the economical damage (see Fig. 4). In Table 1 the return periods are longest
for the bivariate normal distribution while in Table 2 the longest return periods
are found for the bivariate Gumbel distribution. The shortest return periods are
found in both tables for the bivariate normal distribution with logistic-Gumbel
dependence, but the difference with the standard bivariate normal distribution is
much smaller in Table 2. This is in line with results of Tawn (1988) and Coles
and Tawn (1994) that the sensitivity of joint probabilities to assumptions about
the dependence structure varies considerably with the type of failure region.
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angle (X > z;, Y > ;) for the historical years 1976, 1959 and 1949 (indicated as
76, 59 and 49).

Table 2: Mean return periods (yr) of situations that the precipitation and dis-
charge deficits are more extreme than the observed deficits in the given years in
terms of economical damage (Eq.9) for the different bivariate distributions.

Year  Precipitation Discharge Normal Gumbel Normal
deficit deficit w. logistic
(mm) (109 m?) dependence

1921 321.6 12.1 99 113 79

1976 361.1 10.7 147 172 110

1959 351.7 5.1 66 75 55

1947 296.1 7.8 41 46 36

1949 226.7 9.2 17 19 17

Discussion and conclusion

Different probability distributions were fitted to the annual maximum precipi-
tation deficit in the Netherlands and the annual discharge deficit of the Rhine
River. It was found that the degree of association between large values is too
weak if the dependence structure of a bivariate normal distribution is assumed.
This results in a strong underestimation of the probabilities of joint exceedances



of extreme values. The joint occurrence of large values is better described by
the dependence structure of a limiting Gumbel distribution. The use of this de-
pendence function was studied with Gumbel and transformed normal marginals.
The latter describes the upper tail of the precipitation deficit distribution bet-
ter, leading to shorter return periods between extreme bivariate events than the
Gumbel distribution. The assumption of Gumbel marginals was, however, not
rejected by the Anderson-Darling and the ppcc tests. For the most extreme year
in terms of economical damage, 1976, the estimated exceedance probability was
once in 172 years for the bivariate Gumbel distribution and once in 110 years for
the transformed normal distribution with logistic-Gumbel dependence. A study
of the uncertainty of these estimates was beyond the scope of this paper.
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