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ABSTRACT

The merits of daily and monthly downscaling models for precipitation are compared using data from Bern,
Switzerland; Deuselbach, Germany; and De Bilt, the Netherlands. For each station, generalized linear models
are developed to describe rainfall occurrence, the wet-day precipitation amounts, and the monthly precipitation
totals. The predictor dataset includes dynamical variables and atmospheric moisture (relative humidity for rainfall
occurrence and specific humidity for rainfall amount).

Fitting a generalized linear model to daily rainfall data generally results in larger regression coefficients than
fitting the same model to monthly data. For rainfall occurrence this can be attributed mostly to the nonlinearity
of the function that links the wet-day probabilities to the predictor variables, whereas for rainfall amounts there
is, apart from nonlinearity, also a bias in the estimated regression coefficients of the monthly models caused by
averaging predictor variables over both wet and dry days. Because of this bias a monthly rainfall amount model
is less sensitive to an increase in the specific humidity than a daily rainfall amount model.

Although the squared correlation coefficient r2 between the observed and predicted values of the daily models
is low (ø0.40 for rainfall occurrence and ø0.15 for wet-day rainfall), aggregating the results from these models
to monthly values gives r2 values comparable to those in the direct fit to the monthly data (ø0.65 for the number
of wet days and ø0.50 for rainfall totals). The temporal variations in the predicted annual amounts using monthly
relationships are similar to those obtained from daily relationships. Daily models are preferable, however, for
the generation of climate change scenarios for impact studies, because the significance of the predictor variables
is generally stronger in these models and because the effect of a change in specific humidity is underestimated
by the monthly models.

1. Introduction

The term statistical downscaling refers to statistical
techniques that are used to obtain climate variables at
the required temporal and spatial resolution for climate
change impact studies. In particular for precipitation,
the direct output of climate change simulations from
general circulation models (GCMs) is inadequate for
most impact studies and needs to be enhanced.

The statistical downscaling approach makes use of
relationships between the observed local precipitation
and atmospheric predictor variables. The predictors
should be realistically modeled by the GCM and should
fully represent the climate change signal. Practically,
this implies that both circulation-based and humidity
predictors are included in the downscaling model (Gior-
gi et al. 2001). There is a risk that a vital predictor for
climate change is discarded as statistically not signifi-
cant. The statistical significance of a predictor in the
present climate depends, among other factors, on the
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chosen temporal aggregation level of the data. Some
authors have developed downscaling relationships for
monthly data (e.g., Kilsby et al. 1998; Murphy 1999,
2000), whereas others have considered daily data (e.g.,
Wilby et al. 1998; Beckmann and Buishand 2002). Typ-
ically, the aggregation level is simply determined by the
temporal resolution needed for the climate change ap-
plication of interest. Seldom has it been realized that
the aggregation level influences the choice of predictors
and the estimated changes under future climate condi-
tions.

In this paper the differences between statistical down-
scaling models for daily and monthly precipitation data
are studied in detail. This is done with data from three
stations in the River Rhine basin: Bern in Switzerland,
Deuselbach in Germany, and De Bilt in the Netherlands
(Table 1). For each of these stations, generalized linear
models (GLMs) are used to describe precipitation oc-
currence, the wet-day precipitation, and the monthly pre-
cipitation totals. GLMs extend the classical linear re-
gression model to cases where the data come from an
exponential family other than the normal distribution, and
allow for a nonlinear link between the expected response
and the predictors. Such a link is needed to ensure that
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TABLE 1. Geographical position, altitude, mean annual rainfall, and
mean number of wet days per year for Bern, Deuselbach, and De
Bilt. Annual means refer to the period 1968–95.

Bern Deuselbach De Bilt

Lat (N)
Lon (E)
Alt (m)
Annual rainfall (mm)
No. of wet days

468569
78259
565

1058
170

498469
78039
480
792
196

528069
58119

2
802
194

the probabilities of precipitation lie in the interval (0, 1)
and that the wet-day precipitation amounts are positive.
The influence of the aggregation level is studied for the
estimated regression coefficients, their standard errors,
and the proportion of explained variance. The effects of
systematic changes in a predictor variable on the number
of wet days and the rainfall amounts are studied for the
fitted downscaling models.

Models for daily precipitation occurrence and for the
monthly number of wet days are compared in section
2. Section 3 presents a similar comparison for precip-
itation amount models. In section 4 the estimated month-
ly and annual precipitation totals from the statistical
models for daily and monthly data are compared. Sec-
tion 5 closes the paper with a discussion and conclu-
sions.

2. Rainfall occurrence models

A wet day is defined here as a day with 0.1 mm of
precipitation or more. For daily data, the predictand Yt

can take only two values: Yt 5 1 if day t is wet or Yt

5 0 if it is dry. The number MW of wet days per month
is the predictand in the model for monthly data. In both
cases, logistic regression is used to link the predictand
to atmospheric variables. The logistic model belongs to
the class of GLMs. There are many applications of the
logistic model in the climatological and meteorological
literature such as time series modeling (e.g., Coe and
Stern 1982), medium-range weather forecasting (e.g.,
Lemcke and Kruizinga 1988), identification of weather
codes (Merenti-Välimäki and Laininen 2002), and de-
tection of trends in rare events (Frei and Schär 2001).
Kilsby et al. (1998) and Wilby (2001) applied an em-
pirical logistic transformation to observed frequencies
of wet and dry days.

In this section the logistic model is introduced first
for daily rainfall occurrence and then for the monthly
number of wet days. The fit to rainfall occurrence data
from Bern, Deusselbach, and De Bilt (Table 1) is dis-
cussed thereafter.

a. Logistic model for daily rainfall occurrence

The key parameter in the logistic model is the prob-
ability p of a day being wet. The model assumes that
the logistic transformation of p is a linear function of
the predictors x1, . . . , xp:

p
g(p) 5 log 5 a 1 a x 1 · · · 1 a x . (1)0 1 1 p p[ ]1 2 p

The function g(·) is known as the link function in the
literature on GLMs. The regression coefficients a0, a1,
. . . , ap are usually estimated by the method of maxi-
mum likelihood (McCullagh and Nelder 1989). In
GLMs, the maximum likelihood estimates can be ob-
tained via an iteratively reweighted least squares (IRLS)
procedure.

The mean and variance of the rainfall occurrence in-
dicator Y are completely determined by the wet-day
probability p:

E(Y ) 5 p and (2a)

var(Y ) 5 p(1 2 p). (2b)

As distinct from the classical linear regression model,
the variance depends on the expected response and thus
on unknown regression coefficients.

b. Logistic model for monthly rainfall occurrence

The logistic model for monthly rainfall occurrence
assumes that the mean and variance of the number MW

of wet days can be represented by expressions similar
to Eq. (2):

E(M ) 5 MP and (3a)W

var(M ) 5 fMP(1 2 P). (3b)W

Here M stands for the total number of days in the month
of interest, f is a dispersion parameter, and the wet-day
probability P is given by the same logistic equation as
Eq. (1), but now with monthly mean values 1, . . . ,X

p of the predictors.X
In contrast to the daily rainfall occurrence model, the

distribution of the predictand is not entirely specified.
For f 5 1, Eq. (3b) gives the variance for the binomial
distribution, which would arise if the Yt values were
independent with the same wet-day probability p. Be-
cause p varies with x1, . . . , xp and because of persis-
tence in the daily rainfall occurrence, the variance of
MW differs from the binomial variance. Positive auto-
correlation is a well-known cause of overdispersion; that
is, f . 1 (McCullagh and Nelder 1989).

Even though the distribution of MW is not completely
defined, the regression coefficients a0, a1, . . . , ap can
still be estimated using the IRLS procedure for maxi-
mum likelihood estimation for data from a binomial
distribution. The resulting estimates are known as quasi-
likelihood estimates. The theory of quasi likelihood only
requires that the relationship between the variance and
the mean is specified (McCullagh and Nelder 1989).

In this study, the estimate of f was based on Pearson’s
x 2 statistic:

2f̂ 5 x /(n 2 p 2 1), (4)

where
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TABLE 2. Estimated regression coefficients and correlation coeffi-
cients in the logistic models for daily and monthly rainfall occurrence
(rres is the lag 1 autocorrelation coefficient of the residuals, and rD

and rM are the correlation coefficients between the observed and pre-
dicted values of daily and monthly rainfall occurrence, respectively).
For the model for monthly rainfall occurrence, is the estimate off̂
the dispersion parameter f in Eq. (3b). The standard error se of an
estimated regression coefficient is the average standard error for the
three stations as obtained from Eq. (4.21) in McCullagh and Nelder
(1989).

Variable Bern Deuselbach De Bilt se

Daily rainfall occurrence
rh (%)
slp (hPa)
u (m s21)
y (m s21)

0.056
20.055

0.086
20.197

0.053
20.023

0.156
20.041

0.046
20.081

0.121
20.081

0.0016
0.0040
0.0044
0.0058

rres

r2
D

r2
M

0.17
0.43
0.63

0.18
0.36
0.63

0.15
0.40
0.64

Monthly rainfall occurrence
rh (%)
slp (hPa)
u (m s21)
y (m s21)

0.037
20.020

0.097
20.073

0.040
20.013

0.150
20.028

0.029
20.054

0.101
20.017

0.0046
0.0093
0.0077
0.0122

rres

f̂
r2

M

0.23
1.04
0.66

0.15
1.40
0.65

0.18
1.44
0.65

n 2ˆ(M 2 M P )W,t t t2x 5 , (5)O ˆ ˆM P (1 2 P )t51 t t t

with MW,t the number of wet days in month t, Mt the
total number of days in month t, t the estimated wet-P̂
day probability for month t, and n the total number of
months. Note that the x 2 statistic weights the squared
residuals inversely proportional to the estimated vari-
ances.

c. Results

Daily data for the 28-yr period 1968–95 were con-
sidered. The same predictor variables were used for each
rainfall station: the relative humidity rh at 700 hPa, the
sea level pressure slp, and the west component u as well
as the south component y of the geostrophic flow, both
derived from the sea level pressure. The choice of these
predictor variables was based on earlier downscaling
studies for Bern (Buishand and Beckmann 2000), and
the Netherlands and north Germany (Beckmann and
Buishand 2002). Relative humidity and sea level pres-
sure were obtained from the National Centers for En-
vironmental Prediction–National Center for Atmospher-
ic Research (NCEP–NCAR) reanalysis dataset (Kalnay
et al. 1996; Kistler et al. 2001). Six-hourly values of
numerous weather variables were available on a 2.58 3
2.58 grid. The grid point nearest to the rainfall station
was considered. Daily averages of the predictor vari-
ables were calculated from the four 6- hourly values in
the reanalysis data that were within the sampling inter-
val of the daily rainfall measurements. For the monthly
rainfall occurrence model these daily averages were
converted to monthly averages.

The full 28-yr records, without seasonal stratification,
were used to explore the effects of the temporal aggre-
gation level at the three stations. Because the assumption
of a constant statistical relationship over the year could
be questioned, the data for De Bilt were also analyzed
for a 5-month extended winter season (November–
March) and a 5-month extended summer season (May–
September). Extended seasons rather than standard 3-
month seasons were chosen here to help ensure that a
reasonable number of the predictors are statistically sig-
nificant.

Table 2 summarizes for the three sites the results for
the logistic models fitted to the rainfall occurrence data
from the entire year. The correlation coefficients be-
tween the observed and predicted daily (rD) and monthly
(rM) values are measures of model performance. The
square of these coefficients is almost equal to the pro-
portion of the explained variance. In the daily model all
predictors are significant at the 1% level. The predictors
in the monthly model are significant at the 5% level,
except sea level pressure for Deuselbach and the y ve-
locity for De Bilt.

Table 2 shows a clear dependence of the estimated
regression coefficients and their standard errors on ag-

gregation level. The absolute values of the estimated
regression coefficients in the daily model are nearly al-
ways larger than those in the monthly model. The stan-
dard errors of the estimated regression coefficients of
rh, slp, and u and y approximately double with the
change from the daily to the monthly aggregation level.
Despite the marked persistence in daily rainfall occur-
rence, the lag 1 autocorrelation coefficient rres of the
residuals (Yt 2 t) does not exceed 0.18. Somewhatp̂
surprisingly, the values of rres for the monthly rainfall
occurrence model are not smaller than those for the daily
rainfall occurrence model. This may partly be due to
nonhomogeneities in the reanalysis data (see section 4).
The values of in Table 2 appear to be much larger2rM

than the corresponding values of .2rD

The observed differences between the results for daily
and monthly rainfall occurrence are due partly to the
nonlinearity of the logistic model and partly to the au-
tocorrelation of the daily variables (appendixes A and
B). In the classical linear regression model with inde-
pendent errors, there is no dependence of the estimated
regression coefficients on temporal aggregation. To
demonstrate the autocorrelation effect, the days in the
1968–95 period were randomly permutated and the lo-
gistic model was then fitted to the monthly number of
wet days again. This was done 20 times. The results,
averaged over all 20 permutations, are presented in Ta-
ble 3. The regression coefficients in Table 3 are closer
to those for the original monthly model than to those
for the daily model, thus indicating that the differences
between the regression coefficients in Table 2 are due
mainly to nonlinearity. The standard errors of the es-
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TABLE 3. Estimated regression coefficients and other parameters in
the logistic model for monthly rainfall occurrence after random per-
mutation of the days in the 1968–95 record (averaged over 20 dif-
ferent permutations; the standard errors se are also averaged over the
three stations).

Variable Bern Deuselbach De Bilt se

Monthly rainfall occurrence
rh (%)
slp (hPa)
u (m s21)
y (m s21)

0.036
20.028

0.051
20.117

0.036
20.018

0.095
20.020

0.033
20.047

0.070
20.043

0.0050
0.0130
0.0134
0.0182

rres

f̂
r2

M

20.01
0.61
0.40

0.01
0.65
0.35

20.01
0.63
0.39

TABLE 4. Same as in Table 2 but for rainfall occurrence at De Bilt
for the extended winter (Nov–Mar) and extended summer (May–Sep)
seasons.

Variable Winter se Summer se

Daily rainfall occurrence
rh (%)
slp (hPa)
u (m s21)
y (m s21)

0.047
20.071

0.096
20.099

0.0025
0.0046
0.0054
0.0068

0.053
20.115

0.139
20.088

0.0026
0.0078
0.0078
0.0093

rres

r2
D

r2
M

0.12
0.42
0.72

0.14
0.40
0.68

Monthly rainfall occurrence
rh (%)
slp (hPa)
u (m s21)
y (m s21)

0.030
20.051

0.075
20.064

0.0079
0.0103
0.0077
0.0146

0.043
20.072

0.088
20.007

0.0073
0.0180
0.0139
0.0210

rres

f̂
r2

M

0.20
1.09
0.72

0.04
1.16
0.68

timated regression coefficients for the monthly model
with permutated data are about three times as large as
those for the daily model. The change in standard error
with aggregation level is smaller if the predictor variable
exhibits positive autocorrelation (appendix A) as ob-
served in Table 2. The values of for the monthly2rM

model with permutated data are close to those of for2rD

the daily model. This indicates that the seemingly better
performance of the monthly model in Table 2 is a result
of persistence in the predictors. For the linear regression
model with independent errors, it can easily be shown
that aggregation leads to an increase in the proportion
of explained variance if there is positive autocorrelation
in the predictors (appendix B).

The estimated dispersion parameter for monthlyf̂
rainfall occurrence in Table 3 is smaller than 1 because
there is no persistence, whereas the wet-day probabil-
ities vary within the month. The values of in Tablef̂
2 for the real number of wet days are larger than those
in Table 3 because of persistence. Still does not de-f̂
viate much from 1 in Table 2 because a large part of
the persistence in daily rainfall occurrence is explained
by the persistence in the predictor variables.

Table 4 shows for De Bilt the results for the winter
and summer rainfall occurrence data. There is seasonal
variation in the values of various regression coefficients.
The seasonal differences between the regression coef-
ficients of slp and u in the daily rainfall occurrence
models are even statistically significant at the 1% level.
Despite the seasonal variation of the regression coef-
ficients, the differences between the monthly and daily
rainfall occurrence models are similar to those found
for the models without seasonal stratification in Table
2: the estimated regression coefficients are smaller in
the monthly models fitted to the seasonally stratified
data, their standard errors are about twice as large as
those in the daily models, and the values of are much2rM

larger than the corresponding values of .2rD

d. The effect of a systematic change in a predictor
variable

Table 5 illustrates the sensitivity of the downscaling
models to changes in the predictors. Shown are the

changes in the average number of wet days per year for
De Bilt, resulting from a constant change in the sea
level pressure, the u velocity or the y velocity, and as-
suming that the rainfall occurrence models are constant
over the year. The monthly rainfall occurrence model
is much less sensitive to a systematic change in the y
velocity than is the daily rainfall occurrence model. For
the perturbations of slp and the u velocity, the use of
the monthly rainfall occurrence model does not lead to
a smaller change in the average number of wet days,
even though the regression coefficients are larger in the
daily model. This can be understood as follows.

The change DNW in the total number of wet days
resulting from a perturbation Dxk of the kth predictor
variable can be approximated as (appendix C)

DN ø a C Dx (daily model) and (6a)W k,D D k

DN ø a C Dx (monthly model), (6b)W k,M M k

where ak,D and ak,M are the regression coefficients of the
kth predictor. The quantities CD and CM depend on the
wet-day probabilities in the present climate, but not on
the perturbation Dxk. The quantity CM is larger than CD.
For the same perturbation Dxk, the daily rainfall oc-
currence model provides a larger value of | DNW | than
the monthly model if | ak,D | . | ak,M | 3 CM/CD (51.53
3 | ak,M | for De Bilt). This condition is satisfied for the
y velocity, but not for the u velocity. For slp the ratio
ak,D/ak,M is very close to 1.53 resulting in the same sen-
sitivity of the daily and monthly rainfall occurrence
models to a constant perturbation of this variable. For
the other two stations similar values are found for the
critical ratio between the regression coefficients, CM/CD

5 1.64 for Bern and CM/CD 5 1.45 for Deuselbach.
The monthly rainfall occurrence model for the sum-

mer data at De Bilt also shows a low sensitivity to a
constant change of the y velocity. This is not the case
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TABLE 5. Change in the average number of wet days per year at De Bilt for a constant increase in the sea level pressure of 1, 2, and 4
hPa, respectively, and for a constant increase in the u velocity or y velocity of 1, 2, and 4 m s21, respectively.

Variable Daily model Monthly model Variable Daily model Monthly model Variable Daily model Monthly model

slp 1 1
slp 1 2
slp 1 4

24
29

218

24
29

218

u 1 1
u 1 2
u 1 4

7
13
26

8
17
33

y 1 1
y 1 2
y 1 4

24
29

218

21
23
26

for the model fitted to the monthly rainfall occurrence
data from the winter season.

3. Rainfall amount models

Wet-day rainfall amounts have a highly skewed dis-
tribution, which has often been described by the gamma
distribution (e.g., Katz 1977; Buishand 1978). The gam-
ma distribution belongs to the exponential family and
is the standard distribution for GLMs with constant co-
efficient of variation CV. Coe and Stern were the first
to fit such a model to wet-day precipitation amounts
(Coe and Stern 1982; Stern and Coe 1984). They dem-
onstrated the use of GLMs to describe the seasonal var-
iation of the mean wet-day rainfall amount and its de-
pendence on rainfall occurrence. Buishand and Klein
Tank (1996) applied a GLM with constant CV to link
wet-day precipitation at De Bilt to temperature and sea
level pressure. In the present paper this model is fitted
not only to the individual wet-day precipitation amounts
but also to the monthly average wet-day precipitation
and to the monthly precipitation totals.

The GLM is defined first for daily data. Then its
application to monthly data is discussed. The results for
Bern, Deuselbach, and De Bilt are presented at the end
of this section.

a. Generalized linear model for individual wet-day
rainfall amounts

As in previous applications of GLMs to wet-day pre-
cipitation R, a log-link function is used here to avoid
negative values for the expected amounts E(R). This
implies that

E(R) 5 exp(a 1 a x 1 · · · 1 a x ), (7)0 1 1 p p

where x1, . . . , xp are the predictor variables. The var-
iance of R can be represented as

2var(R) 5 f[E(R)] , (8)

where f 5 CV2 is a dispersion parameter. The speci-
fication of a constant CV is sufficient to obtain quasi-
likelihood estimates of the coefficients a0, a1, . . . , ap

in Eq. (7) by the IRLS procedure. These estimates are
the maximum likelihood estimates if a gamma distri-
bution for R is assumed. The estimate of the dispersion
parameter f is based on the generalized x 2 statistic:

N2 2Wx 1 (R 2 m̂ )t tf̂ 5 5 , (9)O 2N 2 p 2 1 N 2 p 2 1 m̂t51W W t

with Rt the observed precipitation amount on the tth
wet day, t the expected precipitation amount from them̂
fitted model for the tth wet day, and NW the total number
of wet days.

b. Generalized linear models for monthly rainfall
amounts

Two methods are considered to describe monthly rain-
fall. In the first method, the estimate of the number of
wet days from Eq. (3a) is supplemented with an estimate
of the monthly average wet-day precipitation amount

5 RM/E(MW), where RM is the monthly total precip-R
itation amount. It is assumed that RM is the sum of E(MW)
independent wet-day precipitation amounts. The mean
of can then be described by Eq. (7) and its varianceR
is given by

2var(R) 5 f[E(R)] /E(M ),W (10)

where the dispersion parameter f is again equal to the
squared CV of the individual wet-day precipitation
amounts.

In the second method, the GLM is fitted directly to
RM itself. Then the mean and variance are given by Eqs.
(7) and (8), but with f equal to the squared CV of the
monthly totals. This model is virtually identical to that
used for monthly precipitation totals in Kilsby et al.
(1998), except that in our study the logarithm of E(RM)
is linked to the predictor variables rather than to the
logarithm of RM itself.

c. Results

The same 28-yr period as for the rainfall occurrence
data was considered. Four predictor variables were cho-
sen: the logarithm of the specific humidity qs near the
surface, slp, and u and y. In contrast to rainfall occur-
rence, the amount of precipitation is thus related to a
measure of the absolute humidity of the atmosphere
rather than relative humidity. An attempt to use the 700-
hPa specific humidity q700 failed because its effect on
the wet-day precipitation amounts at Deuselbach was
quite different from that at Bern and De Bilt. Moreover,
several remarkable outliers, all of them equal to 32.67
g kg21, were found in the q700 NCEP–NCAR reanalysis
data. Therefore the specific humidity qs near the surface
was considered instead. The use of logqs rather than qs

in the rainfall amount models facilitates the determi-
nation of the effect of a relative change in qs (see section
3d).
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TABLE 6. Estimated regression coefficients and other parameters in
the generalized linear models for daily and monthly wet-day rainfall.
Here, is the estimate of the dispersion parameter f in Eqs. (8) andf̂
(10), and rD and rM are the correlation coefficients between the ob-
served and predicted values of the daily and monthly average wet-
day rainfall amounts, respectively. The standard error se of an esti-
mated regression coefficient is the average standard error for the three
stations, based on the approximate covariance matrix in section 8.3.6
of McCullagh and Nelder (1989).

Variable Bern Deuselbach De Bilt se

Individual wet-day rainfall amounts
log qs (g kg21)
slp (hPa)
u (m s21)
y (m s21)

0.811
20.045

0.022
20.052

0.879
20.050

0.031
0.004

0.887
20.050

0.019
20.016

0.0423
0.0022
0.0025
0.0033

f̂
r2

D

1.46
0.17

1.50
0.13

1.43
0.16

Monthly average wet-day rainfall amounts
log qs (g kg21)
slp (hPa)
u (m s21)
y (m s21)

0.424
20.015

0.019
0.002

0.283
20.031

0.029
0.001

0.270
20.031

0.012
20.015

0.0676
0.0059
0.0071
0.0113

f̂
r2

M

2.69
0.15

2.42
0.14

2.52
0.15

TABLE 7. Same as in Table 6 but for wet-day rainfall at De Bilt
for the extended winter (Nov–Mar) and extended summer (May–Sep)
seasons.

Variable Winter se Summer se

Individual wet-day rainfall amounts
log qs (g kg21)
slp (hPa)
u (m s21)
y (m s21)

1.039
20.044

0.018
20.009

0.1127
0.0021
0.0031
0.0032

0.806
20.061

0.003
20.027

0.1359
0.0046
0.0049
0.0055

f̂
r2

D

1.37
0.19

1.50
0.13

Monthly average wet-day rainfall amounts
log qs (g kg21)
slp (hPa)
u (m s21)
y (m s21)

0.222
20.024

0.021
20.010

0.2331
0.0059
0.0080
0.0118

0.191
20.048

0.003
20.017

0.2900
0.0139
0.0150
0.0216

f̂
r2

M

2.06
0.26

2.60
0.10

TABLE 8. Same as in Table 6 but for monthly precipitation
totals RM.

Variable Bern Deuselbach De Bilt se

Monthly precipitation totals
log qs (g kg21)
slp (hPa)
u (m s21)
y (m s21)

0.430
20.063

0.082
20.057

0.365
20.069

0.099
20.017

0.403
20.070

0.059
20.024

0.0710
0.0062
0.0076
0.0124

f̂
r2

M

0.22
0.40

0.17
0.46

0.19
0.48

Table 6 shows the results for daily and monthly wet-
day rainfall amount models with constant regression co-
efficients over the year. Most predictors in the daily
model are significant at the 1% level. The only exception
is the y velocity in the model for Deuselbach. The sta-
tistical significance of the regression coefficients is
weaker for the monthly wet-day averages. Nevertheless,
logqs, slp, and u are significant at the 5% level for each
station. As for the rainfall occurrence data, the estimated
regression coefficients and their standard errors depend
on the aggregation level. The absolute values of the
estimated regression coefficients of logqs, slp, and u in
the model for the individual wet days are always larger
than those in the model for the monthly wet-day av-
erages. The standard errors of the estimated regression
coefficients of slp, u, and y increase by about a factor
of 3 if the model is applied to the monthly wet-day
averages instead of the individual wet-day rainfall
amounts. For logqs, the increase in standard error is
smaller, which can be understood from its stronger sea-
sonal cycle (appendix A). There is also a marked dif-
ference between the values of the dispersion parameter
f in the daily and monthly models. In contrast with
Table 2 for the rainfall occurrence data, there is little
difference between the values of and . This is partly2 2r rD M

because of the weaker temporal correlation in the wet-
day rainfall data.

Apart from the nonlinearity of the link function, the
averaging of the predictor variables over all days in the
month of concern also causes differences between the
estimated regression coefficients in the daily and month-
ly models. Furthermore, for the regression coefficient
of logqs it matters whether the monthly wet-day aver-
ages are based on the observed number of wet days or

the expected number of wet days from the logistic mod-
el. The systematic differences in the estimated regres-
sion coefficients for logqs and slp are much smaller if
the monthly totals RM are divided by the observed num-
ber of wet days and the predictor values are averaged
over these wet days only. This also leads to a large
reduction of the dispersion parameter and an increase
of the squared correlation coefficient . However, the2rM

application of such a downscaling model requires that
a GCM simulates the occurrence of wet and dry days
adequately, which is as yet not the case.

The systematic differences between the estimated re-
gression coefficients for logqs and slp in the GLMs for
daily and monthly wet-day rainfall are also found for
the seasonally stratified data from De Bilt (Table 7). The
regression coefficient of logqs in the model for the
monthly wet-day averages is no longer statistically sig-
nificant at the 5% level, due to a disproportional increase
in its standard error. Table 7 further shows that the u
velocity has no effect on wet-day rainfall in the summer
season. As is the case for rainfall occurrence models
(section 2c), evaluation of seasonally stratified data does
not lead to other conclusions regarding the differences
between daily and monthly GLMs.

Table 8 presents the results for the fit to the monthly
precipitation totals RM, assuming constant statistical re-
lationships over the year. With the exception of the y
velocity in the model for Deuselbach, the predictors are
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TABLE 9. Squared correlation coefficients, , between the observed2rM

and predicted monthly precipitation totals from different downscaling
models.

Downscaling model Bern Deuselbach De Bilt

Daily occurrence and
amount models

Monthly occurrence and
wet-day amount models

Monthly totals model

0.44

0.44
0.40

0.46

0.49
0.46

0.57

0.55
0.48

significant at the 5% level. As in the fit to the monthly
wet-day averages, the estimated regression coefficients
of the moisture predictor in Table 8 are much smaller
than those in the fit to the individual wet-day precipi-
tation amounts as a result of averaging over both wet
and dry days. The regression coefficients of the dynam-
ical predictors slp, u, and y are, however, relatively large
for the monthly precipitation totals. These variables are
powerful predictors of the number MW of wet days,
which is an important component of the monthly pre-
cipitation totals. A relatively large influence of the dy-
namical predictors in the model for the monthly pre-
cipitation totals is also found for the seasonally stratified
data from De Bilt.

d. The effect of a systematic increase in atmospheric
humidity

In a warmer climate, the atmosphere can contain more
moisture. The saturated vapor pressure increases by
about 7% 8C21 according to the Clausius–Clapeyron
relation, and similar changes in the specific humidity
have been found in GCM simulations with increased
greenhouse gas concentrations (e.g., Mitchell and In-
gram 1992; Semenov and Bengtsson 2002). From Eq.
(7) it follows that a relative increase of qs of 10% results
in a relative change in E(R) of f 5 1.1 , where a1 isa1

the regression coefficient of log qs. This factor applies
both to the daily and monthly models. For De Bilt, f
5 1.088 in the fit to the individual wet-day rainfall
amounts from the entire year (a1 5 0.887), f 5 1.026
in the fit to the monthly average wet-day rainfall
amounts from the entire year (a1 5 0.270), and f 5
1.039 in the fit to the monthly precipitation totals from
the entire year (a1 5 0.403). A similar dependence of
f on aggregation level is found for Bern, Deuselbach,
and the seasonally stratified data from De Bilt. Thus a
daily model turns out to be much more sensitive to
changes in specific humidity than any of the monthly
models. The reason for this behavior is that the values
for the monthly models are biased because of the impact
of dry days on the estimate of the regression coefficient
a1. This implies that the generation of precipitation sce-
narios for a future climate should preferably be based
on daily rather than monthly models.

4. Aggregated rainfall amounts from daily and
monthly downscaling models

Table 8 shows that the model for the monthly pre-
cipitation totals explains nearly half of the variance of
RM ( ø 0.48). Apart from the direct fit, RM can also2rM

be estimated from the daily models for rainfall occur-
rence and wet-day rainfall as

R 5 p E(R ), (11)OM t t
t

where pt is the probability that day t is wet as determined

from Eq. (1), E(Rt) is the expected rainfall amount for
day t from Eq. (7), and t runs over all days in the month
concerned. Another estimate of RM can be obtained by
multiplying the expected number of wet days E(MW)
from Eq. (3a) with the predicted average monthly wet-
day rainfall amount . Table 9 presents the squares ofR
the correlation coefficient between the observed and
predicted monthly precipitation totals. These correlation
coefficients are somewhat larger for the predictions from
the models fitted to rainfall occurrence and wet-day rain-
fall amount than are those for the direct fit to the monthly
precipitation totals. The values of for the monthly2rM

precipitation totals in Table 9 are much larger than the
corresponding values of for the wet-day precipitation2rD

amounts in Table 6. As for rainfall occurrence, the ag-
gregation of the predicted daily precipitation amounts
to monthly precipitation amounts leads to a considerable
increase in the proportion of explained variance.

Figure 1 presents the observed annual precipitation
totals at the three stations, together with those obtained
by aggregating the expected precipitation amounts from
the downscaling relationships. There is little difference
between the values from the various downscaling mod-
els. All of them show for Bern an overestimation of
precipitation till the end of the 1970s and an underes-
timation in the 1990s. For De Bilt there is an overes-
timation in the 1970s and an underestimation in the
1990s. These discrepancies can partly be attributed to
nonhomogeneities in the NCEP–NCAR reanalysis data.
While the model process in the NCEP–NCAR reanalysis
did not change over time, trends may still be found in
the model output, mainly as a result of variations in the
amount or quality of the input data (Reid et al. 2001).
After 1985, a systematic decrease in the annual mean
700-hPa relative humidity of about 5% is observed at
the grid point near De Bilt. This decrease corresponds
with a similar decrease in the observed 700-hPa relative
humidity at De Bilt due to the use of another humidity
sensor in the radiosondes from February 1985. The
NCEP–NCAR reanalysis data near Bern show a sys-
tematic decrease in rh from 65% in 1968 to 55% in
1995, and positive jumps in the mean sea level pressure
(ø3 hPa) around 1981 and the y velocity (ø1 m s21)
around 1977.

Although the various downscaling models show only
slight differences with respect to the explained variance
of the monthly totals, their response to a systematic
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FIG. 1. Observed annual precipitation amounts at (top) Bern, (mid-
dle) Deuselbach, and (bottom) De Bilt, and predicted annual amounts
from three downscaling models for these stations. Predictions rep-
resented by the thin and dashed–dotted lines are based on independent
modeling of rainfall occurrence and wet-day rainfall amounts. The
dotted line is based on the predictions from a model fitted to the
monthly totals.

TABLE 10. Change in the average annual precipitation amount (mm)
at De Bilt for a constant increase in the sea level pressure of 1, 2,
and 4 hPa, respectively, and for a constant increase in the u velocity
or y velocity of 1, 2, and 4 m s21, respectively.

Variable Daily models* Monthly models*
Monthly totals

model

slp 1 1
slp 1 2
slp 1 4

253
2103
2194

242
283

2159

255
2106
2198

u 1 1
u 1 2
u 1 4

36
73

148

44
89

179

49
102
216

y 1 1
y 1 2
y 1 4

226
252

2103

218
235
269

220
239
276

* Separate models for rainfall occurrence and wet-day rainfall
amounts.

change of the predictor variables is not necessarily the
same. In section 3d it was already shown that the daily
model is much more sensitive to an increase in specific
humidity than the monthly models. Table 10 illustrates
the sensitivity of the modeled average annual precipi-
tation amount at De Bilt to a constant change in the sea
level pressure, the u velocity, or the y velocity. The
estimated changes in average annual precipitation refer
to the models with constant regression coefficients over
the year. For a given perturbation of slp, the estimated
changes from the various downscaling models differ by
not more than 25%. The effect of a perturbation of the
u velocity on average annual precipitation is smallest
for the daily downscaling models, partly because of the
relatively low sensitivity of the model for daily rainfall
occurrence to changes in u (section 2d). Both for the u
velocity and the y velocity the difference in the response
can be as large as 50%.

5. Discussion and conclusions

GLMs were used to link the occurrence of wet and
dry days, the wet-day precipitation amounts, and the
monthly precipitation totals to dynamical variables and
atmospheric moisture. It was shown that the standard
errors of the regression coefficients are generally much
smaller in the daily models than in the corresponding
monthly models. As a consequence, the risk of dis-
carding an important predictor as statistically not sig-
nificant is relatively low in the daily models. Further-
more, the regression coefficients in the daily rainfall
occurrence and amount models are larger than are those
in the corresponding monthly models for the number of
wet days and wet-day rainfall. This does not automat-
ically result in a larger sensitivity of the daily models
to a change in the predictor variables because of the
nonlinearity of the link functions. The effect of a sys-
tematic increase in specific humidity on the amount of
precipitation is, however, more than twice as large in
the daily models as it is in the monthly models. The
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low sensitivity of the monthly precipitation amount
models is mainly the result of bias due to the averaging
of the predictors over both wet and dry days. Because
the increase of absolute humidity is a major factor in
greenhouse-gas-induced climate changes, downscaling
models based on daily data are preferable for climate
change impact studies.

Daily downscaling models explain only a small pro-
portion of the variance in daily precipitation. This has
been thought to be a serious drawback of regression-
based downscaling (Wilby et al. 2002). However, the
proportion of the explained variance is larger for the
monthly aggregation level as a result of persistence in
the predictor variables. Statistical models for daily and
monthly values explain about the same proportion of
the variance of the monthly number of wet days and
the monthly precipitation totals. They also have similar
skill in predicting annual precipitation amounts.

The regression models considered in this paper were
linear on the logistic scale (rainfall occurrence) or the
logarithmic scale (wet-day rainfall and monthly precip-
itation totals). Daily models can be improved by in-
cluding nonlinearity in the predictors (Beckmann and
Buishand 2002). Although this has little influence on
the proportion of explained variance, it strongly influ-
ences the reproduction of extremes in the present climate
and the predicted changes of extremes for future cli-
mates. Another improvement of daily models may come
from the use of separate models for warm days (mainly
convective precipitation) and cool days (mainly wide-
spread frontal rainfall). For monthly totals, it is hardly
feasible to apply this approach.

The predictor variables were generally significant at
the 5% level, and in the daily models they were quite
often also significant at the 1% level. This made it pos-
sible to demonstrate the effect of temporal aggregation
clearly. Nevertheless, the choice of predictor variables
could be questioned for real climate change applications
at the three sites. Using precipitable water and relative
humidity instead of specific humidity in the model for
the wet-day rainfall amounts improved, for instance, the
agreement between the changes in seasonal mean rain-
fall over the Netherlands and north Germany in a sim-
ulation experiment of the coupled ECHAM4/Ocean and
Isopycnal Coordinates (OPYC3) atmosphere–ocean
model and the estimated changes from the statistical
relationships (Beckmann and Buishand 2002). The abil-
ity to reproduce the changes in precipitation in climate
model simulations needs further research. It may also
be advantageous to use different predictor variables for
the three rainfall stations. A threshold of 0.1 mm was
used to discriminate between wet and dry days. The
sensitivity of the predicted changes in precipitation to
the choice of this threshold needs some attention in
climate change applications.

For two of the three stations the observed annual
precipitation amounts were systematically underesti-
mated or overestimated during some subperiods. These

biases are partly caused by nonhomogeneities in the
predictor variables. In fact, the downscaling relation-
ships should be fitted to a homogeneous subset or the
data should be corrected for nonhomogeneities. The first
option is more easily achieved with statistical models
for daily data because of the relatively low standard
error of the estimated regression coefficients in these
models. Corrections for nonhomogeneities are however,
easier for monthly data.
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APPENDIX A

The Effect of Aggregation on Standard Errors

In this appendix, we explain how the standard error
of an estimated regression coefficient may change with
the temporal aggregation level. The change is explored
in some detail for the classical linear regression model:

z 5 a 1 a x 1 e , t 5 1, . . . , N. (A1)t 0 1 t t

It is assumed that the errors et are independent random
variables with a mean of zero and standard deviation of
se.

The least squares estimates of the regression coeffi-
cients a0 and a1 are given by

â 5 z 2 â x and (A2a)0 1

N

(x 2 x )(z 2 z )O t t
t51â 5 , (A2b)1 N

2(x 2 x )O t
t51

where and are the averages of the xt and zt values,x z
respectively. For the variance of â1, it can be shown
that (see, e.g., Weisberg 1985)

2 2s se evar(â ) 5 5 , (A3)1 N 2Nsx2(x 2 x )O t
t51

where is the sample variance of the xt values.2sx

We now aggregate the xt and zt values over blocks
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of length M. Let n 5 N/M be the number of blocks.
Then we have the following model for the aggregated
values:

Z 5 a 1 a X 1 E , t 5 1, . . . , n, (A4)t 0 1 t t

where

tM

Z 5 z , (A5a)Ot t
t5(t21)M11

tM

X 5 x , and (A5b)Ot t
t5(t21)M11

tM

E 5 e . (A5c)Ot t
t5(t21)M11

The use of the aggregated values Xt of the predictor
variables instead of their averages t 5 Xt /M as in theX
main text does not affect the conclusions about the effect
of aggregation on standard errors in this appendix and
on the estimated regression coefficients in appendix B.

Because the errors et have been assumed to be in-
dependent with variance , we have2s e

2 2var(E ) 5 s 5 Ms .t E e (A6)

For the least squares estimate â1,aggr of the regression
coefficient a1 in Eq. (A4), an expression similar to Eq.
(A2b) holds. The variance of â1,aggr is given by

2sEvar(â ) 5 , (A7)1,aggr 2nsX

where is the sample variance of the Xt values.2sX

The change in standard error with the temporal ag-
gregation level is determined by the relationship be-
tween the sample variances in the denominator of Eqs.
(A3) and (A7). If the xt values are independent reali-
zations of a random variable (no temporal structure),
then

2 2s ø Ms .X x (A8)

Hence

2sevar(â ) ø 5 M var(â ). (A9)1,aggr 12nsx

So in this case the standard error of the estimated re-
gression coefficient increases by a factor of afterÏM
aggregation over blocks of length M. When there is
positive autocorrelation in xt, then

2 2s . Ms ,X x (A10)

and aggregation results in a smaller than increaseÏM
in the standard error. The stronger the autocorrelation,
or the greater the temporal structure in the xt values, the
smaller will be the effect of temporal aggregation on
the standard error of the estimated regression coeffi-
cient. An interesting case is that of a linear trend, xt 5
t. Then Xt 5 M 2t 2 M(M 2 1)/2, and the sample

variances of the xt and Xt values can be approximated
as (Kendall et al. 1983, section 45.23)

1 1
2 2 2s 5 (N 2 1) ø N and (A11a)x 12 12

1 1
2 2 4 2 4 2 2s 5 (n 2 1)M ø n M 5 M s . (A11b)X x12 12

From Eqs. (A6), (A7), and (A11b), it follows that

2sevar(â ) ø 5 var(â ). (A12)1,aggr 12nMsx

Thus temporal aggregation has little effect on the stan-
dard error of the least squares estimate of a linear trend.
Following the same arguments, it can be shown that the
presence of a seasonal cycle in xt also reduces the effect
of temporal aggregation on the standard error of the
estimated regression coefficient.

Similar effects of temporal aggregation may be ex-
pected in the case of multiple predictor variables. When
these predictor variables are orthogonal, Eqs. (A3) and
(A7) apply to each individual regression coefficient. For
nonlinear models the magnitude of the change in the
standard error due to aggregation may differ from that
expected for the linear model. For instance, the observed
increase of a factor 3 for the fit of the logistic model
to the monthly number of wet days in the permutated
daily record in section 2c is smaller than that expected
for the linear model ( ø 5.5).Ï30

APPENDIX B

The Effect of Aggregation on Estimated
Regression Coefficients

Under very general conditions, (xt 2 )(zt 2 )/NNS x zt51

and (xt 2 )2/N converge to the corresponding pop-NS xt51

ulation moments. Thus, for sufficiently large N, the least
squares estimate â1 in Eq. (A2b) is approximately

cov(z , x ) st t zâ ø 5 r (0) , (B1)1 z,xvar(x ) st x

where rz,x(0) is the correlation coefficient between zt

and xt, and sz and sx are the standard deviations of zt

and xt, respectively.
Similarly, we have for the aggregated values

cov(Z , X )t tâ ø . (B2)1,aggr var(X )t

For the second-order moments on the right-hand side
of Eq. (B2), we can write

M

cov(Z , X ) ø s s (M 2 |k | )r (k) and (B3)Ot t x z z,x
k52M

M

2var(X ) ø s (M 2 |k | )r (k), (B4)Ot x x,x
k52M
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where rx,x(k) is the correlation coefficient between xt

and xt1k (lag k autocorrelation) and rz,x(k) is the cor-
relation coefficient between zt and xt1k (lag k cross-cor-
relation). If the errors et in Eq. (A1) are mutually in-
dependent, and also independent of xt, then it is easily
verified that

r (k) 5 r (0)r (k).z,x x,z x,x (B5)

Substituting (B5) into (B3) results in

cov(Z , X ) st t z5 r (0) (B6)z,xvar(X ) st x

and there is no systematic difference between â1 and
â1,aggr. The estimate â1,aggr tends to be smaller than â1 if
the lag k cross-correlation coefficients decrease faster
with increasing k than the lag k autocorrelation coeffi-
cients, and tends to be larger than â1 if the opposite
occurs. The use of the classical linear regression model
(A1) is, however, questionable in such situations. It may
be necessary to enter lagged predictor variables in the
regression. This had little effect on the daily rainfall
models considered in this paper. The nonlinearity of the
link function in these models is another cause of sys-
tematic differences between the estimated regression co-
efficients for distinct aggregation levels.

If the errors et are independent and if there is positive
autocorrelation in the predictor xt, then there is also
positive autocorrelation in the predictand zt. From Eq.
(B4) it follows that in that situation var(Zt) . M var(zt).
Hence,

var(E ) var(e )t t, , (B7)
var(Z ) var(z )t t

which implies that the proportion of explained variance
is larger for the aggregated data.

APPENDIX C

Change in the Number of Wet Days Due to a
Constant Change in a Predictor Variable

For the probability pt that day t is wet, it follows
from Eq. (1) that

1
p 5 . (C1)t 1 1 exp(2a 2 a x 2 · · · 2 a x )0,D 1,D 1 p.D p

The change in pt resulting from a perturbation Dxk of
the kth predictor variable can be approximated as

]ptDp ø Dx 5 a p (1 2 p )Dx . (C2)t k k,D t t k]xk

Summation of Dpt over all N days gives the expected
change in the number of wet days:

N

DN 5 Dp ø a C Dx , (C3)OW t k,D D k
t51

where

N

C 5 p (1 2 p ). (C4)OD t t
t51

The product pt(1 2 p t) is relatively large if pt is in the
interval (0.3, 0.7) and small if p t is close to 0 or close
to 1. Days with a low or high probability of rain thus
give a small contribution to DNW.

In the same way, we have for the monthly rainfall
occurrence model

DN ø a C Dx ,W k,M M k (C5)

where
n

C 5 M P (1 2 P ), (C6)OM t t t
t51

with Mt the total number of days in month t and n the
total number of months. Because the most extreme val-
ues of Pt are farther away from 0 and 1 than those of
pt, the quantity CM is larger than CD.
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