
Using Virtual Organizations Membership System
with EDG’s Grid Security and Database Access

Marko Niinimaki1, John White1, Wim Som de Cerff2, Joni Hahkala1,
Tapio Niemi1, Mikko Pitkanen3

1 Helsinki Institute of Physics at CERN, CH-1211 Geneva
2 Royal Netherlands Meteorological Institute KNMI

3 Helsinki University of Technology

March 17, 2004

Keywords: Grid security, virtual organizations, Grid use case.
This paper describes the European Data Grid’s (EDG’s) java security system and

Spitfire database access system giving special emphasis on the virtual organization
technologies. These technologies create a feasible framework for authentication and
authorization in distributed Grid applications.

A virtual organization (VO) is a collection of people in the same administrative
domain. A user can belong to many virtual organizations and have a different role
(user, client, administrator,..) in each of them. An authorization of a user to different
services within a VO is based on the user’s identity and a service called a Virtual
Organization Membership Service (VOMS) that maps these identities with roles.

The user proves his identity over the internet using authentication process. The user
normally authenticates using his credentials, which comprise of a certificate chain and a
private key. In Grid systems, the user usually authenticates using proxy credentials that
are derived from the actual credentials. The proxy credentials comprise of the user’s
certificate chain added with a proxy certificate and a proxy private key. In the proxy
creation process, the user’s VO information, including groups and roles, is included
into the proxy certificate.

In order to use these proxy certificates with VO information we have created an
authorization system and to demonstrate the usage we have extended the functionality
Spitfire, a relational database front end. This involves assigning the user a database
role (read, write, update..) based on the VO information in his certificate. There is also
a GUI for configuring the authorization service. The earth observation team’s database
access for ozone profile validation is used here as an example of an application.

1

1 Introduction

Authentication (i.e. user identity verification) and authorization, i.e. deciding whether
the user can have an access to a certain resource are essential in distributed applica-
tions. The Grid computing field can be characterized as a collection of heterogeneous
computing resources that are shared by many individuals and organizations. This has
given rise to the concept of “virtual organizations”. A virtual organization (VO) is
a collection of people in some administrative domain. A user’s relationship with his
VO is defined by the organization’s internal hierarchy. The user can be a part of any
number of internal groups in their organization and have multiple roles in many or-
ganizations [ACC

�

03]. A user is authorized to perform tasks on a computing Grid
according to their VO affiliation and their role(s) within the VO.

The authorization process becomes more complex when the number of users and
the number of possible roles of the users in the service increases. As services are usu-
ally distributed, a centralized service managing the authorization data is needed. This
service is called a Virtual Organization Membership Service (VOMS) [ACC

�

03]. The
VOMS service is a front-end to a database where the information about the users is
kept. The server maintains lists of groups, roles and capabilities that belong to each
user in that VO. The VOMS is used to bind authorization information to a users iden-
tity [ACC

�

03]. European DataGrid’s (EDG’s) VOMS is a mature application that
utilises EDG’s grid security functionality, based on certificates.

A Grid user, operating with Globus [FK97] middleware, uses the command grid-pro-
xy-init to create a proxy certificate, which is made using their credentials. This
proxy certificate can then be passed to other Grid resources as the user’s credential.
When EDG’s VOMS service is used, the user invokes edg-voms-proxy-init pro-
gram to contact the VOMS server. This program produces a proxy certificate, similar
to the previous case, but also containing the authorization information from VOMS
service [ACC

�

03]. When the user enters a service presenting his VOMS certificate,
the service can find out the user’s authorization information from the certificate. This
removes the need to maintain up-to-date per-user authorization information in every
server.

The information about a user’s VO and their role in it can be easily utilized in the
context of distributed databases being accessed by an EDG database application, Spit-
fire [Pro01]. In a typical case, if a Spitfire administrator knows a user’s VO (e.g., a
collaboration called NETG) and their role within this collaboration (say, an adminis-
trator), they can base the access decision on that VO, group or role. Using Spitfire,
along with the edg-java-security package and a graphical user interface (shown in Fig-
ure 2), we can easily add a rule concerning the access rights of the VO, group or role.
This greatly simplifies the task of the database administrators, since they do not need to
describe access rights for each individual user, they can just describe it for user groups
of roles.

Related work Foster, Kesselmann and Tuecke emphasize the role of virtual organi-
zations in resource sharing in [FKT01], and mention database access in one of their
Grid scenarios. The OgsaDai consortium [Ogs02] has defined an architecture for Grid

2

database accesses and released an implementation of it. However, as far as we know,
the European DataGrid project has been the first to design and implement a VO-based
database access management system.

Contents The rest of this paper is organized as follows: in Section 2, we present the
technology used and the certificate-based security model that our VO implementation
utilises. We describe, too, how Spitfire’s database access works and discuss database
access authorization in general. In Section 3 we discuss how certificates with VO
extensions are used in combination with Spitfire using earth observation as an example.
Finally Section 4 provides conclusions and some items for future research.

2 Technology and terminology

2.1 Spitfire and EDG java authentication

Spitfire [Pro01] is a project of Work Package 2 within the European Data Grid Project.
It offers a Java servlet that accepts database requests, forwards them to actual relational
databases and displays the results in XML. The EDG’s authentication and authorization
software is edg-java-security, and it analyzes a user’s rights to execute queries based
on the user certificate presented to the system. This authentication and authorization
software is used with other EDG software, for example Spitfire.

In edg-java-security, the authentication is based on a hand shaking protocol in Se-
cure Sockets Layer and Transport Layer Security. The server and client send each other
their X509-format certificates and messages encrypted by their private keys, called
challenges. These challenges can be verified by public keys included in the X509 cer-
tificates. This way the server and the client authenticate themselves as owners of their
respective certificates [Sec03]. The authentication sequence is as follows. First, the
user gets the certificate of the server. The client program then checks that the server’s
certificate is signed by a trusted certificate authority (CA). This is done by decrypting
the certificate’s signature with the CA’s public key. Moreover, the client verifies and
the server responds to the its challenge by encrypting it with its private key. After this,
the user knows that the server is who it claims to be and the client encrypts the random
data the server sent with his private key and sends his certificate chain to the server
along with the encrypted random data, see [FK97]. The server then checks the user’s
certificate chain and the encrypted data. If the server is able to decrypt the challenge,
with the user certificate’s public key, it can be sure that the user is the same as the owner
of the certificate or proxy certificate.

The proxy certificate enables a single sign-on process by “representing” the user
to Grid services. When a proxy certificate is used as a credential, the user sends their
certificate and the proxy certificate to the server [FK97]. The proxy is signed by the
user and the user’s certificate is used to verify the proxy’s signature. This way the chain
of trust is delegated to the proxy. The proxy certificate can be used by the user for
access to various services, as it carries the user’s signature as identification. However,
the only apparent feature of the proxy is its issuer, i.e. the user’s certificate subject
like “O=Grid, O=NorduGrid, OU=hip.fi, CN=Joe User”. Each Grid service needs to

3

decide independently the access rights of each certificate owner. This can be improved
by introducing extensions to the certificate; in our case a VO extension that states the
user’s VOs, groups and their role in each of them.

2.2 Authorization and Relational Databases

With EDG java authorization mechanism four levels of authorization granularity can
be implemented. First two do not require any support from the actual web service the
authorization mechanism protects, the last two require support from the web service.

Fist, the most coarse grained authorization just decides if the user is allowed to
access the service. This is simple to configure and doesn’t require any knowledge of
the service.

Second, the method based authorization decides if the user is allowed to access a
certain method in the service. In this system local roles are defined for the service and
methods are grouped for these roles. For example ”administrator” has access to all
methods but ”read” has access to the read and list methods. The configuration is a little
more complex than the first case.

Third, the service role based authorization relies on the service that enforces role
based authorization. For example in database access the databases usually have role
based access control with a table level granularity. In this method the authorization
groups and roles are mapped into the database roles and thus the database administrator
can define access policies for individual tables. This case requires full support for the
authorization mechanism in the service, but configuration is of the same complexity as
in the previous case.

Finally, the fine grained authorization requires the service to enforce fine grained
authorization. In this case every object has a reference to an access control list (ACL).
For example every row in database has an ACL and every file in storage element (SE)
has an ACL. In this case the client software needs to support the ACLs and the users
should know about and control their ACLs for them to be useful. This is the most
complex case as it requires support from every level of the system and in only the most
simple and limited cases can the configuration be automated.

Authorization and security are essential in client-server database systems. In this
section we discuss briefly how they are implemented in SQL databases. We follow the
book by Elmasri and Navathe [EN94].

In general, two methods are used in database access control: discretionary and
mandatory access control. In discretionary access control different privileges for database
objects (e.g. tables � relations, columns � attributes) are granted to the users while
in mandatory access control the data and the users are classified in different security
classes. A user, in order to view the data, must have the same or higher security class
than the data in question. In the following discussion, we will refer to discretionary
access control methods since almost all relational database systems use it while the
mandatory control method is used only in some special systems. Moreover, the SQL
standards support only discretionary access control.

In SQL, privileges can be assigned to the account (user) level or the database object
(relation) level. At the account level the privileges define what operations a particular
user can perform in general, and in the database object level the privileges specify the

4

operations a user can perform on the object (e.g. select, modify). In order to perform
an operation, the user must have both account level and the object level privileges.

The basic privileges for relations (tables) are select, modify, and reference. The
select privilege allows the user to retrieve data from the relation and is defined only
on the relation level; views can be used to allow only some attributes to be retrieved.
The modify privilege allows the user to modify the data and can be defined in a more
detailed manner as update, delete, and insert privileges. The modify privilege is also
defined on the relation level, and the update and insert privileges can also be given on
the attribute (column) level. The reference privilege allows the user to define references
to a relation, e.g foreign key constraints.

SQL has grant and revoke commands for defining privileges. With the grant option,
a privilege can be given to the user so that he can grant it further. SQL also supports
roles. The role is “a set of privileges” that can be assigned to the user. This makes
administration easier since several privileges do not need to be granted separately to
the user.

2.3 VOMS

Essentially the Virtual Organization Membership System (VOMS) presents an exten-
sion to a user’s X509 proxy certificate, that includes their VO membership informa-
tion. When a VOMS-proxy is generated with the voms-proxy-init command is
used, the VOMS server is contacted to request a VOMS block which will be in-
cluded into the user’s proxy certificate. That proxy certificate follows the standard
X509v3 [HFPS99] certificate format. All the standard fields of the proxy certifi-
cate are used to store the user’s authentication information. An additional extension
(1.3.6.1.4.1.8005.100.100.1) is used to include VOMS block in the user’s proxy certifi-
cate. The authorization information is stored in triplets with the following syntax:

GROUP: string
ROLE: string
CAP: string

When users wish to use a grid service, they pass their credential (in this case the
VOMS-extended proxy certificate) to the service interface, for example, Spitfire. The
grid service then extracts the user’s authorization information from the extension part.
The extensions part of the proxy certificate also includes the VOMS signature and
validity period of the role mappings. The VOMS signature is used to to verify that a
trusted VOMS service has attached the authorization information to the user’s proxy
certificate.

The actual information that the VOMS extension contains can be configured by the
VO’s administration. An example that demonstrates VO admin user interface is shown
in Figure 1.

In the future, it is foreseen that the VOMS block will become a full Attribute Cer-
tificate [FH02] which stores the authorization information. This will not change the
way information is used in a service since the same information is extracted from both
formats.

5

Figure 1: VOMS web interface

3 Combining VOMS, security and database user au-
thorization mechanisms

In the Spitfire service, database roles are divided into categories of “read”, “write”,
“update”, and “create” by default. A user that has been assigned the read role is al-
lowed to browse the database in question; similarly, “write” role owner can insert data,
“update” role owner can modify data, and “create” role owner can create new tables.
Normally, of course, a user can have many roles; for instance in the case of a database
administrator all of the above.

A policy is a collection of mappings of roles and users. Policies are designed
by EDG’s TrustManager software components. For instance, policy “test” (see be-
low) is based on a regular expression mapping that allows roles “read”, “write”, “up-
date”, and “create” to a person whose certificate subject is “O=Grid, O=NorduGrid,
OU=hip.fi, CN=Joe User”, and “read” to persons whose certificate subject contains
“O=Grid, O=NorduGrid, OU=hip.fi”.

Spitfire can access any relational database with a Java connector, but the default
implementation is based on MySQL [MyS01]. With MySQL, the roles are applied
on database-wide basis.1 Different VO’s can have their databases accessed through
a single Spitfire service and the access configuration is managed with standard Java
database access methods.

Figure 2 shows a web browser-based graphical user interface that is used to ad-
minister a Spitfire installation. This tool is used to modify the XML file that stores
the user-to-role mappings within security policies. The tool contains an editor (see

1MySQL’s “database” roughly corresponds to Oracle’s tablespace. Many database vendors, including
MySQL and Oracle, implement at least “per database” and “per table” access control.

6

Figure 2: AdminGUI interface

Figure 2), which can be used to view and modify the XML-based role and policy def-
initions. In order to use this tool, an administrator of a Spitfire service must have a
valid certificate loaded in their web browser and this certificate must map to an “ad-
ministrator” role within the “adminPolicy”. The third policy in Figure 2 shows policy
“voms-based” that will be discussed in the use case.

3.1 Use case: Ozone profile validation

Validation of satellite data using ground-based measurements is common practice within
the Earth Observation community. One of the use cases of Earth Observation work
package (WP9) within the EDG project is the calculation and validation of ozone pro-
files. The ozone profiles are calculated from satellite measurement data. Ozone Pro-
files contain measurements of ozone within a vertical column of atmosphere at a given
latitude / longitude location above the Earth’s surface. The profiles are validated us-
ing ground based light detection and ranging (LIDAR) measurements, which can also
measure ozone profiles. The validation consists of comparing the ground-based mea-
surement profiles with profiles derived from the satellite data, coincidence in time and

7

location.
As the satellite data has global coverage over a time span of 5 years and ground-

based LIDAR measurements are point measurement campaigns, databases are used to
store metadata for both LIDAR measurements and calculated ozone profiles. Espe-
cially the date-time and location (lat/lon) data is important, but also the Logical File
Name (LFN) and quality parameters are stored. In this way coincidence data can be
found by querying the database. Note that the data itself is stored on GRID storage
element (SE)s and can be found using the LFN stored in the metadata database. For
accessing the metadata database Spitfire is used.

From the use case three distinct user-groups with different access rights can be
derived: the producers of the ozone profiles who need to be able to insert their profile
metadata, LIDAR data providers who need to be able to insert their LIDAR metadata
and validation experts who need read access to the metadata. We also need a database
administrator to set up the database. Spitfire with VOMS capability can provide all the
required functionality.

Spitfire offers standalone Java and c++ clients for accessing the service. First the
user requests a VOMS certificate with edg-voms-proxy-init command. The certifi-
cate is written and stored to a file ”/tmp/x509up uid” (where id is the user’s identity
number in the computer). When the client accesses a service, the VOMS (proxy) cer-
tificate is sent to the service by Spitfire client. The service is then able to extract the
authorization information from the certificate.

After the user sends the query to the service, the service finds out which VO the
user belongs to. Further, the role of the user in his VO is also extracted from the
certificate. With this information the service is able to define the user’s access rights.
This removes the need from a service to maintain specific user ids and their mapping
to database access rights.

In the case of successful authorization, the result of the user’s query is returned
to the client. An extract of sample client code is shown in Figure 3, where the user
selects and prints all LFNs of profiles coincidence with his LIDAR data measured at
the ground station located at Haut Provence (see the selection criteria, Haut Provence:
HP):

The security and authentication features are completely invisible to the program-
mer. An example of running the code and displaying the results shown in Figure 4.
There, it can be noticed that the user requests policy ”voms-based” and role ”read-test”
and uses his proxy certificate named ”/tmp/x509up u513”.

4 Conclusions

In this paper, we have presented a design and an implementation of virtual organiza-
tions and database access. The main benefits of the design are: (i) it separates authen-
tication and role authorization in manageable modules; (ii) There is no need to enter
user id - password -pairs because of certificates; (iii) The database access is generic,
i.e. can access relational databases of different manufacturers; (iv) It outputs XML that
can be easily processed further.

8

public final class SelectLFN {

public static void main (String [] args) throws Exception {

URL base = new URL("https://datagrid.nadc.nl:8443/Spitfire/services/SpitfireBase");
SpitfireBase sfBase = new SpitfireBaseServiceLocator().getSpitfireBase(base);

try {
String HP =" Lat < 48 and Lat > 38 and

Lon > 0 and Lon < 10 and
DateTimeStart > \"1999-06-01 00:00:00\" and
DateTimeStop < \"1999-06-31 00:00:00\" ";

SpitfireResult result = sfBase.simpleSelect("gome",
"GOME_OPERA",
"LFNOutput",
"HP",
0);

SpitfireResultHelper.printResult(System.out, result);

} catch (Exception x) {
System.out.println("SelectFromLFN ERROR: " + x.getMessage());

}
}

}

Figure 3: Sample code: SelectLFN.java

Moreover, we have demonstrated its usability by a concrete example used in Earth
Observation group’s ozone validation application.

References

[ACC
�

03] R. Alfieri, R. Cecchini, V. Ciashini, L. dell’Agnello, A. Frohner,
K. Lorentey, and F. Spataro. VOMS an authorization system for virtual
organizations. In Proceedings of the 1st European Across Grids Confer-
ence - Santiago de Compostela, Spain, 13-14 February 2003, 2003.

[EN94] R. Elmasri and S. B. Navathe. Fundamentals of database systems (2nd ed).
Benjamin / Cummings, 1994.

[FH02] S. Farrell and R. Housley. Rfc 3281, an internet attribute certificate profile
for authorization. Available on http://www.ietf.org/rfc/rfc3281.txt, 2002.

[FK97] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure
toolkit. International Journal of Supercomputer Applications, 11(2), 1997.

9

[sdecerff@tbn08 test]$ sh select-LFN.sh
Using proxy from /tmp/x509up_u513
Executing program SelectLFN as /NETG/Role=read-test policy: voms-based
INFO [main] (CRLFileTrustManager.java:120) - Client CN=datagrid.nadc.nl,
OU=knmi.nl, O=hosts, O=dutchgrid accepted
47 rows returned

LFNOutput

profgdp90619_0614.dat
profgdp90619_0622.dat
profgdp90607_0604.dat
profgdp90607_0612.dat
profgdp90607_0620.dat
profgdp90607_0628.dat
[more LFNs]
-end-
[sdecerff@tbn08 test]$
[sdecerff@datagrid ˜/client]$

Figure 4: Running the program, and its output

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling
scalable virtual organizations. International Journal of Supercomputer Ap-
plications, 15(3), 2001.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. Rfc 2459, internet
x.509 public key infrastructure certificate and crl profile. Available on
http://www.ietf.org/rfc/rfc2459.txt, 1999.

[MyS01] MySQL AB. Mysql. Available on: http://www.mysql.org, 2001.

[Ogs02] OgsaDai. Open grid services architecture data access and integration.
Available on: http://www.ogsadai.org, 2002.

[Pro01] Project Spitfire. Project Spitfire.
Available on: http://spitfire.web.cern.ch, 2001.

[Sec03] Security Coordination Group. Datagrid security design, deliverable
7.6. Technical report, European DataGrid Project, 2003. Available on
https://edms.cern.ch/document/344562.

10

