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Introduction and Overview

The history of The Netherlands has been influenced by floodings for many centuries.
Well-known floodings are the St Elisabeth Flood (18–19 Nov 1421) and the1953
flood (31 Jan–1 Feb 1953). By lack of knowledge about the occurrence frequency
of extreme sea levels, for a long time the dike design height was taken as the largest
recorded sea water level plus about one meter (Battjes and Gerritsen 2002).

Scientific research to extreme surges along the Dutch coast was largely intensi-
fied after the disastrous flooding in 1953, in which 1835 people died. Shortly after
this disaster, the so-called Delta committee (’Delta commissie’) was established. Its
first task was to determine basic levels (’basispeilen’) of the sea dikes along the Dutch
coast. From economical and societal arguments the committee recommended to de-
fine this basic level to the level that has a flooding probability of 1% per century, i.e.,
a return period of 104 years (Deltacommissie 1960).

It may be clear that it is hard to find the sea water levels that correspond to such
a very small probability from observational sea level records, as the latter covered
only 70 years at the publication of the Report of the Delta committee in1960(and
still a mere 100 years for the reanalysis, done byDillingh et al. in 1993). Hence
the calculations imply extrapolations over no less than two orders of magnitude in
probability.

The calculations of the design heights are traditionally based on extreme value
analysis. The reason for this approach is that the theory of extreme valuestatistics
states that many distributions converge for their extremes to one of the three types
of the Generalized Extreme Value (GEV) distribution (see e.g.,de Haan 1976). This
powerful theorem implies that the determination of extreme value distributions does
not require exact knowledge about the far tail of the parent distribution. The price
paid to get this theorem at work is the gigantic thinning of the data required for
extreme value analysis: commonly only the largest value in each year is used.As
a consequence, a large statistical uncertainty is introduced in the estimates from the
short observational records.

This thesis explores the use of an alternative data source, i.e., data produced by
long runs of weather- and climate models. The model records used are considerably
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longer (≈ 1500–10000 years) than the observational records, allowing for a semi-
empirical study of the statistical properties of model extremes. At the moment, the
quality of the climate models has reached the level that the sea-surge output (calcu-
lated from the large-scale wind) describe the statistics of the observations correctly.
This gives confidence to consider also the model results for very large return periods
as faithful substitutes for real observations.

Currently, the long model records enable the examination of questions like:

• How large is the uncertainty in the surge level estimate with an exceedance
probability of 10−4 yr−1 if based on the observations?

• What is the appropriate extreme value distribution to describe the surge ex-
tremes?

• Is it possible to describe the wind- and surge extremes in the extra-tropics by
a single GEV distribution up to 104-year return periods? Or, equivalently, is
there any indication that the systems causing 104-year events are of another
nature (’superstorms’) than those causing the moderate extremes?

• Is it possible to improve the estimates of the basic levels by use of weather-
and climate models?

The exploration of these questions is the topic of this thesis.
To obtain answers to the various questions, we applied in this study three types

of numerical climate models. In the chapters dealing with the first three questions,
the low-resolution climate model ECBilt-Clio was used (chapters1–3).

The potential improvement of the basic level estimate by using model data is ex-
plored with the seasonal forecasts of the European Centre for Medium-range Weather
Forecasts (ECMWF). Combination of all archived seasonal forecastsresults in a
large data set of high quality, that is suitable for improving the 104-year surge es-
timates (chapter4).

Finally, in a preliminary study on the subject of wind related events, the existence
of the ’superstorms’, detected in chapters1 and3, is confirmed in ensemble experi-
ments with the NCAR GCM (chapter6). This result from a more sophisticated model
brings the existence of ’superstorms’ closer to reality.

This thesis is likely to represent only a first step in this hitherto unexplored ap-
proach to extreme value estimates. With the improvement of models and the avail-
ability of records from very long runs, more and more meteorological parameters
may come in the reach of this approach. Chapter5 gives a flavor of the spectrum of
future applications of model runs in extreme value analyses.



Chapter 1

The reliability of extreme surge levels,
estimated from observational records of
order hundred years

Abstract

General Circulation Model-generated surges are analyzed with the Generalized Ex-
treme Value distribution to study the uncertainty in surge level estimates with a return
period of 104 years, derived from observational records of order hundred years.

Ensemble simulations with a total length of 5336 years were generated with the
KNMI General Circulation Model ECBilt-Clio, coupled with a simple surge model
to transform the wind field over the North Sea to the surge level at Delfzijl (NL). The
46 estimated surge levels with a return period of 104 years, calculated from sets of
116 year each, vary between 4.5 and 17 meters, with a median of 8.5 meter. The
104-year estimate of the 118-year observational Delfzijl record (5.8 meter) fits well
among these subsets, but this surge level is considerably lower than the median of the
ensemble estimate. For an estimate of the104-year return level of the surge within
an uncertainty of 10 %, a record length of about103 years is required.

CO2-doubling does not have a detectable influence on the mean wind speed over
the North Sea in ECBilt-Clio. However, the model hints on the excitation of severe
storms, with a frequency lower than once in 250 year. In ECBilt-Clio, these severe
storms tend to dominate the104-year return value of the wind speed over the North
Sea.

1.1 Introduction

Protection of the Netherlands against flooding from the sea is a matter of continuous
concern. In coastal protection, a probability of 10−4 per year for flooding from the sea
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is used as baseline (Deltacommissie 1960). The determination of the corresponding
design height of the dikes requires knowledge about the tides and surges. Tides are
deterministic, but surges are wind-driven, and hence stochastic.

Several problems arise when the ’accepted risk’ has to be translated into the surge
level being exceeded (on average) only once in 104 years. First, as the observational
records of skew surges are only 102 years in length, the surge level with an average
return period of 104 years requires an extrapolation of two orders of magnitude. It
is unclear how reliable the estimate from such an extrapolation is. Second, various
probability functions can be fitted to the observational records of extreme surges,
leading to different results in the 104-year return levels (Dillingh et al. 1993; de Haan
1990). Third, extrapolation from observational records does not contain information
about surges in a greenhousegas-induced changing climate.

These problems can be explored by using a long surge record (in the order of 104

years) generated by a climate model. From this record, the most adequate extreme-
value distribution can be determined, as well as its parameter values and the 104-year
surge level (within the context of the model). This most adequate distribution can then
be applied to subsets of the long record, each with a time length equal to the available
observational records (∼ 100 years). The variation in the estimated parameter values
and in the 104-year surge level among the subsets provides information about the
uncertainty of the estimate from the observational record.

This procedure has been applied using current climate data of the KNMI climate
model ECBilt-Clio. We have concentrated on the model grid point best representing
the wind field over the North Sea, and applied the surge model to the coastal station
Delfzijl (NL). The effect of an increased greenhousegas concentration on extreme
wind speeds is preliminary investigated.

Our study can be regarded to be complementary to studies on changing wind
climate using state of the art GCMs (Kharin and Zwiers 2000; Beersma et al. 1997;
Knippertz et al. 2000; Schubert et al. 1998; Hall et al. 1994). These studies have
in common that they are based on output of limited length (typical 5 to 50 years),
an unavoidable consequence of the complexity of these models. The limited length
prevents examination of a possible change in extremes of return periods ofthousands
of years. In the present study, a simpler model is used, which enabled usto generate
5·103 years for the greenhouse climate at CO2 doubling, and to explore the properties
of the extreme value statistics up to return periods of 104 year within the context of
this model, but using a meteorological parameter (surge) that is generated by a wind
field of time and spatial scales comparable with the (coarse) grid distance of that
model.

The paper is structured as follows: Section1.2 describes the models used, and
Section1.3 the theoretical and experimental design. The validation of the data and
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models used is given in Section1.4. Section1.5gives the results, and Section1.6the
discussion and conclusions.

1.2 Model descriptions

a. climate model

The wind data are produced by a General Circulation Model (GCM) of intermediate
complexity. A GCM calculates the time evolution of a large number of weather vari-
ables on a discrete grid. For this calculation, the equations of fluid flow on a rotating
earth are solved on this grid, while sub-grid physical processes are parameterized. In
this way, meteorological quantities can be derived for very long periods.Because of
the chaotic nature of the atmosphere, the results do not have deterministic forecast-
value, but the sub-daily output does provide statistical information about the climate
properties of the model.

In this study, the GCM of the KNMI, called ECBilt-Clio, was used. The atmo-
spheric component of ECBilt-Clio is a spectral T21 global 3-level quasi-geostrophic
model. The T21-resolution corresponds (for the latitudes of interest) with agrid point
distance of approximately 500 km. The atmospheric time step is 4 hours. The atmo-
spheric component of the model is coupled to a simple ocean-GCM and a thermo-
dynamic sea-ice model. ECBilt-Clio is two orders of magnitude faster than state-of-
the-art GCMs, providing the possibility of studying climate dynamics on time scales
of thousands of years. For a detailed description of ECBilt-Clio we refer toOpsteegh
et al.(1998, 2001).

b. surge model

The sea level at a certain position and time is determined by a combination of two
effects: the astronomical tide and the surge. The surge is the differencebetween
the actual level and the astronomical tide. Neglecting resonances and other second-
order effects, the surge is determined by the wind and the pressure. Whereas the
astronomical tide is deterministic, the meteorological effect is stochastic.

Usually, calculated (or forecasted) surges are verified against observations of the
so-called skew surge. The skew surge at high (low) tide is the difference between
the astronomical high (low) tide and the observed high (low) tide. Due to hydraulic
effects, the observed and astronomical high tides do not necessarily occur at the same
moment (see Figure1.1), particularly when the surges are large. Most surge models
do not take this effect into account. The problems arising in the calculation ofthe
surge from time-lagged astronomical tidal curves are bypassed by verification on
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the skew surge. Usually, the high tide (rather than the low tide) skew surgesare
considered, restricting the number of verification moments to two per day. In practice,

Figure 1.1: The surge (solid line) is the difference between observed sea level and
astronomical tide at each moment. Due to hydraulic effects, the tidal
curve may be shifted with respect to the astronomical tide. This leads
to spurious effects in the surge. Surge predictions are therefore verified
against the skew surge, which is the difference between the astronomical
high (low) tide and the associated observed high (low) tide, which need
not to take place at the same moment. In the figure the skew surges at
the first low tide (0:00) and the high tide (6:00) are negative, whereas the
second low tide skew surge (12:00) is positive (indicated with arrows).
Shown is the situation at Delfzijl from 21 Feb 2002 18:00 to 22 Feb 2002
16:00 local time.
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the observed skew surge is compared with the calculated surge for the moment of
astronomical high tide. In the validation of our model, we adopted this procedure.

The relation we used to model the skew surge is based on the semi-empirical
Timmerman model (Timmerman 1977). This surge model was used for many years
at KNMI for operational surge forecasting. We simplified this model by neglecting
time- and space-dependencies, and assuming a sinusoidal dependenceon the wind
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Figure 1.2: The grid points of ECBilt-Clio and NCEP. From the NCEP grid, only
the grid points used for validation are shown. The Dutch coastal stations
Hoek van Holland and Delfzijl are indicated.

direction. This results in the following relation for the skew surge:

skew surge= γ u2 cos
(

φ − β
)

+
1013 − p

100.5
[m] (1.1)

The first term is the wind effect, withu the wind speed andφ the clockwise wind
direction with respect to north. The station-dependent parametersγ andβ are deter-
mined by fitting Eq.1.1to the time- and space-averaged values, given byTimmerman
(1977) for the station considered. For Delfzijl,γ = 5.5 · 10−3 s2m−1 andβ = 321◦.
So, the surge is maximal for North Western winds. For extreme surges, the second
term in Eq. 1.1, which is the barometric pressure effect, is neglected, as it has a
constant value of only 10 cm (see Section1.4a.). The station pressurep is in mbar.

The surge is calculated every 12 hours from the wind averaged over thelast 3
time steps (of 4 hours) of the ECBilt-Clio model. The choice for averaging over 12
hours has three reasons. First, the mean time lag between the wind over the North
Sea and the surge at the coast is 6 hours, being of the same order. Second, the
Timmerman model also uses time-averaged values, to incorporate the inertia of the
surge phenomenon. Third, the periodicity of the tide is close to 12 hours.
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Calculations are also done with the NCEP reanalysis wind data. Figure1.2shows
the ECBilt-Clio and NCEP grid points.

We found that, for our experimental set-up, the intermediate complexity of ECBilt-
Clio lends itself optimally to the calculation of the 104-year surge level, as on the one
hand ECBilt-Clio is fast enough to generate thousands of years of wind data, and on
the other hand it provides the large-scale wind, which drives the surge.

1.3 Methodology

a. Generalized Extreme Value distribution

We applied the Generalized Extreme Value (GEV) distribution to the set of annual
maxima of the surge and the wind speed to describe the statistical properties ofthe
extremes. The distribution of normalized extremes approaches asymptotically tothis
GEV distribution (see e.g.de Haan(1976), Galambos(1978) andKotz and Nadarajah
(2000)), which is described analytically by:

F (y) = e−e−x
(1.2)

wherex is a substitute for:

x = ln
(

1 −
θ

α
(y − µ)

)−1/θ

(1.3)

with µ the location parameter,α the scale parameter,θ the shape parameter, andy
the variable considered (Jenkinson 1955). These parameters are indicated in Figure
1.3. Depending on the sign ofθ, 3 types are distinguished:

1. θ = 0; The Gumbel or Fisher-Tippett I distribution

2. θ < 0; The Fisher-Tippett II distribution, having a lower limit

3. θ > 0; The Fisher-Tippett III distribution, with an upper limit

For the Gumbel distribution (θ = 0), Eq. (1.3) can be simplified to:

x =
y − µ

α
(1.4)

The probability of exceedance of a certain level is usually expressed in terms of the
return periodT . The return period Tis the average number of years between two
succeeding exceedances of the correspondingreturn level y:

T (y) =
1

1 − F (y)
=

1

1 − e−e−x (1.5)
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Figure 1.3: The parameters of the GEV distribution. The location parameterµ is the
value corresponding with x = 0 and T = 1.58. The scale parameterα is
the slope at x = 0, and the shape parameterθ is the curvature. For large
return periods,y strongly depends onθ.
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Plotting y against the Gumbel variatex = − ln(− ln(F (y))) (a so-called Gumbel
plot) will result in a straight line if the distribution obeys the Gumbel distribution, or
in a curved line - convex for type II and concave for type III (see Figure 1.3). For a
more comprehensive description we refer toKotz and Nadarajah(2000).

An estimate ofF (y) is obtained by using the ordered extremesy1 ≤ y2 · · · ≤ yn.
The n extremes divide the total range between 0 and 1 inton + 1 equally spaced
intervals, and thusE{F (yi)} = i/(n+1) (van Montfort 1969). We used the slightly
different (unbiased) estimateE{F (yi)} = (i − 0.35)/n (Hosking et al. 1985). Con-
vergence of extremes to the GEV distribution can be regarded as an analogue of the
well-known central limit theorem. The central limit theorem states that under very
general conditions the distribution of the sample mean converges to the normaldis-
tribution as the sample becomes large; the limit represented by Eq.1.2holds for the
extremes of large samples.

To determine the distribution of the extremes, usually the annual maxima are
taken. However, this is only a good choice if the number of independent realizations
within the sampling period (one year) can be considered as asymptotically large,
the extremes are independent and identically distributed. AsCook (1982) shows,
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one may expect that the squared wind speed converges faster than the wind speed
itself to the GEV distribution. This assumes a fast convergence for the surge (as it is
proportional tou2).

The method of Probability Weighted Moments was used for estimating the three
parameters. The covariance matrix of the estimated parameters is given byHosking
et al. (1985), from which the uncertainty in̂y (i.e. the estimated value ofy) was
estimated by use of the following estimator:

σ2(ŷT ) = (
∂y

∂µ
)2σ2(µ̂) + (

∂y

∂α
)2σ2(α̂) + (

∂y

∂θ
)2σ2(θ̂)

2
∂y

∂µ

∂y

∂α
σ(µ̂, α̂) + 2

∂y

∂µ

∂y

∂θ
σ(µ̂, θ̂) + 2

∂y

∂α

∂y

∂θ
σ(α̂, θ̂) (1.6)

with σ2(µ̂) variance ofµ̂ andσ(µ̂, α̂) the covariance between̂µ andα̂. The deriva-
tives ofy follow from the inverse of Eq.1.3:

yT = µ +
α

θ
(1 − e−θx) (1.7)

and are evaluated at (µ̂, α̂, θ̂) for a given return periodT .

b. Set-up of the numerical experiment

184 runs of 30 years each were generated, with a CO2 concentration according to
the period 1960-1989. This is called the ’control run’. For each of these ensemble
runs, the same initial condition is used for the ocean and the atmosphere except for
a random perturbation in the initial potential vorticity field of the atmosphere. This
leads to different realizations after several days and hence to other 30-year series
representative of the 1960-1989 period (see Figure1.4). With the control run, we
tested the uncertainty in the extrapolation of the extreme surges for Delfzijl. This
was done by deriving the annual extremes from each year, hence oneevent per year.
To ensure independence of the extreme events in two consecutive years, the annual
periods run from 1 July to 30 June, giving 29 extremes per ensemble member, and
5336 extremes for the control run. The statistical analysis was performedin three
steps: First, the GEV distribution was applied to the total set of 5336 years. From
this is was determined whether the full set of the annual surge extremes could be
described by a Gumbel distribution (θ = 0) or a GEV distribution withθ 6= 0.
Second, the GEV distribution was fitted to the 46 subsets of 116 years each,as the
same was done with the observational (118 year) Delfzijl surge record. Third, all 46
estimated 104-year surge levels, and the estimate of the observations, are compared
with the estimate of the total set.
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Figure 1.4: Generating 30-year ensemble runs for two initial conditions. Tocreate the
ensembles, small perturbations were applied to the initial conditions. The
one set corresponds to observed CO2 concentrations during 1960-1989
and make the control run, and the other to projected values for 2050-
2079, making the greenhouse run.

2050−2079

ensembles

initial conditions

equilibrium temperature for a

pre−industrial CO2 concentration

1960−1989

Besides the control run, we also generated ensemble runs of 30 year withesti-
mated CO2 concentrations according to the period 2050-2079 (following the SRES
A1 CO2 emission scenario (Nakicenovic et al. 2000)). This emission scenario results
in approximately doubled CO2 concentration in 2050-2079 (620 ppm on average)
with respect to the control run (320 ppm). This ensemble is called the ’greenhouse
run’. Like the control run, it has a total length of 5336 years. We compared the
full greenhouse run with the full control run to investigate a possible influence of
increased greenhousegas concentrations on the wind climate over the North Sea.

1.4 Validation of surge model and ECBilt-Clio

a. Wind and surge

For verification of the surge model, we used the reanalysis dataset of the National
Center of Environmental Prediction (NCEP), USA (Kalnay et al. 1996). This dataset
provides the weather variables on a global 2.5◦ x 2.5◦ grid every 6 hours from 1948
up to the present. The NCEP wind at 10 meter is not a directly measured quantity,
but derived via a dynamical atmospheric model from the surface pressure and upper
layer measurements. The grid point value is representative of the area around the grid
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Figure 1.5: Gumbel plots for the surge in Delfzijl (a) and Hoek van Holland (b), cal-
culated with the surge model (Eq.1.1) from the average wind in the North
Sea representing NCEP grid points, with and without the local pressure
effect. Used is the period 1968-1999. The thick lines represent the fit to
the observations.
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point. We verified the statistics of the NCEP wind with the statistics of Dutch coastal
stations. It was found that the differences in the distribution of the daily meanwind
speed and direction in winter according to the (3.75E,52.4N) NCEP grid pointand
the average of two Dutch coastal stations (Hoek van Holland and Vlissingen, both
within the area of this NCEP grid point) were not larger than the differencesbetween
the stations itself. We conclude that the NCEP wind data is good enough to rely on
for this study.

The validity of the surge model is tested for Delfzijl and Hoek van Holland by
feeding Eq. 1.1 with the 12-hourly NCEP wind averaged over 9 grid points over
the North Sea (indicated with open circles in Figure1.2). These 9 grid points in
NCEP cover the same area as a single grid point in ECBilt-Clio (bold dots in Figure
1.2). The Gumbel distribution was applied to the computed annual (July-to-July)
surge extremes, and compared with the distribution of the observed extremes. Both
records cover the period 1968-1999. Figure1.5shows that, despite all simplifications,
the surge model correctly estimates the parameters of the fitted Gumbel distribution.
Illustrative is the fact that the model indicates for more than 50 % of the yearsthe
correct day at which the annual maximum occurred. Figure1.5 also shows that the
effect of pressure on the extreme surges has indeed a constant valueof only 10 cm
throughout the entire range of the extremes. This justifies the neglect of thepressure
effect in Eq.1.1.
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Figure 1.6: Ratio of the wind speed at 10 mu10 to that at 850 hPa levelu850 (a)
and change in wind directionφ (b) over sea for the surge-relevant wind
directions, for Northern mid-latitudes as derived from NCEP data. The
bars indicate the estimated standard deviations.
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b. ECBilt-Clio winds

The lowest level of the ECBilt-Clio output is 800 hPa (corresponding with a mean
height of 2 km), whereas the surge model assumes 10 meter winds. With the NCEP
dataset, we empirically studied the relation between these winds by consideringthe
relation at all NCEP ocean grid points between 40◦ and 60◦ North for daily-averaged
winds. Figure1.6(a) shows the relation between the wind speed at 850 hPau850 and
the wind speed ratiou10/u850 for the winds between West and North (the relevant
directions for positive surges). Figure1.6(b) gives the difference in the wind direction
between those levels. Both figures indicate a constant value foru850 > 15 m/s. This
constant is 0.6 for the wind speed ratio and 10◦ for the difference in wind direction,
in accordance withGarratt(1992). From this we conclude that the use of 800 hPa
winds instead of 10 meter winds does not influence the shape parameterθ of the GEV
distribution, but only the location parameterµ and the scale parameterα.

Figure 1.7(a) shows the mean geopotential height-field over Europe in winter
(Dec-Mar), both for the ECBilt-Clio model at 800 hPa and for the NCEP dataat 850
hPa and 1000 hPa. There is fair agreement between the ECBilt-Clio 850 hPapattern
and the NCEP 1000 hPa pattern, except that the ECBilt-Clio pattern is shifted tothe
south over 5-10◦. This shift, which is also visible in the standard deviation of the
geopotential height (Figure1.7(b)), suggests that the wind field over the North Sea
is better represented in ECBilt-Clio by a somewhat more southerly grid point than
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by the actual North Sea grid point. Therefore, in our study of surges from the North

Figure 1.7: Mean geopotential height over Europe in winter (Oct-Mar) according to
a 30-year run of ECBilt-Clio at 800 hPa for the control climate, and 30
years of NCEP data at 850 hPa and 1000 hPa (a), with the standard devi-
ation for ECBilt-Clio and NCEP (b). The path of the maximum standard
deviation is an indicator of the location of the storm track. The grid box
in ECBilt-Clio, best representing the wind field over the North Sea, is
indicated.

(a) geopotential height (dam) forECBilt-Clio at 800 hPa and NCEP at 850 hPa and 1000 hPa

(b) standard deviation of the geopotential height (dam) for ECBilt-Clio at 800 hPa and NCEP at
850 hPa and 1000 hPa

Sea we considered the grid point (6E,47N), indicated in the ECBilt-Clio pictures of
Figure1.7 (see also Figure1.2). The fact that this grid point is over land is assumed
to be of minor importance, as the ECBilt-Clio wind is at 800 hPa, and at that level
boundary layer effects can be neglected.
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Figure 1.8: Comparison between the considered ECBilt-Clio grid point and theNorth
Sea representing NCEP area for the wind speed (a) and the direction
(treshold 10 m/s) (b). The wind speed distribution is represented as a
Weibull plot. Considered is the winter season (Oct-Mar).
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Figure1.8(a) compares the distribution of the 800 hPa wind speed and direction
(threshold 10 m/s) for this ECBilt-Clio grid point of interest (Figure1.7) with the
North Sea representing NCEP area at 10 meter (open circles in Figure1.2). The
distribution of the wind speed is represented as a Weibull plot, which results ina
straight line if the distribution is described by the Weibull distribution:F (u) = 1 −
exp (u/a)k. The agreement with the NCEP wind speed is good for the wind up
to 10 m/s, but deviates for larger wind speeds. This deviation will lead to a larger
location and scale parameter of the GEV distribution in ECBilt-Clio. The agreement
in direction distributions is less, although the effect of the discrepancy on the surge
in Delfzijl (determined by North Western winds) is small. This discrepancy does not
play a role in the investigation of the wind speed.

We conclude from this evaluation that the combination ECBilt-Clio-surge model
seems adequate for the purpose of this study, i.e. to explore the uncertainties that are
inherent to the determination of 104-year return levels from observational series of
102-year length.
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1.5 Results

a. Uncertainty of estimated surge levels

Figure1.9 shows the Gumbel plot of the 5336 annual surge extremes of the control
run, as calculated from the ECBilt-Clio winds by the surge model. The distribution
of the annual surge extremes can be described by the Fisher-Tippett IIGEV distri-
bution (upward curved,θ < 0), although the largest extremes fluctuate considerably
around the fitted line. Up to a return period of 10 years, the extreme surgesfrom
ECBilt-Clio correspond well with those of the 1881-1999 observational record of
Delfzijl. However, the estimated 104-year return level from ECBilt-Clio is consider-
ably higher (8.5 m) than from the observational record (5.8 m). This is mainly due
to the difference in estimated shape parametersθ (the values are given in Table1.1
on page21). Figure1.9clearly indicates that a GEV distribution (θ 6= 0) rather than
a Gumbel distribution is required to describe accurately the annual surge extremes in
ECBilt-Clio for the grid point of interest.

Figure 1.9: Gumbel plots and fits of the surges for the 5336-year controlrun in
ECBilt-Clio for the North Sea representing grid point (6E,47N) and for
the observational record in Delfzijl (118 years). Both the GEV and the
Gumbel distribution are fitted to the control run.
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Figure 1.10: Histograms of the estimated GEV parametersθ, α andµ from the 46
sets of 116 years each from the control run. The arrows indicate the
estimates from the 1881-1999 observational set of Delfzijl.
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Figure1.10shows the histograms of the estimated parameters of the GEV distri-
bution of surges in Delfzijl from all 46 subsets of 116 years of the control run. The
mean estimate of the location parameterµ is about 25 cm too low, compared with the
observations, which can partly be attributed to the neglect of the pressureeffect for
the ECBilt-Clio extremes. The other parameters of the observational recordare in the
range of the ECBilt-Clio parameters. Noticeable is the wide range in estimated pa-
rameters - clearly an effect of sampling. The influence ofθ on the estimated 104-year
return level is depicted in Figure1.11, which shows for all 46 subsets the estimated
104-year surge levely104 as a function of the shape parameterθ. The wide range in
θ results in estimated return levels between 4.5 and 17 meters, with an average of
9.2 meter, and a standard deviation of 3.1 meter. These values correspondwell with
those for the median set (y104 = 8.5 ± 2.7 m) and the total set (y104 = 8.5 ± 0.4 m),
using Eq.1.6for estimating the standard deviations.

The observational record fits well in the plot, suggesting that this record can be
regarded as a realistic subset among all other subsets.

Although Figure1.9 indicated that the Gumbel distribution (θ = 0) is not able to
describe adequately the annual surge extremes, for 70% of the subsetsthe hypothesis
H0: θ = 0 is not rejected (at 5% level, according toHosking et al.(1985)). For most
of these situations, the 104-year surge level will be underestimated, giving an average
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Figure 1.11: The estimated 104-year return level for the surge as a function of the
correspondingθ, together with the estimate form the total control run
of 5336 years, and the estimate from the 1881-1991 observational set of
Delfzijl, with its standard deviations ofθ and the 104-year surge level
according to Eq.1.6. Also shown is the median set fory104 . The arrow
indicates the range for which the hypothesis H0: θ = 0 for the subsets
is not rejected (5% level).
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estimate of 8.3 meter instead of 9.2 meter.
In order to find the length of the record required to estimate the 104-year surge

level of 8.5 m with an accuracy of 1 meter, we extended two subsets until theires-
timated 104-year surge levels differed no more than 2 meter. As Figure1.12shows,
in this case the record length should be larger than 103 years for an accuracy of 1
meter in the 104-year surge level estimate. Note that also the required record length
depends onθ. This dependence is shown in Figure1.13 for a relative uncertainty
σ(y

104
)

y
104

−µ of 10 %. This relative uncertainty is independent ofα andµ.

We conclude that the uncertainty in the estimate of the 104-year surge level from a
record of 102 years is mainly determined by the uncertainty in the shape parameterθ.
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Figure 1.12: Estimated surge level as a function of the number of years in thedata
set used for the fit. Shown are two independent realizations from the
control run. The estimated value from the total run of 5336 years (8.5
m) is indicated by a solid line. An estimate with an uncertainty of 1 m
(dashed lines) requires a record length of order 1000 years.
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Figure 1.13: Required record length as a function of the shape parameterθ for a rela-

tive uncertainty
σ(y

104
)

y
104

−µ of 10 %, according to Eq.1.6. The vertical scale
is logarithmic. The required record length decreases quadratically with
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Figure 1.14: Distributions for the wind speed (a) and the wind direction (b) for
the control run and the greenhouse run for the North Sea representing
ECBilt-Clio grid point (6E,47N).
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This uncertainty stems from sampling effects, and leads to an uncertainty of afac-
tor two in the 104-year surge level if determined from the observational record. In
practice, a record of order thousand years is required for an uncertainty of 10 %.

b. Greenhouse effect on surge and wind

Figure1.14(a) shows a Weibull plot of the distributions of the wind speed for the con-
trol run and the greenhouse run for the North Sea representing grid point in ECBilt-
Clio (6E,47N). The distributions are virtually identical. The distributions of the wind
direction are depicted in Figure1.14(b). There is a slight increase in westerly- and
a decrease in southerly winds, resulting in increasing frequency of positive surge in
Delfzijl.

Table1.1 compares the parameters of the GEV distributions for the control run
and the greenhouse run and the corresponding104-year surge and wind levels. Figure
1.15and Table1.1(a) show an increase in the location parameterµ of 8 %, and in the
scale parameterα of 6 % for the surge. The shape parameterθ remains unchanged.
This results in an increase of the104-year surge level of 0.6 meter; this increase is
not statistically significant at the 5 % level.

The influence of the greenhouse climate on the extreme wind speed is shown in
Figure1.16and Table1.1(b). FollowingCook(1982), the GEV distribution is fitted
to u2. Like as for the surge, also for the extreme wind speed the location parameter µ
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Figure 1.15: Gumbel plots and fits of the surges for the 5336-year control- and green-
house runs in ECBilt-Clio for the North Sea representing grid point
(6E,47N).
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Table 1.1: GEV-parameters for the fits to the surge (a) and wind speed (b), with the
estimated 104-year levels and their uncertainty according to Eq.1.6 for
the North Sea representing grid point (6E,47N) in ECBilt-Clio and for the
observational record of Delfzijl. See Section1.6a for comments on the
uncertainty of the observational record.

µ [m] α [m] θ [-] 104-year surge [m]
control run 1.45±0.01 0.49±0.01 -0.091±0.01 8.5±0.4
greenhouse run 1.57±0.01 0.52±0.01 -0.092±0.01 9.1±0.4
Delfzijl record 1.69±0.05 0.43±0.03 -0.011±0.07 5.8±1.3

(a) surge

µ [m2s−2] α [m2s−2] θ [-] 104-year wind [m/s]
control run 462± 2 140± 2 -0.069± 0.01 47.5± 1.0
greenhouse run 493± 2 149± 2 -0.053± 0.01 47.6± 1.0

(b) wind speed (fitted tou2)
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Figure 1.16: Gumbel plots and fits of the 12-hourly averaged wind speed for the
control- and greenhouse runs in ECBilt-Clio for the North Sea repre-
senting grid point (6E,47N). The kink at a return period of 250 years in
the greenhouse run suggests the presence of a double population in the
extreme wind distribution. The vertical scale is quadratic.
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and the scale parameterα increase, both with 6 %. The (not significant at 5 % level)
decrease of the shape parameterθ cancels the increase due toµ andα for a return
period of 104 years.

Figure 1.16 shows for the greenhouse run a systematic deviation with respect
to the fitted distribution for wind speeds with return periods more than 250 years.
The kink in the graph, caused by severe events, suggests the existenceof a second
population in the extreme wind distribution. The fit to the total set is not influenced by
these severe events, due to the large number of points before the kink. However, if the
sampling period is increased from one year to a century, the parameters ofthe GEV
distribution are predominantly determined by these severe events. Extrapolating from
this severe-events-dominated GEV distribution results in a considerably higher 104-
year return value for the wind speed than extrapolation of the total set of annual
extremes.
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1.6 Discussion and conclusions

a. Uncertainty in extrapolation

The climate model ECBilt-Clio indicates that the surge extremes of the control cli-
mate can be described with a GEV distribution up to the return period of interest:104

years. However, the estimates from 46 records of 116 years (like in the observational
record) vary between half and twice the median value. This range is also obtained
for neighboring grid points, indicating that only a crude estimate can be made with a
single record of order hundred years.

For a practical useful uncertainty range of about 10 %, one needs 103 years of
surge extremes. To improve the confidence in the absolute value of the calculated
return level, a more complex General Circulation Model has to be used to generate
103 years of data for a realistic estimate of the 104-year return level of the surge.

Our results suggest that the observational record can be regarded as a realistic
subset among all other subsets (Figure1.10). The considerable lower estimate of the
uncertainty range for the observational record (σ(y104) = 1.3 m) than for the ECBilt-
Clio median set (σ(y104) = 2.7 m) is caused by the non-linearity of the ofy104 with
respect toθ. In the situation of small records (makingσ(θ) large) and large return
periods (making∂y

∂θσ(θ) dominant over∂y
∂µσ(µ) and ∂y

∂ασ(α)), a better uncertainty

estimate is obtained by determining the upper and lower bounds asy(µ̂, α̂, θ̂−2σ(θ̂))
andy(µ̂, α̂, θ̂ + 2σ(θ̂)) respectively. Estimating the uncertainty interval in this way
results for the observational record of Delfzijl in an upper bound of 9.2m, against 8.4
m according to Eq.1.6. Monte Carlo simulation gives 9.4 m for the parameters of the
observational record. So, Eq.1.6 underestimates the upper bound of the estimated
return level in the situation of short records and large return periods.

The different extrapolation methods, applied to the record for Delfzijl inDillingh
et al.(1993) show a mutual difference of not more than 10 %, whereas the estimates
from different records differ up to 200 %. This indicates that the method used for ex-
trapolation is of minor importance with respect to accuracy than the representativity
of the underlying dataset.

b. Convergence rate to GEV distribution

In this paper we fitted the GEV distribution to the surge and tou2. However, it is
not known beforehand if these variables are the best choices with respect to their
convergence rate to the asymptotic distribution. While theory shows that (forany
k > 0) the extremes of the Weibull distributionF (u) = 1 − exp (u/a)k converge
asymptotically to the Gumbel distribution (Embrechts et al. 1997), the convergence
rate depends onk. Fast convergence is expected if one fitsuk, with k derived from
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the tail of wind speed (practically: u larger than Weibull constant a). The reason is
that this transforms the Weibull distribution into an exponential distribution, which
has a fast convergence to the Gumbel distribution. We therefore recommend to fit
uk, wherek can be obtained from Weibull analysis. If a different powern is chosen,
then incomplete convergence (due to the finite series length) may result in a over-
estimation ofθ if n < k and vice versa.

The Weibull distribution of the wind (Figure1.14) suggests that in the tailk ∼
1.5, which is somewhat smaller than thek=2-value proposed byCook(1982). This
implies that for windu1.5, or equivalently for surgey0.75, has to be extrapolated to
get optimal convergence. The incomplete convergence due to the choiceu2 leads to a
θ-estimate that is too small. The results on the 104-year level are a 3 % smaller wind
speed and a 6 % smaller surge.

We advise a careful evaluation of the variable to be fitted to obtain fast conver-
gence to the expected extreme value distribution. In any case, one should be careful
to interpretθ > 0 as the result of an upper limit, as long as the level of convergence
is unclear.

c. Severe events

ECBilt-Clio hints on the excitation of ’superstorms’ in the greenhouse climate, de-
fined as storms with more extreme winds than expected from extrapolation of less
extreme events. If these severe events are real, and if they are part ofa second pop-
ulation that becomes apparent for high return periods only, than the kink at a return
period of∼ 250 year in the Gumbel plot of Figure1.16 means that these ’super-
storms’ dominate the extreme value statistics at frequencies lower than once in 250
years.

It is tempting to find an interpretation for these superstorms. Preliminary analysis
indicates that a part of them may originate from the amalgamation of two precursor
cyclones. Cyclogenesis by Wave-Merging is regularly observed above North Amer-
ica (Gaza and Bosart 1990) but seem rarer above Europe. Merging cyclones are
known to result in extreme winds and core pressures (Hakim et al. 1995a,b).

We speculate at the moment that the changing climate results in a seldom oc-
currence of these Wave-Mergers over North-western Europe. It may be that this
mechanism is also possible in the control climate, but that its rarity is so extreme that
it does not show up in the Gumbel plot of order 104 year. If this conjecture is true,
than the occurrence of superstorms in a greenhouse climate can be regarded to be the
result of a increased probability of these events under the changed CO2 conditions.
The time-evolution of the relative vorticity during one of these severe eventsis shown
in Figure1.17(Appendix1.A). It clearly shows the merging of two cyclones, and the
explosive increase in relative vorticity and wind speed.
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The reason for this merging, and its relation to the greenhousegas concentration,
has to be investigated, as well as the physical reliability of these superstorms. This
future research will concentrate on the analysis of the synoptic situations leading to
the severe events, and on changes in the spatial distribution of wind extremes due to
the greenhouse effect.

1.A Meteorological situation during a severe event

Figure1.17shows the situation from 4 days before till 1 day after the day with the
largest wind speed in the ECBilt-Clio greenhouse run. The evolution of the daily-
averaged vertical component of the relative vorticity at 800 hPa indicatesthat two
storms (with their centers at (55E,52N) and (15E,57N) on day 1), interactand merge
during day 2 to 5. This results in a explosive increase in relative vorticity and wind
speed. The situation in the simulation of Figure1.17 resulted in a 12-hourly wind
speed over the North Sea of 53 m/s, and a surge level in Delfzijl of 7.9 m.



Figure 1.17: Meteorological situation of a severe ECBilt-Clio event. Shown isthe
daily-averaged vertical component of the relative vorticity (in 10−5

m/s2) at 800 hPa. Panel 5 shows the most extreme situation. The event
resulted in a wind speed of 53 m/s, and a surge level in Delfzijl of 7.9
m.



Chapter 2

Uncertainties in extreme surge level
estimates from observational records

Abstract

Ensemble simulations with a total length of 7540 years are generated with a climate
model, and coupled to a simple surge model to transform the wind field over the
North Sea to the skew surge level at Delfzijl (NL). The 65 constructed surge records,
each with a record length of 116 years, are analyzed with the GeneralizedExtreme
Value (GEV) and the Generalized Pareto distribution (GPD) to study both the model
and sample uncertainty in surge level estimates with a return period of 104 years, as
derived from 116-year records.

The optimal choice of the threshold, needed for an unbiased GPD-estimate from
Peak-Over-Threshold (POT) values, cannot be determined objectively from a hundred-
year data set. This fact, in combination with the sensitivity of the GPD-estimate to the
threshold, and its tendency towards too low estimates, leaves the application ofthe
GEV distribution to storm-season maxima as the best approach. If the GPD-analysis
is applied, the exceedance rateλ should be chosen not larger than 4.

The climate model hints at the existence of a second population of very intense
storms. As the existence of such a second population can never be excluded from
a hundred-year record, the estimated104-year wind speed from such records has
always to be interpreted as a lower limit.

2.1 Introduction

In The Netherlands, a probability of 10−4 per year for flooding from the sea is used
as baseline for dike design (Deltacommissie 1960). Several problems arise when
translating this ’accepted risk’ into the sea level being exceeded (on average) only
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once in 104 years. First, as the observational records of tidal stations are only 102

years in length, the surge level with an average return period of 104 years requires
an extrapolation of two orders of magnitude. It is unclear how reliable the estimate
from such an extrapolation is. Second, various probability functions canbe fitted to
the observational records of extreme surges, leading to different results in the 104-
year return levels (Dillingh et al. 1993; de Haan 1990). Third, extrapolation from
observational records does not contain information about surges in a greenhouse gas
induced changing climate. Fourth, a second population of rare but intensestorms,
originating from a different kind of meteorological system, would result in higher
return values than estimated from standard extreme value analysis of the available
short records.

These problems are explored by analyzing two very long surge recordsfor the
Dutch coastal station Delfzijl, which were generated by a climate model. One series
refers to the present-day climate; the second to the future (doubled greenhouse gas
concentration) conditions. The length of these series (order 104 years) allow for
exploring the far tail of the distribution, as well as for uncertainty estimates ofthe
return values if calculated from much shorter (order102 years) subsets.

2.2 Model descriptions

Wind data are generated by the General Circulation Model (GCM) ECBilt-Clio, con-
sisting of an ocean model Clio (Goosse and Fichefet 1999) and an atmospheric model
ECBilt (Opsteegh et al. 1998, 2001). ECBilt is a spectral T21 global 3-level quasi-
geostrophic model, with a time step of 4 hours. The T21-resolution corresponds (for
the latitudes of interest) with a grid point distance of approximately 500 km.

The surge model we used is a simplified version of the Timmerman model (Tim-
merman 1977). It is described and validated invan den Brink et al.(2003). We
calculated a surge level every 12 hours.

2.3 Methodology

a. Extreme Value distributions

There are two commonly applied approaches in extreme value statistics: In the first
approach, ’block maxima’ are considered, to which the Generalized Extreme Value
(GEV) distribution is applied. The GEV distribution function is given by:

GEV = P (Y ≤ y) = exp
(

− [1 −
θ

α
(y − µ)]

1/θ
)

(2.1)
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with µ the location parameter,α the scale parameter,θ the shape parameter, andy
the block maximum of the considered variable (de Haan 1976).

In the second approach, all values above a certain thresholdu are considered.
To these ’Peak over Threshold’ (POT) values, the Generalized ParetoDistribution
(GPD) is applied. The GPD distribution function is given by:

GPDλ = P (Y − u ≤ y|Y > u) = 1 −
[

1 −
θ

α
(y − µ)

]1/θ
(2.2)

with µ the location parameter,α the scale parameter,θ the shape parameter, andy
the variable above a chosen thresholdu. We follow the common approach to choose
µ equal to the thresholdu (Palutikof et al. 1999). The exceedance rateλ, which
depends on the thresholdu, is estimated as the average number of exceedances over
the thresholdu per ’block’. From both approaches, the level belonging to a given
probability of exceedance can be estimated by inverting equations2.1and2.2.

The shape parametersθ of the GEV and the GPD distributions are equal if the
threshold is large enough (Katz et al. 2002).

In order to come to an optimal estimate, it is desirable that the estimate is both
unbiased (i.e., with the right expected value) and efficient (i.e., with a small uncer-
tainty). The uncertainty depends mainly on the number of samples that are consid-
ered, whereas a systematic bias will be introduced if a wrong distribution is used
to describe the data. As both the GPD and the GEV distribution describe only the
’tail’ of the parent distribution, a bias will be introduced if samples that do notbe-
long to this ’tail’ are also considered. Which samples belong to the tail, in the sense
that they can be described with the same parameters as the more extreme events, de-
pends on the convergence rate of the parent distribution to the asymptotic extreme
value distribution. For the ’block maxima’ approach, this convergence is assumed
beforehand, whereas for the POT-approach, this question is commonly answered em-
pirically, making use of the fact that for the ’tail’, the estimated shape parameter θ
should be independent of the thresholdu, and thus of the exceedance rateλ. This can
be explored by plotting the estimated shape parameterθ as a function of the threshold
u or the exceedance rateλ. The chosenλ is then the largest one for whichθ is stable
(de Haan 1990; Coles 2001). If there are strong fluctuations or trends in the estimated
θ, quantile estimates are difficult to obtain (see e.g.Brabson and Palutikof 2000).

So, the larger sample set that is considered in the POT-approach (ifλ > 1) makes
this method more efficient than the ’block maxima’ approach. On the other hand,
the POT-approach is more likely to be biased, as samples less far in the tail of the
distribution are also used.

For a further overview of the advantages and disadvantages of the POT-approach
and the ’block maxima’ approach, we refer toPalutikof et al.(1999)
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b. Set-up of the numerical experiment

With ECBilt-Clio, 260 runs of 30 years each were generated, with a CO2 concen-
tration according to the period 1960-1989 (320 ppm on average). In addition to the
control run, we also generated 233 ensemble runs of 30 years with estimated CO2

concentrations according to the period 2050-2079 (following the SRES A1B CO2

emission scenario (Nakicenovic et al. 2000). This emission scenario results in ap-
proximately doubled CO2 concentration (620 ppm on average) in 2050-2079 with
respect to the control run.

As every 30-year run contains 29 storm season periods, we have 260×29=7540
’block maxima’ for the control run, and 6902 for the greenhouse run.

c. Data handling

To remove dependent events from the POT-selection, we require a minimal timesep-
aration between selected events of 96 hours, as inde Haan(1990).

We concentrate on storm season events (October till March) to improve homo-
geneity of the data set (de Haan 1990). We applied the surge model to the ECBilt-Clio
grid point (6E,47N). This grid point best represents the North Sea winds(van den
Brink et al. 2003).

We calculated the parameters of the GEV and GPD distributions via the method
of Maximum Likelihood (Coles 2001). The 95%-confidence levels were estimated
from the profile likelihood (Coles 2001).

Figure 2.1 shows the number of exceedancesλ as a function of the threshold
u for the observations and the ECBilt-Clio data. ECBilt-Clio has somewhat less
exceedances over a given threshold than the observations. In this study, we compare
both record for situations with equal exceedance rateλ, which means that for the
observational record a higher threshold is chosen than for the ECBilt-Cliorecord.

Figure2.2shows a return level plot for the observational set and the ECBilt-Clio
set. The extremes of ECBilt-Clio are in reasonable agreement for return periods up
to 50 years. For return periods larger than 50 years, the extremes in ECBilt-Clio are
higher than in the observational set.

2.4 Results

a. Dependence of 104-year estimate on model choice

With the control run, we tested the uncertainty in the extrapolation of the extreme
surges for Delfzijl. We applied the GPD distribution to the 116-year observational
surge record of Delfzijl (1883-1999), to 65 subsets of 116 years each of ECBilt-
Clio, and to the total set of 7540 years, all for several choices ofλ. We also ap-
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Figure 2.1: Number of exceedancesλ per storm season (October to March) as a func-
tion of the thresholdu for the observations and the ECBilt-Clio data. The
vertical scale is logarithmic.
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Figure 2.2: Return level plot for the observational set and the ECBilt-Clio set. The
lines are GEV- and GPD-fits with exceedance rateλ = 3 to both sets.
The horizontal scale is logarithmic.
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Figure 2.3: The estimated 104-year return level for the surge as a function of the
corresponding shape parameterθ for 65 subsets (each of 116 years length)
from the ECBilt-Clio control run. Shown are the GEV-estimates (a) and
the GPD-estimates for exceedance rateλ = 1 (b). Also shown are the
estimates from the total ECBilt-Clio control run of 7540 storm seasons
(circle), and the estimate from the 1883-1999 observational set of Delfzijl
(square).
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(b) GPD,λ = 1

plied the GEV distribution to the storm season block-maxima of all these sets. The
104-year estimates are shown in Figure2.3 as a function of the estimated shape pa-
rameterθ from the GEV distribution (panel a) and from the GPDλ=1 distribution
(panel b). Figure2.3 shows the following features: First, both panels resemble the
strong correlation between the estimated shape parameterθ and the estimated 104-
year return level. Second, the 104-year estimate from the total 7540-year ECBilt-
Clio set are similar for the GEV (8.29 m (7.21,10.9)) and the GPDλ=1 estimate
(7.87 m (7.28,8.62)) (the values between brackets are the lower- and upper 95%-
confidence levels). Third, the lower GPDλ=1 estimate (4.66 m (3.70,8.95)) than the
GEV estimate (5.85 m (4.17,11.5)) indicates that the two approaches can result in
considerably different 104-year estimates (although they do not differ significantly in
this case). Fourth, the 104-year estimates of the 116-year ECBilt-Clio subsets vary
considerably, between 4 and 20 m, both for the GEV- and the GPDλ=1 estimates.
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Figure 2.4: (a) Estimated shape parametersθ of the GPD-distribution for the surge
in Delfzijl according to the total 7540-year ECBilt-Clio set as a function
of the exceedance rateλ. Also shown are estimates from two arbitrarily
chosen 116-year ECBilt-Clio subsets (set 1, set 2), and the observational
set. (b) The corresponding 104-year surge levels. The horizontal axes are
logarithmic.
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b. Dependence of GPD 104-year estimate on exceedance rate

We now want to explore ifλ > 1 makes application of the GPD distribution more
efficient than the GEV distribution. Figure2.4 shows the estimated GPD shape pa-
rameters and 104-year return levels as a function ofλ. Figure2.4(a) shows the esti-
mates from the total 7540-year set, two arbitrarily chosen 116-year ECBilt-Clio sets
and the observational set. Figure2.4(b) gives the estimated 104-year surge levels for
the same sets.

Figure 2.4 gives the following information: First, ifλ < 1, the estimate ofθ
(and thus the 104-year estimate) from a 116-year subset is very sensitive toλ, which
is undesired. Second, also forλ > 1, considerable fluctuations in the estimated
shape parameterθ remain in 116-year sets, as both the two ECBilt-Clio sets and the
observational set show. This fact, together with the different ’stable’ regions forθ of
the two ECBilt-Clio 116-year subsets, make it difficult or even impossible to choose
an optimal value ofλ from a 116-year record. Third, the two 116-year ECBilt-Clio
subsets remain for allλ’s either below, or above the estimate of the total 7540-year
ECBilt-Clio set. Fourth, even the estimates of the total 7540-year ECBilt-Clio setare
not threshold-independent. This suggests that the upward slope ofθ (for λ > 4) in
Figure2.4(a) (and the corresponding decreasing 104-year estimate in Figure2.4(b))
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is a bias, caused by samples that do not belong to the tail of the parent distribution.
Fifth, the fact that the estimates from the observational set are within the ECBilt-Clio
range for the GEV and the GPD distribution forλ . 3, but outside that range for
λ & 3, might indicate that the observational set is even more biased for large values
of λ than the ECBilt-Clio set.

We conclude thatλ should be in the range between 1 and 4 to have a more or less
unbiased 104-year surge estimate. However, such a range can only be determined
from an extremely long data set. Data sets of order hundred years are tooshort to
determine a maximal choice ofλ (and thus of the minimal threshold) that results in
an unbiased estimate. The strong dependence of the GPD-estimates on the choice of
λ makes it difficult, or even impossible, to obtain reliable unbiased GPD-estimated
104-year surge levels from 102-year records.

c. Optimal choice for threshold

In order to investigate the bias in more detail, we determine the fraction of the 65
subsets for which the actual value lies outside the 95%-confidence interval. These
percentages are shown in Figure2.5(a) for a return period of 100 years, split out
to the lower- and upper 95%-confidence level. The actual 100-year value is 4.20 m
(according to Figure2.2). The open circles in Figure2.5(a) show that the fraction
of upper 95%-confidence levels is larger than 2.5% for all exceedancerates, except
between 2 and 4. Forλ ≥ 5, the number of subsets for which the upper 95%-
confidence levels is below the actual value is large, whereas for none ofthe 65 subsets
the actual value is below the the lower 95%-confidence levels. This indicatesthe
existence of bias towards too low values.

Fitting a GEV-distribution to the 65 subsets gives one subset for which the 100-
year upper 95%-confidence level is lower than the actual value, and one subset for
which the lower 95%-confidence level is higher than the actual 100-yearvalue. The
corresponding percentages are plotted at the right side of Figure2.5(a).

To highlight the effects of Figure2.5(a), the calculations are repeated, but now
based on 1000 116-years subsets, obtained by randomly sampling from the total
ECBilt-Clio set, in order to decrease the noise. The results for a return period of
100 years are shown in Figure2.5(d). This confirms the findings of Figure2.5(a) that
there is a bias in the GPDλ-estimates. Whereas Figure2.5(a) did not indicate a bias
for λ = 3, Figure2.5(d) shows that there is a small bias forλ < 4, which strongly
increases forλ > 4. Figure2.5(d) indicates no bias in the GEV-estimates (about
2.5% of the upper 95%-confidence intervals is lower than the actual value,and about
2.5% of the lower 95%-confidence intervals is above the actual value).



2.4 Results 35

F
ig

ur
e

2.
5:

P
er

ce
nt

ag
es

of
th

e
nu

m
be

r
of

se
ts

th
at

do
no

t
co

nt
ai

n
th

e
’re

a
l’

va
lu

e
w

ith
in

its
95

%
-c

on
fid

en
ce

in
te

rv
al

s,
es

tim
at

ed
w

ith
th

e
G

P
D λ-

di
st

rib
ut

io
n

fo
r

di
ffe

re
nt

ex
ce

ed
an

ce
ra

te
s

λ
,

an
d

w
ith

th
e

G
E

V
-d

is
tr

ib
ut

io
n.

T
he

’re
al

’
va

lu
e

is
ch

os
en

to
be

th
e

ac
tu

al
10

0-
ye

ar
va

lu
e

of
th

e
75

40
-y

ea
r

se
ti

n
(a

,d
),

th
e

10
4
-y

ea
r

G
E

V
-e

st
im

at
e

of
th

e
75

40
-y

ea
r

se
ti

n
(b

,e
),

an
d

th
e

10
4
-y

ea
r

G
P

D λ
=

3
-e

st
im

at
e

of
th

e
75

40
-y

ea
r

se
t

in
(c

,f)
.

U
pp

er
:

65
11

6-
ye

ar
su

bs
et

s;
L

ow
er

:
10

00
11

6-
ye

ar
se

ts
,

ra
nd

om
ly

sa
m

pl
ed

fr
om

th
e

to
ta

lE
C

B
ilt

-C
lio

se
t.

02468101214

0
2

4
6

8
10

12

percentage

ex
ce

ed
en

ce
 r

at
e 

λ

GEV

up
pe

r 
95

%
-le

ve
l b

el
ow

 1
00

-y
ea

r 
ac

tu
al

 v
al

ue
lo

w
er

 9
5%

-le
ve

l a
bo

ve
 1

00
-y

ea
r 

ac
tu

al
 v

al
ue

(a
)

10
0-

ye
ar

G
P

D
-

an
d

G
E

V
-e

st
im

at
es

co
m

pa
re

d
w

ith
th

e
ac

tu
al

10
0-

ye
ar

va
lu

e
(4

.2
0

m
),

fo
r

65
11

6-
ye

ar
su

bs
et

s.

051015202530

0
2

4
6

8
10

12

percentage

ex
ce

ed
en

ce
 r

at
e 

λ

GEV

up
pe

r 
95

%
-le

ve
l b

el
ow

 1
04 -y

ea
r 

G
E

V
-e

st
im

at
e

lo
w

er
 9

5%
-le

ve
l a

bo
ve

 1
04 -y

ea
r 

G
E

V
-e

st
im

at
e

(b
)

10
4
-y

ea
r

G
P

D
-

an
d

G
E

V
-e

st
im

at
es

co
m

pa
re

d
w

ith
th

e
104

-y
ea

r
G

E
V

-
es

tim
at

e
of

th
e

75
40

-y
ea

r
se

t(
8.

29
m

)

05101520

0
2

4
6

8
10

12

percentage

ex
ce

ed
en

ce
 r

at
e 

λ

GEV

up
pe

r 
95

%
-le

ve
l b

el
ow

 1
04 -y

ea
r 

G
P

D
λ=

3-
es

tim
at

e
lo

w
er

 9
5%

-le
ve

l a
bo

ve
 1

04 -y
ea

r 
G

P
D

λ=
3-

es
tim

at
e

(c
)

id
em

as
(b

),
co

m
pa

re
d

w
ith

104
-y

ea
r

th
e

G
P

D λ
=

3
-e

st
im

at
e

of
th

e
75

40
-y

ea
r

se
t(

7,
78

m
).

02468101214

0
2

4
6

8
10

12

percentage

ex
ce

ed
en

ce
 r

at
e 

λ

GEV

up
pe

r 
95

%
-le

ve
l b

el
ow

 1
00

-y
ea

r 
ac

tu
al

 v
al

ue
lo

w
er

 9
5%

-le
ve

l a
bo

ve
 1

00
-y

ea
r 

ac
tu

al
 v

al
ue

(d
)

id
em

as
(a

),
fo

r
10

00
sa

m
pl

ed
se

ts
.

051015202530

0
2

4
6

8
10

12

percentage

ex
ce

ed
en

ce
 r

at
e 

λ
GEV

up
pe

r 
95

%
-le

ve
l b

el
ow

 1
04 -y

ea
r 

G
E

V
-e

st
im

at
e

lo
w

er
 9

5%
-le

ve
l a

bo
ve

 1
04 -y

ea
r 

G
E

V
-e

st
im

at
e

(e
)

id
em

as
(b

),
fo

r
10

00
sa

m
pl

ed
se

ts
.

05101520

0
2

4
6

8
10

12

percentage

ex
ce

ed
en

ce
 r

at
e 

λ

GEV

up
pe

r 
95

%
-le

ve
l b

el
ow

 1
04 -y

ea
r 

G
P

D
λ=

3-
es

tim
at

e
lo

w
er

 9
5%

-le
ve

l a
bo

ve
 1

04 -y
ea

r 
G

P
D

λ=
3-

es
tim

at
e

(f
)

id
em

as
(c

),
fo

r
10

00
sa

m
pl

ed
se

ts
.



36 Uncertainties in extreme surge level estimates from observational records

For the 104-year return periods, the percentages exceeding the upper- and lower
95%-confidence intervals are depicted in Figure2.5(b,c,e,f). In this case, i.e., for
104-year return periods, the ’real’ value for the 104-year return value has to be cho-
sen, as it can not be determined directly from Figure2.2. As possible ’real’ values
we considered both the GEV- and the GPDλ=3-estimates, as obtained from the total
7540-year set. The reason for consideringλ = 3 in the GPD-estimate is that this
value of the exceedance rateλ turns out to be the best, according to Figure2.5(a).
Another reason is that the GPDλ=3-estimate is correct for a 100-year return period
(Figure2.2).

Figures2.5(b,c) show the results for the 65 subsets, respectively taking the 104-
year GEV-estimate (8.29 m) as ’real’ value, and the 104-year GPDλ=3-estimate (7.78
m). Figures2.5(e,f) show the results for the 1000 sampled subsets.

We see an even stronger bias towards too low values for the 104-year return pe-
riods than for the 100-year return periods for the GPD-estimates ifλ > 4 (note the
different vertical range of Figures2.5(b,c,e,f) with respect to Figures2.5(a,d)). No
bias is detected for the GEV-estimates in the situation that the 104-year GEV-estimate
is taken as ’real’ value (Figures2.5(e)), and for the GPD-estimates if1 < λ < 4 in the
situation that the 104-year GPDλ=3-estimate is taken as ’real’ value (Figures2.5(f)),
as expected from consistency.

We conclude from Figure2.5 that the GPD-estimates are more sensitive to bias
than the GEV-estimates, especially if the exceedance rateλ > 4. The GEV-estimates
are unbiased. This leaves the GEV analysis as the preferred method.

d. Greenhouse effect on wind

The effect of the greenhouse doubling on the extreme wind speed in ECBilt-Clio for
the North Sea grid point is shown in Figure2.6. Up to return periods of≈ 100 years,
no effect is apparent. However, for wind speeds with return periods of more than 250
years, the greenhouse run deviates systematically from the fitted GEV distribution.
This suggests the existence of a second population in the extreme wind distribution.
Fitting the GEV distribution to the deviating extremes only, results in a considerably
higher 104-year return value for the wind speed than fitting to the total set. For a
more comprehensive description, we refer tovan den Brink et al.(2004a).

2.5 Discussion and conclusions

The variance in the GEV-estimates from 65 records of 116 years indicatesthat only a
crude estimate of the 104-year surge level can be made from a single record with
a length of the order of a hundred years. The GPD-estimates give lower 95%-
confidence intervals for exceedance ratesλ > 1 than the GEV-estimates, but the
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Figure 2.6: Return level plot of the observed and GEV-estimated 12-hourly averaged
wind speeds for the control- and greenhouse runs in ECBilt-Clio for the
North Sea representing grid point (6E,47N). The kink at a return period
of 250 years in the greenhouse run suggests the presence of a double
population in the extreme wind distribution.
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total 7540-year ECBilt-Clio set shows that these GPD-estimates are biased toward
lower 104-year values.

For the ECBilt-Clio data, the percentage of the 95%-confidence levels containing
the actual value can be determined for a return period of 100 years, andestimated for
a return period of 104 years. This analysis points out that application of the GPD-
analysis to the ECBilt-Clio data leads to estimates that are biased towards too low
values. We emphasize that this analysis can only be done for extremely long sets,
and thus not for the short observational sets.

The unknown optimal value of the exceedance rateλ for the observational set,
combined with the sensitivity of the GPD-estimate to the choice ofλ, and the ten-
dency towards too low estimates, leaves in our opinion the GEV analysis as the pre-
ferred method to apply to the observational data, despite of its large uncertainty. If
the GPD-analysis is applied,λ should be chosen not larger than 4.
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In the future, output of more advanced climate- and surge models will be used
to calculate the 104-year surge level and its uncertainty. Another possibility may be
to apply the optimalλ, as obtained from the climate model, to the observational data
and still estimate the 104-year surge level and its uncertainty from the observations.

ECBilt-Clio hints at the excitation of extratropical ’superstorms’, defined asstorms
with more extreme winds than expected from extrapolation of less extreme events.
The fact that this second population is only apparent in the greenhouse run for this
grid point indicates that regions where second populations exist, can be shifted, en-
hanced or generated by climate change. The reality of this model-induced second
population has still to be shown (van den Brink et al. 2004a). Due to their extreme
rarity, they are not detectable from records of only hundred years in length. Re-
versing this argument implies that extrapolations from 100-year records to104-year
return levels are only valid under the condition that the extreme value distribution
is single populated. As this condition can never be proved from 100-yearrecords,
the GEV- or GPD- (or any other distribution) estimated 104-year wind speed from
100-year records has always to be interpreted as a lower limit.



Chapter 3

Statistics of extreme synoptic-scale wind
speeds in ensemble simulations of current
and future climate

Abstract

Statistical analysis of the wind speeds, generated by a climate model of intermediate
complexity, indicates the existence of areas where the extreme value distribution of
extratropical winds is double populated, the second population becoming dominant
for return periods of order 103 years. Meteorological analysis of the second popula-
tion shows that it is caused when extratropical cyclones merge in an extremely strong
westerly jet stream, conditions are generated which are favorable for occurrence of
strong diabatic feedbacks. Doubling of the greenhousegas concentrations changes
and enlarges the areas of second population, and increases its frequency. If these mo-
del results apply to the real world, then in the exit areas of the jet stream theextreme
wind speed with centennial to millennial return periods is considerable largerthan
extreme value analysis of observational records implies.

3.1 Introduction

Motivated by safety and dike design demands, much statistical research withobserva-
tional data has been done on the estimation of extreme wind speeds and storm surges
(Cook 1982; Simiu et al. 2001; de Haan 1990) for return periods up to 104 years. Al-
though a wide variety of methods has been developed (see e.g.Palutikof et al.(1999)
for an overview), all practical applications hamper from the restricted length of the
observational series (order hundred years), on which the statistical extrapolations are
based.

Several assumptions underly the statistical estimate of the wind speed with a
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return period of 104 years. The most important one, i.e. that all extratropical extremes
(up to return periods of 104 years) belong to the same population, is hard to verify
from the available short observational sets.

We evaluated this problem within the context of a climate model of intermedi-
ate complexity. We have generated ensemble runs (consisting of 3509 years in total)
with a climate model, both for the current climate (∼ 1975) and for a climate at dou-
bled CO2 concentrations (∼ 2065). With these long records we searched for double
populations in the extreme value distributions of annual wind extremes for return pe-
riods up to104 years. In addition, we explored the effect of increased greenhousegas
concentrations on the mean annual wind and on the double populations. Finally, we
analyzed the meteorological conditions of the small but violent second population of
extreme winds.

The paper is structured as follows: Section3.2 describes the theoretical statis-
tical basis, and Section3.3 the data handling of the model output and the detection
of double populations from extreme value distributions. Section3.4 describes the
climate model used, and Section3.5 the statistical results. Section3.6 analyzes the
second population in meteorological sense, and Section3.7gives the discussion and
conclusions.

3.2 Extreme Value Analysis

a. General arguments

Let Mm be the maximum ofm independent observationsξ1, ξ2, . . . , ξm from distri-
butionF (x):

Mm = max(ξ1, ξ2, . . . , ξm) (3.1)

then the distribution ofMm is given by:

P (Mm ≤ x) = P (ξ1 ≤ x)P (ξ2 ≤ x)....P (ξm ≤ x) = Fm(x) (3.2)

Extreme Value theory states that the distribution of maxima of many probability dis-
tributionsF (x) (properly normalized withαm andµm) approaches asymptotically to
a specific class of functionsG(x):

lim
m→∞

P
(Mm − µm

αm
≤ x

)

= lim
m→∞

Fm(αmx + µm) = G(x) (3.3)

whereG(x) is given by:

G(x) = e−(1−θx)1/θ

(3.4)
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with the parameterθ ∈ R determining the nature of the function (see e.g.de Haan
(1990) andKotz and Nadarajah(2000)). A special case ofG(x) is the Gumbel dis-
tribution, which isG(x) with θ = 0. Then, interpretingθ = 0 as the limitθ → 0 ,
(3.4) reduces to:

G(x) = e−e−x
(3.5)

There are many examples of parent distributionsF (x) whose normalized extremes
converge to the Gumbel distribution, e.g. the normal distribution, the exponential
distribution and the Weibull distribution (Embrechts et al. 1997).

b. Generalized Extreme Value (GEV) distribution of wind data

We rewritem in (3.1) asrp, with r the average number of independent daily averaged
wind speeds in a year, andp the sample period in years from which the maxima
Mp are extracted. If we suppose that the distribution of the normalizedp-year wind
maxima followsG(x) for p ≥ 1, we can write (3.4) in the form of the so-called
Generalized Extreme Value (GEV) distributionGp(u): (Jenkinson 1955):

Gp(u) ≡ P (Mp ≤ u) = e−e−xp
(3.6)

with Mp thep-year wind maxima,Gp(u) the GEV distribution resulting from p-year
sampling, andxp a substitute for:

xp = ln
(

1 − θ
u − µp

αp

)−1/θ

(3.7)

in whichµp is the location parameter,αp the scale parameter,θ the shape parameter,
andu the wind speed. The location parameterµp can be interpreted as the wind
speed exceeded on average once during the sample periodp (Buishand and Velds
1980). Forθ > 0, u is bounded by an upper limit of valueµp + αp/θ; for θ ≤ 0, u
can approach infinity.

The Gumbel distribution (θ = 0) is interpreted as the limit of (3.7) asθ → 0,
leading to:

xp =
u − µp

αp
(3.8)

Extreme value distributions are often plotted as a so called Gumbel plot, where the
variableu is on the ordinate, and the abscissa is transformed into the Gumbel Variate:

Gumbel Variate= − ln(− ln(Fm(u))) (3.9)

On a Gumbel plot, a Gumbel distribution is represented by a straight line, whereas a
GEV distribution (θ 6= 0) is curved, downwardly forθ > 0 and upwardly forθ < 0.
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Using that that[G1(u)]p = Gp(u) (Leadbetter et al. 1983, p. 8), from (3.6)
follows:

xp = x1 − ln p (3.10)

Substituting (3.10) into (3.7) gives:

µp = µ1 + α1
1 − p−θ

θ
(3.11)

αp = α1 p−θ

In the special case of the Gumbel distribution, the right hand sides of (3.11) are
µ1 + α1 ln p andα1, respectively.

In extreme value studies, the probability of exceedance of a certain valueu is
usually expressed in terms of thereturn period T. The return periodT is the average
number of years between two succeeding exceedances of the corresponding return
valueu:

T (u) ≡
1

1 − G1(u)
≈ p exp for T ≫ p (3.12)

c. Two Component Extreme Value (TCEV) distribution

The local wind can be caused by two meteorological systemsa andb of different
physical nature, each of them generating its own distributionFa(u) andFb(u). Then,
the parent distributionFa,b(u) is said to be mixed, and can be decomposed into:

Fa,b(u) = (1 − ǫ)Fa(u) + ǫFb(u) (3.13)

with 0 < ǫ < 1. An interpretation of (3.13) is that of everym samples,(1 − ǫ)m
originates from mechanisma, andǫm from b. Especially interesting is the case in
which ǫ ≪ 1, and where the far tail ofFb(u) is heavier than that ofFa(u). Then
Fa,b(u) ≈ Fa(u), andFb(u) can not easily be detected from the parent distribution.
However, the extremely large events will originate from systemb, which existence
may be detected from the observed distribution of the extremes.

If F
(1−ǫ)m
a (u) → Ga(u) andF ǫm

b (u) → Gb(u) , then the distribution of the ex-
tremesGa,b(u) of the mixed distribution is given by (Cook et al. 2003):

Ga,b(u) ≡ F (1−ǫ)m
a (u)F ǫm

b (u) → Ga(u)Gb(u) (3.14)

where the subscriptsa, b of G(u) refer to the populations of systemsa andb.
The simplest case ofGa,b(u) represents the multiplication of two Gumbel dis-

tributions Ga(u) and Gb(u), which Rossi et al.(1984) calls the Two Component
Extreme Value (TCEV) distribution:

Ga,b(u) = exp(−e−
u−µa

αa − e
−

u−µb
αb ) (3.15)
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Figure 3.1: A Generalized Extreme Value (GEV) distributionGa(u) and a Gumbel
distributionGb(u), with the corresponding Generalized Two Component
Extreme Value (GTCEV) distributionGa,b(u). The intersection pointC
of Ga(u) andGb(u) is in this example atx1 = 3.67, corresponding with
a return periodTC of 40 year. The distributions are shown on a Gumbel
plot.
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If transformed into the Gumbel variate, (3.9) becomes for the TCEV distribution:

Gumbel variate= − ln(e−
u−µa

αa + e
−

u−µb
αb ) (3.16)

which shows that a Gumbel plot of extremes from a mixed distributionGa,b(u) results
in a smooth transition from the asymptote of the distribution of the extremesGa(u)
originating from the dominant populationa, to the distribution of the violent extremes
Gb(u), originating from the rare populationb. The intersection pointC of Ga(u) and
Gb(u) marks the sampling periodTC where the probability for sampling an extreme
from populationa or b is the same.

Figure3.1illustrates this behavior for the second-simplest case of a Two Compo-
nent Extreme Value distribution, which is the case thatGa(u) in (3.14) is allowed to
generalize to a GEV distribution, butGb(u) remains a Gumbel distribution. We de-
note this type of Two Component distribution, which we shall concentrate on inthis
paper, by the Generalized Two Component Extreme Value (GTCEV) distribution, of
which the Two Component Extreme Value distribution is a special case. The reason
for analyzing the second-simples case is that the the simplest case is not appropiate,
as populationa can not be described by a Gumbel distribution. The combination of
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two GEV distributions is not suitable, as populationb is too small to estimate the
shape parameterθ.

For a GTCEV distribution to become apparent in the data, three conditions have
to be fulfilled. First, the series length in yearsY should amply exceed the return
periodTC of the crossing pointC. Second, the sampling periodp should be suf-
ficiently large to achieve convergence for the extremes of both populationsa and
b to their respective limitsGa(u) andGb(u). Third, the sampling periodp should
be much smaller thanTC , since in the opposite caseGa(u) → 1 and hence the
GTCEV approachesGb(u), which is the ultimate extreme value limit of bothGb(u)
andGa,b(u). Note however, that the detection of the presence of a GTCEV distribu-
tion is easiest forθa > 0, as in the opposite caseGa(u) curves upwardly so that the
GTCEV distribution becomes more difficult to distinguish from a single component
GEV distribution withθa < 0. Figure3.1may help to illustrate these points.

3.3 Data Handling

In empirical studies, the parameters of the GEV distributionGp(u) are obtained from
a series with a finite length ofY years. Taking the maxima of everyp years,n values
remain to fit, with

n =
Y

p
(3.17)

Traditionally, the GEV distribution is applied to the annual maxima, so with sample
periodp = 1, giving n = Y values to fit. This practice implicitly assumes that
convergence to the GEV limit (Eq.3.3) is achieved form = r, with r ≈ 50 ≪ 365
the average number of independent daily averaged wind speeds in a year (Coles 2001,
p. 98). It depends on the mathematical form of the parent distributionF (u) whether
the annual maxima have indeed converged to the asymptotic distributionGp=1(u)
for m ≈ 50. If the convergence is too incomplete forp = 1 to achieve a meaningful
GEV analysis, one remedy is to increase the sampling periodp. However, this leads
to a proportionally decreased number of pointsn on which the GEV fit is based, and
hence to increased sampling noise and standard errors in the parameter estimations
of the GEV distribution. In our analysis, we apply an alternative method, namely
to improve convergence by transforming the data in such a way that they become
distributed according to a faster converging parent distribution. The method makes
use of the fact that, for extratropical wind speeds, the Weibull distributionis well
established as the parent distribution:

F (u) = 1 − e−(u/a)k
(3.18)
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with u the wind speed,a the Weibull scale parameter andk the Weibull shape pa-
rameter. Theory shows that the maxima of observations from a Weibull distribution
converge asymptotically (for anyk > 0) to the Gumbel distribution, with the con-
vergence rate depending onk, being largest for the exponential distribution (k = 1)
(Embrechts et al. 1997; Cook and Harris 2001). Hence, improved convergence to the
Gumbel distribution can be obtained ifuk instead ofu is the fitted parameter, as this
transforms the Weibull distribution into an exponential distribution. We made useof
this property, and determinedk in the tail of the parent distribution, after which the
parameteruk was fitted to a GEV distribution (Eqs.3.6, 3.7). The underlying con-
jecture is that, even if deviations from the Weibull distribution in the far tail would
lead to convergence to the GEV distribution instead of to the Gumbel distribution,
the convergence rate to that GEV distribution is still faster foruk than foru.

In the analysis of wind maxima, we restrict ourself to the storm-season (Oct-
Mar) instead of to the annual maxima, assuming better homogeneity of the parent
distribution within the storm season (Dillingh et al. 1993).

a. GEV parameter estimation

The parameters of the GEV distribution were estimated by the method of Probability
Weighted Moments (Hosking et al. 1985). We also used his estimate of the plot
positions:

xi = − ln(− ln(
i − 0.35

n
)) (3.19)

with xi the plot position of theith maximum in the set ofn ordered maxima. Eq.
3.19can be regarded as a discrete version of (3.9). The estimated return value of the
wind speedup,T for a givenx (which is determined by the sample periodp and return
periodT via (3.12)) follows from inverting (3.7) and back-transforminguk to u:

up,T =
(

µp +
αp

θ
(1 − e−θxp)

)1/k
(3.20)

with k the Weibull shape parameter. Neglecting the sampling error in the Weibull
shape parameterk, the standard errorσu,p,T in the estimated return valueup,T is
calculated by the so-called delta method (see e.g.Coles 2001, p. 33):

σ2
u,p,T = ∇u

T
V ∇u (3.21)

with

∇u = [
∂u

∂µ
,
∂u

∂α
,
∂u

∂θ
]T
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andV the variance-covariance matrix

V =





σ2
µ σµα σµθ

σµα σ2
α σαθ

σµθ σαθ σ2
θ





with σµ the standard error ofµ etc. The values ofV are given byHosking et al.
(1985).

b. Detection of Two Component Extreme Value distributions

The statistical analysis was performed in four steps: First, the Weibull parameters
a andk were determined for each grid point on the Northern Hemisphere. These
parametersa andk were obtained by least mean square fitting all daily wind speeds
with u > a (i.e. the uppere−1 part of the distribution, to exclude the influence of
the lower wind speeds) in the winter season in a 150-year record, hence9932 daily
values per grid point. Second, the GEV distribution was fitted to the set of 3509
annual maximauk for each grid point, so withp = 1 andn = Y = 3509. The third
step was to identify possible GTCEV distributions, i.e. locations where the extreme
value distribution originates from populationsa andb. In that procedure, we assume
that the data are GTCEV-distributed if the104-year return value as obtained from
the GEV fit top-yearly sampled maximaup,104 exceeds the104-year return value
as obtained from the GEV fit to annual maximau1,104 by more than two standard
deviations. Expressed in a signal-to-noise ratioSN

SN ≡
up,104 − u1,104

√

σ2
u,p,104 + σ2

u,1,104

(3.22)

the criterion reads:
SN > 2 (3.23)

whereσu,1,104 is the sampling uncertainty inu1,104 , andσu,p,104 the standard error in
up,104 when fitting a GEV distribution top-yearly sampled maxima originating from
Gp=1(u

k) (using (3.11) to calculateµp andαp). In our situation, the criterion (3.23)
corresponds to a probability of less than 5% that the wind is single populated (this
probability is, due to the skew distribution of rare return levels, somewhat larger than
the 2.5% corresponding with a normal distribution). This process is visualized in
Figure3.2, which shows 3509 annual maxima with the fitted GEV distributions to
the annual (p = 1) and centennial maxima (p = 100). We will apply (3.22) to annual
and centennial maxima, although the outcome is rather robust for other choices ofp.

The fourth step was to estimate the GTCEV distributionGa,b(u) for specific grid
points whereSN > 2. Here, we assumed thatFb(u) is also Weibull distributed with
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Figure 3.2: Visualization of the procedure to detect Generalized Two Component Ex-
treme Value distributions. The104-year return valueu100,104 , estimated
by fitting the GEV distribution to the centennial maxima, is compared to
the104-year return valueu1,104 , estimated by fitting the GEV fit to the an-
nual maxima.Ga(u

k) is the estimate of the maxima of populationFa(u)
andGb(u

k) the estimate of populationb. For this caseu1,104 = 42.5
m/s andu100,104 = 51.6 m/s, andσu,1,104 = 0.9 m/s (indicated by the
bar). The uncertainty in the fit to centennial maximaσu,100,104 = 2.1
m/s, givingSN = 3.9. According to (3.23), this implies detection of a
GTCEV distribution, and hence of a double population in the extreme
winds. Shown is a set of 3509 daily averaged annual maxima from
the greenhouse run at (47N,6E). The vertical axis is linear inuk, with
k = 1.74.
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the same shape parameterk asFa(u). Gb(u) was estimated from the maxima which
deviate considerably from the GEV fit to annual maxima, andGa(u

k) by adjusting
µa, αa andθa iteratively in such a way that fitting a GEV distribution to the given
distributionGa,b(u

k) (assuming thatGb(u
k) is correctly estimated from the deviating

maxima) results in the same GEV parameters as the original data set. FromGa(u
k)

andGb(u
k), the intersection pointC and the corresponding return periodTC were

derived.

3.4 ECBilt-Clio Model description

The Climate Model used in this study is a coupled atmosphere-ocean-sea ice model
of intermediate complexity, called ECBilt-Clio. The atmospheric component ”EC-
Bilt”is a spectral T21 global 3-level quasi-geostrophic model. The atmospheric time
step is 4 hours. It is coupled to a dynamic ocean model ”Clio”, which has a dynamic
sea-ice component and a relatively sophisticated parameterization of vertical mixing
(Goosse and Fichefet 1999). For a more detailed description of the model, we refer
to Opsteegh et al.(1998); Goosse and Fichefet(1999) andSchaeffer et al.(2002).

a. Experimental setup

A transient run was generated for the period 1860 to 2080, using historical green-
house forcings for 1860 to 2000, and the SRES A1 CO2 emission scenario (Houghton
et al. 2001) for 2000 to 2050. This emission scenario results in approximately dou-
bled CO2 concentrations in 2050 (550 ppm) with respect to the emission in 1860 (290
ppm).

An ensemble of 121 runs of 30 years each was generated, starting fromthe situ-
ation in 1960 of the transient run. The set of all 121 runs for the period 1960-1989
is called the ’control experiment’. For each grid point, vector-averageddaily mean
extreme wind speeds were sampled from each October-to-March period inthe set,
giving 29 extremes per ensemble member and grid point, and 3509 extremes per
grid point for the entire control experiment. Note that we often refer to annual ex-
tremes, whereas only storm season extremes are sampled. For five ensemble runs,
also all 27000 daily-averaged wind speeds in each grid point in the storm season
were archived.

We also generated 121 ensemble runs of 30 years starting from the situationin
2050 of the transient run. This set for the period 2050-2079 is called the’greenhouse
experiment’. As before, the series from which the extremes are sampled has a total
lengthY of 3509 years, and the sub-series for which all daily values were archived
was 150 years.
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Figure 3.3: Location parameterµp=1 of the annual wind speeds, estimated from fit-
ting a GEV distribution to the ECBilt-Clio control experiment (3509
years) and to the NCEP data set (36 years). The location parameterµp=1

represents the wind speed which is exceeded on average once a year.Val-
ues larger than 30 ms−1 and smaller than 15 ms−1 are shaded.

(a) ECBilt-Clio (800 hPa) (b) NCEP (850 hPa)

b. Validation of extreme statistics

For validation of the extreme wind distribution in ECBilt-Clio, we used the Reanal-
ysis Dataset of the National Center of Environmental Prediction (NCEP) (Kalnay
et al. 1996). This dataset provides the wind on a global 2.5◦ x 2.5◦ grid every 6
hours. We used the July 1965 - June 2002 NCEP data. By lack of a 1000 hPa layer
in ECBilt-Clio, we sampled wind speeds at 800 hPa (∼ 2 km height) instead, being
the lowest wind level in ECBilt-Clio. Comparison of the wind distributions at 850
and 1000 hPa for ocean grid points within the NCEP data shows similarity between
the extreme value distributions (van den Brink et al. 2003). So, we assume that the
ECBilt-Clio 800 hPa extreme winds have the same behavior as the extreme surface
winds.

A suitable parameter to illustrate the ability of generating extremes is the GEV
location parameterµp=1, as it represents the wind speed that is exceeded on average
once a year. Figure3.3showsµp=1 (back transformed fromuk to the windu) as esti-
mated from the 3509 annual wind extremes in the control experiment of ECBilt-Clio
at 800 hPa and from the 36 annual wind extremes in the NCEP data set at 850 hPa,
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Figure 3.4: Distribution of the annual maxima at (65W,47N) in ECBilt-Clio and
NCEP. The variability in extremes in ECBilt-Clio is considerably larger
than in the NCEP data.
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respectively. Figure3.3shows an overall agreement in the patterns over sea, although
the position of the storm tracks in ECBilt-Clio and NCEP are slightly different, with
the Pacific storm track in ECBilt-Clio being too strong. Enhanced land-sea gradients
and underestimations over land are apparent in ECBilt-Clio, probably caused by the
simplified parameterizations of the boundary layer over land and the extremelylow
vertical resolution.

The wind speeds with return periods longer than102 years are considerably
larger in ECBilt-Clio than in NCEP. This is illustrated in Figure3.4 for grid point
(65W,47N), for which ECBilt-Clio and NCEP have comparable estimates of the an-
nual windµp=1, but differ considerably for larger return periods. Apparently, the
variability in extremes is much larger in ECBilt-Clio than in the NCEP data.

In conclusion, it is clear that in the verification of ECBilt-Clio, considerable dif-
ferences emerge. This is to be expected from models of intermediate complexity
like ECBilt-Clio. Despite of these shortcomings, the ECBilt-Clio values seem close
enough to reality to justify studies like the present one, i.e. exploration of the sta-
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Figure 3.5: Estimated GEV scale parameterαp=1 (back transformed fromuk to
u) and shape parameterθp=1 of the daily averaged wind speed for the
ECBilt-Clio control experiment at 800 hPa as derived from 3509 annual
maxima ofuk. The standard errorσθ according toHosking et al.(1985)
is between 0.012 and 0.015.

(a) scale parameterαp=1. Values larger
than 3.5 and smaller than 2.0 are shaded

(b) shape parameterθp=1. Positive val-
ues are shaded

tistical nature of extreme winds, like the potential existence of a double population.
However, it should be emphasized that the question of the reality of specificfea-
tures generated in ECBilt-Clio can only be answered with results of models of higher
complexity.

3.5 Results

a. Spatial distribution of GEV parameters in the control experiment

The estimated GEV scale parameterαp=1 and shape parameterθp=1 of the daily
averaged annual maxima of the wind speed for the ECBilt-Clio control experiment
at 800 hPa are shown in Figure3.5. All three GEV parameters are largest over the
oceanic storm tracks. In these regions,θp=1 is lightly positive, i.e. downwardly
curved on a Gumbel plot. A possible reason might be that here there is a physical
upper limit to the wind speed (although this limit is far beyond the 104-year wind).
The small range of absolute values ofθ in Figure3.5(b) indicates that the annual
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Figure 3.6: Signal-to-noise ratioSN for
|SN | > 1.5 in the control experiment.
According to our criterion (Eq.3.23),
SN > 2 indicates the existence of a dou-
ble population.

Figure 3.7: Relative changes (in %) in
the GEV location parameterµp=1 due to
the greenhouse effect. The shaded areas
are significant at 5% level.

maxima ofuk in ECBilt-Clio do not strongly deviate from the Gumbel distribution.

b. Two Component Extreme Value distributions in the control experiment

The spatial distribution ofSN is shown in Figure3.6for |SN | > 1.5. Only patterns
of largepositivesignal-to-ratiosSN are detected. This indicates the reality of the
patterns, as only situations with positiveSN can be attributed to second populations.
For 9.4 % of the area shown in Figure3.6, SN is larger than 2, which is a factor
two more than the expected 5% from Monte Carlo simulations. Figure3.6 shows
patterns ofSN that fulfill our criterion (Eq.3.23) over the Atlantic, the East Pacific
and Siberia, which indicates that in the control run, double populations in theextreme
wind speeds are apparent at the end of both storm tracks.

c. Greenhouse effect on wind extremes

The change in the annual extreme wind due to the greenhouse effect is represented
by the change in the GEV location parameterµp=1, shown in Figure3.7. It shows
a significant increase of the once-a-year exceeded wind speed overthe Northern At-
lantic and Europe, as well as over the Pacific and North America. Maximum increase
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Figure 3.8: Signal-to-noise ratioSN for |SN | > 1.5 in the greenhouse experiment.
According to our criterion (Eq.3.23), SN > 2 indicates the existence of
a double population.

(5%) is found over Scandinavia. Comparison with Figure3.3shows a zonally more
elongated storm track, which is consistent with the positive NAO-like response to en-
hanced greenhousegas forcing in ECBilt-Clio (Figure 11 inSchaeffer et al.(2003)).
Apparently, the change in the annual wind maximaµp=1 behaves similarly to the
change in the mean wind in winter.

The regions where Two Component Extreme Value distributions are detectedin
the greenhouse experiment are shown in Figure3.8. It shows the same patterns as in
the control run, with the Atlantic region shifted to the east and elongated fromSpain
to Finland. For 10.6 % of the area shown in Figure3.8, SN is larger than 2, which is
an slight increase with respect to the control run.

3.6 Meteorology of the second population

Close inspection of the grid points with large positiveSN reveals that the deviating
extremes of neighboring grid points all originate from a restricted number ofstorms.
Apparently, the storms are so intense, that they influence the highest extremes over a
larger area during their track to the east.

To find the meteorological circumstances responsible for this second population,
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Figure 3.9: Gumbel plot for grid point (17W,42N) in the control run. The signal-
to-noise ratioSN according to (3.22) is 3.8. Especially the three most
severe events deviate from the fit, and are assumed to originate from the
second population. The vertical scale is linear inuk, with k = 1.71.
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we concentrate on the events which clearly belong to that second population. We will
consider grid point (17W,42N) in the control run, for which the maximum signal-to-
noise ratioSN of 3.8 occurs. Figure3.9 shows that the three most severe events
substantially deviate from the fit, and thus can safely be assumed to originate from
the second population. This is also apparent from the fact thatSN decreases from 3.8
to 0.1 ≪ 2 if these three points are omitted from the data set, which means that there
is no significant detection of a second distribution possible without the three largest
events. The relative vorticity for the most extreme event is shown in Figure3.10.
In the first two days, it displays a mature cyclone which is no longer developing.
However, at day 3, another cyclone is starting to merge with the original cyclone,
resulting in explosive cyclogenesis and extreme wind speeds at the locationof interest
until day 5. After day 5, the decay phase of the eddy sets in. The importanceof wave
merging for the process of explosive cyclogenesis is stressed in several observational
studies of cyclogenesis, e.g.Hakim et al.(1995a,b) andGaza and Bosart(1990). In
our results, merging occurs in the1st, 2nd, 3rd and5th most extreme events, but not
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Figure 3.10: Daily averaged 800 hPa relative vorticity (10−5 s−1) during merging. At
day 4, the most extreme wind in 3509 years is reached for the indicated
location (17W,42N).
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in the situations of the other 10 largest extremes. We hypothesize that mergingis a
crucial condition for a second population of extreme wind speeds to occur.

Analysis of normal annual extremes shows that, at this location, wave merging
is not exceptional. So, although important for the cyclogenesis process,it is clearly
not a sufficient condition for a second population to occur. To distinguishbetween
normal annual extremes and the merging events of the second population, we exam-
ined the anomalous time mean 500 hPa streamfunction pattern. The anomaly pattern
was computed by first averaging the 500 hPa streamfunctionΨ over a period of
7 days preceding the day for which the maximum wind occurred in the grid point
(17W,42N). This was done for 600 cases belonging to the first populationa, and the
four cases belonging to the second populationb. The anomalous patternΨan is de-
fined as the mean of the mentioned casesΨb minus the mean of the 600 casesΨa in
the area between 80W and 10W and between 20N and 65N:

Ψan = Ψb − Ψa (3.24)

Ψa =
1

600

600
∑

i=1

Ψa,i Ψb =
1

4

4
∑

i=1

Ψb,i

whereΨa,i is the 7-day averaged 500 hPa streamfunction pattern of casei in the first
populationa, andΨb,i is the same for the second populationb. Figure3.11displays
Ψa(a) andΨan(b), and Figure3.12the corresponding zonal wind pattern.

Figures3.11and3.12show that annual extremes develop in a mean circulation
which is in a strong westerly phase, with maximum time mean zonal winds of 24
m/s. The anomaly pattern of the second population has a large positive amplitude
in the model’s version of the North Atlantic Oscillation pattern, and leads to a much
stronger jet than normal annual extremes (up to 31 m/s). The pattern has anextension
in easterly direction. We have computed the probability that the anomaly pattern of a
member in the first population projects just as strong on theΨan pattern as the four
members of the second population. For the projection we used the squared norm:

pi =
〈Ψa,i − Ψa,Ψan〉

〈Ψan,Ψan〉
(3.25)

The events of populationa will have an average projection of zero, and populationb
of one.

There are only six events of the 600 with a projection larger than unity, which
means that the location and intensity of the jet stream of the second population has
a frequency of order once in102 years. Another striking feature of the second popu-
lation is that the events are accompanied by extreme precipitation, where largescale
precipitation and convective precipitation contribute equally. All four events of the
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Figure 3.11: Mean streamfunctionΨa of the first populationa (a) and the difference
Ψan between the second populationb and the first populationa (b).

(a) mean 7-day averaged 500 hPa streamfunctionΨa of the first
populationa

(b) differenceΨan in the mean streamfunction of the second pop-
ulationΨb with that of the first populationΨa
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Figure 3.12: Time mean zonal wind at 500 hPa of the first population (a), thesecond
population (b), and their difference (c).

(a) mean 7-day averaged 500 hPa zonal wind speed of the first
populationa

(b) mean 7-day averaged 500 hPa zonal wind speed of the second
populationb

second population have daily precipitation rates which have return periodsof order
103 years.

We tentatively conclude that an extremely strong jet stream in which wave merg-
ing occurs can generate conditions which are favorable for the occurrence of strong
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Figure3.12(continued): (c) difference of (a) and (b)

diabatic feedbacks. This leads to anomalously strong cyclogenesis and thegeneration
of a second population of wind extremes.

We checked this hypothesis with the data from the greenhouse experiment. We
consider grid point (5E,47N), which has a maximum in the signal-to-noise ratioSN
of 3.9. Here, the1st to 7th and 10th largest extremes belong to cyclones that origi-
nated after merging. Skipping the 7 largest events from the data set reducesSN from
3.9 to0.35 ≪ 2. So, again, the detection is only significant when the merging events
are incorporated.

Projection on the area between 80W and 10E and between 20N and 65N shows
an increase of the maximum mean zonal wind from 22 to 31 m/s. Once in 56 years,
the projection is larger than unity. Also the precipitation rates are extraordinary. For
6 of the 7 events, the return periods of the precipitation rates are of order103 years.
So, our hypothesis based on the control experiment is confirmed by the results of the
greenhouse experiment.

We conclude that the extreme wind speed belongs to a second population if the
following three conditions are fulfilled: First, there is an intense jet stream, cor-
responding with a positive NAO. Second, two cyclones merge to a single intense
cyclone. Third, the cyclone is accompanied by extreme precipitation.

3.7 Discussion and conclusions

The climate model ECBilt-Clio shows preferred regions for the extratropics inwhich
the annual wind extremes with return periods of order 103 years belong to another
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population than the more frequent annual winds. One consequence of this result is
that in such regions, the 104-year wind speed can not be estimated from annual ex-
tremes in observed series with timelengths of order hundred years. Only a lower limit
of the104-year wind can be estimated from such a series, as the existence of a sec-
ond population in the extremes always increases the 104-year wind. Another, closely
related, consequence is that this low frequency of the second populationprevents
detection from single-station observational records.

We found that the second population in EcBilt-Clio exists of merging cyclones
embedded in a strong jet stream, and that they are accompanied with extreme precip-
itation. The robustness of these results has to be confirmed by analyzing theresults
of more advanced models.

Doubling of the greenhousegas concentrations has two important effectson the
second population in the wind speed. The first is that the regions change for which
second populations appear. This implies that regions, which are single-populated in
the current climate, may be double-populated in a 2CO2 climate and vice-versa. The
second effect of CO2 doubling in EcBilt-Clio is that, in double populated areas, the
frequency of cyclones from the second population increases. Whereas the second
population is dominant over the first population for return periods of 600 years and
larger for the control run, this turning point lays at a return period of 40years for the
greenhouse run. This implies that not only the 104-year winds are influenced by the
second population, but also the 102-year winds.

We attribute the eastward shift of the Atlantic area with double populations in
the greenhouse experiment to the response in the climatological winter mean, which
resembles a positive NAO pattern with largest westerly wind increase over Scandi-
navia (see Figure 11 inSchaeffer et al.(2003)). This response causes the eastward
elongation of the storm track as shown in Figure3.7, and consequently of the area in
which a second population occurs.



Chapter 4

Improving 104-year surge level estimates
using data of the ECMWF seasonal
prediction system

Abstract

The vulnerability of society on extreme weather has resulted in extensive research
on the statistics of extremes. Although the theoretical framework of extreme value
statistics is well developed, meteorological applications are often limited by the rel-
ative shortness of the available datasets. In order to overcome this problem, we use
archived data from all past seasonal forecast ensemble runs of theEuropean Centre
for Medium-Range Weather Forecasts (ECMWF). For regions where theforecasts
have very little seasonal skill the archived seasonal forecast ensembles provide in-
dependent sets that cumulate to over 1500 years. We illustrate this approach by es-
timating 104-year sea-surge levels at high-tide along the Dutch coast. No physical
mechanisms occur in the ECMWF model that make the distribution of very extreme
surges different from what is inferred from a direct analysis of the observations. In
comparison with the observational sets, the ECMWF set shows a decreasein the
statistical uncertainty of the estimated 104-year return value by a factor four.

4.1 Introduction

Meteorological extremes have large impacts on society. Typical examples are flood-
ing of rivers caused by extreme precipitation, extended droughts, extreme tempera-
tures, and flooding from the sea caused by extreme wind speeds. The higher the ex-
tremes, the more difficult it is to obtain their statistics from the observational datasets.
However, these very extreme meteorological situations cause the most disastrous
events. For many types of extremes, the meteorological situations causing these ex-
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treme events are of synoptic scale (O(103 km)), and last for longer times (>12 hours).
These properties make them appropriate to be explored with the set of ensembles of
simulations generated by the ECMWF seasonal prediction system (Anderson et al.
2003). The resolution in space and time of the dataset is high enough to resolve
extremes on synoptic scales.

The ECMWF seasonal forecast dataset has two properties advantageous for ex-
amining current-climate extremes. First, it combines high resolution in space (1.875◦,
40 levels) and time (6-hourly output) with large record length (1569 years intotal by
May 2004). This length exceeds that of most high-resolution climate model runs
(Kharin and Zwiers 2000; Kysely 2002; Kiktev et al. 2003). Second, the ECMWF
model does not drift far from the observed climatology, as the individualforecast en-
semble members are only 6 months in length. Here, we illustrate the power of the
dataset by estimating extreme surge levels along the Dutch coast.

4.2 GEV analysis of observed surges

Approximately 40% of the Netherlands is below sea level. This part, with millions of
inhabitants, is protected against flooding from the sea by dikes. Dutch official policy
is that a flooding event is ’allowed’ to happen with a probability of at most 10−4 per
year, hence with a mean return period of 104 years. However, the heights of the dikes
that correspond to this probability are hard to determine from Dutch observational sea
level records, which cover order hundred years. So, an extrapolation over two orders
of magnitude in probability is required, resulting in an 95%-confidence interval of
several meters, which is considerably larger than the value of the expected sea level
rise in the coming century (Church et al. 2001).

We follow the common choice in empirical studies to fit the annual maxima to the
Generalized Extreme Value (GEV) distribution, and plot the results on a Gumbel plot,
i.e., a plot with the ordered values on the ordinate and on the abscissa the Gumbel
variatex = − ln(− ln(F (x))), with F (x) the cumulative distribution function of the
variablex (see section4.7 for further details). Figure4.1 shows the annual maxima
of the117-years observational record for the Dutch coastal station Hoek van Holland,
the fitted GEV distribution, its extrapolation to a return period of 104 years, and the
corresponding 95%-confidence interval at this return period.

There are no known physical processes that limit the surge height to values below
the estimated upper 95%-confidence level (6.44 m for Hoek van Holland).The high
95%-confidence level has large consequences for dike design. Another uncertainty
in the extrapolation from the∼100 years of observations is the question if all surge
extremes up to the 104-year return period can be described by one GEV distribution
with fixed parameters, a condition which is not always satisfied (van den Brink et al.
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Figure 4.1: Gumbel plot for the 117 annual surge maxima of the Hoek van Holland
observational set for 1887-2004 (•), and for the 1569 annual maxima ac-
cording to the archived data generated by the ECMWF seasonal forecast
ensembles for 1987-2004 (◦). Also shown are the GEV fits up to a re-
turn period of 104 years and the 95%-confidence interval of the 104-year
return level.
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2004a).
The ECMWF dataset offers the possibility to check this condition, as well as to

decrease the statistical uncertainty in the 104-year estimate, due to the thirteen times
larger amount of data compared to the observations.

4.3 ECMWF Model

Since August 2001 the ECMWF produces every month an ensemble of 40 global sea-
sonal forecasts up to six months ahead, i.e., amply surpassing the 2-weekshorizon
of weather predictability from the atmospheric initial state. Over the period 1987–
2001, hindcasts, that is forecast runs on historical data, have been performed with
smaller ensembles for calibrating the forecast system. The system consists of a cou-
pled atmosphere-ocean model (Anderson et al. 2003). The atmospheric component
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has a horizontal resolution of T95 (1.875◦) and 40 levels in the vertical (Ritchie et al.
1995; Gregory et al. 2000; Anderson et al. 2003). The ocean component has a resolu-
tion of 1.4◦ and 29 vertical levels (Wolff et al. 1997). The ECMWF dataset provides,
among other fields, global fields of 6-hourly winds and 2m-temperatures, 12-hourly
sea level pressures and temperatures, and 24-hourly precipitation amounts.

We constructed 1569 calendar years by combining pairs of ensemble members
with six months difference in starting date (see Table4.1 for details), all of them
generated by the so-called System-2 (Anderson et al. 2003).

Since the ECMWF model has very limited skill in predicting the NAO index
(see alsoPalmer et al. 2004), effectively the simulations sample all different NAO
situations.

The GEV location parameterµ for the annual maximum of 6-hourly wind speed
(averaged between 30◦N–60◦N and 90◦W–30◦E) is constant within 1% for different
forecast times. This indicates that the wind climatology of the system shows no
detectable deterioration with forecast time.

The dependence between the ensemble members in the first weeks of the forecasts
has negligible influence on the estimates of the GEV parameters of the surge.

We compared the daily-mean annual minima of the sea level pressure (SLP) at the
Dutch coastal station Den Helder over 1906-2004 with the 1569 annual minimaof the
ECMWF SLP at the nearest sea grid point to Den Helder. The Gumbel plot is shown
in Figure4.2. There is a good agreement between the annual minima of the ECMWF
data and the observations. We conclude that the ECMWF seasonal forecast system
generates (deep) depressions with the same frequency and intensity as observed.

4.4 Surge Equation

We use the following equation (van den Brink et al. 2003) to calculate from the mete-
orological data the surge at high-tide (i.e., the difference between the observed high
tide and the calculated height of the astronomical high tide) at the coastal station
Hoek van Holland:

Surge= A Cd u2
10 sin(φ − β) +

1015 − SLP
100.5

[m] (4.1)

with Cd the drag coefficient,u10 the wind speed at 10 m averaged over 12 hours at a
central grid box over the North Sea (depicted in Figure4.3a),φ the wind direction and
A andβ empirically determined constants byTimmerman(1977). The second term
on the right hand side of Eq.4.1 represents the barometric pressure effect, with SLP
the instantaneous sea level pressure in Hoek van Holland in hPa. Here, we describe
the dependence ofCd on the wind speedu10 as

103 Cd = 0.738 + 0.068 u10 (4.2)
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Figure 4.2: Gumbel plot for the 98 annual SLP minima of the Den Helder observa-
tional set for 1996-2004 (•), and for the 1569 annual SLP minima of the
ECMWF dataset (◦). The lines are the GEV fits up to a return period of
104 years.
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whereu10 is expressed in ms−1, and in which the constants were obtained from
a linear fit between the instantaneous, once-a-day available drag coefficient of the
ECMWF dataset andu10. To assure that Eq.4.2 describes optimally the specific
case of strong north-westerly winds, we used in the determination of the constants
in Eq.4.2 only those situations that resulted in the annual maximum surges in Hoek
van Holland. In the 12-27 m/s range, which covers our range of interest,Eq.4.2fits
closely to a Charnock relation (Charnock 1955) with parameter 0.016. Our estimate
compares well with other estimates of high-speed drag over sea (e.g.,Smith et al.
1992; Bonekamp et al. 2002).

The surge equation was validated by comparing the 1957-2002 observedannual
extreme surges in Hoek van Holland with the annual extreme surges calculated from
Eqs.4.1 and4.2 using the wind and pressure of the ERA40-Reanalysis data (Sim-
mons and Gibson 2000). Table4.3 and Figure4.1 show good agreement between
the GEV distributions fitted to the observed and calculated surges. About 1/2of the
annual extremes according to the ERA40 dataset correspond to the same storm as the
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annual extremes in the observations.

4.5 Results

We calculated the surge at high-tide for coastal station Hoek van Holland withEqs.4.1
and4.2, using SLP andu10 of the ECMWF dataset. The 1569 annual extremes are
shown on a Gumbel plot in Figure4.1, together with the 117 annual extremes of
the 1887-2004 observational set. The following four features are apparent from Fig-
ure4.1. First, the ECMWF-based data indicate that for extreme surges, a single GEV
distribution is appropriate up to return periods of at least 103 years. So, the ECMWF
data gives no indication that physical processes limit the strength of extremestorms,
nor that the 103-year winds are caused by another type of storms than 10-year winds,
as in the less comprehensive model discussed invan den Brink et al.(2004a). Sec-
ond, the GEV location parameterµ (representing the surge level with an exceedance
probability of once a year) estimated from the ECMWF dataset equals that ofthe
observational record within one cm (see also Table4.4). This implies that systematic
differences between the observed data and the results from the ECMWF system with
the surge equation are small compared to the statistical uncertainties. Third, 104-year
surge level estimates from the ECMWF dataset (3.96 m) and from the observational
record (3.78 m) are nearly equal. Fourth, the 95%-confidence intervalof the 104-year
estimate reduces from 3.52 m for the observational set to 0.84 m for the ECMWF set,
i.e., a reduction by a factor four.

The meteorological situation in the ECMWF data that leads to the highest surge
at Hoek van Holland (3.68 m) is depicted in Figure4.3a. For comparison, Fig-
ure4.3b shows the meteorological situation according to the ECMWF-Reanalysis of
the largest real event in the observations (2.93 m, on 1 February 1953). Both situa-
tions show a large-scale depression, generating a strong north-westerly flow over the
entire North Sea. The 25 hPa deeper depression and the more north-easterly position
of the depression in Figure4.3a with respect to the situation in Figure4.3b leads to
a 0.75 m higher surge level at Hoek van Holland. Figure4.3 shows that the largest
surge from the ECMWF dataset is caused by a realistic meteorological situation.

4.6 Conclusions

The ECMWF seasonal forecast dataset can serve as a powerful tool for estimating
103-104-year return values for meteorological extremes that are caused by synoptical
weather systems. The statistics of extreme storm surge levels in the Netherlands in
this dataset can be described well by a single GEV distribution for return periods
ranging from 1 to103 years. The statistical uncertainty in the104-year return surge
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Figure 4.3: Wind and pressure field for the situations of highest surge athigh-tide in
Hoek van Holland.a: in the ECMWF dataset for day 57 in ensemble
member 15, starting from 1 November 1987 (calculated surge in Hoek
van Holland: 3.68 m). The dot is the location used for calculating the
surge at high-tide via Eqs.4.1 and4.2. b: ECWMF Reanalysis, for the
highest surge in the observations for Hoek van Holland (2.93 m, on 1
February 1953).
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level is reduced by a factor four with respect to observations. The dataset offers po-
tentials to estimate 103- to 104-year return values for wind, temperature, precipitation
and related variables as surge and river discharges, with unprecedented accuracy.

4.7 Auxillary Information

This section is only part of the electronical version of the paper, and is available from
ftp://ftp.agu.org/apend/gl/2004GL020610/.

ftp://ftp.agu.org/apend/gl/2004GL020610/
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Extreme value statistics

A fundamental theoretical result from the statistics of extremes is that any limiting
distribution of so-called ’block maxima’ must be in the form of the Generalized Ex-
treme Value (GEV) distribution (Coles 2001):

G(x) = P (M ≤ y) = e−e−x
(4.3)

with M the maximum over a block of standard length,G(x) the GEV distribution,
andx a substitute for:

x = ln
(

1 − θ
y − µ

α

)−1/θ

(4.4)

with µ the location parameter,α the scale parameter,θ the shape parameter, andy the
variable considered. In order to eliminate the effects of the annual cycle,a common
choice in empirical studies is to examine the distribution of annual maxima (Palutikof
et al. 1999; Katz et al. 2002). The probability of exceedance of a certain valuey is
usually expressed in terms of the return periodT , which is the average number of
years between two succeeding exceedances of the corresponding return valuey:

T =
1

1 − G(x)
≈ ex for T ≫ 1 (4.5)

The results in Figures4.1 and4.2 are plotted on a Gumbel plot, a plot with the
Gumbel variate− ln(− ln(F (x))) as abscissa (F (x) being the cumulative distribu-
tion function) and the return valuey as ordinate. This representation transforms a
Gumbel distribution (G(x) with θ = 0) into a straight line.

For fitting the data to the GEV distribution, we used the maximum-likelihood
procedure. The 95%-confidence values in the return value estimates were determined
from the log-likelihood profile (Coles 2001).
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Table 4.1: Combinations of 6-months forecasts to construct calendar years. The
1987-Aug 2001 period are hindcasts, and the Aug 2001-May 2004 are
forecasts. Notation: 1st to 4th digit: year; 5th and 6th digit: month; last
two digits: ensemble number.

ensemble 00-04 ensemble 05-39 ensemble 40
198707-00↔ 198801-00 198711-05↔ 198805-05 198711-40↔ 198805-40
198708-00↔ 198802-00 198811-05↔ 198905-05 198811-40↔ 198905-40
198709-00↔ 198803-00 198911-05↔ 199005-05 198911-40↔ 199005-40
198710-00↔ 198804-00 199011-05↔ 199105-05 199011-40↔ 199105-40
198711-00↔ 198805-00 199111-05↔ 199205-05 199111-40↔ 199205-40
198712-00↔ 198806-00 199211-05↔ 199305-05 199211-40↔ 199305-40
198807-00↔ 198901-00 199311-05↔ 199405-05 199311-40↔ 199405-40
198808-00↔ 198902-00 199411-05↔ 199505-05 199411-40↔ 199505-40
198809-00↔ 198903-00 199511-05↔ 199605-05 199511-40↔ 199605-40
198810-00↔ 198904-00 199611-05↔ 199705-05 199611-40↔ 199705-40
198811-00↔ 198905-00 199711-05↔ 199805-05 199711-40↔ 199805-40
198812-00↔ 198906-00 199811-05↔ 199905-05 199811-40↔ 199905-40

: ↔ : 199911-05↔ 200005-05 199911-40↔ 200005-40
: ↔ : 200011-05↔ 200105-05 200011-40↔ 200105-40

200107-00↔ 200201-00

200108-00↔ 200202-00 200108-05↔ 200202-05
200109-00↔ 200203-00 200109-05↔ 200203-05
200110-00↔ 200204-00 200110-05↔ 200204-05
200111-00↔ 200205-00 200111-05↔ 200205-05
200112-00↔ 200206-00 200112-05↔ 200206-05
200207-00↔ 200301-00 200207-05↔ 200301-05
200208-00↔ 200302-00 200208-05↔ 200302-05
200209-00↔ 200303-00 200209-05↔ 200303-05
200210-00↔ 200304-00 200210-05↔ 200304-05
200211-00↔ 200305-00 200211-05↔ 200305-05
200212-00↔ 200306-00 200212-05↔ 200306-05
200307-00↔ 200401-00 200307-05↔ 200401-05
200308-00↔ 200402-00 200308-05↔ 200402-05
200309-00↔ 200403-00 200309-05↔ 200403-05
200310-00↔ 200404-00 200310-05↔ 200404-05
200311-00↔ 200405-00 200311-05↔ 200405-05
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Table 4.2: Specification of the number of years constructed from the ensemble fore-
casts.

#ensembles hindcasts forecasts total
ensemble 00-04 5 14×6+1=85 16 505 years
ensemble 05-39 35 14 16 1050 years
ensemble 40 1 14 - 14 years
total 1569 years

Table 4.3: GEV parameter estimates and their standard errors, and 50-year surge level
estimates with the 95%-confidence values, as obtained from the obser-
vational dataset for Hoek van Holland, and from the ERA40-Reanalysis
dataset using Eq. 1 and 2, both for the period 1957-2002.

µ [m] α [m] θ 50-year surge [m]
ERA40 1.18± 0.05 0.27± 0.03 -0.02± 0.13 2.26 3.33

1.96

observations 1.21± 0.04 0.23± 0.03 0.25± 0.09 1.78 2.03
1.68

Table 4.4: GEV parameter estimates and their standard errors, and 104-year surge
level estimates with the 95%-confidence values, as obtained from the
1887-2004 observational dataset for Hoek van Holland, and from the
1569-year ECMWF dataset using Eq. 1 and 2.

µ [m] α [m] θ 104-year surge [m]
ECMWF 1.21± 0.01 0.31± 0.01 0.008± 0.018 3.96 4.44

3.60

observations 1.22± 0.03 0.26± 0.02 -0.017± 0.06 3.78 6.44
2.92



Figure 4.4: Gumbel plot of the observed surge in Hoek van Holland (•), and the surge
calculated from the ERA40-Reanalysis dataset using Eq. 1 and 2 (◦),
both for the period 1957-2002. The lines are the GEV fits to the an-
nual maxima. The 95%-confidence values are shown for a return period
of 50 years.
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Chapter 5

Estimating return periods of extreme
events from ECMWF seasonal forecast
ensembles

Abstract

Meteorological extremes have large impacts on society. The fact that approximately
40 % of The Netherlands is below sea level, makes this country especially vulnerable
for floodings, both from the sea and from the rivers. This has resultedin extensive
research on the statistics of extremes. However, application to meteorological and hy-
drological situations are always hampered by the shortness of the available datasets,
as the required required return levels exceed the records lengths with a factor 10 to
100. In order to overcome this problem, we use archived data from all past seasonal
forecast ensemble runs of the European Centre for Medium-Range Weather Forecasts
(ECMWF) since 1987 as input for extreme value statistics analysis. We make use of
the fact that the seasonal forecast have little seasonal skill for The Netherlands, which
implies that the ensembles can be regarded as independent sets that cumulateto over
1500 years.

We investigate the hydraulic response in the Netherlands to extreme synoptic
scale weather systems by studying the extreme value distributions of sea stormsurge
levels, waves and river discharges. The application is detailed in four practical exam-
ples originating from coastal protection, river flooding protection, and water manage-
ment problems. The long record length of the ECMWF data reduces the uncertainty
in the103-year and the104-year return values considerably with respect to the results
based on observational time series. The ECMWF data set gives the opportunity to
explore the distribution of events that depend on several kind of extremes.
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5.1 Introduction

Much statistical research has been done on estimating the statistics of extremesof
weather (related) variables, like precipitation, wind speed, river discharge and surge
from observational records (Buishand 1991; Palutikof et al. 1999; Katz et al. 2002;
de Haan 1990). To overcome the rather short length of the observational records (or-
der hundred years), we explored an alternative data source, i.e. the archived seasonal
forecast ensemble data of the European Center for Medium-Range Weather Fore-
casts (ECMWF) over the period 1987-2004, which cumulate to a total size of1569
simulated years (status May 2004). Assuming that this model is a faithful represen-
tation of the climate system, these simulated years represent many realizations ofthe
present climate on synoptic scale. Because this model dataset is an order of magni-
tude longer than the length of the observational sets, an improved estimate of extreme
levels can be obtained. In an earlier article (van den Brink et al. 2004b) we dis-
cussed the extreme value statistics of storm surges at the Dutch coast. We found that
the ECMWF model represents the statistics of large and deep depressions well. The
statistcal uncertainty of the height of a10−4 probability storm surge was decreased
by a factor four compared with the use of the historical observations, with system-
atic errors that appeared smaller than the statistical uncertainty. As an elaboration of
van den Brink et al.(2004b), we apply in this paper the ECMWF seasonal forecast
data set to four hydraulics-related situations in The Netherlands, that result from
severe weather events on synoptic scale. First, to extreme Rhine river discharges
at the location where it flows into the Netherlands. Second, to the duration ofthe
spells that sea-level is too high sluicing water from the ’IJsselmeer’ into the North
Sea. Third, to the frequency that the big ’Maeslantkering’ storm surge barrier in the
’Nieuwe Waterweg’ Rhine outlet must be closed in order to prevent flooding of the
densely populated Rotterdam area. The criteria for closing the barrier depend on the
sea level as well as on the Rhine river discharge. Fourth, to the frequency of failure
of the ’Pettemer zeewering’ sea dike, which depends both on sea level elevation and
wave height. See Figure5.1for the locations of the towns, rivers and barriers.

This paper is structured as follows: Section5.2 describes the theoretical frame-
work, Section5.3 the ECMWF model and seasonal forecast ensembles, Section5.4
the extreme value analysis of the mentioned applications, and Section5.5the conclu-
sions and discussion.

5.2 Theory

A fundamental theoretical result from the statistics of extremes is that any limiting
distribution of ’block maxima’ must be in the form of the Generalized Extreme Value



5.2 Theory 75

Figure 5.1: Map of The Netherlands, with the locations that are mentioned in the
text. The lines represent the physical grid to which the ECMWF data
have been interpolated (1.5◦ × 1.5◦). The triangles are the 15 stations
used for verification of the precipitation.
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(GEV) distribution (e.g.de Haan 1976):

G(x) = P (M ≤ y) = e−e−x
(5.1)

with M the maximum over a ’block’ of standard length,G(x) the GEV distribution,
andx a substitute for:

x = ln
(

1 − θ
y − µ

α

)−1/θ

(5.2)

with µ the location parameter,α the scale parameter,θ the shape parameter, andy
the considered variable. A common choice is to examine the distribution of annual
maxima. In that case, the location parameterµ represents the value which is exceeded
on average once a year.
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In extreme value studies, the probability of exceedance of a certain valuey is
usually expressed in terms of thereturn period T. The return periodT is the average
number of years between two succeeding exceedances of the corresponding return
valuey:

T =
1

1 − G(x)
≈ ex for T ≫ 1 (5.3)

For fitting the data to the GEV distribution, we used the method of maximum
likelihood. The 95%-confidence values in the return value estimates were determined
from the log-likelihood profile (Coles 2001).

The results are plotted on a Gumbel plot, a plot of a cumulative distribution func-
tion F (x) with the Gumbel variate− ln(− ln(F (x))) as abscissa and the return value
y as ordinate. This representation transforms the Gumbel distribution (G(x) with
θ = 0) into a straight line.

Extreme value theory is often required to find return values for return periods that
amply exceed the record length. This implies extrapolation of the GEV fit to a domain
outside the range of the observations. In our approach, the return value determination
involves little extrapolation, as series length and return periods of interestT are about
equal. This considerably reduces the uncertainty in the estimate.

5.3 ECMWF Model

a. Description

From September 2001 onward the European Centre for Medium-range Weather Fore-
casts (ECMWF) produces every month an ensemble of 40 global seasonal forecasts
up to six months ahead, i.e., amply surpassing the 2-weeks horizon of weather pre-
dictability from the atmospheric initial state. Over the period 1987–2001, hindcasts
with smaller ensembles have been performed to calibrate the system. The forecast
system consists of a coupled atmosphere-ocean model (Anderson et al. 2003). The
atmospheric component has a horizontal resolution of T95 (1.875◦) and 40 levels in
the vertical (Ritchie et al. 1995; Gregory et al. 2000; Anderson et al. 2003). The
ocean component has a resolution of 1.4◦ and 29 vertical levels (Wolff et al. 1997).
We combined all hindcasts and forecasts generated up to May 2004 into 1570 calen-
dar years of data, all of them generated by the so-called System-2 (Anderson et al.
2003). The ECMWF dataset provides, among other fields, global fields of 6-hourly
winds and 2m-temperatures, 12-hourly sea level pressures and temperatures, and 24-
hourly precipitation amounts.
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Figure 5.2: Gumbel plots of the 1-day (a) and 20-day (b) accumulated precipitation,
for the average of 15 Dutch stations (1901-2001) and the corresponding
ECMWF boxes (4.5◦–6◦E,52.5◦N). See Figure5.1 for the locations of
the 15 stations.
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b. Verification

In order to model hydraulic extreme events correctly, especially the wind and precip-
itation should well be represented in the model. As it is difficult to verify the model
winds directly (due to the relatively short (homogeneous) observationalrecords over
the North Sea),van den Brink et al.(2004b) validated the sea level pressure (SLP)
instead: a direct model parameter which can easier be compared with observations
than wind data, and which is a good measure of the capability of the model to produce
deep depressions. They found a good agreement between the statistics of extremely
low SLP’s in the ECMWF model and the observations for coastal station Den Helder.
Also the surge statistics for the coastal station Hoek van Holland are well reproduced
by the ECMWF model (van den Brink et al. 2004b).

Figure 5.2 compares the extreme precipitation rates of the average of the two
ECMWF boxes (4.5◦–6◦E,52.5◦N) in the ECMWF data with the accumulated pre-
cipitation averaged over 15 stations in the Netherlands (indicated in Figure5.1). Both
the 1-day and the 20-day accumulated quantities are shown. Figure5.2 shows that
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Figure 5.3: Scatter plot of the NAO index anomaly (Dec-Mar) of the ECMWF sea-
sonal forecast against the observed NAO, for first (a) second (b) and sixth
(c) forecast month. The lines represent a least-square fit.
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the statistics of extreme precipitation are well reproduced for both timescales.
In order to investigate the dependence between the ensembles and their initial

states, we calculated the correlation between the observed (monthly mean) North
Atlantic Oscillation (NAO) index and the calculated NAO-index from the ECMWF
data. Figure5.3 shows the scatter plots for different forecast months. For the first
forecast month, there is a small correlation (r = 0.34) between the monthly-averaged
NAO of the seasonal forecast and the observed NAO. This correlationis nearly zero
(|r| ≤ 0.07) for longer forecast times. This implies that the NAO index of ECMWF
data set is (almost) independent of the initial NAO index, and thus is representative for
a more general situation than for the 1987–2004 period only. A very similar version
of the ECMWF model has also been shown to have very limited skill in predicting
the NAO index (Palmer et al. 2004).

The constant variance of the modelled NAO index with forecast time, and the in-
dependence of fitted GEV parameters with forecast time indicate that the climatology
of the system shows no detectable deterioration with forecast time.

We verified that the dependence between the ensemble members in the first weeks
of the forecasts has negligible influence on the estimates of the GEV parameters,
making the whole 6-month period usable for our purpose.
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5.4 Four Applications

a. Rhine discharge

The dikes along the Dutch rivers are supposed to withstand a discharge with a return
period of 1250 years. The Rhine discharge at the Dutch border and theaccumu-
latedn-day precipitation over the Rhine basin correlate well forn=10–30 (Fink et al.
1996). We concentrate on 20-day accumulated values (validated in section5.3b).

We calculated the Rhine discharge at Lobith at the Dutch-German border (see
Figure5.1) with the following simple water balance equation:

Q = A +
19

∑

j=0

∑

i

si

(

LSPi,j + CPi,j − Ei,j − Si,j

)

(5.4)

with LSPi,j the large-scale precipitation on thejth-last day in grid boxi, of which a
surface areasi (in m2) belongs to the catchment of the Rhine. CP is the convective
precipitation, E the evaporation and S the snow accumulation, all in meters water
per second. The adjustment parameterA was determined empirically by tuning the
location parameterµ of the GEV distribution (i.e. the once-a-year event) with its
observed value at Lobith.A turns out to be−4 · 103 m3s−1.

The Gumbel plot of the Rhine discharge according to the observational record at
Lobith and to the ECMWF data (Eq.5.4) are shown in Figure5.4. The estimate from
the observations for the 1250-year discharge (14.320.1

12.2 ·103 m3s−1) is 9% smaller than
the estimate from the ECMWF data (15.717.1

14.5·103 m3s−1). The ECMWF estimate lies
amply within the 95% uncertainty interval of the estimate from the observations. The
application of the ECMWF data reduces the 95% confidence interval of the 1250-year
level estimate by a factor three.

b. IJsselmeer sluicing

The IJsselmeer (Lake IJssel) in central Netherlands covers an area of 2000 km2, and is
separated from the North Sea by the Afsluitdijk. To keep the level of the IJsselmeer at
the preferred level of 0.45 m below mean sea level (MSL) in winter (and 0.25 m below
MSL in summer) (Peilbesluit, 1992), the excess of IJsselmeer water is discharged into
the North Sea during low tide by opening the Afsluitdijk sluices at Kornwerderzand
and Den Oever (Low lower tide at Kornwerderzand: 1.23 m below MSL).During
high tide, the sluice gates are closed. If a surge elevates the low-tide sea level above
a value of 0.55 m below MSL, sluicing is not possible during an entire tidal cycle.

To examine the period that surges prevent sluicing, we calculated the sea level
at every low tide by adding the surge to the astronomical low tide, where the 6-
hourly calculated surge was linearly interpolated to the time of the astronomical low
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Figure 5.4: Gumbel plot for the 100 observed annual maximum Rhine discharges at
Lobith (1900-2000) (¤) and for the 1569 annual maxima as derived from
the ECMWF data via Eq.5.4 (◦). Also shown are the extrapolated GEV
fits to 1250-year return periods and the 95%-confidence intervals to the
observations and to the ECMWF data.
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tide. The harmonical constituents of the astronomical tide at Kornwerderzand were
obtained fromFlater (1998). The surge was calculated from the ECMWF data by
applying a simple surge model (see Eq. (1) invan den Brink et al. 2004b) to the
nearby location Harlingen (see Figure5.1).

Figure5.5 shows a Gumbel plot of the time period of non-sluicing, both for the
current sea level, and for the situation with a sea level rise of 0.25 m. This value
is within the expected range of 5–32 cm in 2050 (Houghton et al. 2001), and is the
estimate of the medium scenario for The Netherlands (Kors et al. 2000). Apparently,
for the present-day sea level a one-week period of non-sluicing occurs every 25 years.
With constant water management practice, a 0.25 m sea level rise would increase the
length of the extreme duration of non-sluicing by at least a factor of two. A rise of
0.45 m (which is the extreme scenario for The Netherlands in 2050,Kors et al. 2000)
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Figure 5.5: Gumbel plot of the period that surges prevent sluicing from the IJsselmeer
into the North Sea, both for current mean sea level and for the situation
after a sea level rise of 25 cm, expected for 2050.
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would cause another factor three increase.

c. Storm surge barrier closure

The ’Maeslantkering’ is a storm surge barrier in the ’Nieuwe Waterweg’ Rhine outlet
near Hoek van Holland (see Figure5.1), which automatically closes when the water
level LR at Rotterdam is expected to exceed a level of 3 m above MSL. The water
level at Rotterdam is determined not only by the Rhine discharge, but also by the tidal
motions of the sea and the surges.

The water level at RotterdamLR relates statistically to the sea level at Hoek van
HollandLHvH and the Rhine discharge at LobithQ by:

LR = LHvH + aQ + bQ2 (5.5)

wherea andb are constants. The average closure frequency of the Maeslantkering
is not exactly known, as there has been some debate whether the extreme surges and
discharges can be treated independently in the risk analysis.
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Figure 5.6: Left: Gumbel plot of the water level with respect to MSLLR at Rotter-
dam, both for the observational set and for the ECMWF set. Also shown
are the closure criterion, the GEV fits, and the 95%-uncertainty inter-
vals for return periods of 10, 100 and 1000 years for the observational
set. The closure criterion of the Maeslantkering,LR = 3 m, is indicated.
Right: Scatter plot of the water level at Hoek van HollandLHvH versus
the Rhine dischargeQ for all high-tide values ofLR of the ECMWF set,
together with the closure criterionLR = 3 m. According to our analysis,
the closure criterion is exceeded once every 8.1 years.
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We calculated the Rhine discharge according to Eq.5.4, and the high-tide sea
level at Hoek van Holland by calculating the high tide surge every 12 hoursfrom
the ECMWF data according to (Eq. (1) invan den Brink et al. 2004b), and adding
that value to the astronomical high tide that occurred in the 12 preceding hours. A
Gumbel plot ofLR is shown in Figure5.7(a), both for the observations and for the
ECMWF data. The scatter plot of the Rhine discharge and the sea level at Hoek van
Holland for the annual maxima ofLR, as well as the closure criterionLR = 3 m, are
shown in Figure5.7(b). According to the ECMWF data, the criterion is exceeded on
average once in 8.1 years. Note that most of these events occur because of an extreme
surge level rather than an extreme river discharge, due to the small sensitivity of the



5.4 Four Applications 83

0.2

0.5

1

2

5

10

0 0.2 0.4 0.6 0.8 1

re
tu

rn
 p

er
io

d 
of

 c
lo

su
re

 e
ve

nt
s 

[y
ea

rs
]

sea level rise [m]

Figure 5.7: Effect of sea level rise on the frequency of closing the ’Maeslantkering’.
The vertical scale is logarithmic.

criterion (Eq.5.5) to the river discharge. Note also that no positive correlation is
apparent between surges and discharges.

Figure5.7shows that the number of closure events increases exponentially with
sea level rise. In this calculation, no greenhouse-effect on the tides, surges and Rhine
discharges is taken into account. With the increase of number of closings, the average
duration of closing will also increase.

d. Wave and sea level interaction

The ”Pettemer zeewering”is a small stretch of sea dike that closes a gap in thenatural
coast protection formed by sand dunes near Petten. The design height of the dikes is
determined not only by sea level elevations, but also by wave heights, because of run-
up of waves. Extreme surges and sea wave heights are correlated, as they both tend to
occur during strong North-Westerly winds. Failure of the ”Pettemer zeewering”may
occur if the dike load exceeds the design load (see e.g.de Haan and de Ronde 1998):

dike load≡ LP + 0.3 H > 7.6 [m] (5.6)

with LP the sea level at Petten andH the wave height. For the evaluation of Eq.5.6,
we consider the tidal station IJmuiden, located about 30 km south of Petten (Fig-
ure5.1), for which wave data are also available. The surge was calculated fromthe
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ECMWF data by applying the surge model (Eq. 1 invan den Brink et al. 2004b) to
Petten/IJmuiden, and then transformed into sea level by adding the astronomical high
tides.

The ECMWF data include deep-water wave heights, calculated by the WAM mo-
del (Komen et al. 1994). We scaled the ECMWF deep-water wave height to the
depth-limited wave height using the following relation (based onBouws. et al. 1998,
by taking the limit of fully developed wind waves):

Hshallow = Hdeeptanh[0.63(
h

Hdeep
)
0.75

] (5.7)

with Hshallow the depth-limited wave height,Hdeep the ECMWF deep-water wave
height andh the water depth (25 m for IJmuiden).

A Gumbel plot of the dike loadLP+ 0.3 H is shown in Figure 5.8(a) both for the
observations and for the ECMWF data. The scatter plot of the wave heightand the
sea level, as well as the failure criterion at Petten, are shown in Figure 5.8(b). The
estimate of the exceedance of the failure criterion is 1·104 years, i.e., in agreement
with the design return period for coastal protection.

5.5 Discussion and conclusions

The ECMWF seasonal forecast ensembles provide a large data set which well re-
produces the annual extremes of wind over the North Sea and of precipitation over
the Rhine basin. This opens the possibility to semi-empirically estimate the return
values with return periods up to 103 years, which is an order larger than what is pos-
sible from the observational sets, and to improve the accuracy of extrapolations to the
104-year level.

Four applications are shown, all of them associated with hydraulic response to
synoptic-scale meteorologic events. Checking the results with the extreme value anal-
ysis for observations shows good agreement for surges, waves, precipitation rates and
Rhine discharge. This strengthens the belief that the ECMWF data can be considered
as a realistic ’climate series’ of extended length that is representative for the current
climate on synoptic scale. This opens the possibility to study the extreme far tail from
the climatological probability density function, a region that is of great importance
for society but whose characteristics cannot be studied from observational records
other than by huge extrapolation. The four applications show improved return value
estimates. Two of the applications explore the correlation between violent events of
different types.

The type of analysis explored here may be extended to other meteorologicalel-
ements, such as temperature. However, the application has its limitations. Some of
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Figure 5.8: Left: Gumbel plot of the dike loadLP+0.3H of the Pettemer zeewering,
with LP the sea level andH the wave height at Petten, for the ECMWF
set (1569 years) and for the observational set (1979-2001). Alsoshown is
the GEV fit to the ECMWF data. The failure level (7.6 m) is indicated by
a horizontal line. Right: Scatter plot ofLP versusH is shown in (b) for
all high-tide events in the ECMWF set. The failure area is reached with a
return period of 1·104 years. Also shown is the line with a return period
of 100 years.
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the largest weather-related impacts on society are caused by synoptic-scale systems,
but if meso-scale systems (order 10-100 km) are the driving force behind the events,
the ECMWF set cannot represent them. Obvious examples are extreme showers and
gusts. Another limitation of the present approach is the use of simple downscal-
ing relations, e.g., the representations for the drag relation in the surge equation, the
Rhine discharge (Eq.5.4) and the bottom effects in waves (Eq.5.7). In principle,
these downscaling relations can be improved by using advanced models (see e.g.,
Gerritsen et al. 1995; van Deursen and Kwadijk 1993).

Despite the encouraging results of our analysis, the estimates of the extreme re-
turn values may have a limited validity. As the climate system for present day condi-
tions may exhibit low frequency variability, this 17-year dataset may not be entirely
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representative for the full spectrum of the present-day climate. In fact,the simula-
tions only represents the extreme statistics associated to the single realization ofthe
1987-2004 period, where the simulations are initiated from.

In order to explore the extreme statistics of the climate in a wider time window,
or for different climate conditions than the 1987-2004 window, one has to return to
long simulations with climate models, but these lack the benefits mentioned in the
introduction. A better alternative is to base the analysis on the seasonal prediction
hindcasts, as recently produced for the 1958-2001 window in the ”Demeter”project
(Palmer et al. 2004).

It is fortunate that ECMWF archived these seasonal forecasts so carefully that a
big dataset is available now for an application that was not envisioned at thestarting
time. As the length of the dataset will only be expanded in the future (with 20 years
every month), it will allow for more accurate extreme value estimations under more
general climatological circumstances than the present 1987-2004 baseline.



Chapter 6

Increased evidence for the existence of
’superstorms’

Abstract

The existence of a second population in the extreme wind speed, as detectedin chap-
ter3, is confirmed by the output of a ensemble run with the NCAR-GCM, which has
a higher complexity than ECBilt-Clio. The analyzed event shows similar character-
istics (i.e., merging of two cyclones, a strong jet stream, and extreme precipitation)
as the events analyzed invan den Brink et al.(2004a) (chapter3).

6.1 Introduction

The existence in the real world of a second population in the extreme wind speed, as
detected and described in chapter3, is hard to verify from observational data. The
reason is that we have not yet enough detailed understanding about thedynamical
aspects of the second population to look for their characteristics in the observational
data set. In other words, so far we can only detect second populations by a statistical
technique. The point that makes the validation hard is that the observationalrecords
are far too short and the second population is far too rare to apply the statistical
detection method.

At the moment, the only way to gain support for the results of chapter3, is to
find second populations in climate models more complex than EcBilt-Clio. This
motivated us to redo the analysis of chapter3 with the GCM ensembles data of the
so called ’Challenge project’.
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6.2 Model Description

In the Challenge project (Selten et al. 2004), the evolution of the climate system up
to the year 2080 was simulated with version 1.4 of the Community Climate System
Model (CCSM) of the National Center for Atmospheric Research (Ammann et al.
2004, and references therein). The model simulated the evolution of the coupled
atmosphere-ocean-sea-ice-land system under prescribed climate forcings. The atmo-
spheric component has a horizontal resolution of T31 (3.75◦) and 18 levels in the
vertical.

The simulations cover the period 1940-2080. Until 2000, historic forcings are
used (Ammann et al. 2003, 2004), and from 2000 onwards, all forcing factors are kept
at their year 2000 values, except for the concentrations of GHGs, which increase ac-
cording to a ’business-as-usual’ scenario (Dai et al. 2001) that is similar to the SRES-
A1 scenario of the Intergovernmental Panel on Climate Change (IPCC) (Nakicenovic
et al. 2000).

An ensemble of 62 simulations was produced, each covering the 141-yearpe-
riod. All initial ensemble fields are the same, apart from small random perturbations
applied to the initial atmospheric temperature fields.

6.3 Presence of second population in wind speed

In chapter3, we classified extreme winds to belong to a rare second distribution if
the centennial extremes can not be described with the same GEV distribution asthe
annual extremes. We found that the meteorological circumstances of theseevents
are characterized by the merging of two vortices into a single one, that this events is
embedded in a very strong jet stream, accompanied by extreme precipitation.

We repeated both the statistical and meteorological analysis of chapter3 with
the Challenge data. The signal-to-noise ratioSN used for the detection of second
populations (see Eq.3.22on page46) is calculated for the whole 1941–2080 period,
giving 62×140=8680 years. The small sensitivity of extreme winds on greenhouse
forcing (see Section6.4) justified our decision to use the entire set for our purpose.

Figure6.1showsSN applied to the five-year (p = 5 in Eq.3.22) and centennial
maxima (p = 100) for both periods. (We usep = 5 instead ofp = 1 to get rid of
the lower annual maxima, which do not converge to a GEV distribution, resulting in
a ’kink’ in the Gumbel plot around a 2-year return period, see Figure6.2(a). This
’kink’ is caused by the fact that the parent distribution can not be described by a
Weibull distribution, and thus the annual extremes do not converge to a Gumbel/GEV
distribution (see page44). Takingp = 1 would erroneously lead to doubling ofSN ).
A pattern with highSN -values is present over the North Atlantic, i.e., on more-or-
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Figure 6.1: Signal-to-noise ratioSN for detection of a second population in the ex-
treme wind speeds for the data of the Challenge project. Only areas with
|SN | > 1.5 are plotted. According to the criterion of Eq.3.22, SN > 2
is an indication for the existence of a second population. See section3.3
for a more comprehensive description.

less the same location as in the control run of the ECBilt-Clio data (Figure3.6 on
page52).

We now focus on the grid point (19◦W,35◦N) in this area, indicated with a black
dot in Figure6.1(a), for whichSN = 4.53. For this grid point, the Gumbel plot
of the daily-averaged wind speed at the lowest sigma-level (σ = 0.9925) is shown
in Figure6.2(a). It shows that it is especially the largest wind event that deviates
from the other extremes. If this most violent event were omitted from the calcula-
tion, thenSN reduces from 4.53 to 1.5. This event, occurring in February 2021 of
ensemble member 24, is not only extreme in the wind speed, but also in the SLP
and vorticity. Indeed, the most extreme values in SLP and vorticity (Figure6.2(b)
and6.2(c)) correspond to this same event, in which the SLP value truly representsan
outlier. The Feb 2021/member 24 event is accompanied by a daily-averagedconvec-
tive precipitation rate which is not the largest of all, but still with a 500-yearsreturn
period (Figure6.2(d)).

The evolution of the SLP pattern of the Feb 2021/member 24 event is shown in
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Figure 6.2: Gumbel plots of the daily-average wind speed atσ = 0.992 (a), SLP (b),
relative vorticity atσ = 0.992 (c) and convective precipitation (d) for the
1941-2080 period of the Challenge data. For all panels, the value belong-
ing to the cyclone occurring in February 2021 of ensemble member 24 is
indicated with an arrow.
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Figure 6.3: Evolution of SLP patterns of the storm leading to the most extreme
wind speed in the Challenge data (Feb 2021/member 24) at position
19◦W,31◦N (indicated with a black dot). This event occurs at panel f.
The time step between the successive panels is 9 hours. Values below
1000 hPa are shaded.

Figure6.3. The time step between consecutive panels is 9 hours. It shows a cyclone
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A and anotherB which separates from a third one,C, in panel c. In panel d, the
cyclonesA andB merge into a single oneA/B. From this moment the deepening
starts, from 978 hPa in panel d to 951 hPa just after panel g. The stronginteractions
between the vorticesA andB, and possiblyC, seem to enhance the deepening of the
main vortex (lowest SLP 951 hPa, maximum wind speed 40.4 m s−1 at σ = 0.992,
46.3 m s−1 at σ = 0.866). This behavior – strong interactions between neighouring
vortices – is similar to what was found to be responsible for the second population in
extreme wind speeds in ECBilt-Clio (chapter3).

For a more detailed analysis of the Feb 2021/member 24 storm, we project (like
in chapter3) the geopotential heightΦ of this single storm on that of 141 storms from
the first population:

Φan = Φb − Φa (6.1)

Φa =
1

141

141
∑

i=1

Φa,i Φb = Φb,1

whereΦa,i is the 7-day averaged pattern of the 500-hPa geopotential height for the
region 80W–10E and 20N–65N for casei in the first populationa, andΦb for the
single event of the second populationb. For the projection we use (see Eq.3.25):

pi =
〈Φa,i − Φa,Φan〉

〈Φan,Φan〉
(6.2)

We applied this projection to the 500-hPa geopotential height field, and foundthat
for the 141 cases of populationa, the largest projection on populationb is 0.83, i.e.,
considerably lower than unity. From extrapolation it follows that unity is exceeded
about once in hundred years. This suggests that the background flowin which the
event of populationb developed is rare.

Applying the projection to other variables also results in small maximum projec-
tions for populationa: The maximum projection for the 7-day averaged total precip-
itation is 0.51 (corresponding with a frequency of less than once in thousand years),
and for SLP 1.01 (corresponding with a frequency of about once in hundred years).

The zonal wind patterns at 0.866σ for populationa andb are shown in Figure6.4.
The maximum zonal wind in the second population is stronger, and more eastward
than in the first population. These results are also found in ECBilt-Clio (Figure 3.12
on page58).

We conclude from this analysis that the single event that we examined in the
Challenge data has similar characteristics as the events of the second population in
the ECBilt-Clio data. This supports our hypothesis that the merging process,if em-
bedded in a strong jet stream, and accompanied by extreme precipitation, canlead to
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Figure 6.4: Time mean zonal wind atσ = 0.866 [m/s] of the first population (a) and
the second population (b).

(a) mean 7-day averaged zonal wind speed atσ = 0.866 of
the first populationa

(b) mean 7-day averaged zonal wind speed atσ = 0.866 of
the second populationb
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Figure 6.5: Change of the ensenble mean 2m-temperature in winter (Oct-Mar)aver-
aged over 2000-2020 with respect to 1940-1960 (a) and 2080-2060with
respect to 2000-2020 (b). Units are◦C. Negative values are shaded.

(a) (2000-2020)–(1940-1960) (b) (2060-2080)–(2000-2020)

larger wind speeds than extrapolated from non-merging cyclones. The fact that the
Challenge data reproduces the ECBilt-Clio results increases the belief that the exis-
tence of an earlier identified second population in the extreme wind speed is not a
model artifact, but rather seems to be an existing feature that dominates the extreme
value statistics for large return periods in the real world. Hence it represents an im-
portant feature to be counted with in safety design calculations in certain parts of the
world.

6.4 CO2 effect

As a final point of this study, we investigate the effect of the increased CO2 concentra-
tions. Figure6.5compares the ensemble mean 2m-temperature in winter (Oct–Mar)
at the begining, halfway, and at the end of the simulated period. It shows awarming
over the whole NH up to the year 2020, and a further warming up to 2080, except
for the area between Greenland and Iceland, where the strong warming of 10◦C is
followed by a cooling of 3◦C (Figure6.6). We attribute this local cooling to melting
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Figure 6.6: Ensenble mean 2m-temperature in winter (Oct-Mar) at (30◦W,65◦N).
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of the Arctic sea ice, which reduces salinity and stops the convection of (relatively
warm) deep water around the year 2020 (see alsoSchaeffer et al. 2002).

The time evolution of the once-a-year exceeded wind speed for the (19◦W,31◦N)
grid point, which is the grid point analyzed in the previous section, is shown inFig-
ure6.7. We fitted a GEV distribution to the 62 annual maxima that are available for
each year from the 62 ensemble members. The smoothed line (Cleveland 1979, using
70-year span) shows a variation of at most 3 % on the GEV location parameter for the
σ = 0.992 wind speed. We hypothesize that the increase of the extreme wind speed
up to 2020, and the decrease afterwards, is related to the temperature changes shown
in Figures6.5and6.6.

The arrows in Figure6.7 indicate the occurrences of the five largest wind events
in the whole set. No evidence is found that the magnitude of these largest events are
influenced by the increased CO2 concentrations.

6.5 Discussion and conclusions

The existence of a second population in the extreme wind speed as inferredfrom
the ECBilt-Clio data, is confirmed in the ensemble run of the NCAR model. This
increases the probability that the second population is a real feature that dominates
the extreme value distribution of the wind in certain areas of the earth, includingthe
extra-tropics. Evidence for this result requires a better understandingof the mecha-
nism of these ’superstorms’. In particular, recognizing certain characteristics of this
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Figure 6.7: Time series of the GEV location parameterµ of the σ = 0.992 wind
speed for (19◦W,31◦N), as estimated for each set of 62 annual extremes
for every year in the Challenge data (1941-2080). The line is theCleve-
land(1979) smoother with 70-year span. The arrows indicate the dates of
the five largest wind events in the total set (Figure6.2(a)).
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population may enable in the future the identification of less violent members of this
second population. Hopefully, this leads to an empirical estimation of the probability
of occurrence in datasets as short as ERA40-reanalysis (Simmons and Gibson 2000).
This challenging extension is beyond the scope of this thesis.

A second result of this preliminary GCM study on extreme winds is the non-
trivial nature of the response of extreme winds on greenhouse forcing(Figures6.6
and6.7). It is encouraging that the present GCM ensemble experiment now produces
a clear signal in changes of extreme winds. It is clear that the nature of thisresponse
needs further research in that direction.



Summary

This thesis deals with the problem of how to estimate values of meteorological pa-
rameters that correspond to return periods that are considerably longer than the length
of the observational data sets.

The problem is approached by considering the output of weather- and climate
models as pseudo-observations. These pseudo-observational records, which are one
to two orders of magnitude longer than the observational records, open the possibility
to reduce the large statistical uncertainty in the 104-year estimate from observations,
as well as to examine the assumption that all extremes (up to 104-year return periods)
are part from the same population.

In Chapter 1 we quantify the statistical uncertainty in the 104-year surge level if
estimated from hundred-year records (as the observational recordsare). This is done
by dividing the 5336-year long outputs of the climate model ECBilt-Clio into sub-
sets of hundred year. This chapter shows that annual maxima of hundred-year surge
records can generally, within the uncertainty, be described by a Gumbel distribution
(a commonly applied distribution for annual hydrological extremes (see e.g.,Katz
et al. 2002)). However, the total 5336-year record of the control run (1960–1990) can
clearlynot be described by a single Gumbel distribution, but requires a GEV distri-
bution instead. This implies that uncertainty ranges calculated from Gumbel distri-
butions will produce numbers that are misleadingly low (see alsoColes et al. 2003).
The uncertainty in the estimate of the shape parameter of the GEV distribution on
basis of hundred-year records results in a large uncertainty (∼4 m) in the 104-year
surge estimate. For the grid point representing the North Sea, the greenhouse run
(2050–2080) of ECBilt-Clio reveals a ’kink’ in the distribution of the annualmax-
ima if displayed on a Gumbel plot. The extremes with a lower probability than once
in 250 years seem to originate from another distribution than the less extreme events.
It is hypothesized that the super-extremes originate from a second population in the
extreme wind speed distribution.

Chapter 2 deals with the optimal method of determining 104-year surge estima-
tes by statistical means. Next to the GEV analysis (that usually only considersthe
annual maxima) the so-called Peak Over Threshold (POT) method exists, which con-
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siders all independent events above a certain threshold. These methods are evaluated
with the ECBilt-Clio record of simulated surges in Delfzijl by first estimating the
100-year surge level and its uncertainty for all 116-year subsets, and then checking
if these uncertainty intervals contain the correct realization, as determined directly
from the total (7540-year) set. We found that in our experimental setting,the POT-
method systematically underestimates the uncertainty in the 102-year surge level,
while application of the GEV distribution results in a unbiased estimate, making the
last approach most appropriate for determining safety levels.

Chapter 3 focuses on the ’superstorms’ detected in chapter1. A statistical cri-
terion is developed to determine whether all annual extremes can be described by a
single GEV distribution or not. We found that for specific geographical locations in
ECBilt-Clio, the extreme winds can not be described with a single GEV distribution,
but requires a Generalized Two-Component Extreme Value (GTCEV) distribution.
The meteorology resulting in the second component of the GTCEV distribution has
the following characteristics: the extreme winds are related to situations in whichtwo
vortices merge into a single one. In addition, the cyclones are embedded in a strong
jet stream, and extreme precipitation accompanies the development of the cyclone.

It is found that the area for which a second population is detected shifts due to
the greenhouse effect from the North-Atlantic ocean to the European continent. This
explains that in chapter1 the ’superstorms’ are only detected in the greenhouse run.

In Chapter 4 we explore the suitability of the European Centre for Medium-
Range Weather Forecasts (ECMWF) seasonal forecast archive for extreme value
analysis of surges. The combined seasonal forecasts of the ECMWF cumulate to
1600 years. The high resolution in time and space and the more complete physics
(even compared with state-of-the-art climate models) make these data highly appro-
priate to be analyzed with extreme value statistics. The results for the surge in Hoek
van Holland shows good statistical agreement with the observed extremes. The long
model record reduces the statistical uncertainty in the 104-year estimate with no less
than a factor four.

We demonstrate inChapter 5 that the archived ECMWF seasonal forecasts can
also be used for extreme value estimates of other variables than wind and surge only.
Four examples are presented, i.e., the Rhine discharge at Lobith, the sluicing of Lake
IJssel water into the sea, the closure-frequency of the ’Maeslant’-barrier, and the
(wave and sea level dependent) load on the Pettemer sea wall. The examplesillustrate
that the -still expanding- ECMWF data set offers unforeseen possibilitiesin modeling
(hydrological) extremes. Especially, the simultaneous modeling of multiple extremes
opens new perspectives.

Preliminary results obtained with the so-called Challenge data are presented in
Chapter 6. De ’superstorm’ that we analyzed in the Challenge data has similar char-
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acteristics as the events in the ECBilt-Clio model. This result supports the idea that
the earlier detected ’superstorms’ are not a model-artifact, but rather seems to be
indeed a phenomenon belonging to the real world.
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Samenvatting

In dit proefschrift wordt het probleem behandeld van het schatten van waarden van
meteorologische grootheden die corresponderen met herhalingstijden dieaanzienlijk
langer zijn dan de periode waarover gemeten is. Deze moeilijkheid speelt sterk bij het
bepalen van de hoogte van de zeedijken in grote delen van Nederland, dievolgens de
Wet op de Waterkering niet vaker dan eens in de 10000 jaar mogen bezwijken. Deze
herhalingstijd is dus honderd keer zo lang als de lengte van de meetreeks van honderd
jaar.

We benaderen dit probleem door de uitkomsten van weer- en klimaatmodellen
te beschouwen als pseudo-waarnemingen. Deze reeksen, zijn tien tot honderd keer
langer zijn dan de ’echte’ waargenomen reeksen. Hiermee kan de grote statistische
onzekerheid, die er in de schattingen van het 104-jaar niveau vanuit de waarnemingen
is, verkleind worden. Ook kan er met de pseudo-waarnemingen de aanname dat
alle extremen (tot aan 104-jaar herhalingstijden) tot een enkele populatie behoren,
onderzocht worden.

In Hoofdstuk 1 kwantificeren we de statistische onzekerheid in de 104 jaar storm-
vloedniveau (de zogenaamde ’opzet’), als deze geschat wordt uit een honderd jaar
lange reeks (dit de lengte van de waargenomen reeksen). We doen dit door de
5336 jaar aan output van het klimaatmodel ECBilt-Clio, te verdelen in deelreeksen
van elk zo’n 100 jaar. In dit hoofdstuk wordt aangetoond dat in het algemeen de jaar-
maxima van opzet-reeksen van honderd jaar (binnen de onzekerheid),beschreven
kunnen worden met een Gumbel verdeling (deze verdeling wordt vaak gebruikt om
hydrologische jaarmaxima te beschrijven (zie bijv.Katz et al. 2002)). De totale reeks
van 5336 jaar van het controle klimaat (1960–1990) kan echterniet door een enkele
Gumbel verdeling worden beschreven; hiervoor is een GEV verdeling nodig. Dit
impliceert dat onzekerheidsbanden die berekend worden met een Gumbel verdeling
misleidend laag uit kunnen vallen (zie ookColes et al. 2003). De onzekerheid in de
schatting van de vormparameter van de GEV verdeling op basis van een honderd-
jaar lange reeks resulteert in een grote onzekerheid (∼4 m) in het geschatte 104-
jaar opzet-niveau. Voor het gridpunt van ECBilt-Clio dat de Noordzeerepresenteert
toont de ’broeikas-run’ (2050–2080) een ’knik’ in de verdeling vande jaarmaxima
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bij weergave op een Gumbel plot. De extremen die zeldzamer optreden dan eens
in de 250 jaar lijken te ontstaan vanuit een andere verdeling dan de minder extreme
gevallen. Dit suggereert dat de super-extremen door een ander meteorologisch mech-
anisme worden voortgebracht dan de rest van de extremen.

Hoofdstuk 2 gaat over de optimale methode om de104-jaar opzet-niveaus statis-
tisch te schatten. Naast de GEV analyse, waarin gewoonlijk alleen de jaarmaxima
beschouwd worden, bestaat er de zogenaamde ’Peak Over Threshold’ (POT) meth-
ode waarin alle onafhankelijke gevallen die boven een bepaalde drempel uitkomen,
in de analyse meegenomen worden. Beide methoden worden geëvalueerd met de
ECBilt-Clio reeks van gesimuleerde opzetten in Delfzijl. Hiertoe worden eerstde
100-jaar niveaus en hun onzekerheden geschat vanuit 116-jarigedeelreeksen. Ver-
volgens wordt gekeken of de echte waarde (die eenvoudig is af te leidenuit de totale
reeks) binnen het onzekerheidsinterval ligt. Het blijkt dat in ons experiment de POT-
methode de onzekerheid in het 102-jaar opzet-niveau systematisch onderschat, terwijl
toepassing van de GEV verdeling in een zuivere schatting resulteert. Dit maakt deze
laatste verdeling het best geschikt om veiligheidsniveaus te bepalen.

In Hoofdstuk 3 richten we ons op de in hoofdstuk1 gedetecteerde ’superstor-
men’. Hier wordt een statistisch criterium ontwikkeld om te bepalen of alle jaar-
maxima met een enkele GEV verdeling beschreven kunnen worden of niet. Het
blijkt dat in ECBilt-Clio er specifieke locaties zijn waar de extreme winden niet
beschreven kunnen worden door een enkele GEV verdeling, maar een’Generalized
Two-Component Extreme Value’ (GTCEV) verdeling nodig is. De meteorologie die
resulteert in de tweede component van de GTCEV verdeling blijkt de volgende karak-
teristieken te hebben: De extreme winden horen bij situaties waarbij twee wervels
samensmelten tot een enkele; Daarbij is de storm ingebed in een extreem sterke
straalstroom, en gaat de ontwikkeling van de storm gepaard met extreme neerslag.
Het geografische gebied waar een tweede populatie wordt gedetecteerd, verschuift
onder invloed van het broeikas-effect van de Noord-Atlantische Oceaan naar het Eu-
ropese continent. Dit verklaart dat in hoofdstuk1 de ’superstormen’ alleen in de
’broeikas-run’ gedetecteerd worden.

In Hoofdstuk 4 onderzoeken we of de langetermijnverwachtingen van het Eu-
ropees Centrum voor Middellange Termijn Verwachtingen (ECMWF) geschikt zijn
voor analyse van de extreme stormvloeden. Momenteel vormen de gecombineerde
langetermijnverwachtingen in totaal zo’n 1600 jaar. De hoge resolutie in tijd en
ruimte, en de completere fysica (zelfs ten opzichte van state-of-the-art klimaatmod-
ellen) maken dat deze reeksen uitermate geschikt zijn om geanalyseerd te worden
via de statistiek van extremen. De resultaten voor Hoek van Holland laten een goede
overeenkomst zien tussen de schattingen van de langetermijnverwachtingen en de
waarnemingen. Door de grote totale lengte van de langetermijnverwachtingenwordt
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de statistische onzekerheid in de 104-jaar schatting met maar liefst een factor vier
verkleind.

We laten inHoofdstuk 5 zien dat de langetermijnverwachtingen van het ECMWF
ook voor andere grootheden dan wind en opzet kunnen worden gebruikt om extreme
waarden schattingen te maken. Er worden vier voorbeelden gepresenteerd, nl. de
Rijnafvoer bij Lobith, het spuien van IJsselmeerwater in de Waddenzee,de frequen-
tie waarmee de ’Maeslantkering’ in de Nieuwe Waterweg gesloten moet worden, en
de belasting (die afhankelijk is van zowel golfhoogte en zeeniveau) vande Pettemer
zeewering. Dit hoofdstuk illustreert dat de -nog steeds langer wordende- ECMWF
reeks onvoorziene mogelijkheden biedt bij het modelleren van (hydrologische) ex-
tremen. Vooral het simultaan modelleren van meerdere, gelijktijdig optredendeex-
tremen biedt nieuwe perspectieven.

Voorlopige resultaten die verkregen zijn met de zogenaamde ’Challenge’ data
van het NCAR model worden gepresenteerd inHoofdstuk 6. De ’superstorm’ die
we in de Challenge data geanalyseerd hebben, heeft dezelfde karakteristieken als de
gevallen in het ECBilt-Clio model. Dit resultaat ondersteunt het idee dat de eerder
gedetecteerde ’superstormen’ niet een model-artefact zijn, maar juist een fenomeen
zijn dat tot de werkelijkheid behoort.
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