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Ensemble simulations with a total length of 7540 years are generated with a climate
model, and coupled to a simple surge model to transform the wind field over the
North Sea to the skew surge level at Delfzijl (NL). The 65 constructed surge records,
each with a record length of 116 years, are analyzed with the Generalized Extreme
Value (GEV) and the Generalized Pareto distribution (GPD) to study both the
model and sample uncertainty in surge level estimates with a return period of
104 years, as derived from 116-year records.

The optimal choice of the threshold, needed for an unbiased GPD-estimate
from Peak-Over-Threshold (POT) values, cannot be determined objectively from a
hundred-year data set. This fact, in combination with the sensitivity of the GPD-
estimate to the threshold, and its tendency towards too low estimates, leaves the
application of the GEV distribution to storm-season maxima as the best approach.
If the GPD-analysis is applied, the exceedance rate λ should be chosen not larger
than 4.

The climate model hints at the existence of a second population of very intense
storms. As the existence of such a second population can never be excluded from
a hundred-year record, the estimated 104-year wind speed from such records has
always to be interpreted as a lower limit.
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1. Introduction

In The Netherlands, a probability of 10−4 per year for flooding from the sea is used
as baseline for dike design (Deltacommissie 1960). Several problems arise when
translating this ’accepted risk’ into the sea level being exceeded (on average) only
once in 104 years. First, as the observational records of tidal stations are only 102

years in length, the surge level with an average return period of 104 years requires
an extrapolation of two orders of magnitude. It is unclear how reliable the estimate
from such an extrapolation is. Second, various probability functions can be fitted to
the observational records of extreme surges, leading to different results in the 104-
year return levels (Dillingh et al. 1993, de Haan 1990). Third, extrapolation from
observational records does not contain information about surges in a greenhouse gas
induced changing climate. Fourth, a second population of rare but intense storms,
originating from a different kind of meteorological system, would result in higher
return values than estimated from standard extreme value analysis of the available
short records.
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These problems are explored by analyzing two very long surge records for the
Dutch coastal station Delfzijl, which were generated by a climate model. One series
refers to the present-day climate; the second to the future (doubled greenhouse gas
concentration) conditions. The length of these series (order 104 years) allow for
exploring the far tail of the distribution, as well as for uncertainty estimates of the
return values if calculated from much shorter (order 102 years) subsets.

2. Model descriptions

Wind data are generated by the General Circulation Model (GCM) ECBilt-Clio,
consisting of an ocean model Clio (Goose & Fichefet 1999) and an atmospheric
model ECBilt (Opsteegh et al. 1998, 2001). ECBilt is a spectral T21 global 3-level
quasi-geostrophic model, with a time step of 4 hours. The T21-resolution corre-
sponds (for the latitudes of interest) with a grid point distance of approximately
500 km.

The surge model we used is a simplified version of the Timmerman model (Tim-
merman 1977). It is described and validated in van den Brink et al. (2003). We
calculated a surge level every 12 hours.

3. Methodology

(a) Extreme Value distributions

There are two commonly applied approaches in extreme value statistics: In the
first approach, ’block maxima’ are considered, to which the Generalized Extreme
Value (GEV) distribution is applied. The GEV distribution function is given by:

GEV = P (Y ≤ y) = exp
(

− [1 −
θ

α
(y − µ)]

1/θ
)

(3.1)

with µ the location parameter, α the scale parameter, θ the shape parameter, and
y the block maximum of the considered variable (de Haan 1976).

In the second approach, all values above a certain threshold u are considered.
To these ’Peak over Threshold’ (POT) values, the Generalized Pareto Distribution
(GPD) is applied. The GPD distribution function is given by:

GPDλ = P (Y − u ≤ y|Y > u) = 1 −
[

1 −
θ

α
(y − µ)

]1/θ
(3.2)

with µ the location parameter, α the scale parameter, θ the shape parameter, and y

the variable above a chosen threshold u. We follow the common approach to choose
µ equal to the threshold u (Palutikof et al. 1999). The exceedance rate λ, which
depends on the threshold u, is estimated as the average number of exceedances over
the threshold u per ’block’. From both approaches, the level belonging to a given
probability of exceedance can be estimated by inverting equations 3.1 and 3.2.

The shape parameters θ of the GEV and the GPD distributions are equal if the
threshold is large enough (Katz et al. 2002).

In order to come to an optimal estimate, it is desirable that the estimate is
both unbiased (i.e., with the right expected value) and efficient (i.e., with a small
uncertainty). The uncertainty depends mainly on the number of samples that are
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considered, whereas a systematic bias will be introduced if a wrong distribution is
used to describe the data. As both the GPD and the GEV distribution describe
only the ’tail’ of the parent distribution, a bias will be introduced if samples that
do not belong to this ’tail’ are also considered. Which samples belong to the tail, in
the sense that they can be described with the same parameters as the more extreme
events, depends on the convergence rate of the parent distribution to the asymptotic
extreme value distribution. For the ’block maxima’ approach, this convergence is
assumed beforehand, whereas for the POT-approach, this question is commonly
answered empirically, making use of the fact that for the ’tail’, the estimated shape
parameter θ should be independent of the threshold u, and thus of the exceedance
rate λ. This can be explored by plotting the estimated shape parameter θ as a
function of the threshold u or the exceedance rate λ. The chosen λ is then the
largest one for which θ is stable (de Haan 1990, Coles 2001). If there are strong
fluctuations or trends in the estimated θ, quantile estimates are difficult to obtain
(see e.g. Brabson and Palutikof 2000).

So, the larger sample set that is considered in the POT-approach (if λ > 1)
makes this method more efficient than the ’block maxima’ approach. On the other
hand, the POT-approach is more likely to be biased, as samples less far in the tail
of the distribution are also used.

For a further overview of the advantages and disadvantages of the POT-approach
and the ’block maxima’ approach, we refer to Palutikof et al. (1999).

(b) Set-up of the numerical experiment

With ECBilt-Clio, 260 runs of 30 years each were generated, with a CO2 con-
centration according to the period 1960-1989 (320 ppm on average). In addition to
the control run, we also generated 233 ensemble runs of 30 years with estimated
CO2 concentrations according to the period 2050-2079 (following the SRES A1B
CO2 emission scenario (Houghton et al. 2001)). This emission scenario results in
approximately doubled CO2 concentration (620 ppm on average) in 2050-2079 with
respect to the control run.

As every 30-year run contains 29 storm season periods, we have 260×29=7540
’block maxima’ for the control run, and 6902 for the greenhouse run.

(c) Data handling

To remove dependent events from the POT-selection, we require a minimal time
separation between selected events of 96 hours, as in de Haan (1990).

We concentrate on storm season events (October till March) to improve ho-
mogeneity of the data set (de Haan 1990). We applied the surge model to the
ECBilt-Clio grid point (6E,47N). This grid point best represents the North Sea
winds (van den Brink et al. 2003).

We calculated the parameters of the GEV and GPD distributions via the method
of Maximum Likelihood (Coles 2001). The 95%-confidence levels were estimated
from the profile likelihood (Coles 2001).

Figure 1 shows the number of exceedances λ as a function of the threshold
u for the observations and the ECBilt-Clio data. ECBilt-Clio has somewhat less
exceedances over a given threshold than the observations. In this study, we compare
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Figure 1. Number of exceedances λ per storm season (October to March) as a function
of the threshold u for the observations and the ECBilt-Clio data. The vertical scale is
logarithmic.
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Figure 2. Return level plot for the observational set and the ECBilt-Clio set. The lines
are GEV- and GPD-fits with exceedance rate λ = 3 to both sets. The horizontal scale is
logarithmic.

both record for situations with equal exceedance rate λ, which means that for the
observational record a higher threshold is chosen than for the ECBilt-Clio record.

Figure 2 shows a return level plot for the observational set and the ECBilt-Clio
set. The extremes of ECBilt-Clio are in reasonable agreement for return periods up
to 50 years. For return periods larger than 50 years, the extremes in ECBilt-Clio
are higher than in the observational set.

4. Results

(a) Dependence of 104-year estimate on model choice

With the control run, we tested the uncertainty in the extrapolation of the
extreme surges for Delfzijl. We applied the GPD distribution to the 116-year ob-
servational surge record of Delfzijl (1883-1999), to 65 subsets of 116 years each of
ECBilt-Clio, and to the total set of 7540 years, all for several choices of λ. We
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(a) GEV distribution
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(b) GPD, λ = 1

Figure 3. The estimated 104-year return level for the surge as a function of the corre-
sponding shape parameter θ for 65 subsets (each of 116 years length) from the ECBilt-Clio
control run. Shown are the GEV-estimates (a) and the GPD-estimates for exceedance rate
λ = 1 (b). Also shown are the estimates from the total ECBilt-Clio control run of 7540
storm seasons (circle), and the estimate from the 1883-1999 observational set of Delfzijl
(square).

also applied the GEV distribution to the storm season block-maxima of all these
sets. The 104-year estimates are shown in Figure 3 as a function of the estimated
shape parameter θ from the GEV distribution (panel a) and from the GPDλ=1

distribution (panel b). Figure 3 shows the following features: First, both panels
resemble the strong correlation between the estimated shape parameter θ and the
estimated 104-year return level. Second, the 104-year estimate from the total 7540-
year ECBilt-Clio set are similar for the GEV (8.29 m (7.21,10.9)) and the GPDλ=1

estimate (7.87 m (7.28,8.62)) (the values between brackets are the lower- and up-
per 95%-confidence levels). Third, the lower GPDλ=1 estimate (4.66 m (3.70,8.95))
than the GEV estimate (5.85 m (4.17,11.5)) indicates that the two approaches can
result in considerably different 104-year estimates (although they do not differ sig-
nificantly in this case). Fourth, the 104-year estimates of the 116-year ECBilt-Clio
subsets vary considerably, between 4 and 20 m, both for the GEV- and the GPDλ=1

estimates.

(b) Dependence of GPD 104-year estimate on exceedance rate

We now want to explore if λ > 1 makes application of the GPD distribution
more efficient than the GEV distribution. Figure 4 shows the estimated GPD shape
parameters and 104-year return levels as a function of λ. Figure 4(a) shows the
estimates from the total 7540-year set, two arbitrarily chosen 116-year ECBilt-Clio
sets and the observational set. Figure 4(b) gives the estimated 104-year surge levels
for the same sets.

Figure 4 gives the following information: First, if λ < 1, the estimate of θ (and
thus the 104-year estimate) from a 116-year subset is very sensitive to λ, which
is undesired. Second, also for λ > 1, considerable fluctuations in the estimated
shape parameter θ remain in 116-year sets, as both the two ECBilt-Clio sets and
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(a) Estimated shape parameter θ
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(b) Estimated 104-year surge level

Figure 4. (a) Estimated shape parameters θ of the GPD-distribution for the surge in
Delfzijl according to the total 7540-year ECBilt-Clio set as a function of the exceedance
rate λ. Also shown are estimates from two arbitrarily chosen 116-year ECBilt-Clio subsets
(set 1, set 2), and the observational set. (b) The corresponding 104-year surge levels. The
horizontal axes are logarithmic.

the observational set show. This fact, together with the different ’stable’ regions
for θ of the two ECBilt-Clio 116-year subsets, make it difficult or even impossible
to choose an optimal value of λ from a 116-year record. Third, the two 116-year
ECBilt-Clio subsets remain for all λ’s either below, or above the estimate of the
total 7540-year ECBilt-Clio set. Fourth, even the estimates of the total 7540-year
ECBilt-Clio set are not threshold-independent. This suggests that the upward slope
of θ (for λ > 4) in Figure 4(a) (and the corresponding decreasing 104-year estimate
in Figure 4(b)) is a bias, caused by samples that do not belong to the tail of the
parent distribution. Fifth, the fact that the estimates from the observational set
are within the ECBilt-Clio range for the GEV and the GPD distribution for λ . 3,
but outside that range for λ & 3, might indicate that the observational set is even
more biased for large values of λ than the ECBilt-Clio set.

We conclude that λ should be in the range between 1 and 4 to have a more or less
unbiased 104-year surge estimate. However, such a range can only be determined
from an extremely long data set. Data sets of order hundred years are too short to
determine a maximal choice of λ (and thus of the minimal threshold) that results in
an unbiased estimate. The strong dependence of the GPD-estimates on the choice of
λ makes it difficult, or even impossible, to obtain reliable unbiased GPD-estimated
104-year surge levels from 102-year records.

(c) Optimal choice for threshold

In order to investigate the bias in more detail, we determine the fraction of
the 65 subsets for which the actual value lies outside the 95%-confidence interval.
These percentages are shown in Figure 5(a) for a return period of 100 years, split
out to the lower- and upper 95%-confidence level. The actual 100-year value is
4.20 m (according to Figure 2). The open circles in Figure 5(a) show that the
fraction of upper 95%-confidence levels is larger than 2.5% for all exceedance rates,
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except between 2 and 4. For λ ≥ 5, the number of subsets for which the upper
95%-confidence levels is below the actual value is large, whereas for none of the 65
subsets the actual value is below the the lower 95%-confidence levels. This indicates
the existence of bias towards too low values.

Fitting a GEV-distribution to the 65 subsets gives one subset for which the
100-year upper 95%-confidence level is lower than the actual value, and one subset
for which the lower 95%-confidence level is higher than the actual 100-year value.
The corresponding percentages are plotted at the right side of Figure 5(a).

To highlight the effects of Figure 5(a), the calculations are repeated, but now
based on 1000 116-years subsets, obtained by randomly sampling from the total
ECBilt-Clio set, in order to decrease the noise. The results for a return period
of 100 years are shown in Figure 5(b). This confirms the findings of Figure 5(a)
that there is a bias in the GPDλ-estimates. Whereas Figure 5(a) did not indicate
a bias for λ = 3, Figure 5(b) shows that there is a small bias for λ < 4, which
strongly increases for λ > 4. Figure 5(b) indicates no bias in the GEV-estimates
(about 2.5% of the upper 95%-confidence intervals is lower than the actual value,
and about 2.5% of the lower 95%-confidence intervals is above the actual value).

For the 104-year return periods, the percentages exceeding the upper- and lower
95%-confidence intervals are depicted in Figure 5(c–f). In this case, i.e., for 104-
year return periods, the ’real’ value for the 104-year return value has to be chosen,
as it can not be determined directly from Figure 2. As possible ’real’ values we
considered both the GEV- and the GPDλ=3-estimates, as obtained from the total
7540-year set. The reason for considering λ = 3 in the GPD-estimate is that this
value of the exceedance rate λ turns out to be the best, according to Figure 5(a).
Another reason is that the GPDλ=3-estimate is correct for a 100-year return period
(Figure 2).

Figures 5(c,e) show the results for the 65 subsets, respectively taking the 104-
year GEV-estimate (8.29 m) as ’real’ value, and the 104-year GPDλ=3-estimate
(7.78 m). Figures 5(d,f) show the results for the 1000 sampled subsets.

We see an even stronger bias towards too low values for the 104-year return
periods than for the 100-year return periods for the GPD-estimates if λ > 4 (note
the different vertical range of Figures 5(c–f) with respect to Figures 5(a,b)). No bias
is detected for the GEV-estimates in the situation that the 104-year GEV-estimate
is taken as ’real’ value (Figures 5(d)), and for the GPD-estimates if 1 < λ < 4 in the
situation that the 104-year GPDλ=3-estimate is taken as ’real’ value (Figures 5(f)),
as expected from consistency.

We conclude from Figure 5 that the GPD-estimates are more sensible for bias
than the GEV-estimates, especially if the exceedance rate λ > 4. The GEV-
estimates are unbiased. This leaves the GEV analysis as the preferred method.

(d) Greenhouse effect on wind

The effect of the greenhouse doubling on the extreme wind speed in ECBilt-Clio
for the North Sea grid point is shown in Figure 6. Up to return periods of ≈ 100
years, no effect is apparent. However, for wind speeds with return periods of more
than 250 years, the greenhouse run deviates systematically from the fitted GEV
distribution. This suggests the existence of a second population in the extreme wind
distribution. Fitting the GEV distribution to the deviating extremes only, results
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(a) 100-year GPD- and GEV-estimates
compared with the actual 100-year
value (4.20 m), for 65 116-year subsets.
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(b) idem as (a), for 1000 sampled sets.
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(c) 104-year GPD- and GEV-estimates

compared with the 104-year GEV-estimate
of the 7540-year set (8.29 m)
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(d) idem as (c), for 1000 sampled sets.
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(e) idem as (c), compared with 104-year
the GPDλ=3-estimate of the 7540-year set
(7,78 m).
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Figure 5. Percentages of the number of sets that do not contain the ’real’ value within its
95%-confidence intervals, estimated with the GPDλ-distribution for different exceedance
rates λ, and with the GEV-distribution.The ’real’ value is chosen to be the actual 100-year
value of the 7540-year set in (a,b), the 104-year GEV-estimate of the 7540-year set in (c,d),
and the 104-year GPDλ=3-estimate of the 7540-year set in (e,f). Left: 65 116-year subsets;
Right: 1000 116-year sets, randomly sampled from the total ECBilt-Clio set.
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Figure 6. Return level plot of the observed and GEV-estimated 12-hourly averaged wind
speeds for the control- and greenhouse runs in ECBilt-Clio for the North Sea representing
grid point (6E,47N). The kink at a return period of 250 years in the greenhouse run
suggests the presence of a double population in the extreme wind distribution.

in a considerably higher 104-year return value for the wind speed than fitting to
the total set. For a more comprehensive description, we refer to van den Brink et

al. (accepted by Journal of Climate).

5. Discussion and conclusions

The variance in the GEV-estimates from 65 records of 116 years indicates that
only a crude estimate of the 104-year surge level can be made from a single record
with a length of the order of a hundred years. The GPD-estimates give lower 95%-
confidence intervals for exceedance rates λ > 1 than the GEV-estimates, but the
total 7540-year ECBilt-Clio set shows that these GPD-estimates are biased toward
lower 104-year values.

For the ECBilt-Clio data, the percentage of the 95%-confidence levels containing
the actual value can be determined for a return period of 100 years, and estimated
for a return period of 104 years. This analysis points out that application of the
GPD-analysis to the ECBilt-Clio data leads to estimates that are biased towards
too low values. We emphasize that this analysis can only be done for extremely
long sets, and thus not for the short observational sets.

The unknown optimal value of the exceedance rate λ for the observational set,
combined with the sensitivity of the GPD-estimate to the choice of λ, and the
tendency towards too low estimates, leaves in our opinion the GEV analysis as the
preferred method to apply to the observational data, despite of its large uncertainty.
If the GPD-analysis is applied, λ should be chosen not larger than 4.

In the future, output of more advanced climate- and surge models will be used to
calculate the 104-year surge level and its uncertainty. Another possibility may be to
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apply the optimal λ, as obtained from the climate model, to the observational data
and still estimate the 104-year surge level and its uncertainty from the observations.

ECBilt-Clio hints at the excitation of extratropical ’superstorms’, defined as
storms with more extreme winds than expected from extrapolation of less extreme
events. The fact that this second population is only apparent in the greenhouse run
for this grid point indicates that regions where second populations exist, can be
shifted, enhanced or generated by climate change. The reality of this model-induced
second population has still to be shown (van den Brink et al. , accepted by Journal
of Climate). Due to their extreme rarity, they are not detectable from records of
only hundred years in length. Reversing this argument implies that extrapolations
from 100-year records to 104-year return levels are only valid under the condition
that the extreme value distribution is single populated. As this condition can never
be proved from 100-year records, the GEV- or GPD- (or any other distribution)
estimated 104-year wind speed from 100-year records has always to be interpreted
as a lower limit.

We thank the anonymous reviewer for his useful suggestions.
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