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ABSTRACT

Synoptic development is studied using a two-and-one-half-layer contour dynamics model in full spherical
geometry. The model has three isentropic layers: two lower layers that are dynamically active and one upper
layer that is kept motionless. The isentropic layers cover the whole sphere and are confined in the vertical
direction by two rigid horizontal boundaries. The model is assumed to be in hydrostatic and geostrophic equi-
librium; forcing/friction and diabatic heating/cooling are neglected. In both active layers, the horizontal structure
is represented by a piecewise-uniform distribution of potential vorticity with a single front in each layer. The
potential vorticity front in the upper active layer can be associated with the tropopause or, to be more specific,
with the sudden change in height of the tropopause at the jet stream. The potential vorticity front in the lower
active layer enhances the baroclinicity of the system and may be associated with the polar front. Because of
the assumption of hydrostatic and geostrophic equilibrium, the model atmosphere is completely defined by the
instantaneous positions of the contours and can be integrated in time using the technique of contour dynamics.
It is shown that realistic zonal flows can be obtained by a suitable choice of parameters. A linear stability
analysis reveals that small-amplitude perturbations of given planetary wavenumber may grow for only specific
latitudinal positions of the potential vorticity fronts. The maximum growth rates and highest planetary wave-
numbers are found for potential vorticity fronts that are located at approximately the same latitude. Because of
the conceptual simplicity of the model, in which the potential vorticity structure is represented by only two
contours, the instability mechanism expresses itself in a clear way. The contour dynamics model also captures
the nonlinear stages of cyclogenesis remarkably well, as is evident from the time evolution of the fronts and
the time evolution of a passive tracer in a numerical simulation of a cutoff cyclone.

1. Introduction

The origin and development of midlatitude cyclones
continues to be an important subject of research in dy-
namic meteorology. There are at least two reasons for
this: individual cyclones are, to a large extent, respon-
sible for the variation in daily weather, whereas their
collective transport properties shape the mean atmo-
spheric circulation. Early attempts by Bjerknes (1919)
and Bjerknes and Solberg (1921, 1922) to explain the
life cycle of midlatitude cyclones using the concept of
a polar front were of great value but remained in essence
qualitative. The modern quantitive approach has its or-
igin in the studies by Charney (1947) and Eady (1949),
who showed that smooth baroclinic zonal flows of re-
alistic magnitude can become unstable and develop
structures resembling midlatitude cyclones both in spa-
tial scale and rate of development. Shortly after the
publication of these studies, two papers by Phillips
(1951, 1954) appeared in which the smooth vertical pro-
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files used by Charney and Eady were represented in
terms of two discrete layers or levels. The analysis be-
came considerably simpler while the essence of the orig-
inal conclusions was maintained. Bretherton (1966a,b)
continued this line of approach by using the concept of
potential vorticity to clarify the mechanism of baroclinic
instability. In the second of the two cited papers, Breth-
erton showed how the surface potential temperature var-
iations, which are the only dynamically active compo-
nents in Eady’s model, can be reconciled with Phillips’s
two-layer representation.

The current paper builds further on the approach by
Phillips (1951, 1954) and Bretherton (1966a,b) by ex-
tending Phillips’s use of a vertical discretization in terms
of layers and Bretherton’s analysis in terms of potential
vorticity. Our aim is to clarify the mechanism of bar-
oclinic instability and synoptic development in a setting
that is simple and realistic at the same time. We use a
layered vertical representation of the flow because, as
noted by Pedlosky (1987), a vertical discretization in
terms of a finite number of material layers has the ad-
vantage that it leads to an idealized but physically re-
alizable system. In the current study, layers of constant
density are replaced by layers of constant specific en-
tropy (potential temperature) to render the system more
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relevant as a model of the atmosphere. We also add a
passive stratospheric layer to the original two-layer sys-
tem [a suggestion already made by Phillips (1951)] to
obtain a two-and-one-half-layer system, and we work
in full spherical geometry. We describe the flow in the
two active layers in terms of piecewise-uniform distri-
butions of potential vorticity, with a single discontinuity
(front) in each active layer. Assuming that the system
is in hydrostatic and geostrophic balance (actually a
simplified form of linear balance), and ignoring me-
chanical forcing/friction and diabatic heating/cooling,
this implies that the whole system can be described in
terms of the positions of the two fronts.

For the upper active layer, the assumption of a single
front in potential vorticity is a realistic description of
the flow at isentropic surfaces higher in the atmosphere.
Indeed, on these isentropes the potential vorticity field
is often characterized by a steep gradient at the tropo-
pause [a recent reference is Haynes et al. (2001)]. For
the lower active layer, this assumption is less well found-
ed, but it is a way of modeling surface potential tem-
perature variations. As Bretherton (1966b) pointed out,
the potential vorticity distribution in the bottom layer
of Phillips’s (1951) model may be interpreted as a ver-
tically distributed representation of the surface potential
vorticity sheet associated with the true surface potential
temperature variations in Eady’s (1949) model. The up-
per potential vorticity front causes a sharply peaked ve-
locity field and steep gradients in the thickness of the
upper active layer. The upper potential vorticity front
may therefore be associated with the tropopause or, to
be more specific, with the sudden change in tropopause
height at the jet stream, the so-called tropopause break
(Palmén and Newton 1969). The lower front in potential
vorticity enhances the downward bowing of the bottom
layer’s upper interface and thereby increases the baro-
clinicity of the flow. When looked upon from the per-
spective of a height or pressure surface at a sufficiently
large distance from the surface, the downward bowing
of this interface manifests itself as a discontinuity in
potential temperature. It is for this reason that we as-
sociate the lower potential vorticity front with the polar
front. It should be kept in mind, however, that at the
surface of our model there are no real potential tem-
perature contrasts because the bottom layer of the model
covers the whole sphere.

Because the incorporation of geostrophic equilibrium
in a layered isentropic model in full spherical geometry
is not standard we describe our model in some detail in
section 2, referring to the appendix for matters of tech-
nique. We then discuss in section 3 the properties of the
basic zonal flows that can be constructed with two fronts
of potential vorticity in the active layers. The flows are
characterized by a sharp jet in the upper active layer
and, depending on the choice of the system parameters,
a sharp jet in the lower active layer. We also study how
the interface heights of the different layers vary in the
neighborhood of the potential vorticity fronts because

it will clarify how the two fronts in potential vorticity
can be related to the tropopause and the polar front. The
study of zonal flows produced by potential vorticity
discontinuities has revealed the necessity of moderate
values of the Rossby radii of both the equivalent bar-
otropic and baroclinic vertical mode of the system.
These values could only be achieved by adding a passive
stratospheric layer to the original two-layer system. The
necessity of a moderate value of the Rossby radius of
deformation is in accord with an earlier study by Verkley
(1994), who used the equivalent barotropic vorticity
equation instead of the barotropic vorticity equation in
order to reconcile a single front in potential vorticity
with realistic values of the velocity.

The two following sections of the paper contain our
main results. Section 4 contains an analytic treatment of
the linear stability of the zonal flows described in the
previous section. In the spirit of Bretherton (1966a,b) it
will be demonstrated that the potential vorticity view
gives a clear insight into the essence of baroclinic insta-
bility because it reveals how a phase shift between the
waves in the upper and lower contours induces a positive
feedback that leads to growth. It will also be shown that
the growth rate depends on the latitudinal positions of
the potential vorticity fronts and that the maximum
growth rates are found if the potential vorticity fronts are
located at approximately the same latitude. Section 5
addresses the evolution of nonlinear waves using the nu-
merical contour dynamics technique and demonstrates
that the model atmosphere is capable of producing re-
alistic synoptic developments. As an example, we show
the development of a cutoff cyclone. A comparison is
made with the evolution of a cutoff cyclone as forecast
by the global weather prediction model employed at the
European Centre for Medium-Range Weather Forecasts
(ECMWF). The main results are summarized and the
conclusions are given in section 6.

2. The model

The two-and-one-half-layer model has three isentro-
pic layers, which are assumed to cover the whole sphere:
an upper layer with potential temperature u0, a layer
beneath it with potential temperature u1, and a surface
layer with potential temperature u2, where u0 . u1 .
u2 (see Fig. 1a). The flow is confined in the vertical by
two rigid horizontal boundaries at z 5 z0 and z 5 z3.
The height of the lower system boundary z3 corresponds
to the level of the spherical surface and is set to zero,
whereas the height of the upper system boundary z0 is
determined by the rest-state mass distribution and the
requirement that the pressure at z 5 z0 is zero. The upper
boundary condition implies that the top layer is mo-
tionless. Since the model has spherical geometry, po-
sitions and velocities are defined in a spherical coor-
dinate system (l, f, z) that is fixed to the earth, where
l is longitude, f is latitude, and z is the vertical distance
above mean sea level. The earth is assumed to be a
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FIG. 1. (a) Schematic cross section of the two-and-one-half-layer model that has three layers
with constant potential temperatures u0 (upper layer), u1 (middle layer), and u2 (lower layer). The
flow is confined in the vertical by two rigid horizontal boundaries at z 5 z0 and z 5 z3, with
corresponding pressures p0 5 0 and p3, respectively. Within each layer both the Montgomery
potential Mi and the horizontal velocity vi are independent of height but discontinuous at the
interfaces z1 and z2 where the pressures are p1 and p2, respectively. (b) Schematic cross section
of the two-and-one-half-layer model for a zonal flow produced by a potential vorticity front Dq1

5 2 at latitude in layer 1 and a potential vorticity front Dq2 5 2 at latitude1 1 1 2 2 2q q f q q f1 0 C 1 0 C

in layer 2.

perfect sphere with radius a 5 6.371 3 106 m, rotating
at an angular velocity V 5 7.292 3 1025 s21. Distance
is expressed in units of a and time in units of V21 so
that the Coriolis parameter is given by f 5 2 sin f and
the earth’s radius a in the differential operators is re-
placed by 1. We take the unit vectors i, j, and k to be
directed in the eastward, northward, and upward direc-
tion, respectively, so that the horizontal velocity v can
be written as ui 1 yj, with u and y being the velocity
components in the eastward and northward directions.

The potential temperature u is defined as u 5 T(pr/
p)k, where T is the absolute temperature, p is the pressure,
and pr is a constant reference pressure of 1000 hPa. The
exponent k is defined by R/cp, where R is the gas constant
of dry air and cp is the specific heat of dry air at constant
pressure. The absolute temperature T and pressure p are
related by the ideal-gas law p 5 rRT, where r is the
density. It is assumed that the model atmosphere is in
hydrostatic equilibrium so that in each layer ]p/]z 5 2rg,
where g is the acceleration due to gravity. The latter
assumption, in combination with the ideal-gas law and
the assumption that in each layer the potential temper-
ature is uniform, fixes the vertical structure of the ab-
solute temperature, pressure, and density. In particular,
the absolute temperature decreases linearly with height
according to the dry-adiabatic lapse rate g/cp. It follows
from the foregoing that the Montgomery potential M,
defined as M 5 gz 1 cpT, is uniform with height in an
isentropic layer, as a consequence of which it may be
consistently assumed that the horizontal velocity v is also
uniform with height.

Diabatic processes and friction are assumed to be
absent so that the potential vorticity P, defined in layer
i as Pi 5 ( f 1 z i)/(hi11 2 hi), is materially conserved
(see, e.g., Verkley 2000, 2001). Here, z i is the relative
vorticity in layer i, and hi11 and h i are the normalized
pressures at the boundaries zi11 and zi, respectively,
where h 5 p/pr. In addition, the model atmosphere is

assumed to be in a form of geostrophic equilibrium that
is a simplification of ‘‘linear balance’’ (Daley 1983).
This simplest form of the geostrophic relationship—as
Daley called it—can be dealt with easily and does not
lead to unrealistic behavior at the equator (Verkley
2001). The simplified linear balance condition relates
both the horizontal velocity v and the Montgomery po-
tential M in layer i to the streamfunction c in layer i;
that is,

i iv 5 k 3 =c , (1)
i i iM 5 M 1 f c , (2)

where i is the constant rest-state value of the Mont-M
gomery potential in layer i and = is the horizontal gra-
dient operator. Note that the relative vorticity z i can be
written in terms of the streamfunction c i by z i 5 ¹2c i,
where ¹2 is the horizontal Laplace operator. Like the
Montgomery potential Mi, the normalized pressure field
hi, evaluated at interface i, is written as the sum of its
rest-state value i and a deviation —that is, h i 5h h9i

i 1 —and is linearized around the state of rest,h h9i
assuming that / i K 1. The absolute vorticity f 1h9 hi

z i in layer i is linearized around the planetary vorticity
f , assuming that z i/ f K 1. It then follows from the
linearization of the potential vorticity Pi (see appendix),
and the assumption that the linearized potential vorticity
remains materially conserved following the balanced
velocity (1), that the dynamics of the two-and-one-half-
layer isentropic model is governed by

i iD q
5 0, (3)

Dt

for i 5 1, 2, where Di/Dt is the horizontal material
derivative for a two-dimensional scalar field advected
by vi on the surface of a sphere with unit radius. The
fields qi in the active layers (i 5 1, 2) are given by
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1 2 1 11 1 12 2q 5 f 1 ¹ c 2 F c 2 F c , (4a)
2 2 2 21 1 22 2q 5 f 1 ¹ c 2 F c 2 F c . (4b)

Note that the fields qi are related to the original ex-
pression of the potential vorticity P in layer i by Pi 5
qi/( i11 2 i), which expression is approximate be-h h
cause of the linearization. From now on we will refer
to q as the potential vorticity. For the matrix of param-
eters Fij, we have the following expressions:

11 12 1 1 1F F F 1 F 2Fu l l5 , (5)
21 22 2 2 2[ ] [ ]F F 2F F 1 Fu u l

where, if we define u3 5 0, the parameters andi iF Fl u

are given by

2 2 i2V a u
iF 5 , (6a)l i i i111 2gD u 2 ul

2 2 i2V a u
iF 5 , (6b)u i i21 i1 2gD u 2 uu

with
k21i iD 5 (h 2 h )h kH , (7a)l i11 i i11

k21i iD 5 (h 2 h )h kH . (7b)u i11 i i

In these expressions, Hi 5 cpu i/g is the scale height of
layer i. In principle, the expressions (6) depend on f 2,
but by assuming that f 2 can be approximated by its
global average this factor is replaced by 2, leading to
constant parameters Fij and therefore to a simplification
of the inversion of (4). This approximation is supported
by the behavior of linear Rossby waves subject to a
global version of the equivalent barotropic vorticity
equation that is identical to the expression in its tradi-
tional form except for a full f 2 dependence of the
stretching term. It can be shown from the dispersion
relation of linear Rossby waves that, for waves with a
short meridional wavelength, the above approximation
is legitimate. The parameters Fij measure the relative
importance of vortex-tube stretching and squeezing as
compared with relative vorticity. To be more specific,

is related to pressure deviations at the lower boundaryiF l

of layer i, whereas is related to pressure deviationsiF u

at the upper boundary of layer i. A standard vertical-
mode decomposition of the streamfunction and potential
vorticity fields in (4) reveals that the eigenvalues F̃ 1 and
F̃ 2 of the matrix of parameters Fij are related to the
Rossby radii of the equivalent barotropic and the bar-
oclinic vertical modes of the system (see appendix for
details).

From the distribution of the potential vorticity in layer
i, one can obtain, via the streamfunction c i, the pres-
sures at the interfaces between the layers (see appendix)
as well as the velocities in the layers and—because of
the uniformity of u in layer i in combination with the
ideal-gas law and hydrostatic equilibrium—the com-
plete three-dimensional structure of the model atmo-

sphere. For a more detailed discussion of the vertical
profiles in a hydrostatic isentropic layer we refer to
Verkley (2000).

In each active layer we now define two regions of
constant potential vorticity that are separated by a single
closed contour Ci: a region around the North Pole, de-
noted by , with qi 5 , and another region, denotedi iR q1 1

by , corresponding to the rest of the sphere, with qiiR0

5 . The potential vorticity field qi in layer i is thereforeiq0

assumed to be of the form
i i i iq (r) 5 q 1 Dq H (r),0 (8)

where
i i iDq 5 q 2 q ,1 0 (9)

and H i(r) is a kind of two-dimensional Heaviside func-
tion, defined to be 1 in region and 0 in region ;i iR R1 0

that is,

i1, r ∈ R1iH (r) 5 (10)
i50, r ∈ R .0

Since the potential vorticity is assumed to be piecewise
uniform in each active layer, the structure of the poten-
tial vorticity field is completely characterized by the
contours separating the different regions of uniform po-
tential vorticity. It is shown in the appendix that for this
distribution of potential vorticity the streamfunction c i

and its gradient =c i—needed for the velocity vi—can
be expressed in terms of line integrals along the contours
Ci. This implies that the contours determine the state
of the system and its time evolution completely.

3. Zonal flow

For the two-and-one-half-layer model, we now in-
vestigate the flow field resulting from a potential vor-
ticity distribution that is zonally symmetric. Each active
layer has two regions of uniform potential vorticity, as
shown in Fig. 1b. The two fronts, denoted by Ci, can
be described by

i if (l) 5 f .C (11)

The fact that the fronts in Fig. 1b are drawn by vertical
lines reflects the fact that the horizontal flow in a hy-
drostatic isentropic layer is independent of height. In
the appendix we derive an analytical expression for the
zonal streamfunction Ci associated with two zonal con-
tours. The zonal velocity Ui can be obtained from this
streamfunction by using (1). From the streamfunction
we can also derive the pressures at the interfaces as well
as the heights of the interfaces. In this way the complete
three-dimensional structure of the flow is given.

As an example, we consider the case of two potential
vorticity fronts that are located at the same latitude cir-
cle; that is, 5 5 60.08. The potential temperatures1 2f fC C

are u0 5 380, u1 5 340, and u2 5 300 K, respectively,
being typical values for a real atmosphere. The rest-
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state mass distribution is defined by the normalized rest-
state pressures 0 5 0.0, 1 5 0.6, 2 5 0.9, and 3h h h h
5 1.0. The potential vorticity jumps across the fronts
are set to Dq1 5 2.5 and Dq2 5 20.5, respectively.
Both and are set to zero since these quantities do1 2q q0 0

not affect the dynamics of the model atmosphere in any
way, which may be inferred from expression (A29) in
the appendix. With these values for u i, i, and Dqi, weh
obtain reasonable values for the Rossby radii and the
zonal velocities, and the variations of the interface pres-
sures are generally kept within the limits of our line-
arization assumption. Although we are not restricted to
this particular choice of parameters, we will use the
same values of u i and i throughout the rest of thish
paper to facilitate comparison of the model results. The
jumps in potential vorticity Dq1 and Dq2 will be varied
within the limitations of our model.

Based on the above values for u i and i, the eigen-h
values of the matrix of parameters Fij are given by F̃ 1

5 77 and F̃ 2 5 525. The value of F̃ 1, corresponding
to the equivalent barotropic mode of the system, is of
the same order as the value imposed by Verkley (1994)
to obtain realistic zonal profiles using the equivalent
barotropic vorticity equation. The equivalent barotropic
motion in our two-and-one-half-layer model is essen-
tially due to the pressure deviations , whereas theh91
baroclinic motion of the two layers is due to the pressure
deviations , which cause vortex tubes to be stretchedh92
in one layer and to be squeezed in the other. The rel-
atively large value of F̃ 2 indicates that stretching effects
dominate baroclinic motion. This result is mainly due
to layer 2 being shallow when compared with layer 1;
that is, in normalized pressure coordinates, ( 1 2 2)/h h
( 2 2 3) 5 3.0. This result may also be deduced fromh h
a comparison between the parameters and , which1 2F Fl u

measure the relative importance of vortex-tube stretch-
ing in layers 1 and 2, respectively, because of the de-
formation of interface 2. It can be verified easily that

/ 5 3.0.2 1F Fu l

The zonal flow profiles resulting from the two po-
tential vorticity fronts at f 5 60.08 are shown in Figs.
2a–c, with the potential vorticities qi, the streamfunc-
tions Ci, and the zonal velocities Ui. Solid lines cor-
respond to layer 1, and dashed lines correspond to layer
2. In Fig. 2a, the dotted line denotes the rest-state po-
tential vorticity in all layers, whereas the dash–dotted
line denotes the potential vorticity q0 in the passive
layer. The zonal velocity profile in layer 1 is charac-
terized by a sharply peaked westerly jet with the max-
imum wind speed at the upper potential vorticity front.
This region of intense wind speeds may be associated
with the polar jet stream. The zonal velocity in layer 2
is also westerly but weaker in magnitude. Farther south,
the zonal flow is weakly easterly because of the con-
tribution of the planetary vorticity f , with the maximum
easterly wind speeds located around the equator.

For the same case, Figs. 2d–f show the fields eval-
uated at the interfaces, with the relative pressure de-

viations / i, the normalized pressures hi, and theh9 hi

interface heights zi. The relative pressure deviations at
the interfaces are generally small, as required by the
linearization of Pi. At some distance south of the po-
tential vorticity fronts, is very small, which indicatesh92
that the motion in that region is mainly equivalent bar-
otropic. The pressure deviations merely reflect theh91
height deviations of interface 1, whereas the pressure
deviations correspond to the vertically integratedh93
mass fluctuations per unit area at the earth’s surface. We
also see, however, that in the Southern Hemisphere the
magnitudes of the relative pressure deviations at inter-
face 1 exceed the value 1, which violates the lineari-
zation assumption. A remedy in this case might be the
addition of two extra fronts in the Southern Hemisphere,
in much the same way as we have fronts in the Northern
Hemisphere. Because of the large distance of these
fronts from the fronts in the Northern Hemisphere, there
will be negligible interaction between these sets of
fronts so that the fronts in the Southern Hemisphere do
not need to be taken into account for our calculations.

Figure 2f may be interpreted as a vertical north–south
view of the atmosphere, which is remarkably similar to
a real meridional cross section of the atmosphere with
the characteristic upward and downward bowing of the
isentropes near the tropopause. Indeed, Fig. 2f has much
in common with Fig. 4.7 of Palmén and Newton (1969)
in which a schematic cross section is given through the
jet stream and its associated polar front and tropopause.
When the regions in which the potential vorticity is q0

and are associated with the stratosphere, then the1q1

tropopause makes a sudden change in height at the upper
potential vorticity front. Looking at Fig. 4.7 of Palmén
and Newton (1969) it makes sense to associate the upper
potential vorticity front with the tropopause or, rather,
with the gap in the tropopause: the tropopause break.
If we focus on an isobaric level cutting through interface
2, the polar front can be seen in the form of a sudden
change u1 2 u2 in potential temperature separating the
cold air of layer 2 from the warm air of layer 1. It should
be remarked, however, that when Fig. 2f is compared
with Fig. 4.7 of Palmén and Newton (1969), the tro-
popause to the north of the polar jet stream is too low.
In the next paragraph an example will be shown in which
the polar tropopause is higher.

Figure 3 shows the zonal velocities Ui and the inter-
face heights zi corresponding to the case described above
(left panels) and two other cases in which the potential
vorticity fronts are either located at different latitude
circles—that is, 5 65.58 and 5 60.08 (middle1 2f fC C

panels)—or are located at the same latitudes but with
different values for the potential vorticity jumps—that
is, Dq1 5 2.5 and Dq2 5 22.5 (right panels). Figure
3b shows that the flow in layer 2 is dominated by the
potential vorticity distribution in layer 1, which is ap-
parent from the strong westerly wind field U 2 at the
position of the upper potential vorticity front f 5 1fC

and the small kink in the velocity profile U 2 at the
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FIG. 2. (top) Zonal flow profiles resulting from two potential vorticity fronts at 60.08N in a two-and-one-half-layer contour dynamics
system with (a) the potential vorticities qi, (b) the streamfunctions Ci, and (c) the zonal velocities U i. The dotted line in (a) corresponds to
f . (bottom) Fields evaluated at the interfaces of a two-and-one-half-layer contour dynamics system with (d) the relative pressure deviations

/ i, (e) the normalized pressures hi, and (f ) the heights zi. The potential vorticity jumps are Dq1 5 2.5 and Dq2 5 20.5, with 51 2h9 h q qi 0 0

5 0.0. The rest-state mass distribution of u, which is used throughout this paper, is defined by u0 5 380 K, u1 5 340 K, u2 5 300 K, 0h
5 0.0, 1 5 0.6, 2 5 0.9, and 3 5 1.0.h h h

position of the lower potential vorticity front f 5 .2fC

The reason for this effect is that—owing to the different
rest-state layer thicknesses—a potential vorticity jump
in layer 1 is realized more as relative vorticity, whereas
a potential vorticity jump in layer 2 is realized more by
stretching and squeezing. Note that the zonal flow de-
picted in Fig. 3b is not unlike the wind profile along a
frontal zone, as displayed in Fig. 8.3 of Palmén and
Newton (1969). For larger magnitudes of Dq2 (Fig. 3c),
the jet at the lower potential vorticity front is more
pronounced. It is also apparent that the horizontal extent
of the jet in layer 1 is much broader than that in layer
2, which is again due to the different rest-state layer
thicknesses. The interface heights (bottom panels) are
similar in all three cases, except that in Fig. 3e the

upward- and downward-bowing interfaces near the po-
tential vorticity fronts are no longer vertically aligned
because of the different positions of the potential vor-
ticity fronts, whereas in Fig. 3f the slope of interface 2
near the lower potential vorticity front is steeper than
that in Fig. 3d because of the larger value of Dq2. Note
also that in Fig. 3f the polar tropopause is now higher
in the atmosphere so that the interpretation given above
is closer to the truth in this case.

4. Linear stability analysis

In this section we investigate the stability of zonal
flows with respect to perturbations of infinitesimal am-
plitude. Let us consider infinitesimal wavelike pertur-
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FIG. 3. (top) Zonal velocity profiles and (bottom) corresponding interface heights associated with (a), (d) Dq1 5 2.5, Dq2 5 20.5, and
5 5 60.08; (b), (e) Dq1 5 2.5, Dq2 5 20.5, 5 65.58, and 5 60.08; and (c), (f ) Dq1 5 2.5, Dq2 5 22.5, and 5 51 2 1 2 1 2f f f f f fC C C C C C

60.08. In all cases, 5 5 0.0. The zonal wind field in (b) corresponds to the basic zonal wind field of the baroclinic wave system shown1 2q q0 0

in Fig. 4.

bations of the basic-state zonal contours so that these
contours are described by

i i if (l, t) 5 f 1 df (l, t),C C (12)

with
i idf (l, t) 5 Re[e expim(l 2 vt)],C (13)

where Re denotes the real part of the expression between
brackets, and m is the planetary wavenumber, that is,
the number of waves around a latitude circle. Both the
amplitude e i and the angular phase velocity v of the
wave propagating along the basic zonal flow may be
complex. It is shown in the appendix that the pertur-
bation streamfunction can be written as

i i j jdc (l, f, t) 5 Z (f)Re[e expim(l 2 vt)], (14)O
j

where the fields Zij(f) are the contributions of the per-
turbation in contour j to the streamfunction in layer i.
Analytical expressions for the fields Zij(f) can be de-
rived from the condition that both c j and =c j are con-
tinuous at the contours (see appendix). The angular ve-
locity v follows from the linearized kinematic condition
that each point of the contour is advected by the velocity
at that point; that is,

i i] U (f ) ]Ci idf (l, t) 1 df (l, t)C Ci]t cosf ]lC

1 ]
i i5 dc (l, f , t), (15)Cicosf ]lC

where Ui(f) is the basic zonal velocity field. Substi-
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tution of expressions (13) and (14) into (15) then leads
to the following linear system in terms of e 1 and e 2:

1 1 1 1 11 1 2 12 1e [v cosf 2 U (f ) 1 Z (f )] 1 e Z (f ) 5 0,C C C C

(16a)
1 21 2 2 2 2 2 22 2e Z (f ) 1 e [v cosf 2 U (f ) 1 Z (f )] 5 0.C C C C

(16b)

Since the set of equations in (16) is homogeneous, non-
trivial solutions for e 1 and e 2 will exist only if the cor-
responding determinant is zero. This condition yields
the following relation for the angular velocity v:

1 1 11 11 U (f ) 2 Z (f )C Cv 5
1[2 cosfC

2 2 22 2U (f ) 2 Z (f )C C 1/21 6 D , (17)
2 ]cosfC

with
2

1 1 11 1 2 2 22 21 U (f ) 2 Z (f ) U (f ) 2 Z (f )C C C CD 5 2
1 25 6[ ]2 cosf cosfC C

12 1 21 2Z (f )Z (f )C C1 . (18)
1 2cosf cosfC C

If e j is written as e j 5 | e j | exp[iarg(e j)] and v in terms
of its real and imaginary parts—that is, v 5 vR 1 ivI—
it follows from (13) that, for nonzero values of vI, the
waves will grow (vI . 0) or decay (vI , 0) with a rate
mvI. It follows from (16a) that the ratio between the
wave amplitudes is given by

2 1 1 1 11 1e v cosf 2 U (f ) 1 Z (f )R C C C5 2
1 12 1e Z (f )C

1v cosfI C2 i . (19)
12 1Z (f )C

We see that for neutral waves (vI 5 0), the wave in the
upper layer is either in phase or one-half of a wavelength
out of phase with the wave in the lower layer, depending
on the sign of the real part of (19). For unstable waves,
the phase shift between the upper and lower waves lies
between zero and one-half of a wavelength. Treating the
case of growing/decaying waves and neutral waves sep-
arately, it can be shown by combining (17) and (18)
with (19), that we have the following relation between
the amplitude ratios corresponding to the two different
roots of v:

2 2 21 2 1e e Z (f ) cosfC C5 2 , (20)
1 1 12 1 21 2 1 2e e Z (f ) cosfC C1 2

where the different ratios are denoted by (e 2/e 1)1 and
(e 2/e 1)2, respectively. Note that for growing/decaying
waves the two amplitude ratios are complex conjugates

of each other—see (17)–(19)—so that growing and de-
caying waves have the same modulus of the amplitude
ratio.

To gain some physical insight into the results derived
above, we will adopt the same line of reasoning as
Bretherton [(1966b); see also Hoskins et al. (1985)] and
show that the potential vorticity view may help us to
understand the instability mechanism. For this, we re-
write (16) as

2e
1 1 1 11 1 12 1v cosf 5 U (f ) 2 Z (f ) 2 Z (f ), (21a)C C C C1e

1e
2 2 2 22 2 21 2v cosf 5 U (f ) 2 Z (f ) 2 Z (f ). (21b)C C C C2e

These expressions show that for both the upper and
lower waves the complex phase velocity v cos con-ifC

sists of three contributions. The first contribution is
merely due to the advection of the wave pattern by the
local basic wind field, being U 1( ) in layer 1 and1fC

U 2( ) in layer 2. The second contribution is due to2fC

the self-induced motion of the wave pattern similar to
that of ordinary (nongrowing) Rossby waves. Material
conservation of potential vorticity implies that a zonal
contour perturbed with a sinusoidal wave can be rep-
resented by a pattern of potential vorticity anomalies of
alternating sign around a latitude circle. This pertur-
bation potential vorticity field induces a meridional ve-
locity field that is exactly one-quarter wavelength out
of phase with the corresponding displacement field. As
a result, the wave will either move westward (Dqi . 0)
or eastward (Dqi , 0) with respect to the local basic
zonal flow, but the wave amplitude is not affected. In-
deed, both Z 11 and Z 22 are real and therefore do not
contribute to vI. The third contribution reflects the in-
teraction between the upper and the lower waves, which
can be explained by considering again the pattern of
potential vorticity anomalies. That is, the perturbation
potential vorticity fields not only induce a meridional
velocity field in the same layer but also a (weaker) me-
ridional velocity field in the other layer that may affect
both the real and imaginary parts of the angular phase
velocity v. The contribution to the real part of v may
reinforce or weaken the zonal phase velocities, whereas
the contribution to the imaginary part of v may induce
either growth or decay of the wave amplitudes. As stated
before, growing/decaying waves require a phase shift
between the upper and lower waves. If the jumps in
potential vorticity Dq1 and Dq2 have opposite signs, this
phase shift enables the meridional velocity in layer 1
induced by the perturbed contour in layer 2 to correlate
positively or negatively with the meridional displace-
ment of the contour in layer 1, and vice versa. This
possibility of positive feedback is the essence of bar-
oclinic growth. Maximum (positive or negative) cor-
relation is obtained when the waves are precisely one-
quarter wavelength out of phase, in which case each
wave does not affect the zonal phase velocity of the
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FIG. 4. Streamfunctions associated with infinitesimally small sinusoidal perturbations of the basic-state zonal contours located at 51fC

65.58 and 5 60.08 with Dq1 5 2.5, Dq2 5 20.5, | e 2/e 1 | 5 3.2, and arg(e 2/e 1) 5 92.88. Contributions to layers 1 and 2 are indicated2fC

by solid and dashed lines, respectively. The heavy solid and heavy dashed contours around f 5 65.58 and f 5 60.08 correspond to the
perturbed fronts in layers 1 and 2, respectively. The arrows indicate the positions of the maximum northward and southward velocities at
the perturbed fronts in layers 1 and 2. (a), (b) The self-induced streamfunction contributions; (c), (d) the perturbation streamfunction induced
by the front in the other layer; (e), (f ) the total perturbation streamfunction. The contour interval is 0.01, except for (c), for which the
contour interval is 0.005.

other wave—see (21) and note that when arg(e 2/e 1) 5
908, the ratio e 2/e 1 is purely imaginary—so that the
waves propagate in the zonal direction with the zonal
phase velocity that they would have in isolation.

As an example, we consider a pair of growing bar-
oclinic waves with wavenumber m 5 4 on a basic zonal
flow with the potential vorticity jumps Dq1 5 2.5 and
Dq2 5 20.5 located at 5 65.58 and 5 60.08,1 2f fC C

respectively. The amplitude of the upper wave, e 1, is

arbitrarily set to 0.58, whereas the amplitude and the
phase of the lower wave are calculated from (19), yield-
ing | e 2/e 1 | 5 3.2 and arg(e 2/e 1) 5 92.88 for growing
waves. The basic zonal wind field can be seen in Fig.
3b. In Figs. 4a and 4b we show for each layer the per-
turbation streamfunction induced by the pattern of po-
tential vorticity anomalies in the same layer, whereas in
Figs. 4c and 4d we show for each layer the contribution
of the pattern of potential vorticity anomalies in the
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FIG. 5. Several properties of a pair of baroclinic waves, with plan-
etary wavenumber m 5 4, Dq1 5 2.5, and Dq2 5 20.5, as a function
of with held constant at 60.08: (a) exp(mvITd), with mvI being1 2f fC C

the growth rate and Td 5 2p being a time period of 1 day in units
of V21; (b) the real angular phase velocity vR; (c) the modulus of
the amplitude ratio e 2/e 1; and (d) the argument of e 2/e 1. The two
roots are indicated by the solid and dashed lines. The dotted line in
(b) corresponds to the average of the angular phase velocities that
the waves would have in isolation, whereas the dotted line in (c)
represents the square root of the right-hand side of (20).

other layer. The total perturbation streamfunctions dc 1

and dc 2 are displayed in Figs. 4e and 4f, respectively.
In each panel, the heavy solid contour around f 5 65.58
represents the perturbed front in layer 1, whereas the
heavy dashed contour around f 5 60.08 corresponds to
the perturbed front in layer 2. Also indicated for each
case are the maximum northward and southward veloc-
ities at the perturbed fronts in layers 1 and 2. For clear-
ness only two wavelengths are shown. It can be seen
that the maximum northward and southward displace-
ments of each wave are positively correlated with the
maximum northward and southward velocities induced
by the perturbation vorticity pattern in the other layer,
so that the waves will grow. Since the waves are close
to one-quarter wavelength out of phase, this correlation
is almost maximum while the zonal phase velocity of
each wave is virtually unaffected by the meridional ve-
locity induced by the other wave.

In Fig. 5 we consider again a baroclinic wave system
with wavenumber m 5 4. The potential vorticity jumps
Dq1 and Dq2 are identical to those in the previous case,
but the latitude is varied, with fixed at 60.08. The1 2f fC C

solutions that correspond to the two roots of v are in-
dicated by solid and dashed lines. Figure 5a shows the
meridional extent of a (growing) wave with unit initial
amplitude after a time period of 1 day, that is,
exp(mvITd), with mvI the growth rate and Td 5 2p a
time period of 1 day in units of V21. The waves are
unstable for only two specific ranges of latitudes 1fC

with strong baroclinic instability around 5 46.58 and1fC

5 65.18. Indeed, around these latitudes the zonal1fC

angular phase velocities of the waves in isolation are
approximately equal. The fact that the peaks of maxi-
mum growth do not appear symmetrically around 52fC

60.08 is due to the sphericity of the earth. As a result,
the maximum growth rate occurs at the peak closest to

5 60.08, for which the induced meridional velocities2fC

are larger. Figures 5b–d show the latitudinal variation
of the real angular phase velocity vR, the modulus of
the amplitude ratio e 2/e 1, and the argument of e 2/e 1.
Figure 5b shows that the real angular phase velocities
vR of growing and decaying waves are the same, which
are given by the first term in (17). This term is the
average of the zonal angular phase velocities that the
waves would have in isolation and is represented by the
dotted line in Fig. 5b. Note that, at 5 46.98, the1fC

waves have zero zonal phase speed while their ampli-
tudes grow. Neutral waves propagate zonally faster or
slower than this average phase velocity [see (17) and
(18)]. Likewise, Fig. 5c shows that growing and de-
caying waves have the same modulus of the amplitude
ratio, whereas neutral waves have different amplitude
ratios according to (20). The dotted line in Fig. 5c cor-
responds to the square root of the right-hand side of
(20). Figure 5d confirms that a phase shift between the
upper and lower waves is a prerequisite for instability
to occur.

For each wavenumber m and latitude we calculated1fC
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FIG. 6. The maximum growth rate in terms of exp(mvITd) vs 1fC

with held constant at 60.08. The potential vorticity jumps are Dq12fC

5 2.5, and Dq2 5 20.5.

FIG. 7. (a) Planetary wavenumber mmax and (b) maximum value of
exp(mvITd) vs for Dq1 5 2.5 and different values of Dq2: Dq22fC

5 20.5 (solid line), Dq2 5 21.5 (dashed line), and Dq2 5 22.5
(dotted line). For each and Dq2, the latitudinal position of the2fC

upper potential vorticity front was varied to find the most unstable
wave.

the growth rate mvI, with held constant at 60.08.2fC

Figure 6 shows for each latitude the maximum1fC

growth rate in terms of the meridional extension of the
most unstable wave, with unit initial amplitude, after a
time period of 1 day. The curve in Fig. 6 may be con-
sidered as the envelope of all the curves that would be
obtained by plotting results like Fig. 5a together for all
wavenumbers m. The instability exists only in limited
latitudinal ranges since only discrete values of the plan-
etary wavenumber are allowed by the zonal periodicity
of the flow. Each peak corresponds to a different wave-
number m, for which the growth rate is maximum. The
peaks that are farthest north and south of correspond2fC

to m 5 2, the secondmost-distant peaks correspond to
m 5 3, and so on, until m 5 10 around . Thus, the2fC

smaller the meridional distance between the potential
vorticity fronts is, the higher is the wavenumber m cor-
responding to maximum growth. This relation between
maximum growth rate and planetary wavenumber may
be understood from the well-known fact that the induced
zonal phase velocities increase with the spatial scale of
the wave pattern, a consequence of the so-called scale
effect (Hoskins et al. 1985). If the perturbed fronts are
moved apart, the difference between the basic zonal
velocities U 1( ) and U 2( ) will increase (for exam-1 2f fC C

ple, cf. Figs. 3a and 3b), so that the induced zonal phase
velocities should contribute more strongly—that is, lon-
ger wavelengths are required for unstable waves to settle
down to a common angular phase velocity. Figure 6
reveals that the most unstable waves have wavenumber
m 5 9 and that the corresponding basic-state fronts are
located at virtually the same latitudinal position; that is,

ø .1 2f fC C

We show in Fig. 7a the planetary wavenumber of the
wave with maximum growth rate mmax, and we show in
Fig. 7b the value of this maximum growth rate as a
function of for different values of Dq2. For each2fC

and Dq2, the latitudinal position of the upper wave2fC

was varied to find the most unstable wave. The max-1fC

imum growth rate was found for ø , in agreement1 2f fC C

with the results in Fig. 6. The planetary wavenumber
of the most unstable wave decreases approximately as
a cosine of latitude, which suggests that the wavelength
of maximum growth is also independent of latitude. The
maximum growth rate is nearly independent of latitude,
except close to the North Pole. For larger magnitudes
of Dq2 we obtain larger maximum growth rates and
smaller planetary wavenumbers mmax. The fact that the
wavelength of maximum growth is independent of lat-
itude seems to be in disagreement with the instability
studies of Charney (1947) and Eady (1949), which show
that the wavelength of maximum growth is of the same
order as the Rossby radius of deformation, the latter
being inversely proportional to the Coriolis parameter
f , so that the wavelength of maximum growth is larger
at lower latitudes. If this statement also holds for a
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latitude-dependent zonal flow with full f 2 dependence
on a sphere, the discrepancy between our model results
and those of Charney (1947) and Eady (1949) may be
due to the assumption f 2 5 2 in (6), which makes the
Rossby radii of deformation associated with the vertical
modes of the two-and-one-half-layer model independent
of latitude.

5. Synoptic development

The numerical technique of contour dynamics is ap-
plied to investigate whether the two-and-one-half-layer
contour dynamics model—with one contour in the upper
active layer and another in the lower active layer—is
able to produce realistic synoptic development in its
nonlinear stage. The linear analysis of the previous sec-
tion will provide us with an appropriate initial state. A
comparison will be made with the evolution of a cutoff
cyclone as forecast by a modern global weather pre-
diction model initialized with real atmospheric data.

a. Numerical simulation of a cutoff cyclone

In the appendix it is shown how a general configu-
ration of two contours can be integrated in time using
the technique of contour dynamics. The basis of the
technique is (A29), which shows how the gradient of
the streamfunction—and thus the horizontal velocity—
can be calculated by integrating Green’s function over
the contours. The contours are represented by a finite
but adjustable number of nodes that are advected by the
local horizontal velocity field. The integration is ap-
proximated by a summation over pieces of a great circle
connecting the adjacent nodes. [See Verkley (1994) for
details, especially his (84)–(88). When the integrand in
the calculation of the streamfunction gradient becomes
singular, the integral over the pieces of the great circle
is evaluated using an analytic expression for the singular
part of the integrand.] In general, the contours will be
stretched and folded during the flow evolution, so that
their length and curvature may increase considerably.
Therefore, the number of nodes is allowed to change in
time, depending on the degree of deformation of the
contours. The nodes are redistributed along the contour
using cubic splines between the original nodes. To per-
form a time integration of complex contour develop-
ments, the technique of ‘‘contour surgery’’ [for details
see Dritschel (1989)] was used in addition to contour
dynamics. Surgery removes filamentary structures
smaller than a prescribed length scale d and reconnects
contours enclosing the same value of the potential vor-
ticity when the contours get closer than the prescribed
length scale. In this respect, small-scale structures are
assumed to have a negligible effect on the wind field,
which is consistent with the scale effect (Hoskins et al.
1985). That is, the horizontal velocity field (1) follows
from the potential vorticity by the inversion of (4),
which is insensitive to small-scale features in the po-

tential vorticity field. The surgical scale d is equal to
m2L, where mL is the maximum distance between ad-1

2

jacent nodes and L is a length scale characterizing the
overall size of the potential vorticity distribution. The
calculations to be discussed below were run with m 5
0.05 and L 5 a, so that d 5 1.25 3 1023a. Time in-
tegration was performed using a fourth-order Runge–
Kutta method with a time step of 1 h. A smaller time
step did not significantly affect the time evolution.

Since a full analysis of the evolution of finite-am-
plitude waves is beyond the scope of this paper, we will
focus on a typical example of cyclogenesis, which was
selected from a large number of contour dynamics sim-
ulations. The initial state is given by a pair of sinusoidal
waves with wavenumber m 5 8 on a basic-state zonal
flow defined by Dq1 5 2.5, Dq2 5 22.5, and 51fC

5 60.08. A meridional cross section of the flow that2fC

is associated with this zonal basic state can be seen in
Figs. 3c and 3f. The amplitude ratio e 2/e 1 was calculated
from (19), yielding | e 2/e 1 | 5 1.73 and arg(e 2/e 1) 5
71.68 for growing waves. Note that this baroclinic wave
system corresponds to maximum growth, which may be
verified from Fig. 7a. Other contour dynamics simula-
tions initialized with randomly perturbed zonal contours
showed that the most unstable mode became dominant
after a while. The initial amplitude e 1 was set to 1.08.
Figure 8 shows the evolution of the upper and lower
contours, for days 0–5, where in each panel the upper
contour corresponds to the boundary of the shaded re-
gion and the lower contour corresponds to the solid line.
The initial stage of the evolution is characterized by an
exponential growth of the sinusoidal waves (Figs. 8a–
c), after which the nonlinear development of the waves
becomes apparent. By day 3 (Fig. 8d), the upper-level
wave is tilted in the northeast–southwest (NE–SW) di-
rection because of the anticyclonic shear at the southern
side of the mean zonal jet, and both fronts advance to
lower latitudes in a manner very similar to a dipolar
potential vorticity structure. Its self-induced translating
motion is caused by the anomalously high and anom-
alously low potential vorticity regions in the upper and
lower layers, respectively. In the final stage (Figs. 8e,f),
the tongue of high-potential-vorticity air thins and a
cutoff cyclone is formed as the tongue wraps up cy-
clonically. Note that at day 4 (Fig. 8e) the cyclone is
still connected to the polar region by a filament, which
could be looked upon as an ‘‘umbilical cord’’ (Hoskins
et al. 1985; Thorncroft et al. 1993), and whose surviv-
ability depends on the surgical scale d. Indeed, the cy-
clone shown in Fig. 8f disconnects from the polar region
sooner when the simulation is repeated with a larger
surgical scale.

It may be worth noting that the cyclogenesis process
shown in Fig. 8 falls under the category of an ‘‘LC1’’
life cycle, being one of the two paradigms of baroclinic-
wave life cycle behavior introduced by Thorncroft et al.
(1993). Despite the large number of contour dynamics
simulations that we have performed, we have not been
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FIG. 8. Evolution of the tropopause (boundary of shaded region) and the polar front (solid line)
for days 0–5 (with a 1-day time interval between the panels) as obtained from a two-and-one-
half-layer contour dynamics simulation. The initial state corresponds to two zonal potential vor-
ticity fronts at 60.08N, with Dq1 5 2.5 and Dq2 5 22.5, which are perturbed with the most
unstable sinusoidal wave pattern; that is, m 5 8, | e 2/e 1 | 5 1.73, and arg (e 2/e 1) 5 71.68. The
initial amplitude | e 1 | was set to 18. The cross in each frame indicates the instantaneous position
of an air column in layer 1 that is finally captured by the cutoff cyclone. Lines of constant longitude
and latitude are drawn every 308 and 108, respectively, with the southernmost grid line corre-
sponding to 408N.

able to find any example of an LC2 life cycle, whose
evolution is dominated by the cyclonic shear on the
poleward side of the mean zonal jet. This absence may
be due to the fact that in our contour dynamics model
only a single contour is used to describe the polar jet
stream. As a result, equatorward extensions of a wave
in the upper-level polar region are always south of the
mean zonal jet and are therefore only affected by the
corresponding mean anticyclonic shear, being charac-

teristic of LC1 life cycles. LC2-type evolutions might
be possible by introducing more layers and more con-
tours to describe the polar jet stream.

In Fig. 9 we show the same sequence of events as
depicted in Fig. 8 but zoomed in on a smaller part of
the sphere and a shorter period of time, between day
2.5 and day 5 of the numerical simulation. Instead of
the position of the lower potential vorticity front, we
show the isolines of the normalized pressure of interface
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FIG. 9. Evolution of the potential vorticity in layer 1 and the normalized pressure of interface 2 between day 2.5
and day 5, with a 12-h time interval between the panels. The shaded area corresponds to the region of high potential
vorticity. The contours correspond to the isolines of the normalized pressure of interface 2 and are drawn every 0.025
units from h2 5 0.575 to h2 5 0.875 going equatorward. The cross indicates the position of an air column in layer 1.
The initial state is the same as in Fig. 8. Lines of constant longitude and latitude are drawn every 308 and 108, respectively,
with the southernmost grid line corresponding to 408N.

2. The pressure of interface 2 generally decreases when
going northward, the steepest gradients occuring around
the lower potential vorticity front. This result may be
verified by comparing Fig. 8 with Fig. 9 and by looking
at the zonal cross sections discussed in section 3. If we
would study the flow from the perspective of an isobaric
surface with a value in the range of steep change—say,
the isobaric surface with normalized pressure 0.775—
and would consider the potential temperature on this
surface, then the isoline corresponding to the normalized
pressure 0.775 will coincide with a discontinuity in po-
tential temperature. Indeed, on this isoline the value of
the potential temperature changes from u1 to u2. This
fact implies that if we select an isoline of the normalized
interface pressure in the neighborhood of steep change,
then this isoline can be looked upon as an isobaric front
in potential temperature that closely follows the position
of the lower potential vorticity front. This supports our
earlier statement that the lower potential vorticity front
may be associated with the polar front. However, when
the lower potential vorticity front develops much small-
scale structure, as happens in the later stages of the
numerical simulation, then this association is less clear-
cut.

The contour dynamics simulation shown in Fig. 8 was
repeated with different values for the potential vorticity
jumps while the ratio Dq2/Dq1 was retained. Apart from
the timing, very similar evolutions were obtained to that
shown in Fig. 8. This result may be understood from
the fact that the horizontal velocity field v can be ex-
pressed in terms of Dq2/Dq1 if v is scaled either with
Dq1 or Dq2 and the contribution of the planetary vor-
ticity f to v is neglected [see (1) and (A29)]. Thus, if
the contribution of f to v is relatively small, which is
generally true near the jet axis, baroclinic wave systems
with different Dqi and equal Dq2/Dq1 (and otherwise
equal basic states) will show virtually the same behavior,
although the timescales of their evolutions will differ
and will be proportional to Dqi.

The technique of contour dynamics enables us to cal-
culate the horizontal velocity not only at the positions
of the nodes but also at other points in the model at-
mosphere. Therefore, we can determine the displace-
ment of air tracers, or rather the displacement of air
columns, anywhere in the model atmosphere. To cal-
culate the evolution of an air column that ends up in
the center of the cutoff cyclone in layer 1, the contour
dynamics simulation shown in Fig. 8 was repeated, but
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FIG. 10. Time evolution of several quantities for the air tracer
shown in Figs. 8 and 9. (top) The relative vorticity z1, the absolute
vorticity f 1 z1, and the inverse of the column thickness in terms
of the normalized pressure, 2(h1 2 h2)21. (bottom) The mean nor-
malized pressure (h1 1h2) and the normalized pressures of the1

2

bounding upper and lower interfaces, h1 and h2, of the air column.

now with the time integration reversed, starting at day
5, and with the center of the cyclone (at 47.58N and
9.08E) taken as the initial position of the air column
bounded by interfaces 1 and 2 at normalized pressures
h1 and h2, respectively. Since the positions of the con-
tours were already available every time step from the
contour dynamics simulation shown in Fig. 8, we used
the corresponding velocity fields to advect the air col-
umn backward in time.

Figure 10 shows the time evolution of several quan-
tities for the air column whose instanteneous positions
are indicated by the crosses in Figs. 8 and 9. The air
entwined into the center of the cyclone appears to orig-
inate from polar regions around 61.88N and 69.28W.
Figure 10a shows the relative vorticity z1, the absolute
vorticity f 1 z1, and the inverse of the column thickness
in terms of the normalized pressure, (h2 2 h1)21. Figure
10b shows the mean normalized pressure (h1 1 h2)1

2

and the normalized pressures of the upper and lower
boundaries of the air column—that is, h1 and h2, re-
spectively. Obviously, both P1 and u1 are constant in
time because of the underlying assumptions in section
2. In contrast, both the relative and the absolute vorticity
as well as the column thickness change considerably,
which is most notable between day 2 and day 4. Close
inspection of Fig. 8 reveals that during this time period
the air column crosses the lower potential vorticity front
(contour in layer 2). As we have seen in section 3, the
lower potential vorticity front is accompanied by a dis-
tinct change in height of interface 2, which may be
verified from the isolines of the normalized pressure of
interface 2 depicted in Fig. 9. As a result, the lower
boundary of the air column is expected to move down-
ward when it crosses the lower potential vorticity front
from the north. Indeed, when we look at the normalized
pressure of interface 2 along the trajectory of the air
column (Fig. 10b) we see a prominent descent of the
column’s lower boundary between day 2 and day 4. The
upper potential vorticity front is similarly accompanied
by a change in height of interface 1, so that the air
column’s upper boundary moves upward when it ap-
proaches the upper potential vorticity front. Since the
air column obviously does not cross the upper potential
vorticity front, the change in height of interface 1 is
less pronounced than that of interface 2. Looking again
at the evolution of the normalized pressures at the
boundaries of the air column in Fig. 10b, we immedi-
ately see the corresponding stretching of the air column
within the time period considered. The stretching of the
air column is also evident from the evolution of the
column thickness, which is inversely proportional to (h2

2 h1)21 (see Fig. 10a). Based on the time evolution of
the normalized pressures at the boundaries of the air
column, we may conclude that the major contribution
to the stretching is due to the descent of the lower
boundary of the air column when the air column crosses
the lower potential vorticity front. Note that during this
time period the mean pressure of the air column grad-

ually increases, so that the air column descends in its
entirety during its southward motion. Because of the
stretching of the air column and the material conser-
vation of potential vorticity, both the relative and ab-
solute vorticity of the air column increase between day
2 and day 4, resulting in a cyclonic wrap-up of the
equatorward extension of high-potential-vorticity air
and the final formation of a cutoff cyclone. A similar
observation was made by Baehr et al. (1999), who found
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FIG. 11. Evolution of potential vorticity on the 318-K isentropic surface and the potential temperature at model level
28 (approximately 950 hPa) from 0000 UTC 9 Mar to 1200 UTC 11 Mar 1998 (with a 12-h time interval between the
panels) based on a 96-h 31-level T213 ECMWF model run, initialized on 1200 UTC 7 Mar 1998. Shaded regions
correspond to potential vorticity values larger than 2 PVU, the intensity of which increases every 1 PVU. The isolines
of potential temperature are plotted every 5 K. The cross indicates the horizontal position of a tracer that was followed
in time with the trajectory model. The lines of constant longitude are drawn every 308 from 908W to 08. The lines of
constant latitude are drawn every 208 from 208 to 608N.

that low-level cyclones commonly intensify rapidly as
they cross beneath the polar jet stream. Note that the
same line of reasoning may be applied to the initial stage
of the evolution, between day 0 and day 2, during which
the air column resides temporarily on the southern side
of the lower potential vorticity front.

b. Observation of a cutoff cyclone

To examine whether the numerical results of Figs. 8–
10 have real atmospheric counterparts, we analyzed the
development of a North Atlantic cutoff cyclone. The
data are based on a 96-h forecast with the global T213
spectral weather prediction model employed by
ECMWF. Analyzed fields of 1200 UTC 7 March 1998
were used to initialize the model. The forecast fields
were in close agreement with the verifying analyses so
that the 96-h model run was a realistic simulation of
the actual synoptic development. We used the forecast
fields instead of the analyses in order to have a physi-
cally consistent dataset in which the modeled quantities
are not affected by the addition of new observations.
This is essential for the calculation of long-term air

tracer movements, which will be discussed later. Figure
11 shows the evolution of potential vorticity on the 318-
K isentropic surface for 0000 UTC 9 March 1998 to
1200 UTC 11 March 1998, with a 12-h time interval
between the panels. Potential vorticity values larger than
2 potential vorticity units (PVUs) are shaded, with the
different shades of gray corresponding to intervals of 1
PVU (PVU is defined as 1026 m2 s21 K kg21). Using
Reed’s (1955) dynamical definition of the tropopause,
the shaded regions in Fig. 11 may be associated with
the stratosphere. It should be noted that in this case the
potential vorticity is defined as P 5 2g( f 1 zu)(]u/]p),
where P is known as Ertel’s potential vorticity for a
hydrostatic continuously stratified atmosphere, and zu is
the vertical component of the relative vorticity evaluated
on an isentropic surface. The rate of change of Ertel’s
potential vorticity following adiabatic flow is approxi-
mately proportional to the rate of change of quasigeo-
strophic potential vorticity as defined in section 2 fol-
lowing the horizontal geostrophic wind field (Charney
and Stern 1962). The potential vorticity field was cal-
culated by finite differences from the wind, temperature,
and pressure fields on a three-dimensional grid with 31
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FIG. 12. Time evolution of several quantities for the air tracer
shown in Fig. 11, where day 0 corresponds to 1200 UTC 7 Mar 1998.
(top) The isentropic relative vorticity zu, the absolute vorticity f 1
zu, the gradient 2]u/]p, and the potential vorticity P, defined by P
5 2g( f 1 zu)(]u/]p). (bottom) The pressure p and the potential
temperature u of the tracer.

model levels and a horizontal grid spacing of 18 3 18.
Linear interpolation in the vertical direction was used
to determine the potential vorticity field on the isentro-
pic surface. Cases in which the potential vorticity was
multivalued in the vertical direction—indicative of tro-
popause folding—or in which the lapse rate was su-
peradiabatic were not observed, so that both the poten-
tial vorticity and the potential temperature may be as-
sumed to increase upward. Also shown, every 5 K, are
the isolines of potential temperature at model level 28,
corresponding to approximately 950 hPa.

At 0000 UTC 9 March 1998 (Fig. 11a), the flow is
dominated by a prominent equatorward extension of
high-potential-vorticity air above the Atlantic. Over the
next 2 days, this region of high potential vorticity thins
and is greatly elongated in the NE–SW direction on the
southern side of the mean zonal jet, as apparent from
Figs. 11b–d. By 0000 UTC 11 March 1998 (Fig. 11e),
the southward tip of the filament starts to wrap up cy-
clonically, and 12 h later (Fig. 11f) some high-potential-
vorticity air has been pinched off into the center of the
developing cyclone and the cutting-off process is almost
complete. The isolines of low-level potential tempera-
ture reveal that, on its western side, the equatorward
extension of high potential vorticity is accompanied by
a southward outflow of cold air, in much the same way
as demonstrated by the contour dynamics simulation.

Based on the output of the previous ECMWF model
run, the trajectory of a single air tracer was calculated
with the trajectory model of Scheele et al. (1996). The
crosses in Fig. 11 mark the horizontal positions of the
air tracer with a 12-h time interval between them. The
advecting velocity field was based on the three-dimen-
sional velocity fields of the ECMWF model run, which
were available every 6 h. Velocity fields at intermediate
times were obtained by quadratic interpolation, whereas
velocities at positions other than the grid points were
calculated by bilinear interpolation. The initial tracer
position was chosen at the center of the cutoff cyclone
at 1200 UTC 11 March 1998 (see Fig. 11f) with l 5
44.88W, f 5 31.78N, and p 5 346 hPa. The trajectory
model was integrated backward in time, with a time step
of 10 min, to calculate the subsequent tracer positions.
For a detailed description of the method of calculation,
the reader is referred to Scheele et al. (1996).

Several quantities were calculated along the trajectory
of the air tracer and are presented in Fig. 12, where day
0 corresponds to 1200 UTC 7 March 1998. Figure 12a
shows the relative vorticity zu, the absolute vorticity f
1 zu, the gradient 2]u/]p, and the potential vorticity
P, defined as P 5 2g( f 1 zu) (]u/]p). Figure 12b shows
the pressure p and the potential temperature u of the
tracer. Focusing on the potential vorticity first, we ob-
serve that the potential vorticity fluctuates around 5
PVU with an average time period of 6 h. This result is
most likely due to the dependence of potential vorticity
on spatial derivatives, which are sensitive to both tem-

poral and spatial interpolation. Indeed, the potential
temperature u fluctuates much less.

The gradient 2]u/]p shows a marked decrease be-
tween days 1 and 3, when the upper-air tracer moves
closer to the tropopause and overtakes a region of strong
potential temperature gradients associated with the polar
front. During the same time period, the air tracer moves
down from about 225 to 350 hPa. Since P is approxi-
mately conserved, both the relative and absolute vor-
ticity show a pronounced increase within this time pe-
riod. Also note that during the initial stage of the evo-
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lution, between days 0 and 1, the air tracer moves pole-
ward toward a region of strong potential temperature
gradients at higher latitudes (not shown), which explains
the initial increase of 2]u/]p and the corresponding
decrease of relative and absolute vorticity. A compar-
ison of Figs. 10 and 12 reveals that the contour dynamics
model captures the main dynamic characteristics of the
ECMWF forecast remarkably well.

6. Summary and conclusions

We have examined synoptic development in an ide-
alized balanced model of the atmosphere, formulated in
terms of three layers of uniform potential temperature
and two potential vorticity fronts. The upper layer was
assumed to have zero velocity and a corresponding flat
upper surface. In the lower two active layers, the hor-
izontal structure was represented by a piecewise-uni-
form distribution of potential vorticity with a single
front in each layer. The model atmosphere was assumed
to be in hydrostatic and geostrophic balance, in which
for the latter a simplification of linear balance was cho-
sen, and diabatic heating/cooling and mechanical forc-
ing/friction were neglected. In addition, the potential
vorticity was linearized around the state of rest, so that
the potential vorticity inversion problem becomes linear,
and the squared Coriolis parameter was replaced by its
global average, so that the equations reduce to the fa-
miliar quasigeostrophic equations for a layered model.

It was shown that realistic zonal flows can be ob-
tained. The velocity field in the upper active layer is
sharply peaked at the upper potential vorticity front and,
depending on the choice of parameters, this is also true
for the velocity field in the lower active layer. The thick-
ness of the upper active layer increases rapidly at the
upper potential vorticity front when going from pole to
equator. As a result, meridional cross sections show the
upward and downward bowing of the interface heights
that is characteristic for isentropes around the jet stream.
The front in the upper layer was therefore associated
with the tropopause or, rather, with the sudden increase
in height of the tropopause: the ‘‘tropopause break.’’
The potential vorticity front in the lower layer was seen
to enhance the downward bowing of the lower interface
and to add to the baroclinicity of the system. For this
reason, the lower potential vorticity front was associated
with the polar front.

By analyzing the linear dynamics of infinitesimal
wavelike perturbations of zonal contours it was possible
to expose the physical nature of the instability mecha-
nism in a clear way. Our analysis was in effect an ap-
plication of the potential vorticity view of baroclinic
instability as advocated by Bretherton (1996a,b) and
Hoskins et al. (1985) because perturbations of the con-
tours are directly related to perturbations of the potential
vorticity field. By studying the streamfunction and me-
ridional velocity fields that the perturbations of one front
induce at the other, it could be seen that positive feed-

back and associated wave growth is only possible when
there is a phase shift between the two waves: in this
case the meridional velocity field that one front induces
at the other correlates positively with the meridional
displacements of the contours. For waves of a given
planetary wavenumber and a fixed position of one of
the fronts, wave growth is only possible within limited
ranges of the position of the other front. The maximum
growth rates and highest planetery wavenumbers are
found for potential vorticity fronts that are located at
approximately the same latitude.

The model’s ability to produce realistic synoptic de-
velopment was investigated by the analysis of a typical
contour dynamics simulation during which a portion of
high potential vorticity in the upper active layer pinched
off and formed a cutoff cyclone. The results are re-
markably consistent with the evolution of an observed
cutoff cyclone as simulated by the ECMWF forecast
model initialized with real atmospheric data. This sim-
ilarity was evident from the marked NE–SW tilt of the
thinning upper-level trough, the subsequent formation
of a southward-moving dipolar potential vorticity struc-
ture, and the final cyclonic wrap-up stage, which re-
sulted in the cutoff cyclone. Several properties were
calculated along the trajectory of an air tracer that was
eventually captured by the cutoff cyclone. Again, a
striking similarity was found between the contour dy-
namics results and the evolution simulated by the
ECMWF model initialized with real atmospheric data.
In both cases the air tracers originated from much higher
latitudes. The equatorward migration of the air tracers
was associated with descending motion as well as ver-
tical stretching, resulting in a prominent increase of rel-
ative and absolute vorticity due to the (approximate)
conservation of potential vorticity. An explanation for
the observed stretching was found from the contour dy-
namics simulations by looking at the positions of the
layer interfaces along the parcel’s trajectory. The major
amount of stretching occurs when the air parcel crosses
the lower potential vorticity front associated with the
polar front.

Despite the model’s crude discretization in terms of
only three isentropic layers—of which the upper one is
passive—and only two regions of uniform potential vor-
ticity in each active layer, the results obtained carry over
to the real atmosphere. Indeed, the two fronts in the
model are associated with two important structural el-
ements that dominate the atmospheric circulation: the
tropopause and the polar front. The model’s assumption
of hydrostatic and geostrophic balance as well as the
neglect of diabatic heating/cooling and mechanical forc-
ing/friction is not unreasonable and is nearly satisfied
by the real atmosphere as long as the spatial scale is
not too short and the timescale is not too long. By build-
ing upon these basic principles, we enabled ourselves
to concentrate fully on the potential vorticity structure
as determined by the two fronts and its time evolution
as determined by the advection of the fronts. This ap-
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proach has proven advantageous, not only in the linear
analysis of small-amplitude waves but also in under-
standing the subsequent nonlinear stages of synoptic
development.

There are several ways to proceed. First of all it is
necessary to explore more fully the range of possible
parameters of the model and the way in which these
parameters determine the model’s evolution. For future
applications, it might turn out to be necessary to relieve
the model from some of its limitations. The accuracy
of the model could be improved by allowing for a full
f 2 dependence of the system parameters and by aban-
doning the linearization of potential vorticity around the
state of rest. As remarked before, the assumption of no
latitude dependence of the system parameters means that
vortex-tube stretching and squeezing are effectively in-
dependent of latitude, which seems unrealistic with re-
gard to the classical instability studies by Charney
(1947) and Eady (1949). The linearization is restrictive
because it implies that the variations in interface pres-
sures have to be small with respect to their average
values. It might also be worthwhile to use the more
accurate expression for the balanced horizontal velocity
that can be derived using Salmon’s method [see Verkley
(2001) and references therein for details]. In addition,
better resolution of the vertical and horizontal structure,
that is, more layers and more contours, might be nec-
essary to describe more realistic potential vorticity
structures. For example, it would be very interesting to
see whether both paradigms of baroclinic-wave life cy-
cle behavior introduced by Thorncroft et al. (1993) can
be reproduced by such an improved model. Application
of the contour-advective semi-Lagrangian algorithm de-
veloped by Dritschel and Ambaum (1997) could alle-
viate the problem of the necessarily increased compu-
tational effort.

Acknowledgments. We are grateful to Dr. David Drit-
schel for providing the source code of the contour sur-
gery algorithm and to Mr. Rinus Scheele and Dr. Peter
Siegmund for performing numerical simulations with
the trajectory model. We also thank Dr. Aarnout van
Delden and two anonymous reviewers whose criticism
and suggestions have clarified the physical interpreta-
tion of the model. One of the authors (RRT) gratefully
acknowledges financial support by the Council for Earth
and Life Sciences (ALW) of the Netherlands Organi-
zation for Scientific Research (NWO).

APPENDIX

Mathematical Details

a. Linearization of P around the state of rest

To linearize the potential vorticity P around the state
of rest, the definition of Pi 5 ( f 1 z i)/(hi11 2 hi) in
layer i is rewritten as

if z
iP 5 1 11 21 2h 2 h fi11 i

21
h h9 h h9i11 i11 i i3 1 1 2 1 1 .1 2 1 2[ ]h 2 h h h 2 h hi11 i i11 i11 i i

(A1)

We will assume that z i/ f , / i, and / i11 are smallh9 h h9 hi i11

compared to 1 so that we can linearize the product of
the second and third factor. We then obtain approxi-
mately

1 h h9i11 i11i iP 5 f 1 z 2 f1 21h 2 h h 2 h hi11 i i11 i i11

h h9i i1 f , (A2)2h 2 h hi11 i i

which can be written in terms of the streamfunction c i

by realizing that z i 5 ¹2c i and that the interface pres-
sures hi are related to the Montgomery potentials Mi by

0 1 0 1 kM 5 M 1 c (u 2 u )h , (A3a)p 1

1 2 1 2 kM 5 M 1 c (u 2 u )h , (A3b)p 2

2 2 kM 5 c u h . (A3c)p 3

Relations (A3a) and (A3b) can be derived by applying
the definition of the Montgomery potential infinitely
close to both sides of interface 1 and 2, respectively,
whereas relation (A3c) follows directly from the defi-
nition of the Montgomery potential and the condition
z3 5 0. In each case, the definition of potential tem-
perature was used to express the absolute temperatures
in terms of the normalized pressures. Using Mi 5 iM
1 fc i and hi 5 i 1 together with (A3) and as-h h9i
suming / i K 1, we find the relations between theh9 hi

pressure deviations at the interfaces and the stream-
functions in the layers:

k210 1 0 1f c 5 f c 1 kc h (u 2 u )h9, (A4a)p 1 1

k211 2 1 2f c 5 f c 1 kc h (u 2 u )h9, (A4b)p 2 2

k212 2f c 5 kc h u h9. (A4c)p 3 3

Substitution of (A4) and z i 5 ¹2c i into (A2) then gives
iq

iP 5 , (A5)
h 2 hi11 i

where the fields qi are related to the streamfunction by
0 2 0 0 0 1q 5 f 1 ¹ c 2 F (c 2 c ), (A6a)l

1 2 1 1 0 1 1 1 2q 5 f 1 ¹ c 1 F (c 2 c ) 2 F (c 2 c ),u l

(A6b)
2 2 2 2 1 2 2 2q 5 f 1 ¹ c 1 F (c 2 c ) 2 F c , (A6c)u l

with and being the parameters defined in (6).i iF Fl u

Expressions for the interface heights zi and their per-
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turbations , which are very similar to (A3) and (A4),z9i
can be found by evaluating the Montgomery potential
at the lower and upper interface of each layer i. It is
seen easily that, by evaluating M 0 at the upper system
boundary where h0 5 0, we have M 0 5 gz0. A passive
upper layer means therefore that z0 is constant or c 0 5
0. Taking c 0 5 0 in (A6) leads to the expressions (4)–
(7).

b. Contour dynamics

To find a solution of the streamfunction c i in each
active layer (i 5 1, 2), we rewrite (4) as

2 i i j j i¹ c 2 F c 5 s , (A7)O
j

where the indices i and j assume the values 1 and 2.
The source terms s i represent the perturbation or anom-
alous potential vorticity with respect to the rest state

i 5 f ; thus, s i 5 qi 2 f . Let x ik, for k 5 1 and k 5q
2, be the normalized eigenvectors, and F̃ k be the cor-
responding eigenvalues of the matrix of parameters Fij;
that is,

i j jk k ik˜F x 5 F x , (A8)O
j

for k 5 1, 2. According to Wilkinson (1965), because
Fij is a quasi-symmetric tridiagonal matrix (in our case
a matrix with real diagonal elements and off-diagonal
elements satisfying F 21 F 12 . 0), the matrix is nonsin-
gular with real, nonnegative eigenvalues and real ei-
genvectors. As a result, the streamfunction and source
term in layer i can always be written as a sum over the
eigenvectors x ik; that is,

i ik k i ik kc 5 x c̃ , s 5 x s̃ , (A9)O O
k k

and likewise for all other dynamical fields. The coef-
ficients k and k are the projections of c i and s i ontoc̃ s̃
the kth vertical mode, of which the vertical structure is
given by the eigenvector x ik. Conversely, the stream-
function and source term associated with mode k can
be written as a sum over the active layers (i 5 1, 2);
that is,

k ki i k ki ic̃ 5 x̃ c , s̃ 5 x̃ s , (A10)O O
i i

where jk, for j 5 1 and j 5 2, are the orthonormalx̃
counterparts of the eigenvectors, namely, Si

kix im 5x̃
dkm and Sk x ik kj 5 dij. The eigenvectors x ik and theirx̃
orthonormal counterparts kj are similar to the verticalx̃
structure functions satisfying the Sturm–Liouville equa-
tion in a continuously stratified atmosphere.

Projecting (A7) onto the kth vertical mode gives
2 k k k k˜¹ c̃ 2 F c̃ 5 s̃ , (A11)

which can be derived easily by substituting expres-
sions (A9) into (A7), and by making use of (A8) and
the orthogonality properties of the eigenvectors. As

expressed by (A10), the source field k is the pro-s̃
jection of the anomalous potential vorticity s i on the
kth vertical mode. Equation (A11) is an inhomoge-
neous Helmholtz equation, ¹ 2 2 F̃ k being the Helm-
holtz operator acting on k . This operator is mathe-c̃
matically identical with the corresponding operator in
the equivalent barotropic vorticity equation. In that
equation F̃ k k is the so-called Cressman term thatc̃
allows for vortex-tube stretching and squeezing
(Cressman 1958). As a result, the motion related to
the kth vertical mode is identical to the motion in an
isentropic layer with height 2V 2 a 2 /(kgF̃ k ).

The solution of (A11) is given by an integral over
the whole sphere of the Green’s function G̃k multiplied
by the source field k:s̃

k k k˜c̃ (r) 5 dS9G (r; r9)s̃ (r9), (A12)E
S

where S denotes the spherical surface, and dS9 5 dl9
df9 cosf9 is a spherical surface element. Here, r refers
to a field point with coordinate (l, f), and r9 refers to
the source point with coordinate (l9, f9). The Green’s
function G̃k of the Helmholtz operator ¹2 2 F̃ k is a
solution of the equation

2 k k k˜ ˜ ˜¹ G (r; r9) 2 F G (r; r9) 5 d(r; r9), (A13)

with the Dirac delta function d(r; r9) as a source. In
Verkley (1994) it is shown that the Green’s function G̃k

is given by

k k 21 0G̃ (r; r9) 5 2[4 cosh(pg )] P (2cosu0),k21/21ig

(A14)

where (x) is a Legendre function with integer ordermPn

m, real or complex degree n, and real argument x. The
order of the Legendre function is 0, whereas the degree
is given by 2 1 ig k. The parameter g k is real and is1

2

related to F̃ k by F̃ k 5 1 (g k)2. The angular distance1
4

u0 between the points r and r9 follows from the cosine
rule of spherical trigonometry: cosu0 5 sinf sinf9 1
cosf cosf9 cos(l 2 l9).

From the streamfunction of mode k at field point r,
we can find the streamfunction in layer i at point r by
the linear combination given by (A9). That is, substi-
tution of (A12) into (A9) and using (A10) gives an
expression for c i in terms of the source field:

i i j jc (r) 5 dS9G (r; r9)s (r9), (A15)O E
j S

where

i j ik k k j˜G (r; r9) 5 x G (r; r9)x̃ (A16)O
k

relates the contribution of the source field in layer j to
the streamfunction in layer i. Using (A8), (A13), and
(A16), we can derive that Gij is a solution of
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2 i j in n j¹ G (r; r9) 2 F G (r; r9) 5 d d(r; r9), (A17)O i j
n

which should be compared with expression (A13).
In each active layer we now define two regions of

uniform potential vorticity according to (8). It may be
verified using (A9), (A10), and (A11) that for this dis-
tribution of potential vorticity, expression (A15) for the
streamfunction becomes

jq f (r)0i ik k j j jkc (r) 5 x x̃ 2 1 1 Dq j (r) , (A18)O k k˜ ˜[ ]F F 1 2jk

where the field j jk(r) is a solution of
2 jk k jk j˜¹ j (r) 2 F j (r) 5 H (r), (A19)

that is, is a solution of the inhomogeneous Helmholtz
equation with H j(r) as the source term. A general so-
lution of this equation is given by the following integral:

jk k j˜j (r) 5 dS9G (r; r9)H (r9)E
S

k˜5 dS9G (r; r9), (A20)E
jR1

where G̃k(r; r9) is Green’s function of the Helmholtz
operator, that is, a function satisfying (A13). Substitu-
tion of (A20) into (A18) yields

jq f (r)0i ik k jc (r) 5 x x̃ 2 1O k k˜ ˜[ F F 1 2jk

j k˜1 Dq dS9G (r; r9) . (A21)E ]jR1

The essence of contour dynamics is that the system can
be integrated in time by advecting the contours with the
local velocity, so that we have a closed dynamical sys-
tem for fluid particles that lie on the contours. This
system is generally referred to as a ‘‘contour dynamics
system.’’ The horizontal velocity field (1) follows from
the gradient of c i, for which the previous expression
gives

= f (r)
i ik k j j k˜¹c (r) 5 x x̃ 1 Dq dS9=G (r; r9) .O Ek˜[ ]F 1 2 jjk R1

(A22)

Since the potential vorticity is assumed to be piecewise
uniform in each active layer, the structure of the poten-
tial vorticity field is completely characterized by the
contours separating the different regions of uniform po-
tential vorticity. This situation suggests conversion of
the area integrals over in (A21) and (A22) into linejR1

integrals along the contours Cj. This conversion can be
achieved by expressing both G̃k and =G̃k in terms of
divergences (see Verkley 1994), that is,

1 1
k 2 k˜ ˜G (r; r9) 5 ¹9 V (r; r9) 2 , (A23)

k˜ [ ]F 4p

k k˜ ˜=G (r; r9) 5 =9 · [G (r; r9)T(r; r9)], (A24)

where Ṽk is a scalar function defined by

k k˜ ˜ ˜V (r; r9) 5 G (r; r9) 2 H(r; r9), (A25)

with

1 u0
2H̃(r; r9) 5 ln sin , (A26)1 24p 2

and T is a tensor, defined by

cosf9
T(r; r9) [ 2 i9i 1 sinf9 sin(l 2 l9)i9j

cosf

2 cos(l 2 l9)j9j. (A27)

Substitution of (A23) into (A21) and use of Gauss’s
theorem give

j jjq f (r) Dq A0 1i ik k jc (r) 5 x x̃ 2 1 2O k k k˜ ˜ ˜[ F F 1 2 F 4pjk

jDq
k˜1 dl9n9 · =9V (r; r9) ,Rk˜ ]F jC

(A28)

where is the area of , dl9 is a line element alongj jA R1 1

the contour Cj, and n9 is a unit vector locally perpen-
dicular to the contour and to k and pointing away from

. Substitution of (A24) into (A22) and use of Gauss’sjR1

theorem again give

= f (r)
i ik k j j k˜=c (r) 5 x x̃ 1 Dq dl9[n9 · T(r; r9)]G (r; r9) , (A29)O Rk˜5 6F 1 2jk jC

so that the horizontal velocity at any point in the model
atmosphere is determined by the instantaneous positions

of the contours alone. This expression forms the basis
of the nonlinear contour dynamics simulations.
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c. Zonal flow

For a zonal flow, the streamfunction (A18) is given
by, substituting 2 sinf for f (r),

jq 2 sinf0i ik k j j jkC (f) 5 x x̃ 2 1 1 Dq j (f) ,O k k˜ ˜[ ]F F 1 2jk

(A30)

where the symbol C is used to indicate the zonal stream-
function. Here, the field j jk is a function of f only and
is the solution of (A19), which in the zonal case reads

2 jk k jk j˜¹ j (f) 2 F j (f) 5 H (f), (A31)

with H j(f) defined by

j1, f . fCjH (f) 5 (A32)
j50, f , f .C

The solution j jk can be written as

jk jj (f), f . f1 Cjkj (f) 5 (A33)
jk j5j (f), f , f ,0 C

where

1
jk jk 0j (f) 5 2 1 B P (sinf), (A34a)k1 1 21/21igkF̃
jk jk 0j (f) 5 B P (2sinf). (A34b)k0 0 21/21ig

The fact that (A33)–(A34) is indeed a regular solution
of (A31) is a consequence of the fact that products of
the Legendre functions (x), where x 5 6 sinf,mP k21/21ig

and either cos(ml) or sin(ml) are eigenfunctions of the
Laplace operator with real and positive eigenvalues 11

4

(gk)2 and therefore are solutions of the homogeneous
Helmholtz equation if gk is chosen such that F̃k 5 11

4

(gk)2. The functions (x) decrease monotonicallymP k21/21ig

from positive infinity at x 5 21 to either 0 (if m ± 0)
or 1 (if m 5 0) at x 5 1. A few graphs of the functions

(x) and an algorithm to calculate them can bemP21/21ig

found in Verkley (1984). Continuity of j jk and its first
derivative with respect to f at f 5 leads to thejfC

following expressions for the constants and :jk jkB B0 1

1
jk j1 21B 5 2 [P (2sinf )] , (A35a)k0 21/21ig CjkD(g , f , 1)C

1
jk j1 21B 5 [P (sinf )] ,k1 21/21ig CjkD(g , f , 1)C

(A35b)

where the function D(g, f, m), with m 5 0, 1, 2, . . . ,
is defined as

m11 m11P (2sinf) P (sinf)21/21ig 21/21igD(g, f, m) [ 1 , (A36)
m mP (2sinf) P (sinf)21/21ig 21/21ig

and use was made of certain recurrency relations in the
same way as in Verkley (1994). Note that the function

D(g, f, m) is positive since the Legendre functions
(x) are also positive. It can be shown that (A33)mP21/21ig

and (A34) are consistent with the more general expres-
sion (A20) when this expression is applied to zonal
contours. The zonal velocity field Ui follows from (1).

d. Perturbed flow

For a general perturbation of the contour Cj, it follows
from (A18) and (A20) that we have for the perturbation
in the streamfunction, denoted by dc i(r),

i ik k j j jkdc (r) 5 x x̃ Dq dj (r), (A37)O
jk

where dj jk(r) is given by

jk k˜dj (r) 5 dS9G (r; r9), (A38)E
jdR1

in which expression d denotes the perturbation of thejR1

region . For an infinitesimal perturbed contour, ofjR1

which the perturbation can be described by a function
dn9(l9), where l9 is the arclength along the contour and
dn9 is an infinitesimal distance in the direction of the
outward normal of the contour, we can write

jk k˜dj (r) 5 dl9dn9(l9)G (r; r9). (A39)R
jC

The expression above can also be written as

jk k j˜dj (r) 5 dS 0G (r; r 0)dH (r 0), (A40)E
S

where dH j(r) is given by

jdH (r) 5 dl9dn9(l9)d(r; r9). (A41)R
jC

Note that dH j(r) is zero everywhere except on the con-
tour Cj, where it has a delta-function structure with
strength dn9(l9). From expression (A40), we infer that
dj jk(r) is the solution of

2 jk k jk j˜¹ dj (r) 2 F dj (r) 5 dH (r). (A42)

By integrating this equation over a small region en-
closing a small part of the contour Cj, we may verify
that the projection of the gradient =dj jk onto the out-
ward normal n of Cj, going from just inside to just
outside the contour, makes a jump of magnitude dn9(l9).
Together with the requirement that dj jk be continuous
at the contour and the fact that dH j(r) is zero outside
the contour, this gives us all we need to find dj jk for
sinusoidal perturbations of zonal contours.

Let us go back to the zonal flows (11) and consider
infinitesimal wavelike perturbations of these contours
described by (12)–(13). Note that for zonal contours of
this form, l cos fulfills the role of the arclength l,ifC
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and 2d fulfills the role of dn. For dH j(r) we thereforeifC

have, applying (A41),
jdH (l, f, t)

2p

j j5 2 dl9 cosf Re[e expim(l9 2 vt)]E C

0

j3 d(l, f; l9, f )C

j j5 d(f 2 f )Re[e expim(l 2 vt)]. (A43)C

We will search a solution of (A42) of the form
jk jk jdj (l, f, t) 5 n (f)Re[e expim(l 2 vt)], (A44)

with

jk jn (f), f . f1 Cjkn (f) 5 (A45)
jk j5n (f), f , f ,0 C

(A46a)
jk jk mn (f) 5 b P (sinf), andk1 1 21/21ig

(A46b)
jk jk mn (f) 5 b P (2sinf).k0 0 21/21ig

It follows from the properties of the Legendre functions
that this solution satisfies (A42) both inside and outside
the contour. The continuity of dj jk and the jump con-
dition on the gradient dj jk lead to (as in Verkley 1994)

1
jk jm 21b 5 [P (sinf )] , (A47a)k1 21/21ig CjkD(g , f , m)C

1
jk jm 21b 5 [P (2sinf )] , (A47b)k0 21/21ig CjkD(g , f , m)C

where D(g, f, m) is the function defined in (A36). The
perturbation streamfunction, as given by (A37), can then
be written as

idc (l, f, t)
ik k j j jk j5 x x̃ Dq n (f)Re[e expim(l 2 vt)] (A48)O

jk

or
idc (l, f, t)

i j j5 Z (f)Re[e expim(l 2 vt)], (A49)O
j

where the fields Zij(f) are defined by
i j ik k j j jkZ (f) 5 x x̃ Dq n (f). (A50)O

k
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