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Salmon’s Hamiltonian approach to balanced flow applied to a one-layer
isentropic model of the atmosphere

By W.T.M. Verkley*
Royal Netherlands Meteorological Institute, The Netherlands

July 2000

SUMMARY

Salmon’s Hamiltonian approach is applied to formulate a balanced approximation to a hydrostatic
one-layer isentropic model of the atmosphere. The model, referred to as the parent model, describes an
idealized atmosphere of which the dynamics is closely analogous to a one-layer shallow-water model on
the sphere. The balance used as input in Salmon’s approach is a simplified form of ‘linear balance’, in
which the balanced velocity vy is given by vy =k x Vf~!(M — M). Here k is a vertical unit vector, f is
the Coriolis parameter, M is the Montgomery potential and M is the value of the Montgomery potential
at the state of rest. This form of balance behaves acceptably on the whole sphere, in contrast with
‘classic’ geostrophic balance, v, =k X f~1V M, which forces the meridional wind velocity to be zero at
the equator. Salmon’s Hamiltonian approach is applied to obtain an equation for the time-change of the
balanced velocity that guarantees both material conservation of potential vorticity as well as conservation
of energy. New in this application of Salmon’s approach is a nonlinear relation between Montgomery
potential and surface pressure (characteristic for an isentropic ideal gas in hydrostatic equilibrium)
in combination with spherical geometry and a variable Coriolis parameter. We will discuss how the
unbalanced velocity vq can be calculated in a practical way and how the model can be stepped forward
in time by advecting the balanced potential vorticity with the sum of the balanced and unbalanced
velocity. The balanced model is tested against a ten-day period from a long integration with the parent
model.

KEYWORDS: Isentropic atmosphere Hamilton’s principle Balanced model

1. INTRODUCTION

In the present paper we apply Salmon’s Hamiltonian approach (Salmon, 1983, 1985,
1988a, 1988b, 1996) to obtain a balanced approximation of a hydrostatic one-layer isen-
tropic model of the atmosphere. The dynamics of an isentropic layer - a layer with uniform
potential temperature - can be derived directly from the hydrostatic primitive equations
on a rotating sphere (see Verkley, 2000). For the one-layer (parent) model discussed in the
present paper, the governing equations are: an equation for the time-change of horizontal
velocity (horizental momentum per unit mass), an equation relating the Montgomery
potential to the surface pressure, and an equation stating the conservation of mass. Due
to the assumed constancy of potential temperature and the assumption of hydrostatic
equilibrium, the absolute temperature in the model decreases linearly with height follow-
ing the dry adiabatic lapse rate. The pressure and density decrease with height according
to simple power laws whereas the Montgomery potential and the horizontal velocity are
independent of height. The air in the model therefore moves column-wise between two
material surfaces: a lower boundary with height z (given by the earth’s orography) and
an upper boundary with height z, (determined by the condition of zero pressure). Due
to the linear decrease of temperature with height, the value of z, is finite. Apart from
the nonlinear relation between Montgomery potential and surface pressure, the model
equations are identical to the one-layer shallow-water equations on a rotating sphere with
orography.

Our interest in this particular model, instead of the more familiar shallow-water
model, is that discretisation of the atmosphere in terms of isentropic layers strains real-
ity less than discretisation in terms of isopycnic layers. This is particulary true if one is

* Corresponding author: Royal Netherlands Meteorological Institute, P.O. Box 201, 3730 AE De Bilt,
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2 W.T.M. VERKLEY

interested in models with a relatively small number of layers. Although very idealized,
a single-layer atmosphere with constant potential temperature, evolving in time accord-
ing to the equations mentioned above, is an exact solution of the inviscid hydrostatic
primitive equations. Our confinement to a single layer is not necessary but is motived by
practical considerations. We wish to concentrate on the new aspects that one encoun-
ters in applying Salmon’s method to this type of model: a nonlinear relation between
Montgomery potential and surface pressure, spherical geometry and a varying Coriolis
parameter. Furthermore, instead of following Salmon by taking the ‘classic’ geostrophic
relationship vy =k X f~1VM as input in the method, we use for this purpose a simpli-
fication of ‘linear balance’: vj, =k x Vf~1(M — M). The reason to do so is that ‘classic’
geostrophy is problematic on a sphere because it implies that the meridional wind ve-
locity is zero at the equator. Our choice avoids this problem and, in addition, leads to a
set of equations for the unbalanced velocity that is simpler than the corresponding set
in the case of ‘classic’ geostrophy.

In section 2 we give the equations that govern the parent model, discuss its conser-
vation laws and give Hamilton’s principle for the model. In section 3 Salmon’s method is
applied to construct a balanced approximation. The central results are the momentum
equation (22) and the set of equations (30)-(31) that determine the unbalanced velocity.
It is checked that the balanced model has equivalents of the original conservation laws.
In section 4 we discuss in more detail how the balanced model can be integrated forward
in time. We have chosen to use the material conservation of balanced potential vorticity
as our basic prognostic equation, and are thus confronted with an inversion problem
that consists of two parts: solving for the balanced velocity from the balanced potential
vorticity (which is a nonlinear problem) and solving for the unbalanced velocity from the
balanced variables (which is a linear problem). In this respect our model is analogous
to the ‘slow equations’ of Lynch (1989). In section 5 we discuss a long integration of
the parent model, concentrating on a particular period of 10 days in which cyclogene-
sis occurs. It is checked whether the inversion procedure is able to reproduce from the
potential vorticity field the flow field at the beginning of this period. We then integrate
the balanced model forward in time for the same period of 10 days. The balanced model
describes the time evolution in this period very accurately. By performing an integration
in which the unbalanced velocity is put to zero, we demonstrate that inclusion of the
latter is crucial for maintaining high accuracy. A summary and discussion can be found
in section 6.

2. THE PARENT MODEL

The parent model is based on the hydrostatic primitive equations with no thermo-
dynamic heating/cooling nor mechanical forcing/friction. These equations can be written
in the form of three prognostic and three diagnostic equations. The prognostic equations
are the conservation of thermodynamic energy, the conservation of mass and the time-
change of horizontal momentum. The diagnostic equations are the definition of potential
temperature, the ideal-gas law and the hydrostatic approximation. The basic assump-
tion of the parent model is that the potential temperature 6 is uniform throughout the
atmosphere. Here 8 = T'(p,/p)", where T is the absolute temperature, p is the pressure,
pr is a reference pressure of 1000 hPa and k= R/cp,, where R is the gas constant for
dry air and c, is the specific heat of dry air at constant pressure. By combining the
definition of potential temperature with the ideal gas law (p = p/(RT), where p is the
density) and the hydrostatic approximation (8p/dz = —pg, where z is the height above
mean sea level and g is the acceleration due to gravity), it can be checked easily that
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the absolute temperature T decreases linearly with height according to the dry adiabatic
lapse rate —g/c,. The pressure and density in a layer with uniform potential temperature
decrease according to simple power laws of the absolute temperature: p/p, = (T'/8)/*
and p/p, = (T/6)1/5~1. Here p, is the density of the air at the reference pressure py, i.e.,
pr = pr/(R6). Because the absolute temperature decreases linearly with height, a natural
upper boundary is the (finite) height z, at which the temperature, pressure and density
are all equal to zero. The lower boundary is naturally formed by the height z; of the
orography. A schematic cross-section of the model is given in Fig. 1.

u /\/—\/Zuypu

0,M,V

71, Py

Figure 1. Schematic cross-section of the parent model. The model consists of a single layer of constant

potential temperature and is governed by the hydrostatic primitive equations. The pressure p, at the

variable upper boundary z, is assumed to have the fixed value zero. The pressure p; at the lower

boundary z; is variable with the height z; fixed by the orography. In a hydrostatic atmosphere in which

the potential temperature 8 is constant with height, the Montgomery potential M and the horizontal
velocity v are also constant with height.

We will assume that the earth is perfectly spherical with radius a and that it rotates
with angular velocity 2. Horizontal positions on the sphere will be denoted by A and ¢,
where A is longitude and ¢ is latitude. The column-wise motion of the air is a consequence
of the fact that the Coriolis parameter f = 2{) sin ¢ and the Montgomery potential M =
gz + ¢, T in the equation for the horizontal velocity v are independent of height. The
horizontal velocity can therefore also be assumed independent of height. As a consequence
the vertical advection of horizontal momentum is zero, so that the momentum equation

reduces to D
D—:+kav+VM:0, (1)

where D/Dt is the horizontal advection operator for a two-dimensional vector field on
a spherical surface with radius a. If the Montgomery potential is evaluated at z = z; we
have

M = gz + 077, (2)

where we used the definition of potential temperature to express the absolute temperature
at the lower boundary in terms of the pressure p. Variables at the upper and lower
boundaries are denoted by the subscripts u and [, respectively, and for ease of notation
and dimensional convenience we introduced the normalized pressure

n=p/pr (3)
An equation for the normalized surface pressure 7, follows from mass conservation:

Dy

— V.v)=0 4
where D /Dt now denotes the horizontal material derivative for a scalar. The significance
of this equation can be appreciated by realizing that the air moves column-wise, with
material upper and lower boundaries, and that the the total mass per unit horizontal
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area is given by (p./g)m in a hydrostatic atmosphere with #,, = 0 as an upper boundary.
The model (1), (2) and (4) forms a closed dynamical model in terms of v, M and ;.
The model is closely analogous to a one-layer shallow water model, to which it actually
reduces by taking k=1 and identifying m;(cp8)/g with the fluid depth H. (Uniform
potential temperature is then equivalent with uniform density.) In fact, in all equations
that follow, we may obtain the shallow-water equivalents by substituting x =1. More
details on the dynamics of an isentropic layer in hydrostatic equilibrium - of which the
present model is a particular case - can be found in Verkley (2000).

(a) Conservation laws of the parent model

When we rewrite the mass conservation equation in flux form we have

om _
5 TV =0 (5)
It then follows immediately that the total mass m is conserved, where m is given by
m= % / dsm. (6)

Here dS = a? cos ¢dAd¢ denotes an area element of the sphere. To investigate the con-
servation of potential vorticity and energy it is convenient to use the following formula
for the material derivative of the horizontal velocity v:

%=g—:+c(k><v)+w%). (7)

The momentum equation can then be written as
g—;’+(f+C)(kxv)+V(M+v%)=0. (8)
By applying the operators k - Vx and V- to the equation above we obtain, respectively,
O V(7 + O] =0, (92)
%—?+V-[(f+€)(kxv)+V(M+%)]:0, (9b)

where ( =k - V x v is the vorticity and D =V - v is the divergence of v. From the vor-
ticity equation (9a) one obtains an equation for the absolute vorticity f + ¢

D
Z(f+O+(F+O(V-v) =0, (10)

and by eliminating the divergence from the mass conservation equation (4) and the
absolute vorticity equation (10) we obtain
DP 0 f+¢

- = P= . 11
Dt ’ 7 ( )

This equation expresses the material conservation of the potential vorticity P. It can
also be checked (see appendix A), using the momentum equation in the form (8) and the
mass conservation equation in the form (5), that we have

0, v-v cpd V-V _
el +9u+ peLl N+ V- [(M+ —=)mv] =0. (12)
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When this equation is integrated globally we obtain the conservation of total energy E,
where E is given by

cpf
k+1

3 ) (13)

vV
E= % / dSmi(—— +gzi +
These are the conservation laws of the parent model that we wish to retain in a balanced
approximation.

(b) Hamilton’s principle for the parent model

The basic idea of Salmon’s approach to balanced flow (1983, 1985, 1988a, 1988b,
1996) is to cast the momentum equation in the form of Hamilton’s principle and to make
approximations in the Lagrangian. To formulate Hamilton’s principle for the momentum
equation of the parent model, Lagrangian column label fields @ and 8 are introduced.
These labels are, by definition, materially conserved. By equating the total mass per unit
horizontal area to the Jacobian of these label fields, i.e., by taking

Dr _ 1 d(a, B)
(?)77! = a2 CQS¢ 8(/\, ¢)’ (14)
where
O(a,B) 0adf Oadp (15)

o\, ¢) ~ OXdp B ON’
we have that the mass conservation equation (5) is satisfied. Indeed, it can be checked
explicitly that (5) follows from (14), (15) and Da/Dt =0 and DB/Dt = 0. Note that the
expressions above imply that the total mass above an area element dS, which is given by

(pr/9)mdS, is given by dadf. Using the column label fields o and 8 Hamilton’s principle
for the parent model can be written as

5 / / / drdadBL =0, (16)

where o 86
L = (u + Qa cos ¢)a cos ¢E +vaE_- —H, (17a)
and (42 4+ 0%) ;
_ W+l Y ok
H= 5 +gzl+n+1nl. (17b)

Here u and v are the zonal and meridional components of the horizontal velocity v. The
variable 7 is equal to the time t, but we note that it has a different role depending on
whether we use (A, ¢,t) as Eulerian independent variables or (e, 8,7) as Lagrangian
independent variables. A partial derivative in the first case is a local time derivative,
whereas in the second case it is a material derivative. In the variational principle (16) the
fields that are varied independently are u, v, A and @, considered as functions of «, 8 and
7. Variations of 4 and v lead to the definitions of the zonal and meridional components
of the horizontal velocity in terms of the material derivatives of A and ¢. Variations of A
and ¢ give the zonal and meridional components of the momentum equation (1). More
details can be found in appendix B.
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3. THE BALANCED MODEL

A Hamiltonian balanced approximation of the momentum equation is obtained by
substituting for 4 and v the zonal and meridional components u; and v of a balanced
velocity v,. Here ‘balanced’ is meant to denote any relation between wind field and
mass field that eliminates gravity waves. As u, and v, are functions of A and ¢, the
only variations to be considered are variations of A and ¢. For the balanced velocity we
choose:

Vp = k x V'labb) (18)

where k is a vertical unit vector and 1 is the streamfunction of the balanced flow. The
balanced streamfunction is related to the Montgomery potential by

M =M+ fiy, (19)

where f is the Coriolis parameter and M is the value of the Montgomery potential
at the state of rest. Expressions (18) and (19 are a simplification of ‘linear balance’
which Daley (1983) calls the simplest form of the geostrophic relationship. We note that
(19) implies that the balanced streamfunction at the state of rest must be identicallly
zero and that M must behave smoothly at the equator. Because the balanced velocity
is nondivergent, there is no net balanced transport of air over any latitude circle, in
particular over the equator. ‘Classic’ geostrophy, however, is more restrictive: it implies
that the meridional wind velocity is zero at the equator. When (18) and (19) are combined
we get vy =k x Vf~1(M — M). If f were constant this would be equivalent with vy =
k x f~'V M, the expression for ‘classic’ geostrophic balance. However, when f does vary
- in particular when it goes to zero at the equator - it makes much difference whether the
factor f~1 is placed in front or after the gradient operator. Indeed, by calculating the
divergence of the latter expression we readily verify that we have: v, = —a tan ¢ (V - vy).
Because the divergence of any velocity field should be finite, this expression implies
that v, =0 at ¢ =0. So, ‘classic’ geostrophic balance forces the equator to be a rigid
impenetrable barrier between the hemispheres. As this is observationally unacceptable,
‘classic’ geostrophic balance - although a more obvious choice at first sight - does not
suit our purpose.

(@) Hamilton’s principle for the balanced model
An equation for the time-dependence of the balanced velocity follows from Hamil-

ton’s principle:
6///d7'dad,6£b:0, (20)

where o 06
Ly = (up + Qa cos ¢)a cos an—T + vag = Hs, (21a)

(’U,% + vl?) Cpo K
Hy = 5 +97z + P (21Db)

Calculating the variations with respect to A and ¢ in (20) is a tedious task (for details
we refer to appendix B). The result, however, is quite transparant and the variations
with respect to A and ¢ lead to the zonal and meridional components of the following
momentum equation:
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DI’;:” + fk X vy + VM+
(f + &)k x va + VI(&f) k- V x (mva)] =0. (22)

Here D, /Dt is the material derivative in which v and v are replaced by wu; and wvp.
The velocity v, is the unbalanced velocity defined by v, =v — v, where v is the true
velocity in terms of material derivatives of A and ¢. We furthermore introduced, for ease

of notation,
11—k

g=1 (23)

Kcpf

The subscript [ means, as usual, that the field has to be evaluated at the lower boundary.
When compared with the momentum equation (1) of the parent model we see that two
additional terms have arisen: an extra Coriolis term and an extra gradient term, both
of which are zero if the unbalanced velocity is zero. When the unbalanced velocity is
nonzero, these terms are needed for potential vorticity and energy conservation.

(b) The unbalanced velocity

The unbalanced velocity can be obtained from the balanced fields by a diagnostic
relation. This relation is obtained by first using (7) for the material derivative of the
balanced velocity (with v replaced by v;) to rewrite the momentum equation as

ov

T+ )k x V)t
Vp -V _

L 6 f) e Y x (mva)] = . (29
We then use the definition of the balanced velocity (18) and (19), in combination with
expression (2) for M and the mass conservation equation (5) to obtain

8Vb

5 = "kxVI@nHTv - )] (25)

By eliminating 8v, /8t from both equations we find:
—k x V[(&f)'V - mv)]+ (f + &) (k x v)+

VT @)k V x (mva)] = 6, (26)

which is the desired expression. To find a practical way to obtain the unbalanced ve-
locity from this expression, we note that the first term on the left-hand side of (26) is
divergenceless and that the third term is rotationless. By applying the Helmholtz decom-
position to the middle term and using the vector identity k- V x A =—-V - (k x A), we
observe that (26) is equivalent with the following pair of scalar equations:

(Gf)'V  (mv) = VAV [(f + G)V] =0, (27a)

V7Y [(f + ) (k x V)] + fay + "”é"” + (&) k- V x (va) =0. (27b)

To obtain these expressions we assumed that the result should also be valid at the state of
rest, where v =0 and M = M. We also used that M = M + fi), and defined the inverse
of the Laplacian to have a zero average. If we write v = v}, + v,, multiply by & f, use the
balanced potential vorticity defined in (33) and carry out some rearranging, we can put
these equations in the form:

VIM +

VIM +
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V- (mva) =&V - [Pymva] = Sy, (28a)

k-V X (mva) + &fV72V.- [Pk X miva] = Sy, (28b)
where the terms S, and Sy are defined by
Sy ==V - (mvs) + &f V2V - [(f + G&)vsl, (29a)
Vp * Vp

Sy =—&f(fihs + ) = &fV TV - [(f + ) (k x vp)]. (29b)

If we finally use the Helmholtz decomposition of n;v,,

Mmve =k X Vi, + Vx,, (30)

we can write ’ , ,
V2Xa - glfv_2V . [Pb(vXa + k x v¢a)] = SXa (313')
V24, — &f V2V - [Py(Vih, — k X Vx,)] = Sy. (31b)

This is a linear system of equations that one can solve for Xla and ’t/);. By dividing (30)
by n; and again applying an Helmholtz decomposition, we can obtain the fields ¢, and
Xq Of the Helmholtz decomposition of the unbalanced velocity itself.

(¢) Conservation laws of the balanced model

Salmon’s Hamiltonian approach guarantees that both energy and potential vorticity
conservation have their counterparts in the balanced model. Mass remains to be conserved
because the mass conservation equation (4) is part of the balanced model. The material
conservation of balanced potential vorticity can be verified easily. From the momentum
equation in the form (24) we can obtain an equation for the balanced absolute vorticity
by operating with k - Vx on this equation:

D+ e v =0 (32)

This equation can be combined, in the usual way, with the mass conservation equation
(4) to give the material conservation of the balanced potential vorticity,
DPy f+6

—:Oa B =

Dt m (33)

Concerning energy conservation, it is shown in appendix A that we have the following
counterpart of the local energy conservation law (12)

15) . 9 .
E[’m(Vbz‘Ib + gz + chi 117f] +V- [(M + Vb2Vb )mv]+
V(&) k- V x (mva) mv + (&) 7"V - (mv) k x mva] = 0. (34)

Integrated over the whole sphere, this equation implies that

Pr Vb * Vp ¢yl
Ey=— | dS P
b g/ m( 3 +gzl+n+1

) (35)

is conserved. The quantity Ej will be called the balanced energy.
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4. TIME INTEGRATION OF THE BALANCED MODEL

In the balanced model we have three prognostic scalar equations: Eq. (4) for the
normalized surface pressure, Eq. (32) for the balanced absolute vorticity and Eq. (33) for
the balanced potential vorticity. In the balanced model (subject to a particular condition)
each one of these equations implies the validity of the others. To show this, note that
from expression (2) of the Montgomery potential and expressions (18) and (19) of the
balance relationship, in addition to the fact that ¢, = V21, we obtain

@I w204 )= (36)
This equation can be combined with (27a) to give:
N4V )] - VLG V(G =0. 6D)

From this equation we observe that in the balanced model the validity of the equation
for the normalized surface pressure implies the validity of the equation for the balanced
absolute vorticity and vice versa. As we have just seen, the two equations together imply
the material conservation of balanced potential vorticty. On the other hand, from the
material conservation of balanced potential vorticity it can be deduced that

Py [%’1’ + V- (qv)] - [%(f+cb)+V-((f+Cb)V)] =0. (38)

Combining (37) and (38) we can derive that

l-&fv~ 2Pb][ + V- (mv)] =0, (39a)

1- §lbeV_2][E(f + )+ V- ((f +¢)v)] =0. (39b)

(Note that in the first of the resulting expressions the inverse Laplacian is assumed to
be applied to the product of P, and the expression that follows.) So, in the balanced
model the material conservation of balanced potential vorticity implies the conservation
of mass as well as balanced absolute vorticity under the condition that the operators
between square brackets are invertible. This is interesting from the viewpoint of time
stepping, because it allows one to use either the mass conservation equation, the balanced
absolute vorticity equation or the balanced potential vorticity equation to step the model
forward in time. Time stepping in terms of the normalized surface pressure confronts us
with the difficulty of finding v from 7; because one has to divide by f. Although not
impossible, it means that extra smoothness conditions on M have to be maintained.
Time stepping in terms of the balanced absolute vorticity avoids this difficulty because
the streamfunction can then be readily obtained by inverting the Laplacian and finding
the normalized surface pressure only involves a multiplication with f. We will, however,
choose the third possibility because advection as the basic time stepping process allows
the use of Lagrangian or semi-Lagrangian integration procedures which offer the best
perspectives for a fast performance of the model.

So we will step the model forward in time by advecting the balanced potential
vorticity P, with the full velocity v = vy + v,. We will now describe in more detail how -
if such a time-step is made - the new velocity v can be obtained from the new potential
vorticity Py. Rewriting the definition of the potential vorticity we have

V2 = Py — f. (40)
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For 7, we have, combining (2) and (19),

m= (LB =gy (4)
so that _
V2 = pb(W)l/n —f (42)

cpf

This is a nonlinear equation that relates v to Py. The value M is the value of the Mont-
gomery potential at the state of rest. From the definition of the Montgomery potential
we see that the state of rest is characterized by the following normalized surface pressure
distribution:

M — gz

e (43)

= (
Now, if we use that the total mass m of the atmosphere is a given constant the expression
above fixes M in terms of m because we have

=%/dsm =%/hd5ﬁ, /dS M- gz’)l/” (44)

In the numerical simulation to be discussed we start from the state of rest, where 7;
is given by (43) with M =c,0. It is ensured in the integration that the mass does not
change in time, so that M is and remains equal to c,f.

The conditions under which (42) is formally solvable have not been investigated
in detail. Experience has shown that an iteration procedure always leads to a solution.
Furthermore, the resulting solution is unique to the extent that different first guesses
do not lead to substantially different solutions. The iteration procedure, as actually im-
plemented, starts with 1, =0 as a first guess on the right-hand side of (42). Then )
on the left-hand side is obtained by inverting the Laplace operator; subsequently 1y is
updated by adding a fraction r of the difference between this and the previous field to
1y, after which the result is substituted back in the right-hand side of (42). We then
again invert the Laplacian, etc., and continue the procedure until the required accuracy
is obtained. From the resulting streamfunction ), the fields (, vy, 7y and M can be
obtained straightforwardly.

Having obtained the balanced flow variables we may solve equations (31) to deter-
mine the unbalanced velocity v,. We note that without the second terms on the left-hand
side the system (31) consists of two uncoupled Poisson equations that are readily solv-
able. It is not clear whether the system is formally solvable if these terms are present but
also here experience has shown that an iterative procedure always leads to a solution that
is apparently unique. As first guesses for 1,[); and x; we take the fields that result from
solving (31) without the second terms on the left-hand side and with S, = —V - (gv)

and Sy = 0. So the first guesses of x,, and 1, satisfy

V2Xa + V- (mvs) =0, (45a)

V2, =0. (45b)

In the iteration procedure, the second terms on the left-hand side of (31) are treated as
source terms 1n which fields ¢ and Xa from the previous iteration are substituted. The
new 1/) and xa are obtained by inverting the corresponding Laplacians, as in (42), after
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which the fields-are updated by adding a fraction r of the difference between the new
fields and the previous fields. The procedure is repeated as many times as is considered
necessary to get the required accuracy.

5. NUMERICAL INTEGRATIONS

To have a reference against which the balanced model can be tested, we performed
a long numerical integration of a spectral implementation of the parent model. Within
this period a shorter period was selected during which cyclogenesis took place. We will
check to what extent the balanced model is able to predict this phenomenon from an
earlier initial state.

We first give some details on the spectral method that is used. We recall that the
parent model is originally given by the momentum equation (1), expression (2) for the
Montgomery potential and the mass conservation equation (4). The velocity field v is
Helmholtz decomposed in terms of a divergenceless and a rotationless part, v =k x Vi +
Vx, where the streamfunction 1 and the velocity potential x are related to the vorticity
¢ and the divergence D by V29 =( and V?y = D. Instead of the momentum equation
we use equations (9) for the relative vorticity and the divergence. We furthermore use
the mass conservation equation in the form (5) and expression (2) for the Montgomery
potential. The parent model is thus formulated in terms of the scalar fields ¢, D, n; and
M. In the numerical integration we will make use of 27! and a as the units of time and
length, respectively.

The scalar fields will be represented by spherical harmonics Yy, (A, ¢), where m
and n are integers with n > |m|. The spherical harmonics are normalized such that they
are orthonormal with respect to the usual inner product < ¢, x >=1/(4r) [ dSy*x for
functions ¢ and x on a sphere, where the asterisk denotes complex conjugation and
the integral is over the whole sphere. We will use a triangular 742 truncation, i.e., we
use all spherical harmonics up to n = 42. Spherical harmonics are eigenfunctions of the
Laplace operator with eigenvalues —n(n + 1), so that V2% and its inverse V~2¢ can be
represented easily and exactly in terms of a diagonal matrix. The other operators are
approximated by applying the operator on a Gaussian grid (equidistant in A, Gaussian
quadrature points for sin ¢) and projecting the result on Y, by a summation over this
grid. These operators are k- Vi) x Vx, Vi - Vx, ¥x, ¥/x and ¥*, where p is positive
real number. All operators encountered (also in the context of the balanced model) can be
- and are actually - reduced to one of the operators mentioned above. We use a Gaussian
grid of 128 x 64 points, as a result of which the projection is exact for the operators
k- -V x Vyx, V¢ - Vx and ¥x. For more details on the spectral method for a sphere we
refer to Machenhauer (1979).

(a) A numerical integration of the parent model

Using a fourth-order Runge-Kutta time-stepping scheme with a time-step of 5 min-
utes we integrate the model in time for a total period of 500 days. To suppress the
emergence of spurious small-scale structures at the truncation limit we add a hyper-
viscosity term to both equations (9). More specifically, the evolution equations for the
relative vorticity and the divergence become

o¢

5 TV I(F+OVI+ Tl—hv”c =0, (462)

VOl +VOrs s T =0, (e
Th
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where 73, is chosen such that the spectral coefficients of ¢ and D with n = 42 are damped
with an e-folding time of 3 hours. In order to spin up the model it is furthermore forced
to a zonal surface pressure distribution nl'f . The mass conservation equation (5) therefore
becomes

onu

1 £y _
5 + V- [mv] + ;(m —1n/)=0, (47)

where the e-folding time 74 is 15 days and the surface pressure distribution nlf is given
by

1
nlf (¢) = af + B [cos 2¢(sin? 24 + 2) — % . (48)
Here o is the mean value of the pressure distribution and A7 the strength of its merid-

ional variation. For the parameters af and 87 we have taken 0.97482 and 0.05, respec-
tively. A graph of nlf as a function of ¢ is given in Fig. 2a.

Figure 2. (a) Graph of nif to which the normalized surface pressure distribution 7; of the parent model

is forced in the numerical simulation. (b) The field gz; in units of a2Q? in the 742 trunctation of the

spectral model. The contour interval is 0.03 with the zero contour deleted. The maximum values at

Greenland, the Rocky Mountains, the Andes, Antarctica and the Himalayas are 0.12, 0.09, 0.15, 0.15
and 0.27, respectively.

The initial state of the integration is the state of rest with { =0, D = 0 and 7; given
by (43), with M = c,0. Note that with this choice the pressure field 7; at the state of
rest has the value 1 at z; = 0. The total mass of the atmosphere follows from (44). For
the field z; we use the T42 representation of the earth’s orography. A plot of gz in units
of a?Q? is shown in Fig. 2b. With ¢, = 1005JK kg™, R =287.04JK 'kg~! (values
taken from Dutton (1986, Appendix 3)) and 6 = 300K, we have £ = R/cp, = 0.28561 and
cpf =1.39694 a®>Q?. The mean value of #; is 0.97482; this is the value taken for af in
expression (48). As a result, the forcing to the prescribed surface pressure, expressed by
(47), does not change the total mass of the model atmosphere and therefore not the value
of M which thus remains c,f.

In the period from 83 to 93 days after the start of the integration a cyclogenesis
process occurs as a result of interaction with the orography. We will concentrate on this
period. To obtain a reference integration which is as close as possible to an inviscid
integration we rerun the model for 10 days from day 83 with the forcing term in the
mass conservation equation turned off. (The hyperviscosity term was retained in order
to suppress small-scale structures.) The potential vorticity P and the velocity field v are
shown in Fig. 3 at 6 times in this period of ten days: at 0, 2, 4, 6, 8 and 10 days after
the rerun from day 83. The potential vorticity is calculated by evaluating the quotient of
f + ¢ and 7, on the Gaussian grid and projecting the result back to 742 by a summation
over the grid - as with the other nonlinear operators. The differences between the original
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Figure 3. Results of the numerical integration of the parent model after 0, 2, 4, 6, 8 and 10 days - (a),
(b), (c), (d), (e) and (f), respectively - from the start of the rerun, initialized with the fields after 83
days of the original integration. The rerun differs from the original integration in that the forcing to
the prescribed zonal pressure distribution is turned off. The results are displayed in terms of potential
vorticity (colours) and velocity (arrows). Here and in other plots of a similar type, the potential vorticity
is plotted on a regular longitude-latitude grid of 128 x 64 points; the velocity vectors are displayed on
the same type of grid but with 32 x 16 points. The contour interval in the plots of potential vorticity is
0.5; the values from -3.0 to -2.5 are coloured deep blue, the values from -2.5 to 2.0 somewhat lighter blue,
etc., until the values from -0.5 to 0 that are coloured white; then the values from 0 to 0.5 are coloured
light yellow, the values from 0.5 to 1.0 somewhat darker yellow, etc., until the values from 2.5 to 3.0
that are coloured deep red. This particular period was chosen because of the cyclogenesis process that
occured within this period, leading to a cyclone at 90° West and 45° North around day 8.

simulation are not very large, except that in the original simulation the vortices that form
in the process of wave breaking are dissipated somewhat faster. The cyclogenesis process
manifests itself in the pinching off of potential vorticity around day 8. In Fig. 4 we show
the other fields at day 0: (a) the relative vorticity ¢, (b) the streamfunction ¥, (c) the
divergence D, (d) the velocity potential x, (e) the normalized surface pressure 7, and (f)
the Montgomery potential M. We see that the divergence is an order of magnitude smaller
than the relative vorticity. We also see that the relative vorticity has concentrated into
well-defined bands (with corresponding jets), in particular at the Northern Hemisphere.
The divergence is concentrated around the extrema in the orography.

(b) A numerical integration of the balanced model
The balanced model is governed by the advection of balanced potential vorticity,
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Figure 4. The other fields at day 0 of the model run of which the potential vorticity and velocity
are shown in Fig. 3. In (a), (b), (c), etc. we show the relative vorticity ¢ (x10), the streamfunction ¢
(x1000), the divergence D (x10), the velocity potential x (x1000), the normalized surface pressure 7;
and the Montgomery potential M. The convention here and in other plots of a similar type is that solid
isolines denote positive values and dashed isolines denote negative values. Note that the relative vorticity
- in particular in the Northern Hemisphere - has concentrated into a well-defined band, and that the
divergence is an order of magnitude smaller than the relative vorticity. The divergence is largest around
high values of the orography.

as expressed by (33). We recall that this equation is based on the combination of the
equations for the normalized surface pressure and the balanced absolute vorticity. When
we add the forcing term to the equation for the normalized surface pressure and the
hyperviscosity term to the equation for the balanced absolute vorticity (the V12 operator
acting on the balanced relative vorticity), then we may again combine these equations
into an equation for the balanced potential vorticity. This equation then becomes (writing

out the material derivative)

%?;uv.vp,,:s, (49)

where the source term § is given by
1, 1 ;
mS =—=V>G+ —Py(m —n}). (50)
Th Tf

We have seen earlier that in the balanced model - without forcing or damping - the
validity of the potential vorticity equation implies the validity of the normalized pressure
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equation and the balanced absolute vorticity equation. This is now no longer the case
in the sense that (49) does not imply the original equations for the normalized pressure
and the vorticity, but instead (compare with (39))

[1-6fVRIGE + V- ()] =6V ns, an

1= &f AV +G) + V- ((f + GV =S, (51b)

In the integration to be discussed we used (49) and (50) in which we have put the second
term in the forcing S equal to zero.

90N

Figure 5. The balanced flow fields obtained from the potential vorticity as shown in Fig. 3a. In (a),
(b), (c) and (d) we show the relative vorticity ¢, (x10), the streamfunction 1, (x1000), the normalized
surface pressure 77; and the Montgomery potential M.

Before discussing the result of the integration we will consider how well the bal-
ancing procedure is able to recover the fields as displayed in Fig. 4 from the potential
vorticity field at day 0 (shown in Fig. 3a and identified with F;). We begin by discussing
the balanced fields. The balanced streamfunction v, is calculated from (42) using the
iteration procedure that is described in section 4. The iteration procedure is stopped if
the norm (the square root of the inner product) of the update becomes smaller than 0.5
percent of the norm of the present field. With a relaxation factor r = 0.3 - an optimal
value - the procedure finished after 14 iterations. The result is shown in Fig. 5, where (a),
(b), (c) and (d) are ¢y, ¥», 7 and M. We recall that M is calculated from 1), using (19)
- with M = c,0 - whereas 7, is calculated from M using (2). When we compare Figs. 5a,
5b, 5¢c and 5d with Figs. 4a, 4b, 4e and 4f, respectively, we see that the fields obtained
from P, are close to their original counterparts.

By definition the balanced flow has zero divergence. The divergence field is obtained
by solving (31) for the unbalanced part of the flow, using the method outlined in the
previous section. We use a relaxation factor r = 0.5 and stop the iteration when the norms
of both updates are smaller than 0.5 percent of the norms of the corresponding fields.
The procedure needed 8 iterations to reach this criterium. From the fields Q,b; and X; we
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Figure 6. The unbalanced flow fields obtained from the potential vorticity as shown in Fig. 3a. In (a),
(b), (c) and (d) we show the relative vorticity ¢, (X10), the streamfunction ¢, (x1000), the divergence
Da (x10) and the velocity potential x, (x1000).

obtain 1, and x, using the method outlined after (31). The divergence field is given by
Dy = V2x,. The result is shown in Fig. 6, where (a), (b), (c), and (d) are {, = V%4, ¥a,
D, = V?x, and X,. By comparing Fig. 6c and 6d with Fig. 4c and 4d we see that the
divergence field is also recovered well.

To summarize: the panels (c) and (d) of Fig. 5 show the reconstruction of the fields
n and M, respectively, and should be compared with the panels (e) and (f) of Fig. 4. The
panels (c) and (d) of Fig. 6 show the reconstruction of the fields D and yx, respectively,
and are to be compared with (c) and (d) of Fig. 4. The panels (a) and (b) of Fig. 6 show
the unbalanced contributions to the fields ¢ and v of which the balanced contributions
are shown in the panels (a) and (b) of Fig. 5. For completeness we give the sum of
the balanced and unbalanced contributions to { and % in the panels (a) and (b) of
Fig. 7. The resemblance with the original fields, displayed in the panels (a) and (b) of
Fig. 4, improves somewhat. However, a more detailed analysis shows that the relative
vorticity field both slightly improves and deteriorates, depending on the position. The
streamfunction, though, generally improves in the sense that the difference with the
original field is reduced by more than 50 percent. Fig. 8 shows how well the velocity field
v of the numerical integration.is recovered by v, and v,. In Fig. 8a we show v — v;. We
see that the balanced velocity field gives a reasonable approximation to v, apart from
the equatorial region and the regions with high values of the orography. It is here that
the unbalanced velocity field helps to improve the resemblance, as can be seen from Fig,.
8b, where we show v — v, — v,.

From the potential vorticity P at day 0, identified with the balanced potential vor-
ticity Pp, we have integrated our balanced model forward in time for 10 days. The results
are very close to the results displayed in Fig. 3. Instead of showing the results in the for-
mat of Fig. 3, we show the result at day 10 and the difference with the parent integration
at day 10 in Figs. 9a and 9b, respectively. The maximum absolute value of the difference
between the potential vorticity of the balanced model and the potential vorticity of the
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Figure 7. The sum of the balanced and unbalanced contribution to (a) the relative vorticity and (b)
the streamfunction, i.e. in (a) the field ¢, + (o is displayed and in (b) the field ¥p + 9q.

90N , : : 90N
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Figure 8. (a) The difference v — v, between the velocity field of Fig. 3a and the balanced velocity field
as obtained from the corresponding potential vorticity field. (b) The difference v — vy — vq.

parent model is around 0.5, about 20 percent of the maximum value of the latter field.
For the velocity field the maximum absolute value of the difference is around 15 ms™1,
again about 20 percent of the maximum value of the latter field. In order to see to which
extent the unbalanced velocity is important in this respect, we have repeated the inte-
gration with the unbalanced velocity v, put to zero. The results are given in Figs. 9¢c and
9d. The maximum absolute values of the difference in potential vorticity and velocity
are now around 1.5 and 35 ms™!, respectively, i.e. about 50 percent of the maximum
values of the parent fields. So, inclusion of the unbalanced velocity is essential for the
performance of the model.

To give an idea of how the differences between parent integration and the two bal-
anced integrations evolve in time we show in Fig. 10 as a function of time the following
mean squared differences:

— 1 2
Dpc,p— ar /dS(Pc P) ’ (52&)

_ 1 2
Dy =7 / dS(ve — V)2, (52b)

where the unsubscripted fields refer to the parent model and the fields with a subscript
c refer to the two balanced models. Using partial integration and the inner product we
can write

Dp,p=<P,—P,P,— P>, (532)

DVc,V:_<1/)C_¢;CC—C>—<XC_X,DC—D>, (53b)
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Figure 9. (a) The result at day 10 of the integration with the balanced model. The result is shown in

terms of potential vorticity (colours) and velocity (arrows). In (b) the difference is shown between this

end state and the end state of the parent integration, again in terms of potential vorticity (colours) and

velocity (arrows). In (c) and (d) the results are shown for a balanced integration in which the unbalanced
velocity is put to zero. The plotting conventions are the same as in Fig. 3

which expressions were used in the actual computations. Notice that P, is always equal to
Py, but v, = v + v, in the full balanced integration whereas v, = v, in the integration
with zero unbalanced velocity. In Fig. 10a we show the value of Dp_ p as function of time
for the two different models. The graph denoted by ‘a’ refers to the full balanced model;
the graph denoted by ‘b’ refers to the balanced model with zero unbalanced velocity. We
see that the diferences are very substantial, in particular at the end of the integration
period. The same behaviour can be seen in a graph of Dy_ . as a function of time, shown
in Fig. 10b. The graphs denoted by ‘@’ and ‘b’ refer to the same models as before and
show the same kind of differences. Note that the graphs differ already at ¢ =0 because
the unbalanced velocity is not included in the second case.

a b
0.09 ——— 0.0008 ——
a— a ——
)bl lbl
0.0006
0.06 JN
// 0.0004
0.03 /
0.0002
// ] / -
0.00 0.0000
0 2 4 6 8 10 0 2 4 6 8 10

Figure 10. (a) The value of the mean squared differences Dp_ p and (b) Dy, ,v as a function of time (in

days) for the two balanced models that we consider. The graphs labelled by ‘a’ refers to the full balanced

model; the graphs labelled by ‘b’ to the balanced model with zero unbalanced velocity. The graphs are
based on data every 6 hours of simulated time, i.e., on 41 datapoints.
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6. SUMMARY AND DISCUSSION

Salmon’s method (Salmon, 1983, 1985, 1988a, 1988b, 1996) of constructing balanced
approximations of geophysical fluid systems guarantees the existence of conservation laws
that correspond to the conservation laws of the original (parent) systems. In the present
paper Salmon’s method is applied to a one-layer isentropic model of the atmosphere.
Although very idealized, this is a physically consistent simplification of the atmosphere,
i.e., a simplified but exact solution of the inviscid hydrostatic primitive equations. As
discussed in section 2, the model is analogous to a one-layer shallow-water model and is
governed by an equation for the time-change of horizontal momentum (1), an equation
relating the Montgomery potential to the surface pressure (2) and an equation for the
conservation. of mass (4). Besides mass the model conserves potential vorticity and en-
ergy. Following Salmon, we derive in section 3 a balanced approximation of this model
by formulating the momentum equation in terms of Hamilton’s principle and then sub-
stituting a balanced velocity field into the Lagrangian. The balanced velocity field that
is chosen, given by (18) and (19), is a simplification of ‘linear balance’. This velocity
field, vy =k x Vf~1(M — M), behaves acceptably on the whole sphere, in contrast with
‘classic’ geostrophy, vy =k x f~1V M, which forces the equator to be an impenetrable
barrier between the hemispheres. Application of Hamilton’s principle leads to a balanced
approximation (22) of the horizontal momentum equation. Combined with the original
mass conservation equation it gives a diagnostic equation (26) for the unbalanced velocity
field v,. This equation can be transformed into two scalar equations (31). It is checked
that the balanced model respects analogues of the conservation of potential vorticity and
energy. Mass conservation is, by construction, incorporated in the balanced model.

The central results of this paper are (22), the balanced approximation of the mo-
mentum equation (1), and the set of equations (30)-(31) that determine the unbalanced
velocity. The balanced model that we have obtained can be compared with other bal-
anced models by considering the last term on the left-hand side of (22). If this term
is zero, one obtains the ‘geostrophic vorticity’ approximation discussed - among many
other approximations - by Allen et al. (1990a, 1990b) and Barth et al. (1990). It has
many properties in common with our approximation although it has not been proved
that an energy invariant exists. If ‘classic’ geostrophic balance had been used, the last
term on the left-hand side of (22) would have been

V[ k- V X (mf 7 va). (54)

The difference concerns the position of the factor f~!. The same holds for (25) where
the factor f~! would have appeared in front of the gradient operator. The resulting
equation (26) would, of course, reflect these changes. We note that transforming this
vector equation into scalar equations is now more involved because the first term on
the left-hand side is no longer divergenceless. The most widely used alternative with
which any balance approximation needs to be compared is the ‘geostrophic momentum
approximation’ (Hoskins, 1975). In this case the last term on the left-hand side of (22)
would have been, as can be easily verified from Eqs. (10) of the latter reference,

vy - Vv — Gk X v,. (55)

In Hoskins’ (1975) formulation v, is given by ‘classic’ geostrophic balance. Also here,
it is quite difficult to obtain the unbalanced velocity. To solve this problem Hoskins
(1975) introduced a coordinate transformation such that fluid particles move with the
geostrophic velocity. In an f-plane context this has been a very fruitful approach, allowing



20 W.T.M. VERKLEY

solutions of many important problems. Generalizing these semi-geostrophic equations to
spherical geometry, however, meets with the mentioned problem of ‘classic’ geostrophy, in
addition to the fact that for a variable Coriolis parameter the coordinate transformation
is not trivial. It is the author’s opinion that, despite notable attempts to solve these
problems (Shutts, 1989, Magnusdottir and Schubert, 1990, 1991, Mawson and Cullen,
1992 and Mawson, 1996), a completely satisfying solution has not been found yet. On an
f-plane ‘classic’ geostrophic balance is identical to the approximation of linear balance
that we have used. In this case the dynamics of the balanced model is the isentropic
generalisation of Salmon’s L;-dynamics. The performance of Salmon’s L;-dynamics in
comparison with other approximations is investigated very thoroughly for shallow-water
flow on an f-plane by Allen et al. (1990a, 1990b) and Barth et al. (1990). Many references
to related work can be found there.

In section 4 we discuss how the balanced model that we developed can be integrated
forward in time. We take the material conservation of balanced potential vorticity as the
basic prognostic equation. The surface pressure and balanced velocity can be obtained
by solving a nonlinear equation relating the balanced potential vorticity to the balanced
streamfunction. It is pointed out how this equation and the equation for the unbalanced
velocity can be solved by iteration. To produce a benchmark against which the balanced
model can be tested we discuss in section 5 a long integration with a forced and damped
spectral implementation of the parent model. Within this period we select a shorter
period of 10 days in which cyclogenesis occurs as a result of interaction with the model’s
orography. This period is rerun with the unforced and undamped parent model and taken
as a reference. The result, in terms of potential vorticity and velocity fields, is shown in
Fig. 3. We investigate, for the initial state, how well the underlying basic fields can be
reconstructed from the potential vorticity. In this context Fig. 8 is of particular interest;
this figure shows how well the velocity field is reconstructed from the potential vorticity.
The figure shows that the unbalanced velocity field is important around the equator and
close to high values of the orography. We then discuss a 10 day integration with the
balanced model. The results are summarized in Fig. 9. The balanced integration stays
close to the parent integration as can be seen from Figs. 9a and 9b. The differences at
day 10 are of the order of 20 percent of the maximum values of the fields in the parent
integration. Figs. 9c and 9d show that the unbalanced velocity is crucial in maintaining
this degree of accuracy. This is shown in a different manner in Fig. 10.

With a time step of 2 hours the balanced model in its present state of numerical
sophistication is about as fast as the parent model when in the parent model a time step
of 15 minutes is used. The latter value might possibly be taken somewhat larger but
not larger than 30 minutes as the model becomes numerically unstable in that case. The
question arises whether the balanced model as developed here is an attractive alternative
for the parent model. The answer depends on the accuracy that is required. For numerical
weather prediction high accuracy is important as local weather conditions are closely tied
to the details of the flow. On the other hand, for climate simulations these details matter
less as long as the relevant statistics are reproduced with sufficient accuracy (Opsteegh
et al., 1998). If balanced models of the type discussed in the present paper are accurate
enough for a given purpose, they have an advantage over primitive equation models
in that the state of the atmosphere is at any time completely given in terms of the
potential vorticity field. This makes it easier to grasp the model’s dynamics (Hoskins
et al., 1985). Furthermore, as the basic prognostic equation is advection of balanced
potential vorticity the contour-advective semi-Lagrangian (CASL) algorithm developed
by Dritschel and Ambaum (1997) could be used to step such models forward in time.
Because in this algorithm the potential vorticity is advected using contour advection
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while the inversion of potential vorticity is carried out in an Eulerian framework, the
algorithm combines advective accuracy with computational efficiency. When the balanced
procedure as developed here is extended to a multilayer isentropic model, a balanced
Lagrangian weather prediction model comes in sight. If the efficiency of the inversion
could be improved - and this seems certainly possible - such a model could be of much
use in assisting the forecaster in monitoring the numerical weather prediction process
and understanding the structure and evolution of weather systems.

ACKNOWLEDGEMENTS

I would like to thank my collegues drs. U. Achatz, R.J. Haarsma, J.D. Opsteegh,
F.M. Selten and R.R. Trieling of the Section Predictability Research for reading and
critizing earlier versions of the manuscript. Many thanks are also due to drs. M.H.P.
Ambaum and E.C. Neven and to Mr. W. Lablans whose suggestions and criticism were
very helpful in giving the manuscript its present form. Finally, several anonymous referees
gave constructive criticism that was useful in placing the work in a proper perspective.

APPENDIX A
Details on energy conservation
In this appendix we give a few details on how energy conservation can be proved in
the parent model as well as in the balanced model.
(a) The parent model

To derive (12) it is convenient to use the definition of H as given in (17b) and
repeated here for convenience:

Vv [
7{——2 +gzl+n+1nl. (A1)
‘We first note that we have
1) . v-v., On ov
M) =M+ —=) 5 +mv- o (A.2)

The partial time derivative of v is given by (8) and the partial time derivative of 7, by
(5). Substituting these expressions gives

2 ) =~ + )9 - () -
v - [(f + Ok x v) + V(M + 5], (A.3)

Using the product rule for the divergence operator to rewrite the first part in the expres-
sion at the right-hand side and deleting cancelling and zero terms, we obtain

o) =~V - [(M + S ), (A9

which is equivalent with (12).
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(b) The balanced model

To verify the conservation of balanced energy it is convenient to make use of the
field H; defined in (21b), which definition is repeated here:

_Vb-Vb cp9 5 A5
Hpy = 5 +gzl+/<,+1n" (A.5)

We begin by noting that

2 ) = (o1 + (A6)

OO ERANA)
2 70t ot
Upon substituting (5) and (24) for the partial time derivatives of n; and v,, we get

2 ) = (M + 22 - (i)~
mvs - {(f + )k x v) + VIM + 22 4 (65)7k -V x (mva)]}- (A7)

2

Using the product rule for the divergence operator to rewrite the first part in the expres-
sion on the right-hand side, writing v, = v — v, in the factor in front of the second term
of this expression and deleting cancelling and zero terms, we obtain

2 () =~ [0 + Y ] = v - V1) eV x (vl
m%4g+@&xw+vw+vg“+@ﬁ4kvawm. (A.8)

Using the same product rule in the second term on the right-hand side of the expression
above we get

Vi - Vp
2

(&) "'k -V x (qva)]V - (v)+

9 mHy) =~V - [(M +

a( +(&f) 'k V x (qva))mv]+

Vp - Vp

5 + (&) 7k -V x (mva)]} (A.9)

For the second term on the right-hand side of this expression we have:
[(6f) k- V x (mva)]V - (mv) =

—V - [(&f)™'V - (mv) k x qve] — {k x V(& )7V - (qv)]} - miva. (A.10)

This enables us to write

mva - {(f + )k x v) + V[M +

o .
a7 (M) = =V - [(M + 2]

=V (&) k- V x (mvae) mv + (GF) IV - (mv) k x v+
mVa - {=k X V&)V - (uv)] + (F + G) (k x v)+

V[M + V”év”

+ (&) k- V x (mva)]} (A.11)
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Now, according to (26) - which equation determines the unbalanced velocity v, - the
second factor in the last term of this equation is zero so that we have

0 _ ViV
a(mrﬂb)=—v'[(M+ b2 ®ymv]

=V (&) 7k -V x (mva) mv + (&) 7V - (mv) k x mva]. (A12)
which equation is identical with (34).

APPENDIX B
Details on the variational analysis
In this appendix we will clarify some of the steps in the variational procedure. We
first note that taking variations and performing partial differentiations with respect to

T, a or 3 are commuting operations. We will furthermore make extensive use of partial
integration with respect to 7, @ and 8. In particular we will frequently use the following

identities 5 , ,
(a_qﬁ)xz_”’(% * ?TX)’ (B.1a)
30~ V8(0p) t B, B) (B.1b)

When integrating over 7, & and 3 it is assumed that all fields (including the variations)
are either periodic or have zero values at the boundary of the integration domain. The
second terms on the right-hand side of the expressions above therefore vanish under the
integral sign.

(a) The parent model

In the following we will delete the latter contributions, so that all that follows is
only valid when integrated over 7, @ and §. For 6£ in (16) we have, for a variation §A

cpf
k+1

6L = 6(ua cos qbg—j) + 6(Qa? cos? ¢g—i) —d(gz1) — &( ). (B.2)

For the first term on the right-hand side of expression (B.2) we have

d(ua cos ¢%) = ua cos ¢%6)\ = —5/\56;(11(1 cos ¢) =

D
—5)\qua cos ¢ + 6 uw sin ¢, (B.3)
where in the latter equality we used that 8/8r = D/Dt and a8¢d7 = u. For the second
term on the right-hand side of (B.2) we have
AA o} 8
§(a® cos® =) = Qa’ cos? $o—0X = —6A o (Qa? cos? ¢) =
(Qa* cos d)aT) a* cos ¢6T6/\ 5/\87 (Qa* cos® @)

520 sin $a? cos ¢% = dAfua cos ¢, (B.4)
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where we use the definition f = 20 sin ¢ of the Coriolis parameter and again that ad¢dT =
u. For the third term in (B.2) we simply have

~3(g) =~ (91). (B.5)

The calculation of the last term in (B.2) is somewhat more involved. First of all we note
that

o el o Keph
5(n+1"’)_ k+1

Now, according to expression (14) of section 2 we may write

e o (B.6)

25 —1 2/Pr\ 2 9(3), ¢)
= — = — —_— B-
S = —m; omy m (7 )e €S B (e, B) (B.7)
so that 0 0 906, 6)
50 %Y ey BCpU q1 Pry o 1 P) _
6(/§+1m)—n+1 i e COS¢3(a,ﬁ)
KCpl 1 Pry o
06 T (e on )
O(a, B)
Kcpb g Pry o
TS L[] (B.8)
oA, ¢) I(a, B)
Therefore, using the definition of the Jacobian and expression (14) we can write
_ cpt Ky _ —12 kepd eiq _ i K
() = =0 gy (o) = —0Ags (). (B.9)
So we have 9 oM
_ _ Cp Ky — _ s\~
Bga) = 8(25m) = —8X G- (B.10)
This gives us for 6L:
_ Du tan ¢ 1 oM
0L =—acos q&é)\(D—t —uy - acosqﬁﬁ)' (B.11)

Integrating this over 7, a and g leads to the zonal component of (1). In a similar way we
may derive the meridional component of (1) by considering variations d¢. This derivation
is somewhat more complicated because some of the metric terms need to be differentiated
with respect to ¢. In the end these extra contributions cancel out.

(b) The balanced model

The starting peint here is

_ oA 9 9 ,0A ¢
0Ly = d(upa cos ¢6_7') + 6(Qa” cos ¢§) + 6(vbaa—7)—

CPG K
). (B.12)

2 2
Uy + vy

L) = 5(g2) - o

a
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From the foregoing it is clear that we have

2 D ‘ :
d(upa cos ¢6—T) = udup — JA#a cos ¢ -+ §Aupv sin @, (B.13a)
d(Qa* cos E) = dAfva cos ¢, (B.13b)
7]
J(Ubaa—f) = vdvp, (B.13c)
24,2
—5(%) = —ubéub - ’Ub(S’Ub, (B.13d)
§(az) — 5(-20_pmy = _5OM
so that
0Ly = ugdup + Vo 0vp—
Du,, ‘tan ¢ 1 oM
a cos ¢5)‘(ﬁ — upv fu+ a2 cos b O )s (B.14)

where u, =u — up and v, = v — v, are the zonal and meridional components of the un-
balanced velocity. We have, using (14) and (18),

0 a Y r < O(1hp, A
wady = (- 5 = 226158 — e cos o(PI G, (1)
This gives
_ Pr 6(5’(/)1)) )‘)
Ug OUP = UgQ COS qﬁ(?)wnz—i—
Uq@ COS qS(%)%m + u,a oS ¢(%)%6m. (B.16)

For the second and third term in the expression for u,du, we can derive, using (B.1),
(B.7), (14) and the expression for the balanced velocity (18),

r , O _ _
wqa cos ¢<p—>—aa(§”; m)m = O g (cos dmu) = 1 g ()], (BAT)
r\ O(p, A 1 0 9
UgQ COS qb(%) %ém =0A[n, lubﬁ(mua) + Uq %] (B.18)

The calculation of the first term in the expression of u,du; is somewhat more involved.
We first derive, using (B.1) and (14),

v, O(0tp, A 11 0
B = g (®19

Uga oS ¢
Then we note that, by the balance condition (19) and (B.7),

: 1 1
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k+1Pr (86X, ¢) '
fa/\(gzl)é)\ ?ncpan +1g a’c S¢8(a 3 (B.20)

Substituting (B.20) into (B.19) and applying (B.1) and (14) we obtain

Uqa@ COS qb(&) O(04pn, A)

1 0
g WW = f 6/\(9 1)771 acos¢8¢(cos dmug)+

1 9
f F3 [K’ Cp nl GCOS¢6¢ (COS ¢nlua)]nl 1' (B21)

Now, applying the product rule of differentiation on the second term of the right-hand
side of (B.21) and using the expression (2) of the Montgomery potential we derive

pr\ 0(61s, ) 10M _; 1
) o, p) "y

0 0
2 fnrl a5 = Depbf) =g 5 (cos mua) +

15]
f Ox AN Gcos acos ¢ 8¢ 5 (008 Pmtia)+

U@ €COS ¢(

-1 1
]8)\(aco ¢ 0

Using expressions (18) and (19) for the balanced velocity, we may write

6)\% [kepfn)® (cos dmug))- (B.22)

10M

TN = a coS Pvp. (B.23)

We furthermore have

8 = 0 b

This enables us to write

(6¢b> ) _
uaacosqS( Ty e, ﬂ)
0
N on 55 05 ) + 5 (3o Cl 5 €05 e (B.25)

Combining (B.16), (B.17), (B.18) and (B.25) we thus obtain

Oup, 0 1 w1 1

UgdUp = 5/\[%5 + ﬁ('fmponl a cos ¢ O¢

(cos PMUa))]- (B.26)

In a similar way we may derive that

Ve 0Vp = (5/\[11,1%—11\2 — 4

1 1 1 8
ax et soos o (nva))) (B.27)

so that
ug, Oup ve Owvp

a cos ¢ 2% acosqb—c;\-

UgOUp + Vo 0Up = —a cos pIN[—

S
acos¢<9)\(f

ke k -V x (mrva))]- (B.28)
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(For a concise list of horizontal vector operators in spherical coordinates we refer to
Verkley (2000).) Combining this expression with (B.14) we obtain

_ U, Oup Vo Oy % B tan ¢
0Ly = —a cos pOA| acos ¢ O\ acos¢ O + Dt~ “Tg

1 B_M + 1 0 (1
acosg ON  acosp O f
Using that, (see (B.3),

—fv+

Kepfnf 1k - V x (mva))). (B.29)

Va__ Ovp d(cos gus), _ tang v, dup
Tacosd ON ~Va[G + acos¢> 5% ] = —0aGp + upva—— — — 9" (B.30)
we can write
Oup g Oup Duy tan ¢
0Ly = —acos pdA[— cosqS > a 08 + oy T Ut
1 oM 1 8
It s e acosp ON —(F 4+ GJea + a.cos ¢ 6,\(f'g cpbny k- V x (mva))]. (B.31)

Finally, substituting the field ¢ introduced in (23) to simplify the last term in (B.31) and
using that
Uy Oup o Oup  Dup  Dyuyp

Tacosd N ads T Dt~ Dt (B.32)
we have tan ¢ L oM
o = o —fu acosp OX
b
(F 4G+ oo 6/\((§:f) K-V (nva))l (B.33)

Integrating this expression over 7, & and 3 leads to the zonal component of the balanced
approximation (22) of the momentum equation. In a similar way - albeit with a few
complications due to differentiations of the metric coeflicients with respect to ¢ - we may
derive the meridional component of (22).

REFERENCES
Allen, J.S., J.A. Barth, and 1990a On intermediate models for barotropic continental shelf
P.A. Newberger and slope flow fields. Part I: Formulation and compar-
ison of exact solutions. J. Phys. Oceanogr., 20, 1017-
1042
Allen, J.S., J.A. Barth, and 1990b On intermediate models for barotropic continental shelf
P.A. Newberger and slope flow fields. Part III: Comparision of nu-

merical model solutions in periodic channels. J. Phys.

Oceanogr., 20, 1949-1973
Barth, J.A., J.S. Allen, and 1990 On intermediate models for barotropic continental shelf
P.A. Newberger and slope flow fields. Part II: Comparision of numerical
model solutions in doubly periodic channels.J. Phys.

Oceanogr., 20, 1044-1076

Daley, R. 1983 Linear non-divergent mass-wind laws on the sphere. Tellus,
35A, 17-27

Dritschel, D.G. and M.H.P. 1997 A contour-advective semi-Lagrangian numerical algorithm

Ambaum i for simulating fine-scale conservative dynamical fields.

Q.J.R. Meteorol. Soc., 123, 1097-1130



28

Dutton, J.A.

Hoskins, B.J.

Hoskins, B.J., M.E. Mclntyre,
and A.W. Robertson

Lynch, P
Machenhauer, B.

Magnusdottir, G. and W.H.
Schubert

Magnusdottir, G. and W.H.
Schubert

Mawson, M.H.

Mawson, M.H. and M.J.P.
Cullen

Opsteegh, J.D., R.J. Haarsma,
F.M. Selten, and A.
Kattenberg

Salmon, R.

Salmon, R.

Salmon, R.

Salmon, R.

Salmon, R.

Shutts, G.J.

Verkley, W.T.M.

1986

1975

1985

1989

1979

1990

1991

1996

1992

1998

1983

1985

1988a

1988b

1996

1989

2000

W.T.M. VERKLEY

The Ceaseless Wind, An Introduction to the Theory of At-
mospheric Motion, Dover

The geostrophic momentum approximation and the semi-
geostrophic equations. J. Atmos. Sci., 32, 233-243

On the use and significance of isentropic potential-vorticity
maps. Q.J.R. Meteorol. Soc., 111, 877-946

The slow equations. @Q.J.R. Meteorol. Soc. 115, 201-219

The spectral method. Numerical Methods Used in Atmo-
spheric Models, Vol II. WMO/GARP Publ. Ser. 17,
121-275

The generalisation of semigeostrophic theory to the (-
plane. J. Atmos. Sci. 47, 1714-1720

Semigeostrophic theory on the hemisphere. J. Atmos. Sci.
48, 1449-1456

A shallow-water semi-geostrophic model on a sphere.

Q.J.R. Meteorol. Soc. 122, 267-290

idealized simulation of the Indian monsoon us-

ing primitive-equation and quasi-equilibrium models.

Q.J.R. Meteorol. Soc. 118, 153-164

ECBILT: a dynamic alternative to mixed boundary condi-
tions in ocean models. Tellus, 50A, 348-367

An

_ Praetical use of Hamilton’s principle. J. Fluid Mech. 132,

431-444

New equations for nearly geostrophic flow. J. Fluid Mech.
153, 461-477

Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20,
225-256

Semigeostrophic theory as a Dirac-bracket projection. J.
Fluid Mech. 196, 345-358

Large-scale semigeostrophic equations for use in ocean cir-
culation modelds. J. Fluid Mech. 318, 85-105

Planetary semi-geostrophic equations derived from Hamil-
ton’s principle. J. Fluid Mech. 208, 545-573

On the vertical velocity in an isentropic layer. Q.J.R. Me-
teorol. Soc. 126, 263-274



KNMI-PUBLICATIES, VERSCHENEN SEDERT 1998
Een overzicht van eerder verschenen publicaties, wordt verzoek toegezonden door
de Bibliotheek van het KNMI, postbus 201, 3730 AE De Bilt, tel. 030 - 2 206 855,
fax. 030 - 2 210 407; e-mail: biblioth@knmi.nl

M KNMI-PUBLICATIE MET NUMMER

150-28 Sneeuwdek in Nederland 1961-1990 / A.M.G. Klein Tank

181b  FMI2 synop - internationale en nationale regelgeving voor het coderen
van de groepen 7wwW1W2 en 960ww; derde druk

183-1 Rainfall in New Guinea (Irian Jaya) / T.B. Ridder

183-2  Vergelijking van zware regens te Hollandia (Nieuw Guinea), thans Jaya-
pura (Irian Jaya) met zware regens te De Bilt / T. B. Ridder

183-3  Verdamping in Nieuw-Guinea, vergelijking van gemeten hoeveelheden met
berekende hoeveelheden / T.B. Ridder

183-4  Beschrijving van het klimaat te Merauke, Nieuw Guinea, in verband met de
eventuele vestiging van een zoutwinningsbedrijf / T.B. Ridder a.o.

183-5  Overzicht van klimatologische en geofysische publikaties betreffende
Nieuw-Guinea / T.B. Ridder

184a  Inleiding tot de algemene meteorologie : studie-uitgave ; 2e druk / B.
Zwart, A. Steenhuisen, m.m.v. H.J. Krijnen

185a  Handleiding voor het gebruik van sectie 2 van de Fm 13-X sHIP-code voor
waamemers op zee / KNM1; KLu; KM

186-1  Rainfall generator for the Rhine Basin: single-site generation of weather
variables by nearest-neighbour resampling / T. Brandsma a.o.

186-I. Rainfall generator for the Rhine Basin: multi-site generation of weather
variables by nearest-neighbour resampling / T. Brandsma a.o.

186-III Rainfall generator for the Rhine Basin: nearest-neighbour resampling of
daily circulation indices and conditional generation of weather variables /
Jules J. Beersma and T. Adri Buishand

187 De wind in de rug: kNmI-weerman schaatst de Elfstedentocht / H. van Dorp

188 SODA workshop on chemical data assimilation: proceedings; 9-10
December 1998, KNMI, De Bilt, The Netherlands

189 Aardbevingen in Noord-Nederland in 1998: met overzichten over de
periode 1986-1998 / [Afdeling Seismologie]

190 Seismisch netwerk Noord-Nederland / [afdeling Seismologie]

M TECHNISCH RAPPORT = TECHNICAL REPORT (TR)

176  Verification of the wAQuA/csmM-16 model for the winters 1992-93 and 1993-
94 /J.W. de Vries

177 Nauwkeuriger nettostraling meten / M.K. van der Molen en W. Kohsiek

178 Neerslag in het stroomgebied van de Maas in januari 1995: waamemingen en
verificatie van modelprognoses / R.Jilderda a.o.

179  First field experience with 600PA phased array sodar / H. Klein Baltink

180 Een Kalman-correctieschema voor de wegdektemperatuurverwachtingen van
het vaisata-model / A. Jacobs

181  Calibration study of the K-Gill propeller vane / Marcel Bottema

182  Ontwikkeling van een spectraal UV-meetinstrument / Frank Helderman

183 Rainfall generator for the Rhine catchment : a feasibility study / T. Adri
Buishand and Theo Brandsma

184  Parametrisatie van mooi-weer cumulus / M.C. van Zanten

185 Interim report on the KNMI contributions to the second phase of the AERO-
project / Wiel Wauben, Paul Fortuin a.o.

186  Seismische analyse van de aardbevingen bij Middelstum (30 juli 1994) en
Annen (16 augustus '94 en 31 januari '95) / [Seismologisch Onderzoek]

187  Analyse wenselijkheid overname rRivm-windmeetlokaties door knm1 / H.
Benschop

188 Windsnelheidsmetingen op zeestations en kuststations: herleiding waarden
windsnelheden naar 10-meter niveau / H. Benschop

189  On the knMi calibration of net radiometers / W. Kohsiek

190 NepwAM statistics over the period October 1994 - April 1995 / F.B. Koek

191  Description and verification of the HIRLAM trajectory model / E. de Bruijn

192 Tiltmeting - een alternatief voor waterpassing ? / H-W. Haak

193 Error modelling of scatterometer, in-situ and EcMwF model winds; a cali-
bration refinement / Ad Stoffelen

194 «knmi contribution to the European project popsicLe / Theo Brandsma a.o.

195 EeceiLT " a coupled atmosphere ocean sea-ice model for climate predictability
studies / R.J. Haarsma a.o. ’

196  Environmental and climatic consequences of aviation: final report of the
KNMI contributions to the AERo-project / W. Wauben a.o.

197 = Global radiation measurements in the operational kNMI meteorological net-
work: effects of pollution and ventilation / F. Kuik

198 KALcORR: a kalman-correction model for real-time road surface temperature
forecasting / A. Jacobs

199  Macroseismische waamemingen Roswinkel 19-2-1997 / B. Dost e.a.

200 Operationele UV-metingen bij het kM1 / F. Kuik

201

Vergelijking van de Vaisala’s HMP233 en HMP243 relatieve luchtvochtig-
heidsmeters / F Kuik

202 Statistical guidance for the North Sea / Janet Wijngaard and Kees Kok

203 UV-intercomparison SUSPEN / Foeke Kuik and Wiel Wauben

204 Temperature corrections on radiation measurements using Modtran 3 / D.A.
Bunskoek, A.C.A.P. van Lammeren and A.J. Feijt

205  Seismisch risico in Noord-Nederland / Th. De Crook, H.W. Haak en B. Dost

206 The HIRLAM-STAT-archive and its application programs / Albert Jacobs

207 Retrieval of aerosol properties from multispectral direct sun measurements /
O.P. Hasekamp

208 The kNMI Garderen Experiment, micro-meteorological observations 1988-
1989; instruments and data / F.C. Bosveld a.o.

209 CO02 in water and air during ASGAMAGE: concentration measurements and
consensus data / Cor M.J. Jacobs, Gerard J. Kunz, Detlev Sprung a.o.

210 Elf jaar Cabauw-metingen / J.G. van der Vliet

211 Indices die de variabiliteit en de extremen van het klimaat beschrijven / E.J
Klok

212 First guess TAF-FGTAF: semi-automation in TAF production / Albert Jacobs

213 Zeer korte termijn bewolkingsverwachting met behulp van METCAST: een
verificatie en beschrijving model-uitvoer / S.H. van der Veen

214  The implementation of two mixed-layer schemes in the HOPE ocean general
circulation model / M. van Eijk

215  Stratosphere-troposphere exchange of ozone, diagnosed from an ECMWF
ozone simulation experiment / Harm Luykx

216 Evaluatierapport Automatisering Visuele Waarnemingen Ontwikkeling
Meestsystemen / Wiel Wauben en Hans de Jongh

217 Verificatie TAF en TREND / Hans van Bruggen

218 LEO - LSG and ECBILT coupled through OASIS: description and manual/A. Sterl

219 De invloed van de grondwaterstand, wind, temperatuur en dauwpunt op de
vorming van stralingsmist: een kwantitatieve benadering / Jan Terpstra

220 Back-up modellering van windmeetmasten op luchthavens / Ilja Smits

221 PV-mixing around the tropopause in an extratropical cyclone / M. Sigmond

222 NPK-TIG oefendag 16 december 1998 / G.T. Geertsema, H. van Dorp e.a.

223  Golfhoogteverwachtingen voor de Zuidelijke Noordzee: een korte
vergelijking van het ECMWF-golfmodel (EPS en operationecl), de nautische
gidsverwachting, Nedwam en meteoroloog / D.H.P Vogelezang en C.J. Kok.

224 HDFg library and some HDF utilities: an extention to the NCSA HDF library
user's manual & reference guide / Han The

225 The Deelen Infrasound Array: on the detection and identification of
infrasound / L.G. Evers and H.W. Haak

226 2D Variational Ambiguity Removal / J.C.W. de Vries and A.C.M. Stoffelen

M . WETENSCHAPPELIJK RAPPORT = SCIENTIFIC REPORT (WR)

97-01 The adjoint of the wam model / H. Hersbach

97-02  Optimal interpolation of partitions: a data assimilation scheme for
NEDWAM-4; description and evaluation of the period November 1995 -
October 1996 / A.Voorrips

97-03  satview: a semi-physical scatterometer algorithm / J.A.M. Janssen a.o.

97-04  Gps water vapour meteorology status report / H. Derks a.0.

97-05 Climatological spinup of the eceiLT oceanmodel / Aric Kattenberg a.o

97-06 Direct determination of the air-sea transfer velocity of co2 during
ASGAMAGE / J.C.M. Jacobs, W. Kohsiek and W.A. Oost

97-07  Scattering matrices of ice crystals / M. Hess, P. Stammes a o.

97-08 Experiments with horizontal diffusion and advection in a nested fine mesh
mesoscale model / E.LF. de Bruijn

97-09  On the assimilation of ozone into an atmospheric model / E.Valur Hélm

98-01 Steady state analysis of a coupled atmosphere ocean-boxmodel / F.A.
Bakker

98-02 The AscAMAGE workshop, September 22-25, 1997 / ed. W.A. Oost

98-03  Experimenting with a similarity measure for atmospheric flows / R.A.
Pasmanter and X.-L. Wang

98-04  Evaluation of a radio interferometry lightning positioning system / H.R.A.
Wessels

98-05 Literature study of climate effects of contrails caused by aircraft emissions /
V.E. Pultau

99-01 Enhancement of solar and ultraviolet surface irradiance under partial
cloudy conditions / Serdal Tung

99-02  Turbulent air flow over sea waves: simplified model for applications / V.N.
Kudryavtsev, V.K. Makin and J.F. Meirink

99-03  The KNMI Garderen experiment, micro-meteorological observations 1988-
1989: corrections / Fred C. Bosveld

99-04  ASGAMAGE: the ASGASEX MAGE experiment final report / ed. W.A.Qost

2000-01 A model of wind transformation over water-land surfaces / V.N
Kudryavtsev, V.K. Makin, A.M.G. Klein Tank and J.W Verkaik

2000-02 On the ait-sea coupling in the WAM wave model / D.F.Doortmont and V K.
Makin.

2000-03 Salmon's Hamiltonian approach to balanced flow applied to a on-elayer
isentropic model of the atmosphere / W.T.M. Verkley












