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Summary

Identical-twin experiments are performed with an ocean general circulation model ensemble to
investigate the potential for correction of subsurface ocean model states through assimilation of altimetric
sea level observations with the Ensemble Kalman Filter (EnKF). The EnKF provides a convenient
extension to existing ensemble prediction systems . Observations are simulated for the Topcial Pacific by
sampling a truth run at 10-day intervals at the TOPEX/POSEIDON along-track measurement points
and adding realistic instrument and orbit errors. Ensemble spread is generated by perturbing the best-
guess forcing fields. The perturbations are based on a multivariate EOF decomposition of differences
between two reanalysis products. The effectiveness of the assimilation is investigated by comparison
of the forecasts and analyses with a control run and with the truth. Time series of subsurface state
variables along the equator show that the analyses are closer to the truth than the control in all cases,
indicating a significant potential for improved ENSO forecast initialisation. A second assimilation run
with an Ensemble Square-Root Filter (ESRF) shows that the analyses are very similar to those from the
EnKF. However, ensemble spread in the subsurface state variables is found to be a poor proxy for the
true analysis error in this experiment, in particular in the case of the ESRF. While the sea level analyses
remain close to the truth, persistent offsets are introduced in the subsurface state, suggesting a role for
bias correction schemes in ensemble methods.
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1. Introduction

Seasonal forecasting is an emerging discipline on the boundary between
weather forecasting and climate prediction. It currently aims primarily to ex-
ploit the relatively long timescales associated with the dominant low-frequency
mode of variability of the world’s ocean-atmosphere coupled system, ENSO (El
Niño/Southern Oscillation). Theories of ENSO (e.g. Suarez and Schopf, 1988;
Jin, 1997) and prediction studies (see Latif et al. (1998) for a review) suggest
that the evolution and predictability of the coupled system in the tropics are
strongly connected to the initial thermal state of the upper ocean and its subse-
quent evolution. Low-frequency, wind-driven variability in the tropical oceans is
primarily associated with the dominant baroclinic mode (Fukumori et al. 1998),
which describes the heaving and shoaling of the main thermocline and has a
strong projection on sea level. Attempts to exploit sea level information were
made in several studies on the initialisation of seasonal forecasts (Fischer et al.
1997; Ji et al. 2000; Segschneider et al. 2000), all of which found that the quality
of the forecasts improved. In these studies sea level data was used to correct the
model temperature, and in some cases, also salinity. For example, in the work of
Fischer et al. (1997) and Ji et al. (2000) the sea level innovation is completely
converted to a subsurface temperature correction. Vossepoel and Behringer (2000)
subsequently demonstrated the potential for additional correction of the near-
surface salinity field. The method developed by Cooper and Haines (1996) was
used by Segschneider et al. (2000) and Alves et al. (2001) in their assimilation
system to effectively lift and lower the T/S profile of the water column, leaving
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U and V to adjust during the forecast run. Fukumori et al. (1999) projected all
sea level differences onto the barotropic and first baroclinic modes to correct T,
S, U and V simultaneously. Cross-covariances between sea level, T, S, U and
V were estimated from a model run by Borovikov et al. (2004) for use with a
multi-variate OI scheme. Robert and Alves (2004) compared multivariate covari-
ances estimated from a long model run with those estimated at a single instant
from a model ensemble and identified significant differences associated with time-
dependent adjustment processes such as wave dynamics. Keppenne and Rienecker
(2003) showed how multivariate covariances associated with single temperature
and salinity observations evolved over a 3 month period due to dynamical changes
in a model ensemble. An assimilation method that combines all the advantages
of time-evolving multivariate statistics is the Ensemble Kalman Filter (Evensen,
1994). This method furthermore provides an error estimate for the analysed state.
In this paper the Ensemble Kalman Filter (EnKF) will be applied in an identical-
twin experiment in which sea level is assimilated in the Tropical Pacific, with the
aim of assessing the potential for improving initial conditions for ENSO fore-
casts. Given the potential importance of non-linear aspects for the evolution and
magnitude of strong ENSO events (Jin et al. 2003), with the observation that
only models based on the primitive equations tend to produce consistently high
forecast skill across the spring barrier (van Oldenborgh et al. 2004), a global, fully
non-linear ocean general circulation model will be used in this study.

The model will first be introduced briefly in Section 2. Section 3 subsequently
gives an overview of the experiment setup. Section 4 and 5 discuss the generation
of ensemble spread by forcing perturbation and the pseudo observations. The
details of the EnKF algorithm implementation are explained in Section 6. The
results of assimilation runs with the EnKF and with an alternative algorithm are
presented in Section 7, and Section 8 summarizes the conclusions.

2. The ocean model

The model used in this study is the Max Planck Institut für Meteorologie
Ocean Model MPI-OM version 1 (Marsland et al. 2003). The global orthogonal
curvilinear grid has a spatial resolution approximating spectral truncation T42,
with poles positioned over Greenland and inland of the Weddell Sea to give high
resolution in the main sinking areas associated with the thermohaline circulation.
Additional increase in resolution is achieved by meridional refinement (0.5◦)
of the grid within 10 degrees of the equator. Horizontal discretization of the
primitive equations is on the Arakawa C-grid, while the z-coordinate is discretized
on 23 vertical levels. The main changes in the physics with respect to the old
HOPE model (Wolff et al. 1997) are in new parameterizations of sub-grid scale
processes and details can be found in (Marsland et al. 2003). Surface exchanges
of momentum, fresh water and heat are calculated using prescribed daily fields of
surface stress, 10m wind speed, 2m air and dewpoint temperature, short-wave
radiation, cloud cover and precipitation from the ERA40 and NCEP/NCAR
(Kalnay et al. 1995) reanalyses. These fields were interpolated from the original
grids to the model grid using bilinear interpolation. In all runs salinity was relaxed
to Levitus climatology at all levels with a 3-year timescale. Temperature was
relaxed only below the mixed layer while sea surface temperature (SST) was
allowed to evolve freely to induce maximum possible spread in the ensembles.
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Figure 1. Schematic of the experiment setup. The ensemble members are spun off the January
1992 control state using perturbed forcing. Assimilation and validation is over 1993 only.

3. Experiment design

A twin experiment is conducted in which the true ocean state is defined
by a forward run of the ocean model using NCEP/NCAR forcing fields and is
therefore known exactly. ERA40 is assumed to be a best-guess estimate of the true
forcing and a corresponding best-guess estimate of the ocean state is obtained by
running the ocean model using ERA40 forcing fields. This run will be referred
to as the ’control’. The initial conditions for both runs at the beginning of the
experiment period (1993) where obtained by spinning up the model for 2 years,
starting from the same model state, but forced by the two different reanalyses
products (Figure 1). Plots of the true and control states show that after 2 years
the two solutions have departed significantly as a result of using different forcing
fields. Since the model is the same for both runs, the only sources of error in
the control are the initial conditions and the forcing. These error sources are
accounted for in a third run, the assimilation run. A best-guess initial condition
for this run at the start of the experiment period, and the assumed uncertainty
therein, will be given by the mean and spread of a model ensemble. The spread
is obtained by running the ensemble forward for one year with perturbed ERA40
forcing, starting from the control. A result of this approach is that the ensemble
members will be appropriately balanced both internally and with the wind field
at the start of the experiment period. It is difficult to obtain spread in the deep
layers from surface forcing perturbations alone, but since it is assumed that only
upper ocean dynamics play a significant role in the tropical Pacific, this is not
expected to cause a serious problem here. The method of perturbation of the
ERA40 forcing fields will be described in the next section. The assimilation run
consists of repeated 10-day forward integrations of the ensemble (the resulting
mean states will be referred to as the forecasts), each followed by a filter step
during which simulated sea level data is assimilated by the ensemble. The mean
states of the resulting ensembles (the analyses) will be compared with the control
and the truth to determine whether the assimilation has brought the model closer
to the true state. An ensemble size of 40 members will be used, which is the size
used by Keppenne and Rienecker (2002).

4. Representation of uncertainty in the forcing

The statistics of the true forcing errors for this experiment could be estimated
from a comparison between the ERA40 and NCEP/NCAR reanalyses over the
experiment period. In reality, however, these statistics will not be available since
the true forcing is unknown. The differences between ERA40 and ERA15 will
therefore be used as proxies for the true forcing errors. An alternative approach
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would be to assume that typical errors in ERA40 are proportional to differences
between two successive 2-week averages (Bonekamp et al., 2001).

There is no way of knowing if the use of ERA40-ERA15 statistics as a proxy
for ERA40-NCEP/NCAR statistics is a particularly good or bad approximation
of a real application where either one of these statistics is used as a proxy for
those of the true forcing errors. Crucial will be whether the used error statistics
are too optimistic or too pessimistic, resulting in respectively too much or too
little weight given to the model forecast.

It is argued here that if the proposed approach does produce error statistics
which are too optimistic, leading to analysis errors which are smaller than one
might expect in real applications, this impact will be smaller than that associated
with the neglect of model error in an identical-twin experiment which uses only
a single model.

A 2-year record of differences between the ERA40 and ERA15 reanalyses
is used to obtain a statistical description of error characteristics in zonal and
meridional surface stress, air temperature, dew point temperature, and short-
wave radiation. The annual and semi-annual cycles were first removed and all
variability with periods shorter than 20 days was filtered out by application
of a Loess smoother (Cleveland and Devlin, 1988). This latter filter step is
roughly equivalent to application of a 14-day running mean (Schlax and Chelton,
1992). A combined EOF decomposition is performed on the resulting difference
fields, after normalizing each variable with its standard deviation. This approach
is similar to that of Robert and Alves (2004) who used EOF analysis to
identify the leading orthogonal modes of intra-seasonal ERA-NCEP wind stress
differences. Only differences in the 60◦S - 70◦N latitude band were considered,
and values were gradually scaled down to zero poleward of 40◦S and 50◦N .
The combined EOF decomposition results in individual error patterns for the
different forcing variables that evolve identically over time. This allows for the
representation of cross-covarying features in the variables and decreases the
possibility that the perturbations of different forcing fields have opposing effects
on surface temperature, which would reduce their effectiveness in increasing
ensemble spread. The first EOF of the filtered record represents about 7% of
the total variance. In their single 10-day ensemble run with an OGCM, Robert
and Alves (2004) used a constant perturbation of wind stress. An easy method,
described by Evensen (2003), has been implemented here to enforce correlation
between random daily perturbations on time scales corresponding to those found
in the ERA40-ERA15 time series.

5. Sea level measurements

The main source of sea level data are satellite altimeters, which have provided
continous measurements of global sea level since the launch of ERS-1 in 1991 and
TOPEX/POSEIDON (T/P) in 1992. Altimetry measurements were simulated
here by sampling the truth run along the ground tracks of the T/P satellite. After
subtracting a mean model sea level, the resulting anomalies were assimilated at
10-day intervals. Since the mean sea level was identical for all runs, total sea level
is effectively assimilated. This adds the possibility of correcting offsets associated
with persistent bias in the forcing over the experiment period. The actual satellite
tracks were subsampled at roughly 100km intervals to reduce the number of
measurements to manageable quantities. All along-track samples from a 10-day
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Figure 2. (left) Distribution of altimetric sea level measurements on 8 January 1993. (right)
Sea level along the arc indicated with the heavy dots (see left panel) at the first assimilation
step. The spread of the forecast ensemble is indicated by the mean plus and minus 1 standard

deviation (boxes) and the minimum and maximum value (lines extending from each box).

T/P repeat cycle were assumed to have been measured at the assimilation time.
Including ERS data and using a more realistic temporal sampling would result in
a more strongly varying spatial data coverage which would make interpretation of
the results more difficult. Figure 2 shows the resulting sampling pattern. Along-
track data in principle have the advantage over gridded data fields that the
character of the observation errors is better understood. This advantage may
disappear to some extent when representation error comes into play as will
be the case with real data. Two kinds of measurement error were simulated.
Uncorrelated Gaussian distributed instrument noise with a standard deviation of
3.5 cm was added to each sample. A random but constant along-track bias with
a standard deviation of 2 cm was also added to each arc to simulate orbit errors
which are dominated by wavelengths of one cycle per revolution (Chelton et al.
2001). These numbers are in the range of error estimates for the T/P and ERS
missions. Standard deviations of model sea level variability within a few degrees
of the equator are typically between 8 and 15 cm, but may be as low as 2 to 3 cm
further poleward. Figure 2 shows the true sea level, the simulated measurements,
and ensemble sea level forecasts along a T/P arc at the first assimilation time.
There are significant biases in the forecast at the initial assimilation time and
substantial uncertainty as indicated by the large spread in the ensemble.

6. Analysis algorithm

The analysis ensemble is formed using the stochastic EnKF algorithm de-
scribed by Evensen (1994) and Burgers et al. (1998). Covariance localisation is
implemented following the suggestions of Gaspari and Cohn (1999). The resulting
algorithm is described by

A
a = A + C ◦ (A′

A
′T

H
T )[C ◦ (HA

′
A

′T
H

T ) + R]−1(D −HA) (1)

= A + K (D −HA)

where A = (ψψψ1, . . . , ψψψN ) holds the ensemble of model forecasts, C◦ denotes
the Schur product operator, H is the measurement operator, and D is the
ensemble of perturbed measurements. Primes indicate anomalies with respect to
the ensemble mean. Both the uncorrelated instrument error and the along-track
bias are accounted for in the observation error covariance matrix R. Applying
the Schur product in observation space avoids the neccessity to calculate the
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Figure 3. Analysis increments associated with a +1 cm sea level innovation located at (180◦E,
0◦N) on 6 June 1992 for (a) sea level (cm), (b) 20◦C isotherm depth (m), (c) temperature
(◦C), (d) salinity (psu), (e) zonal velocity (cm/s), and (f) meridional velocity (cm/s). The zero
contour is not drawn, negative contours are dashed, and values above the first positive contour
are shaded. (g) Ensemble mean temperature at 2◦C intervals (dashed, the 20◦C contour is drawn

thicker), and zonal velocity (solid lines) in m/s. Panels (c) to (g) show equatorial sections.

ensemble covariances P = A
′
A

′T /(N − 1) explicitly in model space, which would
be too costly (Houtekamer and Mitchell, 2001). The filter solution is calculated
independently for each grid point, where only observations within an elliptic
region around the grid point are used. The half axes of the search ellips are
30◦ in the zonal and 15◦ in the meridional direction and a scale of 500m was used
in the vertical (Keppenne and Rienecker, 2002). This so-called ’local analysis’
approach is an approximation to the full problem in which all data are used
but is computationally more tractable when the number of observations is very
large. It has the added advantages of reducing spurious long-range correlations
associated with the use of a small ensemble, and of increasing the dimension
of the solution space and thereby reducing the potential for inbreeding (linear
dependency between ensemble members).
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Figure 4. As in Fig. 3 but for 8 January 1993.

7. Results

(a) Single observation analysis increments

Analysis increments associated with a single observation are calculated to
illustrate the time-evolving character (flow-dependence) of the ensemble-based
model covariances (Figs. 3 and 4). The increments presented here correspond to
corrections to the mean model state obtained by assimilation of a single +1 cm
sea level innovation (model-data difference) located at (180◦E,0◦N). Fukumori et
al. (1999) presented analysis increments corresponding to sea level innovations
at selected locations using a time-asymptotic estimate of the error covariance
matrix of the analyzed state. While their Extended Kalman Filter did account
for a time-varying data distribution, it did not do so for time and space variations
in errors in the forecast state estimate. The increments were further restricted
to projections on the barotropic and first baroclinic modes. Instead the ensemble
approach will be used here, as was done by Keppenne and Rienecker (2003) for
single temperature and salinity observations. Since the innovation is a scalar with
value 1, the increments correspond to Kalman gain structures captured in K. The
gains are computed from the full ensemble at two different times seperated by
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half a year. The Schur product was not applied in the calculation of the gains, and
the sea level observation error variance was assumed to be zero. Comparing Figs.
3 and 4, a significantly different correction on the subsurface state would result
from the same sea level innovation. A positive sea level innovation in June 1992
will result in a positive offset in the temperatures between the mixed layer and the
upper thermocline around the date line, and with a negative offset in the eastern
half of the basin, corresponding to a correction of the bias in the equatorial tilt
of the thermocline. A similar sea level innovation in January 1993 however, can
be associated with a fairly localised deepening of a warm pool (temperature >
28◦C) extending to approximately 160◦E. This correction takes place about 75
meters deeper and 10◦ further east as compared to the maximum temperature
change in June 1992. A clue towards the origin of the January 1993 correction
can be obtained by examining the subsurface corrections in the horizontal plane.
The correction in the depth of the 20◦ isotherm (Z20, a proxy indicator for
the position of the thermocline near the equator) shows a basin-wide equatorial
gradient in June 1992, whereas two distinct lobes with maximima located just
north and south of the equator, reminiscent of a Rossby wave, are found in
January 1993. Adjustments to salinity and zonal and meridional velocities are
distinctly different at the two times as well. High sea level on the date line in
June 1992, for example, is associated with zonal convergence east of 170 ◦E in
the surface mixed layer, as well as with increased strength of the Equatorial
Under Current (EUC) east of the date line. In January 1993, however, this same
sea level adjustment would result in an effective weakening of the EUC between
170◦E and 150◦W. It is obvious from these gains that different temperature and
salinity corrections can be associated with the same sea level innovation. This
is because the strong temperature and salinity fronts, the thermocline and the
edge of the western Pacific fresh water pool, are located in different positions.
Relative displacements of these fronts in the ensemble contribute most strongly
to the multivariate covariances. Since it is not possible to determine from a single
sea level observation whether a displacement of either the temperature or salinty
front alone is the most likely cause for the model-observation misfit, both will
be adjusted partly. Assimilating additional observations can help differentiate
between probable causes. The changing character of the Kalman gains primarily
reflects the intra-seasonal evolution of the mean state, and to a lesser extent,
the time-integrated impact of the quasi-random ensemble perturbations. If, for
example, the perturbations are only able to induce ensemble spread in the surface
layer, and not at the thermocline depth, only variables in the surface layer will be
adjusted. In the context of the discussion above, this would mean that sea level
would by adjusted by a zonal displacement of the surface salinity front, rather
than by a vertical displacement of the thermocline. While Figs. 3 and 4 highlight
the impact of seasonal variability on model covariances, similar, or even larger
differences can be expected between El Niño and La Niña states. The figures
clearly show the potential benefit of time-evolving multivariate covariances and
give a justification for using a relatively expensive assimilation method like the
EnKF.

(b) A single assimilation step

A single assimilation step was performed in order to provide additional insight
into the character of the corrections when many observations are available and
thus into the potential for adjustment of subsurface quantities. Figure 5 compares
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Figure 5. Errors in the forecast (left) and analysis (right) at 8 January 1993 for (a,b) sea level
(cm), (c,d) temperature (◦C) at 150m depth, (e,f) temperature (◦C) at 50m depth, (g,h) zonal
velocity (m/s) at 125m depth. The zero contour is not drawn, negative contours are dashed, and

values above the first positive contour are shaded.

the forecast and analysis with the truth at the first assimilation step (8 January
1993). Forecast errors in sea level are as large as 10 to 15 cm in large parts of
the Tropical Pacific, and correspond largely to a mean sea level bias between
control and truth over the experiment period. The assimilation is very effective
in reducing these errors. The sea level error in the analysis has a fairly smooth
character and is typically smaller than the prescribed measurement error of 3.5
cm. Temperature errors in the forecast are as large as 6◦C, both at 50m and
150m depth, and are associated with forecast errors of the corresponding sign
in the sea level. For example, the large region of positive temperature error at
150m depth in the central Pacific (panel 5c) corresponds to a similarly shaped
region of positive errors in the sea level forecast (Fig. 5a). The narrow band of
negative errors centered at 10◦N is found both in the sea level and temperature
at 50m depth. These errors are primarily associated with the position of the
thermocline which is typically situated around 150m depth in the central and
western part of the basin and around 50m depth in the eastern part. Temperature
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Figure 6. Time-longitude diagrams of equatorial differences between control and truth (top),
and between the EnKF analysis and the truth (bottom) for (a,b) depth of the 20◦C isotherm
in meters, (c,d) sea level in cm, (e,f) temperature at 50m depth in ◦C. The zero contour is not
drawn, negative contours are dashed, and values above the first positive contour are shaded.

errors are effectively reduced at both levels, corresponding to a correction of Z20,
particularly within the latitude band between 15◦S and 15◦N.

The forecast error in the zonal current velocity at 125m depth has a
banded pattern, reflecting the zonal character of the equatorial current sytem.
The southern and northern branches of the westward flowing South Equatorial
Current, as well as the eastward flowing North Equatorial Counter Current are too
strong. These errors are corrected to a large extend in the analysis, although the
assimilation has increased the strength of the Equatorial Under Current (EUC)
too much, resulting in a positive band of analysis errors along the equator in
the central part of the basin. The strength of the EUC is intimitely linked to the
balance between the vertical distribution of the eastward pressure force associated
with the basin-wide surface slope, frictional forces and inertial accelerations
(Pedlosky, 1996). The disturbance of this balance by the assimilation will be
discussed further in section (d).

(c) One-year assimilation run

Figures 6 and 7 compare the analysis errors from a one-year long assimilation
run with the errors in the control run. The improvement in sea level is immediately
obvious but is to be expected. It is clear that sea level and Z20 are strongly related
on the equator (copare Figs. 6a and c). Since a general circulation model is used
here, the thermocline depth is not a model variable in the same sense as it is
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Figure 7. As in Fig. 6, but for (a,b) temperature at 150m (◦C), (c,d) zonal velocity at 75m
(cm/s), (e,f) meridional velocity at 75m (cm/s).

in a 2-layer model and has to be determined from the subsurface temperature
profile, using Z20 as a proxy. The Z20 results therefore imply that the sea level
assimilation has significantly improved the subsurface temperature distribution.
This improvement is primarily found in the temperature at 150m depth (Figs. 7a
and b), but is less pronounced at 50m depth (Figs. 6e and f). The zonal equatorial
velocity has improved most clearly between April and July in the eastern part of
the basin, and all through the year in the western part. There is some indication
that the zonal velocity analyses are not as good as the control in the central
Pacific from June to August. The meridional velocity component has generally
improved in the analysis, except perhaps east of 130◦W, but the signal is too noisy
to make quantitative statements based on these figures. On the whole it can be
concluded that the equatorial analyses are significantly closer to the truth than
the control run, and that the sea level assimilation has succeeded in correcting all
subsurface ocean state variables to some extent. A more quantitative assessment
of these results is presented in Fig. 10. It could be noted here that the assimilation
of sea level alone can only result in limited improvement. Temperature and
salinity observations can provide additional information on higher baroclinic
mode structures, and can in real applications also lead to a better representation
of the thermocline, which is generally overdispersive in ocean models.

It should also be determined whether the estimated uncertainties in the
analyses (based on the ensemble spread) are consistent with the above results.
An appropriate spread that would be consistent with all assumptions underlying
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Figure 8. Time series of the truth, control, and analysis from the EnKF for Niño3.4 averages of
(a) sea level, (b) Z20, (c) SST. (d) Time series of the truth, control, and analysis from the ESRF
for Niño3.4 averages of SST. The range spanned by the analysis plus and minus 1 standard
deviation of the ensemble spread is indicated by the boxes, minimum and maximum values are

indicated by the lines extending from the boxes.

the EnKF, would be one that is comparable to the true error (the difference
with the truth). Figures 8a to c show the time evolution of the true sea level,
Z20 and surface temperature (SST) averaged over the Niño3.4 region (190◦E-
240◦E,5◦S-5◦N), as well as the corresponding values from the control and from the
assimilation run, where the analysis uncertainty, as estimated from the ensemble
spread, has been indicated. Sea level and Z20 are closer to the truth than the
control during the entire period of the experiment, while the analysed SST
appears to depart further from the truth than the control. For Z20 and SST,
however, there are long periods where the true values fall completely outside the
range covered by the ensemble (Gaussian statistics would allow for the truth to
be outside of the one standard deviation range for approximately 30% of the
time). It must be concluded that ensemble spread is not a good indicator for
uncertainty during this run. This is problematic when the ensemble is used in a
forecast system where one would like to have a reliable measure of uncertainty.
Furthermore, underestimation of the true forecast error will unduly increase the
relative weight given to the model forecast with respect to the observations and
thus decrease the efficiency of the assimilation. In the next section this ensemble
defect is discussed in some more detail.

(d) Ensemble spread and bias

The apparent inconsistencies between the analyses, the associated analysis
ensemble spread, and the truth can in principle be ascribed to either an undervari-
ability in the ensemble or to systematic errors (bias). The problem of maintaining
representative ensemble spread has been discussed in earlier (atmospheric) stud-
ies. Houtekamer and Mitchell (1998) suggested that it is associated with the use
of a single ensemble for both the calculation of the gain and the analysis error.
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They found that for small ensemble sizes the ensemble spread consistently tends
to underestimate the true error, and they managed to reduce this effect by using
a double ensemble. Anderson and Anderson (1999) introduced an inflation factor
to increase the deviation of ensemble members from the mean. The optimal value
of this factor was determined by Hamill et al. (2001) to be a decreasing function
of ensemble size. Van Leeuwen (1999) showed that small errors in the error co-
variance estimates, associated with the use of a finite ensemble size, introduce
a tendency towards decreasing spread that is enhanced during the assimilation
run. This may ultimately lead to almost complete rejection of the observations in
favour of the model forecast, a situation commonly referred to as filter divergence.

Evensen (2004) suggested selecting the N dominant eigenvectors of the
covariance matrix constructed from a very large ensemble to increase the rank
of the initial ensemble. However, even if the initial ensemble has full rank, a
nonlinear model integrator could introduce a loss of rank, or inbreeding, which will
in turn lead to filter divergence. Figures 8a to c, however, show no indication of a
progressively decreasing ensemble spread. Rather, the spread is already too small
after the first analysis step and remains at the same level throughout the run,
which would suggest that the forcing perturbations are efficient in counteracting
any tendency for the spread to decrease, and that the relatively small ensemble
size is not primarily responsible for the small spread. This is in agreement with
Fig. (3) from Houtekamer and Mitchell (1998) which shows that increasing the
ensemble size reduces the true error, but does not affect the ensemble spread very
much. Note, however, that Fig. (3) of Houtekamer and Mitchell (2001) does show
an increase in ensemble spread with size of similar magnitude as the true error
reduction.

A second potential cause for the observed inconsistencies is the presence of
bias. The persistent offsets between analyses and truth for SST and Z20 in the
Niño3.4 region appear to be related to the biases observed in Figs. 6b and 6f
in the eastern Pacific (note that the bias in the observed variable, sea level, is
actually removed). Since the same model has been used in all runs, model bias
itself can be excluded as the underlying cause. However, it is possible that the
assimilation has introduced a bias in the subsurface state. It has been shown that
assimilation of high-quality observations (both temperature and sea level) can
offset the balance between the near-surface pressure gradient and the relatively
inaccurate surface wind stress, and that this leads to a systematic error (Bell et
al., 2004). Unbalanced analysis increments may also induce spurious circulations
which tend to erase the increments. This has led to the implementation of
OI methods that produce geostrophically balanced increments on the equator
(Burgers et al., 2002). With the local-analysis implementation of the EnKF, there
is no guarantee that balance will be maintained, and in fact, application of the
Schur product has been shown to disturb linear balances (see e.g. Lorenc, 2003).
Given that the bias in this experiment results from the assimilation rather than
the model itself, it seems appropriate to include a bias correction scheme in the
assimilation loop (Dee and Da Silva, 1998). Such schemes have so far not yet
been implemented in ensemble-based assimilation systems.

(e) Stochastic versus deterministic ensemble filters

During recent years some studies have advocated deterministic ensemble
algorithms as alternatives to the stochastic algorithm used here (see Tippet et
al. (2003) for a review) . An advantage of these filters is that no perturbation of
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Figure 9. Time-longitude diagrams of equatorial differences between the ESRF analysis and the
truth for (a) Z20 in meters, (b) sea level in cm, (c) temperature at 50m depth in ◦C. The zero
contour is not drawn, negative contours are dashed, and values above the first positive contour

are shaded.

the observations is required which avoids introducing noise into the sytem. An
implementation of such a deterministic Ensemble Square-Root Filter (ESRF),
described in Section 3 of Evensen (2004), is used here in a second assimilation
run. Since no Schur product is used, the search ellips axes were halved in order
to obtain an approximately equivalent effective number of observations for each
local grid point analysis as for the EnKF. The resulting analysis errors for this
run are shown in Fig. 9 for Z20, sea level and tempearture at 50m depth, and
can be compared to Fig. 6. The ESRF analyses are very close to the truth, and
on some occasions better than the EnKF analyses. This can be related to the
fact that the ESRF uses unperturbed observations to update the mean, while for
small ensemble sizes the observation perturbations used by the EnKF will not
average out to zero, which introduces noise into the system. Figure 8d shows the
corresponding time series for the Niño3.4 box average of sea surface temperature.
While the analyses themselves are very similar to those from the EnKF (Fig. 8c),
the ensemble spread is even smaller, implying an even greater underestimation of
analysis error. These results suggest that there might be an advantage to using
the stochastic EnKF algorithm in that it suffers less from an underestimation
of the true errors than the deterministic algorithms, and thus provides a more
accurate indication of forecast uncertainty.

The statistics of sea level, Z20 and SST, averaged over four Niño boxes are
summarized in Fig. 10 for both assimilation runs. Apart from the Niño3.4 SST
and the Niño3 Z20 all analyses are better than the control. For the EnKF run,
the analyses have on average improved sea level and SST relative to the forecast,
while Z20 was only improved in the Niño4 box. The mean errors from the EnKF
and ESRF are comparable, while the latter has consistently produced better
Z20 analyses. The ensemble spread has in all cases been a poor indicator of
the true error, with the exception of the Niño1.2 Z20 index, where the ensemble
spread resulting from the ESRF is significantly smaller than that from the EnKF.
The poor Z20 analyses in the Niño3 box appear to be related to relatively
poor temperature analyses near the surface in the eastern Tropical Pacific, as
illustrated by Figs. 6a and b and Figs. 6e and f. Low temperatures at 50m depth
in the control are overcompensated in the analyses, translating into a postive bias
in the Z20 analysis, as discussed in the previous section.
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Figure 10. Mean absolute error in the control, EnKF forecast and analysis, and ESRF analysis,
and the mean standard deviation of the ensemble spread from the EnKF and the ESRF analyses
in 4 Niño boxes for (a) sea level, (b) SST, and (c) Z20. Niño1.2: 270◦E-280◦E,10◦S-0◦S, Niño3.4:

190◦E-240◦E,5◦S-5◦N, Niño3: 210◦E-270◦E,5◦S-5◦N, Niño4: 160◦E-210◦E,5◦S-5◦N.

8. Conclusions

The Ensemble Kalman Filter has been used to assess the potential for
improvement of subsurface ocean analyses by assimilation of altimetric sea level
observations in the Tropical Pacific domain of a global OGCM. An identical-
twin experiment setting was used in which a truth was created by forcing the
model with NCEP reanalysis fields, while the control and assimilation runs were
forced with ERA40 fields. A method to represent uncertainty in the forcing
was introduced that uses the spatial fields and temporal correlation scales of
principal components from a combined EOF decomposition of differences between
reanalysis products.

It was demonstated that multivariate covariance patterns can differ substan-
tially on a seasonal time scale, and it could be inferred that similar differences
would be associated with ENSO events. Since the success of the assimilation
depends on the prior statistics of both observations and forecast, this flow-
dependence is the main advantage of the EnKF over assimilation methods which
use fixed covariances.

Sea level observations were simulated along TOPEX/POSEIDON tracks,
and appropriate instrument errors were added. A year long assimilation run was
performed with the EnKF during which observations were assimilated every 10
days. The choices for ensemble size and data selection criteria were similar to
those found in the literature. The results indicate that sea level assimilation leads
to significant improvements along the equator in all subsurface fields relative to
an unconstrained control run. One-year error averages based on 36 assimilation
steps show reduced sea level errors in 4 Niño boxes. SST (Z20) has improved in
2 (3) of the 4 Niño boxes.

The spread of the analysis ensemble during the run was found to be a too
optimistic measure of model uncertainty. At the same time, no indication was



16 O. LEEUWENBURGH

found of ensemble collapse, implying that the forcing perturbation was sufficient
to counteract any tendency towards increasing filter divergence associated with
the use of a small ensemble. The introduction of inbalance by the assimilation
procedure was suggested as a cause for persistent biases in the analyzed subsurface
states. A second run was performed with an ensemble square-root filter. This
run produced analyses of comparable quality, but with even smaller ensemble
spread. Even with a very small spread though, the multivariate covariances can
be determined from the model ensemble, and thus retain their flow-dependence.
However, added value will result from a method that produces reliable error
estimates by maintaining ensemble spread at the true error level for small
ensemble sizes. Also, the presence of persistent biases in the analyses suggests
that the implementation of bias correction schemes with ensemble methods must
be considered whenever they are applied in the tropics.
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