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1. Introduction

This report describes the design, implementation and testing of a sequential ocean data
assimilation system at KNMI. This work was undertaken as part of the EU-funded project
ENACT (Enhanced Ocean Data Assimilation and Climate Prediction), which was estab-
lished in line with the recommmendation of the European climate research community to
undertake a concerted program on enhanced ocean data assimilation and climate predic-
tion. The specific objectives of the project were: 1. to provide a system to assemble and
distribute high quality ocean observational data and accompanying atmospheric data, 2. to
advance the techniques for assimilating ocean data from multiple sources, and implement
state-of-art data assimilation schemes in state-of-art ocean general circulation models, 3.
to apply the assimilation schemes and produce multi-model global ocean analyses, 4. to
assess the impact of the enhanced analysis schemes by using coupled ocean-atmosphere
models together with the ocean analyses to produce seasonal to inter-annual forecasts, and
5. to investigate ocean behaviour, and to quantify the uncertainty in the ocean analyses.
These objectives were realised by implementing different data assimilation schemes with
several numerical ocean models in order to determine the specific strengths and weaknesses
of the schemes.

The task for KNMI has been to implement an Ensemble Kalman Filter (EnKF) assim-
ilation scheme for combining observations with the Max Plack Institut für Meteorologie
Ocean Model (MPI-OM), the successor to HOPE-E. KNMI has extensive experience with
the HOPE-E model through involvement in the developement of its adjoint and subsequent
implementation of the adjoint in a 4D-Var data assimilation scheme [van Oldenborgh et al.,
1999; Bonekamp et al., 2001]. MPI-OM (also commonly referred to as HOPE-C) had not
been used before at KNMI, but has been used extensively at the MPIfM in climate runs to
study long-timescale climate variability and as part of coupled climate and earth-system
models. It has not been used before in a data-assimilation system.

KNMI has also been involved closely in developing the ideas and principles of the
Ensemble Kalman Filter [e.g. Burgers et al., 1998]. Versions of the EnKF had already
been implemented and tested with a linear ENSO model, first in an experimental identical
twin setup, and more recently in a realistic assimilation experiment aimed at improving
ENSO forecast skill [Leeuwenburgh and Burgers, unpublished manuscript]. Most of the
algorithms used in preparing this report can be found in a largely model-independent
EnKF package that has recently been released [Evensen, 2003; Evensen, 2004].

During the ENACT project altimetric sea level data from the TOPEX/POSEIDON
and ERS missions, as well as temperature and salinity profiles from the WOCE and post-
WOCE periods were to be assimilated. These data were pre-processed by CLS and the
UK MetOffice repsectively. The validation tests described in this report use simulated
altimetric sea level data only.

In Section 2 the main characteristics of the MPI-OM model are reviewed, and modi-
fications that have been implemented are outlined. In Section 3 methods of representing
forecast error are discussed. The processing method for altimetry and insitu data is pre-
sented in Section 4. Section 5 gives an overview of the EnKF algorithm that has been
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Figure 1: The MPI-OM global grid.

implemented in the current system. In Section 6 the pre- and postprocessing of forcing
fields and analysis output are outlined. Section 7 discusses some results from a twin exper-
iment, and Section 8 concludes with a summary. Appendices A and B provide information
on Fortran routines and shell scripts that have been developed to run the assimilation on
the IBM Cluster 1600 supercomputer system of the ECMWF.

2. The MPI Ocean Model version 1

2.1. Overview

This section will describe the relevant characteristics of the global ocean/sea ice model
MPI-OM-1, which has been developed at the Max Plack Institute für Meteorologie . The
model equations and parameterizations, as well as results from a 450-year climatologically
forced integeration are described in [Marsland et al., 2003], but some relevant properties
and characteristics are briefly reviewed here.

The standard global orthogonal curvilinear grid is at a spatial resolution approximating
spectral truncation T42, with poles positioned over Greenland and inland of the Weddell
Sea to give high resolution in the main sinking areas associated with the THC (Figure
1). The symmetry in their offset means that the equator lies along one of the model’s
parallels. Additional increase in resolution is achieved by meridional refinement of the
grid within 10 degrees of the equator. Horizontal discretization of the primitive equations
is on the Arakawa C-grid, while the z-coordinate is discretized on 23 vertical levels.

The main changes in the physics with respect to the previous HOPE versions of the
model are in new parameterizations of subgridscale processes, such as a bottom bound-
ary layer slope convection scheme [Beckmann and Döscher, 1997], isoneutral/dianeutral
diffusion of tracers [Redi, 1982; Gent et al., 1995; Griffies, 1998], eddy-induced tracer
transport [Gent et al., 1995], and optional time dependent penetrative plume convection
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[Paluskiewicz and Romea, 1997]. Surface fluxes of heat and momentum are calculated
through bulk formulae using prescribed fields of surface wind stress, 10m wind speed, 2m
air and dewpoint temperatures, precipitation, cloud cover, and incoming solar radiation.
The fluxes are further dependent on the presence of sea ice and snow, which are modeled
following [Hibler, 1979]. Additional fresh water forcing is in the form of river runoff and
glacier calving.

The model has been run successfully over 450 years with the OMIP climatology forcing
and with relaxation to surface salinity only [Marsland et al., 2003]. While in fair agreement
with other z-coordinate models, the model produced a slightly low mass flux through
Drake Passage, relatively small poleward heat transports, and somewhat weak horizontal
subtropical cells in the North Atlantic and Pacific. Sea ice production in the Greenland
Sea and Denmark Strait was too strong, while there was too little March sea ice around
Antarctica. Deep convection was probably too strong and widespread in both the northern
arctic seas and the Weddell Sea despite the increase in spatial resolution in these regions.

2.2. Forcing and relaxation

In this report the OMIP forcing has been replaced by ERA40 daily forcing fields, which
were interpolated from the Gaussian T106 grid to the model grid. In addition, a daily
ERA40-derived climatology was used during spinup of the model. The ERA40 precipi-
tation in the tropics is known to be too low and was corrected as described by Troccoli
and K̊allberg [2004]. In both the control and the assimilation runs relaxation of temper-
ature and salinity to monthly Levitus climatology with a 3-year timescale was applied
from level 4 (65m) downward, in addition to surface relaxation to monthly surface salinity
with the same time-scale, and relaxation to daily observed SST derived from the Reynolds
and Smith [1994] data set with a 5-day time-scale (rate equivalent of 200 Wm−2K−1).
Monthly climatological values were used to represent river runoff of the world’s largest
rivers, while no glacier calving has been incorporated so far.

2.3. Additional model changes

Several changes have been introduced into the standard MPI-OM-1 model code for data
assimilation purposes. These changes include the relaxation to daily surface temperatures,
the writing of restart files in a format corresponding to that expected by the assimilation
system, specification of exact start and end dates of model runs, and the perturbation
of forcing fields and model parameters during a run. The option to relax to surface
temperature can be switched on or off on compilation with the appropriate CPP flag. The
relaxation coefficient (CRELTEM) can be specified in the OCECTL file. The length of the run
in terms of model days can now be determined by the main program based on the input
parameters LD START and LD END. If LD START is less than 0, the start date is calculated
from the end date of the previous run which is read from the restart file. The generation
of perturbations will be discussed in detail in the next section.
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3. Forecast error representation

3.1. Introduction

Forecast uncertainties have three sources: initial conditions, boundary conditions, and
model error. Uncertainty in the initial conditions is reflected by the spread of the ensem-
ble at the start of the forecast run. Model error can be associated with everything ranging
from limits in numerical precision and the use of finite differences to incorrect constants
in parameterizations and the neglect of physical processes. The effect of this variety of
error sources can be simulated, for example, by using a range of model parameter values
in the different ensemble members, by perturbation of the model fields at forecast time, or
by perturbation of the model equations themselves by adding small random errors to the
tendencies in the model fields. At this moment only the perturbation of eddy diffusion and
viscosity coefficients has been implemented , but it has not been used in the tests described
in this report. Uncertainty in the boundary conditions is represented by random pertur-
bations of the ERA40 surface forcing fields. A measure of uncertainty in the prescribed
ERA40 fields is obtained by comparison with the NCEP/NCAR reanalysis [Kalnay et al.,
1998], under the assumption that it is equally plausible that differences between the two
products are due to errors in either one. So far, perturbation of surface wind stress, air
temperature, dew point temperature, and solar radiation has been implemented. Two
methods by which this can be done are described below.

3.2. Diffusion/convolution

Three-year time series of daily difference fields were used to diagnose proxies for the
variance, and spatial and temporal correlation scales of errors at each point in the model
grid. The first method for computation of random 2D fields follows the diffusion method
[Derber and Rosati, 1989; Weaver and Courtier, 2000]. A spatially correlated 2D random
field can be calculated directly by convolution of a field of white noise f0 with a 2D
Gaussian correlation function with specified scales σx, σy ,

fT (x, y) =
1

√
πσxσy

∫

A

e
−
(x−x′)2

σ2
x

−
(y−y′)2

σ2
y f0(x

′, y′)dA . (1)

It can be shown that this is identical to the solution at t = T of the 2D diffusion equation

∂f

∂t
= κx

∂2f

∂x2
+ κy

∂2f

∂y2
, (2)

where σ2x = 4κxT and the initial conditions are ft=0 = f0. It turns out that this second
method is much faster than the direct convolution. Both methods have been implemented
by G. J. van Oldenborgh, KNMI, for the purpose of calculating background covariance
matrices for a 4D-var system, but have been adapted here for use with the EnKF. This
procedure has the additional advantage over the FFT method suggested by [Evensen,
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Figure 2: Variance and spatial and temporal correlation scales of zonal windstress perturbations,

as determined from ERA40-NCEP daily differences. Spatial scales are in units of spherical degrees,

and temporal scales are in days.

2003] that it is possible to specify the spatial error scales independently at each location
in the model grid. Figure 2, for example, shows the variance, and zonal, meridional, and
temporal scales of zonal wind stress errors based on a comparison of daily difference fields
over the period 1992-1994.

It was discovered that extremely large differences exist between air temperatures in
the ERA40 versus the NCEP/NCAR renalysis in the polar regions, the Weddell Sea and
the Arctic Ocean in particular. This may be associated with the prescribed presence or
absense of land or sea ice in these regions in the reanalyses, but no definite explanation has
been found so far. Therefore it was decided to limit the perturbation standard deviations
for air temperature and dew point temperature to a maximum value of 4◦C.

The random field generation is done by the routine convol.F90 which is called at
the start of every model day and called by the main program MPIOM.F90. It takes as
input the zonal and meridional spatial scales of the errors. The resulting random spatial
field should then be rescaled with the proper error variance times a rescaling factor which
should be determined on forehand seperately for each forcing variable, since it depends
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Figure 3: ERA40 and NCEP/NCAR reanalysis surface wind stress anomalies and their conver-

gence during high and low phases of the seasonal cycle.

on the specific spatial error scales of each variable. The random number generator is
initialised using the current calendar date, the time, and the system clock, in order to
avoid repeating the random seed at successive steps in the assimilation cycle.

3.3. Empirical Orthogonal Functions

A second method of calculating 2D random fields that has been implemented is to use
random combinations of Empirical Orthogonal Functions (EOFs) of the difference fields, as
was done by [Robert and Alves, 2004]. Since higher EOFs typically contain increasingly
smaller scales, using a limited number of EOFs provides a natural way of imposing a
limit on the spatial scales of the perturbation fields. A combined EOF decomposition
was performed of a 2-year record of all the above difference fields simultaneously, after
normalizing each variable with its standard deviation and after removal of all variability
with periods shorter than 20 days by application of a Loess smoother. The combined
EOF decomposition results in error patterns that are temporally coherent between the
different forcing variables. This will decrease the possibility that random perturbations
in e.g. wind stress and air temperature act in such a way that their effects on surface
temperature cancel, which would be less effective in increasing the ensemble spread. The
first 4 EOFs, representing more than 40% of the total variance, correspond to annual and
semi-annual modes describing a seasonal difference in the strength and position of the
ITCZ bewteen ERA40 and NCEP (see Figure 3). This signal can also be recognized in
Figure 2 in for example the zonal scales. This signal consitutes a predictable bias in the
forcing, which can most likely be ascribed to the NCEP/NCAR reanalysis which has a
much weaker ITCZ. Therefore we repeated the EOF decomposition after first removing the
annual and semi-annual cycles. The first EOF of the remaining record now only represents
about 7% of the total variance.

In their single 10-day ensemble run with an OGCM Robert and Alves (2004) used
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a temporally constant perturbation of wind stress. Here we have implemented an easy
method (Evensen, 2003) to enforce time correlation between random daily perturbations
with time scales corresponding to those found in the ERA-NCEP time series. Daily
perturbations ∆pk are calculated as the weighted sum of the previous perturbation and a
Gaussian distributed random number r

∆pk = α∆pk−1 + βr

with α = e−1/γ and β =
√
1− α2. The resulting time series pk can be characterized by

an exponentially decreasing correlation function with e-folding scale γ. It is possible to
manually modify the temporal scales if desired. One may for example wish to include
perturbation time scales reminiscent of westerly wind bursts, which have been associated
with the onset of ENSO, or rather increase time scales to enable the wind perturbations to
trigger oceanic Rossby and Kelvin waves. The most consistent method to do this however
is to recalculate the EOFs after filtering the time series over the appropriate time scales.

Care should be taken that perturbations do not cause the forcing variable to take on
unphysical values. For example, the incoming solar radiation and precipitation can not
be negative, while the fractional cloud cover should remain between 0 and 1. A simple
way to prevent this problem from occurring that was implemented for solar radiation is
to reset all negative values after perturbation to 0. In order to assure that the mean is
not changed all values greater than twice the mean should all so be cut off. This leaves
a distribution of perturbations that is no longer Guassian, since the tails have been cut
off. An alternative method to create perturbations for non-Gaussian variables is described
by Bertino et al. [2002], and involves the use of a transformation function that maps
the variable’s distribution to a (nearly) Gaussian shape. Perturbation takes place in this
transformed space after which the inverse function is used to map the variable back to
physical space. This approach could be used to generate additional perturbations for cloud
cover and precipitation.

4. Observations

4.1. Altimetric data selection and preparation

The alimetry products used in this report are the along-track ERS-1, ERS-2, and
TOPEX/POSEIDON SLA data provided by the CLS Space Oceanography Division .
This section will describe the process of selection and pre-processing of these altimetric
data for use in the assimilation.

Given some specified time window around each assimilation time, the appropriate
repeat cycles from the ERS and T/P missions from which data are to be selected are
determined . Each track is then subsampled within certain geographical limits with an
adaptive step size, based on the local size of the model grid cells. The rationale behind
this is that only variability on spatial scales greater than a certain number n times the
local grid size is actually resolved by the model. A Loess filter [Cleveland and Devlin,
1988; Schlax and Chelton, 1992] with cutoff wavelength n∆x is applied along the track to
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determine the unresolved variability in a root-mean-square sense over all available cycles.
This ’representation error’ is subsequently added to the instrument noise (2.5 cm for T/P
and 5 cm for ERS) to obtain a total error estimate at the sample point, after which
the procedure is repeated at the next sample point which is located a distance n∆x/2
further along the track. (An alternative method to select altimetric data and obtain the
corresponding error estimates was suggested by [Appeldoorn and van Oldenborgh, 2003].)

During the assimilation of both the altimetry and insitu data errors between points
seperated horizontally in space are generally considered uncorrelated. It has been made
possible to include along-track correlated error in the altimetry, since it is known that
geographically correlated orbit error with a dominant wavelength of one orbital revolution
still remains in the data.

A subsequent step is required in preparation for assimilation that associates each data
point with a corrsponding grid cell in the model. While this is very easy for regular lat-
lon model grids, more care is required for the irregular grid of MPI-OM. In absense of
a mapping function relating lat-lon coordinates to model indices, the model grid point
nearest to the observation is first found with the help of a search table, which contains
strings of indices of model grid cells contained within regular lat-lon boxes. This way
the nearest grid point can be determined by calculating the distances to only a limited
number of points. In order to establish which grid cell actually contains the observation
(the pivot point), the vectors from this nearest grid point to the four surrounding grid
points, as well as to the observation are determined. From the directions of these five
vectors, one can determine the pivot point. The model equivalent of the observation will
eventually be determined as a distance-weighted sum of the model values in the four grid
cells surrounding the observation. It is required that all of these four grid cells are ’wet
points’ with depths greater than 2000m in order to remove observations from shallow
water that may contain large errors due to the poor quality of tidal correction models in
these regions.

4.2. Insitu data

The insitu dataset has been prepared at the UK Met Office and contains reprocessd tem-
perature and salinity observations from the World Ocean Database 2001 [Levitus, 2001],
and additional CTD data from the WOCE hydrographic program, Greg Johnson’s CTD
data set, BMRC/CSIRO XBT data from 1997 onward, and GTSPP data from Jan 2000.
The processing of these data for use in ENACT has been documented by Ingleby and
Huddleston [2003].

The data selection largely follows the procedure set out in the previous section. Again,
data are selected from a time window around the analysis time. As before, there is a min-
imum depth requirement for the four surrounding model grid cells. Currently only data
above 800 m depth are assimilated since no mechanisms are in place yet to create sub-
stantial model ensemble spread at larger depths. The accuracy of salinity measurements
is currently set to 0.05 PSU, while for temperature the depth-dependent functional form
for the background errors of the Levitus subsurface analysis is used. This report does not
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address the testing of insitu data assimilation.

5. The Ensemble Kalman Filter

5.1. Introduction

The objective of sequential methods to assimilate data is to get a best estimate of the
state of the climate system based on all available information up to and including the
analysis time. Thus no data beyond the analysis time are used and past analyses are
not updated when the data at the analysis time become available. The application of
sequential methods lies therefore mostly in now- and forecasting where the analysis serves
as the initial condition for a forecast run. The link between sequential filters and variational
methods, which use the adjoint of the model to propagate information backwards in time,
is made by the so-called ’smoothers’ [Rauch et al., 1965; van Leeuwen, 2001].

The Ensemble Kalman Filter was first formally proposed by Evensen [1994]. It uses an
ensemble of different model realisations to represent the uncertainty in the model forecast.
This Monte Carlo-type of approach is the fundamental difference with the Kalman Filter,
which is the optimal estimator for linear models, and the Extended Kalman Filter (EKF),
which uses linarized dynamics at the analysis time to propagate the covariances forward
in time, usually in combination with some form of reduced-space representation. The
ensemble representation of model error covariances has two main advantages over other
approaches. First, no linearization of the dynamics is required, so that non-linear effects
on the mean are properly incorporated, and secondly, the use of a finite ensemble size N
provides a convenient way to limit the computational cost. It can be shown that the error
in empirical model covariance estimates is proportional to 1/

√
N , and that the ensemble

representation of model error will asymptotically approach the true error distribution if the
ensemble size goes to infinity. It has been found empirically that a minimum ensemble size
of about 100 members is required to properly represent cross-covariances between state
variables in intermediate-complexity ocean and atmosphere models, while larger ensemble
sizes have so far typicaly proven too computationally expensive for larger models.

5.2. Implementation

The standard formulation of the EnKF algorithm is given in [Evensen, 1994] and [Burgers
et al., 1998]. The practical implementation used here largely follows the modified ver-
sion described in [Evensen, 2003], with minor modifications suggested by the comment
of Kepert [2004]. An alternative implementation of the so-called local analysis scheme
follows the procedure outlined in [Houtekamer and Mitchell, 1998], and [Kepenne and
Rienecker, 2001]. Two recent implementations [Evensen, 2004] of ensemble ’square-root’
algorithms are introduced as well. A short recap of the analysis equation is given below,
and modifications with respect to the standard algorithm are indicated.

Following the notation of [Evensen, 2003], the standard analysis equation can be writ-
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ten

Aa
i+1 = Ai+1 +Pi+1 H

T (H Pi+1 H
T +R)−1(Di+1 −H Ai+1) , (3)

If an ensemble is used, the model error covariances are represented by the spread of the
model ensemble A = (ψψψ1,ψψψ2, . . . ,ψψψN ),

P =
A′A′T

N − 1
, (4)

where ψψψi contains the state vector of ensemble member i, and primes indicate anomalies
with respect to the ensemble mean. Evensen [2003] proposed a modification of the standard
EnKF algorithm in which the observation error covariance matrix R is computed from
the observation perturbations. Dropping the time indices, the above equation can then be
rewritten as

Aa = A+A′A′THT (HA′A′THT +ΥΥT )−1(D−H A) . (5)

The observation error covariance matrix has thus been represented by the covariances
between the observation perturbations Υ. The advantage of this is that the inverse of
(HA′A′THT +ΥΥT ) can be computed in numerically very efficient way, using the SVD
of (HA′ +Υ), provided that HA′ΥT = 0. However, it was shown by Kepert [2004] that
this ’recycled’ use of the observation perturbations in both D and R will formally lead to
collapse of the ensemble in the common situation where the size of the ensemble N is less
than m/2 + 1, where m is the number of observations. While the truncation of the SVD
of (HA′ +Υ) may prevent this collapse, it was shown that even with proper tuning the
results remain inferior to the standard EnKF algorithm. In order to saveguard against
possible collapse, a second set of observation perturbations can be used to represent R.
This does not solve the fact that the condition HA′ΥT = 0, although statistically true for
an infinite ensemble, will not be met exactly, and it was found in a simple 1D test case that
small-scale noise will still remain in the analysis [Jeff Kepert, personal communication].
Alternative solutions to preventing collapse include improved perturbation sampling, and
alternative algorithms based on the ensemble square-root filters which avoid observation
perturbations altogether.

The scheme of [Houtekamer and Mitchell, 1998] remains closer to the standard EnKF
and also avoids collapse. The main innovation here has been the use of compactly sup-
ported covariance functions to reduce the effects of spurious long-range correlations due
to the finite size of the model ensemble. It was noted by Gaspari and Cohn [1999] that
the so-called Schur product of two covariance functions is also a covariance function,
and they suggested taking the Schur product of an empirical covariance function with a
compactly supported (space-limited) function to ease the computational burden in data-
analysis algorithms. Their function Eq. (4.10) has been implemented here. It was argued
by Houtekamer and Mitchell [1998] that it is reasonable to take the Schur product after
application of the measurement functional H such that explicit calculation of P itself can
be avoided. A second approximation to the standard EnKF that can be used now is
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the so-called local-analysis. This results from the fact that observations further than a
certain distance will now be uncorrelated with the analysis grid point. The analysis can
thus take place independently for each grid column (already true for the ’global analysis’),
but using only the nearest observations. A similar effect can be achieved by a modifica-
tion to the [Evensen, 2003] scheme by downweighting innovations that are further away
from the analysis grid point, and this has been implemented here. Since the standard
EnKF algorithm uses the true R, the matrix H P HT +R needs to inverted. A singular
value decomposition is implemented here (Houtekamer and Mitchell [1998] use a Cholesky
decomposition while Keppenne and Rienecker [2001] use the LU decomposition).

In a recent paper Evensen [2004] implemented a so-called determinitic square root
algorithm [Bierman, 1977; Heemink et al., 2001; Tippett et al., 2003], and found that this
algorithm peformed equally well with low (m < N) and full (m = N) rank representations
of the observation error covariance matrix for a one-dimensional linear advection model.
All ensemble square root algorithms use the standard Kalman Filter analysis equation to
update the ensemble mean. The ensemble anomalies to the analyzed mean are obtained
as matrix square roots of the analysis error covariance matrix

Aa′Aa′T = A′(I−A′THT (HA′A′THT +R)−1HA′)A′T

No perturbation of the observations is required. It can be shown that if Aa′ is a valid root,
then so is Aa′U, where U is any m×m orthogonal matrix for which UUT = UTU = I.
Various choices for transformation of the matrix square roots have led to alternative algo-
rithms [Bishop et al., 2001; Anderson, 2001; Whitaker and Hamill, 2002]. The implemen-
tation by Evensen [2004] uses no transformation, but applies a fast decomposition of the
innovation error covariance matrix.

5.3. Practical issues

Some of the practical issues associated with the implementation of the generic NERSC
EnKF package for a specific numerical model will now be discussed. The horizontal and
vertical dimensions of the model grid should first be specified in mod dimensions.F90. The
prognostic variables of the models should then be identified and listed in mod states.F90.
The routine m consistency check.F90 checks that the model forecast fields do not ex-
ceed certain physically unrealistic limits, and is dependent on the model used. De-
pending on whether a specific type of observation has already been accounted for,
m modstate point.F90, which finds the model equivalent to each observation, may need
to be changed. The choice between local and global analysis is indicated in the input file
assimilation.in. A few more points to consider when starting from scratch are men-
tioned in the Implementation Guide for the Generic EnKF Package which can be found
on the NERSC EnKF website.
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6. Pre- and post-processing

Several external packages were used in the preparation of this report. The standard input
and output format for the MPI-OM-1 model is the EXTRA format, developed at the
Meteorologisches Institut der Universität Hamburg. This format can be read in a Fortran
program by

READ(10) IDATE,ICODE,ILEVEL,NSIZE

READ(10) (FIELD(ISIZE),ISIZE=NSIZE) .

The Procedural INterface for Grib formatted Object (PINGO) package was developed at
the Deutsches Klimarechenzentrum (Waszkewitz et al., 1996) and provides many useful
tools for manipulation of EXTRA formatted files. The main postprocessing tools used for
this report are contained in the Standard Ocean Model Postprocessor (STOMPP) package
(V. Gayler, 2001). This package integrates the Spherical Coordinate Remapping and In-
terpolation Package (SCRIP) (P. Jones, 1997) with the Grid Analysis and Display System
(GRADS) (B. Doty, University of Maryland). The SCRIP package contains software used
to generate interpolation weights for the remapping of fields between irregular grids in
sperical geometry. In this report the area-integrated conservative remapping scheme is
used throughout to interpolate 2D and 3D model output fields to the ENACT common
grid, with longitudes defined from 0◦to 359◦E and latitudes between 89◦S and 89◦N. 3D
fields were additionally interpolated in the vertical to the 33 standard levels of the World
Ocean Database, using a cubic-spline interpolation routine from the Numerical Recipes
package (Press et al., 1992). The ENACT common output format is NetCDF (Rew et al.,
1997).

7. Testing and validation

7.1. Model behaviour

Figure 4 compares the mean of the model sea level over the 7 year control run period
1993-1999 with the Mean Dynamic Topography (MDT) prepared by M.-H. Rio and F.
Hernandez (CLS). A value of 30cm has been subtracted from the zero gobal-mean MDT.
Model gradients are generally a little smoother across the western boundary current regions
and their extensions (e.g. the northern hemisphere subtropical-subpolar gradients). While
otherwise the broad-scale model mean compares very well to the MDT, the model mean
has been in used so far to obtain sea level anomalies for comparison with the altimetric
anomalies.

Figure 5 shows the standard deviation of model sea level variability determined over
the 7 year control run period 1993-1999. This figure can be compared with variability
maps calculated from altimetric anomalies [e.g., Ducet and Le Traon, 1999]. The most
notable shortcoming of the model is the severe lack of variability in all the western bound-
ary current regions, such as the Gulf Stream and the Kuroshio, as well as in the Aghulas
Retroflection Zone and along the path of the ACC. The tropical and equatorial current
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Figure 4: CLS Mean Dynamic Topography (offset 0.3m) calculated over the period 1993-1999

from altimetry, and the mean SSH from MPI-OM over the same period.

Figure 5: Standard deviation of global model sea level variability (log10), and of Tropical Pacific

sea level variability (m).

systems are represented much better due to the increased resolution there, and SLA vari-
ance reaches levels comparable to that seen in the observations. Other notable features in
the observations, such as the variability associated with the Azores Current and the Loop
Current in the Gulf of Mexico are not clearly seen in the model. As is common in low
resolution models, the Gulf Stream separation point is too far north. The amplitude of
the annual cycle in sea level (not shown) is fairly well reproduced, except in a zonal band
south and east of South Africa where model amplitudes are rather low.

7.2. Twin experiment

The assimilation system is tested here using a twin experiment setup. The true ocean
state is defined by a forward run of the ocean model using unperturbed NCEP/NCAR
reanalysis forcing fields. A background (or ’first-guess’) estimate of the ocean state is
obtained by running the ocean model over the same period forced by unperturbed ERA40
forcing fields. A plot (not shown) of the true and background states at the start of the
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Figure 6: Forecast and analyzed sea level versus the truth after a single assimilation. Positive

values are shaded, negative contours are dashed.

assimilation run shows that the 2 solutions have departed significantly as a result of using
different forcing fields. A 112-member ensemble was subsequently run, starting again from
the same initial state as the background run, but now the best-guess (ERA40) forcing fields
were perturbed using the EOF method. A single assimilation step was performed with
both the traditional stochastic analysis algorithm (A2) and a version of the deterministic
square-root algorithm (A5). Local analysis was used, selecting all data within a distance
of 15◦and 5◦in zonal and meridional directions from the analysis point respectively. All
calculations were performed on the IBM high-performance cluster at the ECMWF in
Reading using 40 processors for the ensemble runs. In Figure 6 the sea level forecast, as
well as the resulting analysis from a single assimilation step with A5, are compared with
the truth (the figure for A2 is almost identical to that for A5). Since the uncertainty in
the forecast is very large (corresponding to a large ensemble spread) at the start of the
assimilation run, almost all weight is put on the observations. Despite observation errors
of 2.5 to 5 cm, differences between the analysis and the truth are smaller than 2 cm almost
everywhere.

The potential value of sea level assimilation for correction of subsurface variables is
illustrated by the plots in Figure 7 which again compare the forecast and analysis with the
truth. All these analyses were obtained using the full 112-member ensemble. The forecast
and analysis for potential temperature are investigated at 50m and 150m depth. The
forecast contains errors of up to 7 degrees at both levels, but located in different regions
of the domain. The near surface forecast temperatures at the base of the mixed layer are
too low in a zonal band lying in the eastern half of the Pacific centered at about 10◦N,
while forecast temperatures at 150m depth at the base of the thermocline are too high
in the central Pacific in a zonal band centered at 5◦N, and in a large region south of the
equator extending down to 10◦S. Nearly depth-uniform positive forecast errors are found
just north-east of Mindanao in the western Pacific. All these errors in the temperature
field correspond to forecast errors of the corresponding sign in the sea level (compare
Figure 6). The assimilation can be seen to have corrected most of the temperature errors
at both levels. The errors in the west Pacific are completely corrected at 150m, but only
partly at 50m depth. This example illustrates the potential for sea level assimilation to
correct for baroclinic error structures.
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Figure 7: Comparison of forecast and analyzed subsurface states with the truth after a single

assimilation.
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The forecast error in the zonal geostrophic current velocity at 75m depth has a banded
pattern, reflecting the zonal character of the equatorial current sytem. The southern
and northern westward flowing branches of the South Equatorial Current are too strong,
while the eastward flowing North Equatorial Counter Current is too strong as well. These
errors are corrected to a large extend in the analysis, although the assimilation has lifted
the Equatorial Under Current a bit too high, resulting in a positive band of analysis
errors along the equator. Since geostrophic balance is not maintained on the equator,
the Equatorial Under Current can be adjusted through sea level only by correction of
the basin-wide equatorial surface slope, which is difficult with a local analysis scheme.
The vertical distribution of velocity corrections on the equator is displayed in Figure 7 as
well. Near-surface forecast errors in the zonal current velocity are mostly corrected in the
analysis, but a large region of subsurface errors between 75m and 250m depth is merely
displaced a few degrees eastward. These results suggest that additional assimilation of
temperature profiles may be needed to better correct the subsurface flow field below the
mixed layer. More details on the twin expriment can be found in [Leeuwenburgh, in
preparation].

8. Future improvements

Some improvements can now be envisioned to the current assimilation system. The use
of covariance localisation methods and optimal data selection criteria are discussed by
Leeuwenburgh [in preparation]. An additional method that has been proposed in past
assimilation studies [e.g. Alves et al., 2001] to reduce the impact of shock-effects after the
analysis step is to add the analysis increment gradually over the succeeding integration. A
more optimal initial ensemble can possibly be obtained by sampling the dominant eigen-
vectors from a very large ensemble with optimized conditioning [Evensen, 2004]. This
should become possible when a very long control run has been completed. The currently
imposed temperature and salinity relaxation can probably be relaxed, and replaced with
assimilation of subsurface temperature and salinity profiles and sea surface temperature
fields. Ensemble spread can be increased by perturbation of the currently unchanged forc-
ing fields such as precipitation, cloud cover and wind speed using the method described by
[Bertino et al., 2003], or alternatively, by additional perturbation of forecast fields, model
tendencies, or model parameters such as diffusion and viscosity constants. The magnitude
and impact of contributions on different timescales to the total forcing error should be
investigated to obtain an optimal error correlation scale. The assimilation of additional
observables such as ice cover and thickness can be considered for applications where higher-
latitude dynamics become of interest. The validation of the assimilation results should
be improved by implementing, in addition to root-mean-square error estimates, some of
the verification scores proposed for ensemble forecasting, such as probabilistic skill scores,
reliability diagrams, the relative operating characteristic, and rank histograms.
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Appendix A: List of auxiliary routines

name use function

grib2ext.job grib2ext.job convert GRIB to EXTRA

forcing.F forcing days interpolate Gaussian grid to
MPI-OM grid

lev2t43.F lev2t43 days interpolate Levitus grid to
MPI-OM grid

getdecorxyt.f getdecorxyt compute decorrelation scales

eof5t43.f eof5t43 combined EOF decomposi-
tion

convol.f call convol(pert,sig,ran,mtd,nx,ny) 2D random fields by convo-
lution/diffusion methods

calcdate.f calcdate date days compute calendar dates

julianday.f90 julianday date convert to Julian days

get restart.f90 get restart ensemble restart member extract restart from ensem-
ble file

add restart.f90 add restart restart ensemble member add restart to ensemble

estats.f90 estats dir N days date ensemble statistics

readsun res.f readsun res < readsun res.in extract altimetry data

prep altimetry.f90 prep altimetry data file prepare EnKF input

prep insitu.f90 prep insitu type date1 date2 read insitu data and prepare
EnKF input

make table.f90 make table grid search table

ncinter.F (main pro-
gram)

interpol.x (requires interpol in) interpolation to common
grid

nchopeC.F (idem) nchopeC.x4.x (requires inp.files) store output in NetCDF

Table 1: Auxiliary routines that were used in this report with the MPI-OM model and
the EnKF package.
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Appendix B: Description of the control script

The assimilation is controlled by the job script
enkf.job. The header of the script contains the
LoadLeveler instructions:

#-------------------------------------------------#

# QUEUE OPTIONS #

#-------------------------------------------------#

#

#@ shell = /bin/ksh

#@ job_type = serial

#@ class = ns

#@ job_name = enkf

#@ output = $(job_name).out

#@ error = $(job_name).out

#@ notification = error

#@ resources = ConsumableCpus(1)

ConsumableMemory(900mb)

#@ cpu_limit = 2:00:00

#@ wall_clock_limit = 2:00:00

#@ data_limit = unlimited

#@ stack_limit = unlimited

#@ queue

Apart from running the model ensemble, all parts
of the assimilation cycle are performed sequentially on a
single processor. The analysis step itself could also be
done in parallel at some point.

The parameters that control the assimilation cycle
are set next, starting with the model run. Begin and end
date can be explicitly specified, or, if the length of the
model run NDAYS is greater than zero, the end date will
be determined from the starting date, the length of the
model runs, and the number of assimilation steps NSTEPS.
The ensemble size is set with NMEMB. At the moment, the
number of nodes required to run this size ensemble must
still be set manually further on in the script. One can
also specify the forcing type (ERA40 or climatology). If
restart files are available, RESTART should be set to true.
Individual parts of the script (such as running the model,
assembling the output from the ensemble members, data
selection, analysis, and post-processing) can also be run
seperately, by setting the appropriate switches to true

or false.

#-------------------------------------------------#

# CONTROL PARAMETERS #

# #

#------------------- Model -----------------------#

MODEL=mpiom.x

BGNDATE=19920901

ENDDATE=19920930

NSTEPS=1

NDAYS=30

NMEMB=64

FTYPE=ERA40

RESTART=.true.

RUNMOD=.true.

WAIT=.false.

NSLP=60

DSLP=120

ASSEMBLE=.false.

The type of observation to be assimilated can be in-
dicated next. For sea level anomalies (SLA) the cutoff
wavelength of the low-pass filter is currently calculated
by readsun res.f as SAMP times the local grid size. WDAYS
is the half-width of the time window around the analysis
time from which observations are used. LAT and LON can
be used to indicate the geographical region from which
data are to be selected.

#--------------- Observations --------------------#

SLA=.false.

SPAN=100.0

SAMP=2

TEM=.false.

SAL=.false.

WDAYS=2.5

LAT1=-80.0

LAT2=+80.0

LON1=0.0

LON2=360.0

If the local analysis scheme is used, the parameters
RADIUS and MAXOBS indicated the influence radius around
the analysis point and the maximum number of nearest
observations respectively.

#----------------- Analysis ----------------------#

ANALYZE=.false.

LOCAL=.true.

RADIUS=3000000.0

MAXOBS=1000

#-------------- Post-processing ------------------#

POST=.false.

If the model has to be run (RUNMOD=.true.), the ap-
propriate forcing files will first need to be copied from
ECFS. Once this has been done, they will only need to
be updated when a new calendar year is entered. The
script uses the file forcing.id to check if the forcing files
that are present correspond to the current model year.
The appropriate Reynolds SST file is copied to SURTEM,
the field used for relaxation of surface temperature.
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#-------------------------------------------------#

# COPY FORCING FILES FROM ECFS #

#-------------------------------------------------#

FID=notdefined

if [ ! -d ${FORCEDIR} ]; then

mkdir -p ${FORCEDIR}

fi

cd ${FORCEDIR}

if [ $FTYPE = CLIM ]; then

if [ $YEAR -eq $BGNYEAR ]; then

if [ -f forcing.id ]; then

FID=‘cat forcing.id‘ ; export FID

fi

if [ $FID != climatology ]; then

ecp ec:/nlp/forcing_ecmwf/era40_clim.tar ./

tar xvf era40_clim.tar

rm -f era40_clim.tar

mv GISST SURTEM

echo climatology > forcing.id

fi

fi

elif [ $FTYPE = ERA40 ]; then

if [ -f forcing.id ]; then

FID=‘cat forcing.id‘ ; export FID

fi

if [ $FID != $YEAR ]; then

ecp ec:/nlp/forcing_ecmwf/era40_${YEAR}.tar ./

tar xvf era40_${YEAR}.tar

rm -f era40_${YEAR}.tar

echo $YEAR > forcing.id

ecp ec:/nlp/oisst_v2/OISST_V2.${YEAR} SURTEM

fi

else

echo " ** no correct forcing type defined ** "

exit

fi

The ensemble can be run in multiple steps, in case
only a certain limited number of nodes can be claimed.
For example, a 128 member ensemble can be run by se-
quentially running two 64 member ensembles. In the
script this is achieved as a loop over NRUNS=2 steps.

NRUNS=1

IMEMB1=1

IMEMB2=$NMEMB

if [ $NMEMB -gt 64 ]; then

NRUNS=2

IMEMB2=64

fi

IRUN=1

while [ $IRUN -le $NRUNS ]; do

#-------------------------------------------------#

# RUN ENSEMBLE IN NRUNS STEPS #

#-------------------------------------------------#

NENS=‘expr \$IMEMB2 - \$IMEMB1 + 1‘

NODES=‘expr \$NENS \/ 8 + 1‘

if [ ‘expr $NODES \* 8 - \$NENS‘ -eq 8 ]; then

NODES=‘expr \$NENS \/ 8 ‘

fi

echo " First and last member, nodes: ",$IMEMB1,...

$IMEMB2, $NODES

The model ensemble is run in Multiple Programs
Multiple Data (MPMD) parallel mode (see e.g. the man-
uals RS/6000 SP: Practical MPI Programming, p.137,
and IBM Parallel Environment for AIX, Operation and
Use, Volume 1, p.30). LoadLeveler and command in-
structions for the parallel task are produced by the
script in the part reproduced below. The command file
ensemble.cmd contains the actual commands to be exe-
cuted in parallel (run all NMEMB models).

hlp="#@"

cat > ${EXPDIR}/ensemble.job << EOF

## AIX: script to run ensemble in MPMD parallel mode

$hlp shell = /bin/ksh

$hlp account_no = spnlocda

$hlp error = ensemble.out

$hlp output = ensemble.out

$hlp notification = error

$hlp class = np

$hlp job_type = parallel

$hlp resources = ConsumableCpus(1)

ConsumableMemory(400Mb)

$hlp node = ${NODES}

$hlp total_tasks = ${NENS}

$hlp cpu_limit = 0:40:00

$hlp wall_clock_limit =0:40:00

$hlp queue

poe -pgmmodel mpmd -cmdfile ensemble.cmd

EOF

The parameters for the model run are written to
the file OCECTL. Most values have been chosen based on
experience with the model at the MPIfM in Hamburg.
This includes values for the eddy diffusivity and viscos-
ity of 1 · 10−2. The relaxation parameters CRELSAL and
CRELTEM were decided on by the ENACT project. The
parameter GAMD sets the temporal correlation scale (in
days) of eddy diffusivity and viscosity perturbations and
is not used when it’s value is less than 0. DZW contains
the layer thicknesses of the model.

#-------------------------------------------------#

# WRITE OCECTL FILE #

#-------------------------------------------------#

cat > OCECTL << EOF
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&OCECTL

DT = 2160.,

CAULAPTS= 0.,

CAULAPUV= 0.004,

CAH00 = 1000.,

AUS = 0.,

AV0 = 1.E-2,

DV0 = 1.E-2,

CWT = 5.E-4,

CSTABEPS= 0.030,

DBACK = 1.E-5,

ABACK = 1.E-4,

CRELSAL = 1.06E-8,

CRELTEM = 2.5E-6,

CDVOCON = 0.10,

IMEAN = 1,

LD_START= ${START},

LD_END = ${END},

EXPTID = ’MPIOM_CS1’,

IENS = ${IMEMB},

GAM = 7.0,

GAMD = -1.0 /

&OCEDZW

DZW = 20.,20.,25.,25.,25.,25.,25.,30.,45.,60.,90.,

120.,150.,180.,210.,250.,300.,400.,500.,600.,700.,

900.,1400. /

EOF

During a production run, the sequential tasks should
proceed only after a the model forecast has been com-
pleted. In the following part it is checked if the ensemble
run has finished by counting the number of restart files
produced. If not all members have finished yet, the com-
mand ’sleep DSLP’ is executed where DLSP is the number
of seconds specified in the control part of the script. This
process is repeated a maximum number of NSLP times.

#-------------------------------------------------#

# MONITOR PROGRESS ENSEMBLE RUNS #

#-------------------------------------------------#

MCOUNT=0

TCOUNT=0

while [ $MCOUNT -lt $NENS ]; do

MCOUNT=0

IMEMB=$IMEMB1

while [ $IMEMB -le $IMEMB2 ]; do

if [ $IMEMB -lt 10 ]; then

MID=00${IMEMB}

elif [ $IMEMB -lt 100 ]; then

MID=0${IMEMB}

else

MID=${IMEMB}

fi

if [ -s ${EXPDIR}/tmp${MID}/restart${END}.uf ];

then

MCOUNT=‘expr $MCOUNT + 1‘

fi

IMEMB=‘expr $IMEMB + 1‘

done

if [ $MCOUNT -lt $NENS ]; then

echo "restarts not ready yet. only " $MCOUNT

" members for now"

echo "going to sleep for 1 minute"

TCOUNT=‘expr $TCOUNT + 1‘

if [ $TCOUNT -gt $NSLP ]; then

echo "waited " $TCOUNT "steps, stop the job"

exit

else

sleep $DSLP

fi

fi

done

If the auxiliary files such as depths.uf are not yet
present, they are copied from ECFS. If the analysis
time falls within the time limits of phases C or G of
the ERS-1 mission, or within those of the ERS-2 or
TOPEX/POSEIDONmissions, the appropriate raw data
files are also copied from ECFS. Using the corresponding
Julian day, the required data are retrieved from the files
and used as input for prep altimetry which creates the
file observations.uf, used by the EnKF. The analysis
step is subsequently started if ANALYSIS has been set to
true.

#-------------------------------------------------#

# ALTIMETRY DATA #

#-------------------------------------------------#

if [ ! -d $OBSDIR ]; then

mkdir -p $OBSDIR

fi

cd $OBSDIR

ecp ec:/nlp/observations/depths.uf ./

ecp ec:/nlp/observations/mbathy.uf ./

ecp ec:/nlp/observations/levels.uf ./

ecp ec:/nlp/observations/newpos.uf ./

ecp ec:/nlp/observations/latlon.table ./

ecp ec:/nlp/observations/dlxyp.uf ./

ERS=.false.

TPX=.false.

rm -f *.dat *.out observations.uf fort.99

if [ $END -ge 19921006 ] && [ $END -le 19931223 ];

then

if [ ! -s altimetry.ers1c ]; then

ecp ec:/nlp/observations/ ...

sla_ers1_phasec_005_018_xxc.bin ./altimetry.ers1c

fi

ERS=.true.

ERSFILE=altimetry.ers1c

fi

if [ $END -ge 19950324 ] && [ $END -le 19950514 ];
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then

if [ ! -s altimetry.ers1g ]; then

ecp ec:/nlp/observations/ ...

sla_ers1_phaseg_031_032_xxc.bin ./altimetry.ers1g

fi

ERS=.true.

ERSFILE=altimetry.ers1g

fi

if [ $END -ge 19950516 ] && [ $END -le 20020304 ];

then

if [ ! -s altimetry.ers2 ]; then

ecp ec:/nlp/observations/ ...

sla_ers2_001_071_xxc.bin ./altimetry.ers2

fi

ERS=.true.

ERSFILE=altimetry.ers2

fi

if [ $END -ge 19921004 ] && [ $END -le 20020404 ];

then

if [ ! -s altimetry.tpx ]; then

ecp ec:/nlp/observations/sla_tp_002_351_xxc.bin

./altimetry.tpx

fi

TPX=.true.

fi

JDAY=$(${BINDIR}/julianday $END 1)

JDAY=${JDAY}.0

if [ $ERS = .true. ]; then

echo $ERSFILE > readsun_res.in

echo ers.dat >> readsun_res.in

echo $JDAY >> readsun_res.in

echo $WDAYS >> readsun_res.in

echo $LAT1 >> readsun_res.in

echo $LAT2 >> readsun_res.in

echo $LON1 >> readsun_res.in

echo $LON2 >> readsun_res.in

echo $SPAN >> readsun_res.in

echo $SAMP >> readsun_res.in

${BINDIR}/readsun_res < readsun_res.in > ...

readsun_res.out

${BINDIR}/prep_altimetry ers.dat

cat fort.99 > prep_altimetry.out

# echo "number of ERS measurements = \c"

# cat prep_altimetry.out | wc -w

fi

if [ $TPX = .true. ]; then

echo altimetry.tpx > readsun_res.in

echo tpx.dat >> readsun_res.in

echo $JDAY >> readsun_res.in

echo $WDAYS >> readsun_res.in

echo $LAT1 >> readsun_res.in

echo $LAT2 >> readsun_res.in

echo $LON1 >> readsun_res.in

echo $LON2 >> readsun_res.in

echo $SPAN >> readsun_res.in

echo $SAMP >> readsun_res.in

${BINDIR}/readsun_res < readsun_res.in >> ...

readsun_res.out

${BINDIR}/prep_altimetry tpx.dat

cat fort.99 >> prep_altimetry.out

# echo "total number of measurements = \c"

# cat prep_altimetry.out | wc -w

fi

#cat > prep_altimetry.in << EOF

# &input

# sla_name=’ers.out’ /

#EOF

mv observations.uf ${ENKFDIR}/

cp prep_altimetry.out ${ENKFDIR}/

if [ -s prep_altimetry.out ]; then

mv prep_altimetry.out ssh.${END}

fi

if [ $ANALYZE = .true. ]; then

cd $ENKFDIR

if [ -s observations.uf ]; then

${ENKFSRC}/EnKF

mv ensembleF.uf forecast.${END}

mv ensembleA.uf analysis.${END}

else

mv ensembleF.uf forecast.${END}

cp forecast.${END} analysis.${END}

fi

fi

A similar procedure as for the altimetry follows for
the selection and pre-processing of insitu data. Since
these data are stored in monthly files, data may need
to be extracted from two files for assimilation times near
the beginning or end of a calendar month. Data files that
are no longer needed are removed.

Post-processing proceeds in two phases. First, the
EXTRA formatted analysis output is interpolated in
the vertical to the standard output levels and stored in
NetCDF format, using the program nchopeC.x4.x. The
resulting file is the input for the SCRIP-driven interpola-
tion to the regular common output grid with interpol.x.

#-------------------------------------------------#

# POST_PROCESSING #

# #

#---------- put output in NETCDF file ------------#

ecp ec:/nlp/files/weto.ext4 ${FILEDIR}/

ecp ec:/nlp/files/gila.ext4 ${FILEDIR}/

ecp ec:/nlp/files/giph.ext4 ${FILEDIR}/

ecp ec:/nlp/files/amsuo.ext4 ${FILEDIR}/

ecp ec:/nlp/files/amsue.ext4 ${FILEDIR}/

cd $ENKFDIR

cat > inp.files << EOF

&input_files

expt_title=’${EXPID}_${END}’

gila=’${FILEDIR}/gila.ext4’
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giph=’${FILEDIR}/giph.ext4’

weto=’${FILEDIR}/weto.ext4’

amsuo=’${FILEDIR}/amsuo.ext4’

amsue=’${FILEDIR}/amsue.ext4’

toffsetyr=$YEAR

outputfile=’${ENKFDIR}/analysis${END}.nc’

NTIM=1

NVAR=8

file_list(1)=’mean_tho.ext4’

file_list(2)=’mean_sao.ext4’

file_list(3)=’mean_uko.ext4’

file_list(4)=’mean_vke.ext4’

file_list(5)=’mean_wo.ext4’

file_list(6)=’mean_zo.ext4’

file_list(7)=’mean_taux.ext4’

file_list(8)=’mean_tauy.ext4’

var_list(1)=’PT’

var_list(2)=’S’

var_list(3)=’U’

var_list(4)=’V’

var_list(5)=’W’

var_list(6)=’SL’

var_list(7)=’taux’

var_list(8)=’tauy’ /

EOF

cp ${POSTDIR}/nchopeC.x4.x .

nchopeC.x4.x

if [ -s analysis${END}.nc ]; then

rm -f mean_*.ext4

fi

#-------- interpolation to regular grid ----------#

cat > varlist_in << EOF

&variable_list

varlist(1)=’PT’

varlist(2)=’S’

varlist(3)=’U’

varlist(4)=’V’

varlist(5)=’W’

varlist(6)=’SL’

varlist(7)=’taux’

varlist(8)=’tauy’ /

EOF

cat > interpol_in << EOF

&interpol_inputs

datafile_in=’${ENKFDIR}/analysis${END}.nc’

scripfile=’${SCRIPDIR}/ ...

rmp_hopeCht43_to_enact_conserv.nc’

datafile_out=’${ENKFDIR}/analysis_reg${END}.nc’

maskfile=’mask.nc’

sectionfile=’section.nc’

gradientfile=’gradient.nc’

order=’second’

maskcalc=.TRUE.

showgrad=.FALSE. /

EOF

cp ${STOMPPDIR}/interpol.x .

interpol.x
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