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Abstract

For seasonal forecasts a good ocean initial state is essential. This is obtained by
combining observations of the ocean with the dynamics of an ocean model. The ob-
servations are generally sea surface temperature measurements, in-situ subsurface
temperature measurements in some regions, and satellite altimetry measurements
representing a measure of integrated heat content. To optimally combine the ob-
servations with an OGCM a 4DVAR data-assimilation scheme is implemented that
varies the momentum, heat and freshwater forcings of the ocean model over 16-week
periods.

To gain insight in how the method adjusts the ocean analysis, several identical
twin experiments are carried out in which a model run serves as the ‘truth’. Either
the initial state or the forcing is perturbed with respect to this ‘truth’. It is then
approximated again by assimilation of sea surface temperature data, subsurface
temperature data and/or sea surface height data generated by the truth run but
with the same properties as real observations.

The method provides an ocean analysis in which the temperature structure
of the ocean is improved. The assimilation of either altimetry data or subsurface
temperature data gives comparable reductions in all cost functions. However, the
analysis does depend on which dataset is assimilated. Subsurface temperature data
leave relatively small residuals near the equator at the cost of larger residuals at
higher latitudes. Altimetry data result in a more uniform adjustment, in which the
ocean analysis at depth is also improved.

Different fluxes alter the state of the ocean in different regions. The effect
of changes in the zonal wind stress is most obvious in a band up to 30◦ from the
equator and at thermocline depth. Adjusting the heat flux also has effects at higher
latitudes. It has impact through the ocean mixed layer. The effect of freshwater flux
variations is negligible. To make improvements below the thermocline and in chaotic
regions, the initial state will also have to be adjusted.
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1 Introduction

Seasonal forecasts of the weather are possible whenever slowly varying boundary
conditions perturb the chaotic weather in a predictable way. The most important
of these boundary conditions is sea surface temperature (SST). SST influences the
weather on a global scale, for example during an El Niño event, but also influences
the weather on smaller, local scales, for example influencing coastal air temper-
atures. In order to make good SST forecasts, the state of the ocean has to be
well-known at the beginning of the forecast. This ocean analysis is best determined
by the combination of observations with model physics, through data assimilation.
Most observations are sea surface temperature measurements, both from satellite
and in-situ, in-situ subsurface temperature and satellite sea surface height observa-
tions.

Satellite and in-situ SST measurements are analysed at NCEP into a gridded
global product with good coverage and accuracy. Subsurface observations are less
homogeneous, in many regions they are sparse. However, some small areas are well
sampled with temperature measurements. The observations are concentrated at
buoys in coastal zones, the Tropical Atmosphere Ocean (TAO) array and the Pilot
Research Moored Array in the Tropical Atlantic (PIRATA). Measurements from
expendable bathythermographs (XBT) also contribute to a higher concentration
along the main shipping routes. This dataset of irregular coverage directly describes
the three-dimensional thermal structure of parts of the ocean.

Another source of ocean data is satellite altimetry. The TOPEX/POSEIDON
(T/P) satellite measures SSH along tracks that are repeated every 10 days and are
∼ 300 km (≈ 2.8 ◦) apart. The coverage of the SSH dataset is uniform and the
resolution is relatively high. When simulating the thermal structure of the ocean,
these properties are advantageous. However, a disadvantage of SSH measurements
is that the 2D sea level information has to be projected into the vertical to obtain
a 3D subsurface structure describing thermal and saline properties.

To describe both thermal and saline subsurface properties, Troccoli and Haines
[1999] have applied a method in which only temperature profiles were assimilated.
They suggest that using SSH data in addition to temperature data would be the
most useful way forward in reconstructing the density field for ocean and coupled
modeling experiments. In the context of a seasonal forecasting system, Alves et al.
[2000] consider the projection of SSH data onto the temperature and salinity fields
in an idealised identical twin setup. They also indicate that combining SSH data
with subsurface in-situ data may provide an even greater benefit. Segschneider et al.
[2001] then use the combination of datasets to initialize a forecast. Synthetic temper-
ature observations were first derived from SSH data and then optimal interpolation
was used to combine them with the directly-observed temperature profiles. Several
measures of skill suggested that forecasts improved by initializing the model with an
ocean analysis in which both temperature and SSH data were assimilated. Vossepoel
et al. [2002] have applied salinity corrections in addition to temperature corrections
while assimilating both temperature profiles and SSH data. The salinity correction
makes the model follow both the temperature and the sea level more accurately.

In this study, we investigate how a 4DVAR data assimilation scheme uses
temperature and SSH data to adjust the ocean state in the HOPE model. The
system is tested on the same period and in the same way that was used by Alves
et al. [2000], taking into account the findings of Segschneider et al. [2001]. The
4DVAR method used does not update the subsurface state directly, as in Weaver
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et al. [2002] for example. Instead, it alters the ocean state by adjusting the fluxes
into the ocean. When the ocean model is assumed to be perfect, the analysis errors
are due to poorly known forcing fields and can be corrected by adjusting the fluxes.
Some systematic model errors can also be compensated in this way. An advantage
of adjusting the fluxes is that the ocean state is updated in a balanced way. An
update in the density field does not result in deterioration of the velocity field
[Burgers et al., 2002]. In addition, the ocean itself remains consistent during the
assimilation period. A consistent analysis is a very useful tool when a theoretical
study is carried out. A disadvantage is that some model errors, for example a too
high diffusivity, cannot be corrected. Also the slow dynamics of the ocean, that
occur below the thermocline, cannot be corrected by adjusting surface fluxes over
a relatively short period.

Among others, Bonekamp et al. [2001] and Vossepoel [2002] have done earlier
work in which they use fluxes to adjust the ocean state. They both focussed on
the equatorial Pacific, since most improvements were expected here. However, it
is also possible to improve the ocean state outside the equatorial Pacific. In this
article, a global extension of Bonekamp et al. [2001] is described. The scheme now
includes several improvements. First, the 4DVAR scheme is extended to use forcing
updates of heat and freshwater in addition to wind forcing. By using all fluxes, it is
expected that improvements extend out of the equatorial region. Second, the time
period over which data is assimilated is doubled while the number of iterations was
reduced to keep a constant computing time. By increasing the assimilation window
to sixteen weeks, it is expected that the region of possible improvements increases
and the amplitude of the errors decrease. The validity of the linearization of the
adjoint model has been investigated in van Oldenborgh et al. [1999] and was found
to be good when considering flux variations over 16 weeks. Finally, the scheme is
extended with additional cost function terms of SST and SSH data.

This article illustrates how 4DVAR fluxes adjust the global thermal ocean
state in our model. It gives a global impression of how the method adjusts the
ocean state and where most of the improvements are achieved. Since initial state
and forcing perturbations have different characteristics, we correct for them sepa-
rately in our identical twin experiments. From a ‘truth’ run pseudo-observations are
generated at the same place and time as real observations. The pseudo observations
are then used to approximate the ‘truth’ again by assimilation into perturbed runs.
Though the truth is exactly known, there are also disadvantages to using identi-
cal twin experiments. Because we have defined a ‘truth’ from the model, model
errors are not taken into consideration. Furthermore, since we use measurements
that directly originate from our model, in this configuration no measurement errors
were taken into account. This includes representation errors due to sub-gridscale
variability. In studying the adjustments of the 4DVAR fluxes, three questions were
kept in mind. First, does the 4DVAR system improve the temperature and salinity
structure of the ocean? Second, where are most of the improvements and how do
they depend on the observations used? Third, which fluxes are responsible for these
improvements?

The outline of the paper is as follows. In section 2 we briefly describe the
HOPE ocean model and the observational data. Section 3 then deals with the
assimilation method of the observations. An outline of the experiments is also given
here. The initial state error and forcing error experiments are discussed in section 4.1
and 4.2 respectively. Section 5 finally summarizes the conclusions.
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Figure 1: Numer of observations in the subsurface temperature dataset during a
period of sixteen weeks (last assimilation cycle), summed over depth.

2 Model and Data

2.1 The HOPE Model

For this study, the Hamburg Primitive Equation (HOPE) OGCM is used. The
version is identical to the one used in the ECMWF system-1 seasonal forecasts.
A detailed description of the model is given by Wolff et al. [1997]. The prognostic
variables are temperature, salinity, horizontal velocities and sea surface height. The
availability of the latter variable makes inclusion of SSH observations in a cost
function straightforward.

The equations in HOPE are spatially discretized on an Arakawa E-grid. The
model has a zonal resolution of 2.8◦ at all latitudes. The meridional resolution
varies from 0.5◦ near the equator to 2.8◦ at higher latitudes. In the vertical, 10
levels cover the first 300 meters below the sea surface and another 10 levels cover
the deep ocean. The time step is 2 hours. The vertical mixing in HOPE is based
on a Richardson-number dependent formulation and a simple mixed-layer scheme
to represent the effects of wind stirring.

The model is forced with daily surface fluxes of momentum, heat and fresh-
water. As will be discussed later, these fluxes are adjusted by the 4DVAR scheme
to improve the analysis.

2.2 Data

Three different kinds of observations are used in this study: subsurface temperature,
SSH anomalies and SST. From the observational datasets, only time, place and error
estimates are used in the identical twin experiments. The subsurface temperature
observations originate from buoys or ships and are obtained from the ECMWF
[Alves et al., 2000]. The measurements are concentrated near the western boundary
currents, the PIRATA and TAO/TRITON arrays and some ship routes in the Pacific
Ocean, see Figure 1.

The SSH dataset consists of T/P measurements and is based on Schrama
et al. [2000]. The experiments were situated in early 1992 to allow for comparisons
with Alves et al. [2000]. However, T/P data are only available from the end of 1992
onward. As identical twin experiments require only the properties of the observa-
tions, not the values themselves, these were taken from the next year (1993). The
data have been aggregated to measurements every second (7 km). They are quality
controlled and further reduced to the HOPE grid. The averaging procedure also
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yields an error estimate (see appendix A).
The last dataset used is the SST dataset from Reynolds and Smith [1994]. It

consists of daily data on the atmospheric grid of HOPE (2.8◦by 2.8◦). The obser-
vations in this dataset are dependent in space and time. Assimilation of SST data
can be interpreted as an alternative to the relaxation to SST with a mixed-layer
depth dependent relaxation time.

2.3 The 4DVAR scheme

The model and data described above are tied together by a 4DVAR assimilation
scheme that is based on the system of Bonekamp et al. [2001]. The current version
comprises cost function terms for SST and SSH in addition to subsurface tempera-
ture measurements. Originally, the scheme only adjusted the fluxes of momentum,
but in the current version all surface fluxes are adjusted.

The 4DVAR data assimilation method attempts to minimize a cost function
J that quantifies the misfit between model values and observations. It is made up
of a background term, Jbg, and the observational terms JSST, JSUB, and JSSH.

J = Jbg + wSSTJSST + wSUBJSUB + wSSHJSSH . (1)

The subscript of the observational terms indicates which dataset is used. The weight
terms w are used to compensate for dependencies in the data that are not explicitly
resolved.

The first term Jbg is the background term. This term penalizes for too strong
deviations from the prescribed background forcing,

Jbg = cT
B
−1c (2)

The vector c contains the control parameters, two-weekly grid point values of mo-
mentum, heat and freshwater fluxes. B is the background covariance matrix. The
covariances of all fluxes are estimated from the variability of the ERA dataset in
the same manner as described in Bonekamp et al. [2001], but following their rec-
ommendations the error decorrelation lengths have been estimated to be half the
variability decorrelaton lengths.

In principle, the observational cost function terms have the standard form:

J ′i = (Hix(c,x0)− z)T E
−1
i (Hix(c,x0)− z), i = SUB,SSH,SST . (3)

H is the observation operator which projects the model output on the model coun-
terpart of the observational data. The model output depends on the initial state x0

and the control vector c. The vector x contains the HOPE model trajectory, z the
observations. E is the observational error covariance matrix which accounts both
for the errors in the measurements and in the projection H.

When using SSH anomalies, a model and observational climatology are needed.
Although the model climatology should be derived by applying the assimilation
procedure iteratively, we use a model climatology of the ECMWF (Alves et al.
[2002]) instead. The observational climatology is computed from the T/P data in
the 1992–2000 period. Due to model errors and uncertainties in the geoid, the model
climatology is not equal to the observational climatology. In the context of identical
twin experiments, the climatology is irrelevant however.

The subsurface measurements (daily in the case of buoys) are far enough apart
to allow the approximation of E being diagonal. The SSH along-track measurements
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are reduced to effective measurements in diagonal form following the method de-
scribed in Appendix A. The dependencies of the gridded SST field are compensated
for by a weight value wSST < 1 rather than an explicit estimate of the error covari-
ance matrix. The weight of the SST cost function term in equation 1, wSST, was
taken as 0.5. The background term Jbg is relatively small. Since the dependency
of the altimetry measurements in a single grid box is already taken care of, wSSH

only has to take into account the dependence between the gridboxes and is set to
1. wSUB is set to 2.

Some measurement errors or model deficiencies can have a large effect on
the ocean analysis during assimilation [Bonekamp et al., 2001]. Large, localized
measurement errors for example can lead to unwanted deformations in the ocean
analysis. Also in places where the ocean is not represented correctly in the coarse-
resolution model, for example in western boundary currents, the large deviations
between model and observations should not affect the analysis too much. Conse-
quently, the following non-quadratic form was used to reduce the weight of the
observations that deviate very strongly from the model:

Ji =
∑

n

jn
jn + 22

, jn =
(Hnxn − zn)

2

(δzn)2
(4)

The error on observation n is denoted by δzn and the sum is taken of all n obser-
vations.

3 Set-up of the Numerical Experiments

3.1 The assimilation procedure

The data assimilation experiments are set up in such a way that they simulate an
operational forecasting cycle, see figure 2. First, a model trajectory is calculated
by integrating the model forward in time for a period of sixteen weeks. The model
trajectory and the (pseudo-) observations are used to make a first evaluation of
the cost function J . This value reflects the misfit between the first-guess model
trajectory and the (pseudo-) observations, since the additional momentum, heat
and freshwater fluxes are still zero. From here, we calculate a best-guess trajectory
by constructing nine two-weekly sets of new fluxes that minimize J .

The minimization is done with the quasi-Newton routine M1QN3 [Gilbert and
C. Lemarechal, 1989]. The required evaluations of the gradient of the cost function
are obtained from backward integration with adHOPE, described in van Oldenborgh
et al. [1999]. Because the integrations with adHOPE are computationally expensive,
the allowable number of iterations with M1QN3 is restricted. In all the experiments,
the maximum number of iterations has been set to two.

After the first period of sixteen weeks is dealt with, we repeat the assimilation
cycle with a time window shifted by two weeks. As initial state the best-guess
estimate (analysis) at t = t1 of the first cycle is taken. For the first eight two-weekly
sets, the best-guess flux updates of the previous cycle are reused, whereas the new
flux updates at the end are set to zero. Each assimilation experiment consists of
seven shifted assimilation cycles.

3.2 Description of the experiments

A list of the experiments is given in table 1. The reference run (runT) defines the
‘truth’ and generates the pseudo-observations for the assimilation experiments. The
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Figure 2: Schematic diagram of three out of seven assimilation cycles. Time is
from left to right. The re-use of the two-weekly flux corrections from the previous
assimilation window is indicated by the arrows. In addition, the long arrows mark
the re-use of the model state as the initial state of the next assimilation window.
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initial state of runT is the same as the one used in Alves et al. [2000]. It is obtained by
integrating the model from Levitus initial conditions at 1985 to January 1st, 1992.
During this integration ECMWF reanalysis fluxes (ERA-15) were applied. SST was
strongly relaxed to Reynolds SST on a three day time scale and sea surface salinity
(SSS) was weakly relaxed to Levitus SSS on a one month time scale. The reference
run starts at 1 January 1992 and is integrated forward in time by again applying
the ECMWF reanalysis fluxes. During the reference run, a weaker SST relaxation
was applied of 40Wm−2K−1.

The experiments ending with the number 1 are done to test the capability of
the 4DVAR scheme to correct for errors in the initial state. These errors can also
be partly corrected by adjusting the fluxes. The experiments start from an initial
state that differs from the truth and approximate it again. The initial state used, is
the perturbed initial state as is described in Alves et al. [2000]. It is obtained from
the same spin up integration as described earlier, but now it is forced from 1990
onward by ECMWF operational fluxes instead of reanalysis fluxes. So in the final
two years, different fluxes are applied.

The experiments ending with the number 2 are done to test to what extent the
4DVAR scheme is able to correct for errors in the surface forcing. These experiments
start from the same initial state as the truth, while surface fluxes are applied from
the ECMWF operational archives (OPS).

The first-guess runs, indicated by ’FG’, set a baseline to which the data as-
similation experiments can be compared. In the initial state error experiments, FG1
shows to what extent the model converges from the perturbed initial state towards
the truth by only applying the correct surface fluxes. In the forcing error experi-
ments, FG2 illustrates to what extent the model diverges from the truth because
of different forcing fields. In these experiments, no data are assimilated yet.

The performance in reducing errors with respect to the truth is examined
in the assimilation experiments, named SST, SSH, SUB and BOTH. These exper-
iments clarify the effect of assimilating data with varying properties. In the SST
experiments, SST data is assimilated only. In the SSH experiments, SSH observa-
tions are assimilated additionally. In the SUB experiments, subsurface temperature
observations are assimilated additionally. Experiment BOTH assimilates both SSH
and subsurface temperature data in addition to the SST data. It should be noted
that in all assimilation experiments the SST relaxation is omitted. Instead, the heat
flux resulting from the SST relaxation in runT is imposed additionally.

4 Identical Twin Experiments

In identical twin experiments the truth is generated in a model run and pseudo
observations are generated from that model run. The pseudo observations are then
assimilated to approximate the truth again. The next subsections examine how the
4DVAR scheme corrects for errors from the truth. Paragraph 4.1 first discusses the
performance in reducing the initial state errors. Paragraph 4.2 then discusses the
correction for forcing errors.

4.1 Correction for Initial State Errors

Fig. 3 first shows the decrease of the cost function terms JSST, JSUB and JSSH as a
function of iteration and assimilation cycle. Since each assimilation cycle starts with
an evaluation of the cost function, this value is displayed first. After that, values
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Experiment Initial state Forcing Data assimilated
runT ERA forced ERA none
FG1 OPS forced ERA none
SST1 OPS forced ERA SST
SSH1 OPS forced ERA SST, altimetry
SUB1 OPS forced ERA SST, subsurface
BOTH1 OPS forced ERA SST, altimetry and subsurface
FG2 ERA forced OPS none
SST2 ERA forced OPS SST
SSH2 ERA forced OPS SST, altimetry
SUB2 ERA forced OPS SST, subsurface
BOTH2 ERA forced OPS SST, altimetry and subsurface

Table 1: Overview of the experiments
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Figure 3: Decrease of the cost functions JSUB (a), JSSH (b) and JSST (c) as a function
of iteration and assimilation cycle.

are depicted from the two iterations, in which the derivatives are computed again
and the value of the cost function decreases. Two iterations in each cycle already
give a large decrease of the cost function. Increasing the number of iterations any
further does not lead to large reductions of the cost function any more [Bonekamp
et al., 2001].

In general, the first-guess terms JSUB and JSSH decrease when the assimilation
window is shifted. Starting from an incorrect initial state, by applying the correct
fluxes the ocean is forced towards the correct state again. The first-guess term JSST

does not decrease significantly. The explanation for this is two-sided. First, the SST
of the perturbed initial state starts off close to the SST of the ’true’ initial state.
Both initial states are generated with the same strong relaxation to SST. So JSST

starts off small. Thereafter, the relaxation to SST in the ’truth’ is replaced by a
slightly different forcing term in the analysis. So it is possible for JSST to even
increase.

In all assimilation experiments the cost function terms are reduced compared
to their first-guess value. In the first cycles, the decrease of the cost function depends
on the dataset that is assimilated. After a few cycles, the cost function terms seem
to converge to a constant value. Note that the value of the cost function at the
start of a new cycle is not as high as the first-guess value. The new cycle uses the
updated initial state and most fluxes from the preceding cycle.

By using the cost function to measure the quality of the analysis, global
information is projected into a single value. In addition, the cost function only
takes into account the deviation from reality at the observation points. A more
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detailed view can be obtained by looking at the differences between the analyzed
and the ‘true’ ocean state, which is exactly known in identical twin experiments. The
integral over depth and longitude of the absolute value of these residuals is shown for
the Pacific, Indian and Atlantic Ocean basins in Figure 4. Because we are mainly
interested in the subsurface adjustments, the two uppermost layers (at 10m and
30m) are omitted. The residuals are given for the first week of the last assimilation
cycle. Here the analysis is best, because the adjusted fluxes have updated the ocean
state most frequently.

In the first-guess the residuals peak near 10–15◦ from the equator, where the
trade winds and their variability reach a maximum. Over the period of two years in
which the perturbed initial state is generated, the different fluxes have disturbed a
region around the equator. In the three months of the analysis, the correct fluxes can
only partly compensate for these disturbances, in a smaller region. The assimilation
experiments manage to reduce the residuals of the first-guess even further. Note
the difference from the similar figures in Bonekamp et al. [2001] showing the much
larger reduction in the cost function, which only includes points that are used in
the minimization.

The residuals differ when different observational datasets are used. In the
equatorial region, large first-guess residuals can be found in the Pacific. By assimi-
lating SST data these residuals are only slightly reduced. When another dataset is
assimilated additionally, the residuals are further reduced. The subsurface dataset
has many measurements concentrated near the equator and reduces the largest of
the residuals quite well in this region. At higher latitudes, however, we observe larger
residuals. The cost function is undefined in the regions without data, so fluxes can
be defined here arbitrarily in favour of a reduction of the cost function in data-
rich regions. As a result, the analysis is hardly improved or even deteriorated at
higher latitudes (near 25◦). Since the coverage of altimetry data is more regular,
assimilating altimetry data results in a more uniform adjustment. The residuals
are somewhat larger near the equator, but they are considerably reduced at higher
latitudes. Another example can be found in the Indian Ocean. Here subsurface data
cannot bring the analysis as close to the truth as the altimetry data, simply because
there are fewer subsurface observations.

At high latitudes, residuals are large where the ocean model behaves chaoti-
cally, even on the coarse HOPE grid. The deviation of the first-guess from the truth
is large in regions of the western boundary currents and the Antarctic Circumpolar
Current, which are visible in the Atlantic near 50◦N and 30◦S. The residuals of the
first-guess are hardly reduced in the assimilation experiments, even when data are
present. At some places, data assimilation leads to slightly increased residuals (near
50◦N).

Looking at the vertical distribution of the residuals, large differences are found
between the tropics and extratropics. Figure 5 shows the residuals as a function of
depth, distinguishing between low latitudes (20◦ S to 20◦N) and high latitudes
(30◦ to 60◦). In the equatorial region, relatively small differences between the first-
guess and the truth are found near the surface and large differences are found near
the thermocline, around 100m. At higher latitudes, the differences between the truth
and the first-guess are larger near the surface than the relatively small differences
at depth. In the analyses the largest differences are reduced. Zonal wind updates
change the depth of the thermocline in the equatorial region when subsurface or
altimetry data are assimilated, which leads to smaller residuals at depth. When
only SST data are assimilated, temperatures at depth barely change. The thermo-
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a)

b)

c)

Figure 4: Residuals (
∫

z>40m
|Ttruth−Tanalysis|dxdz) as a function of latitude of FG1,

SST1, SUB1 and SSH1 in the Pacific (a), Indian (b) and Atlantic (c) Ocean.
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a) b)

Figure 5: Residuals (
∫

|Ttruth−Tanalysis|dxdy) as a function of depth of FG1, SST1,
SUB1 and SSH1 from 20◦S to 20◦N (a) and from 30◦ to 60◦ (b).

cline can reach depths up to 1000m in this latitudinal band, so that improvements
are possible up to that depth. As will be discussed later, zonal wind stress can-
not effectively change the state of the ocean at higher latitudes due to the limited
assimilation window. At higher latitudes, no improvements are visible near thermo-
cline depth. Here improvements from heat fluxes are most pronounced. Instead of
displacing the thermocline by zonal wind stress, heat fluxes gradually reduce the
residuals through the surface. These heat fluxes can be determined by assimilation
of SST only; assimilating subsurface or altimetry data barely improves the analysis
at depth. Differences between the analysis and the truth continue to exist in the
period of assimilation.

The difference between the tropics and extratropics can be seen directly by
considering the effect of momentum and heat flux adjustments on the cost function.
Eq. 5 divides the change of the cost function into the contributions of the separate
fluxes:

∆J ≈
∑

i

{

∂J

∂τx,i

∆τx,i +
∂J

∂τy,i

∆τy,i +
∂J

∂Qi

∆Qi +
∂J

∂Fi

∆Fi

}

(5)

Here, J is the cost function. τx, τy, Q and F are the zonal momentum flux, the
meridional momentum flux, the heat flux and the freshwater flux respectively. The
sum refers to all surface grid points. Contributions of the meridional momentum
and the freshwater flux proved to be minimal and are not shown.

Figure 6 maps the contribution according to equation 5 of zonal wind stress
and heat flux updates at the beginning of the last BOTH1 cycle. The figure shows
that many improvements in the Pacific region from 20◦N to 20◦S can be ascribed
to the zonal momentum flux updates. In the Indian and Atlantic ocean basins the
impact is less pronounced. An estimate of the highest latitude where improvements
from zonal wind updates are visible can be calculated from the planetary wave
speed. An approximation of the phase speed of this wave is v = −c2 cosφ/2ΩR sin2 φ
(see Gill [1982]). Here c is the speed of a Kelvin wave at the equator, Ω and R are the
angular velocity and radius of the earth respectively, and φ represents latitude. The
planetary wave speed permits information to be propagated between two successive
tracks of altimetry data (2.8◦) during the time of the assimilation window (16 weeks)
up to 25-30◦latitude. As the cost function is only defined on the tracks, at higher
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a)

b)

Figure 6: The contributions ∂J/∂τx ∆τx (a) and ∂J/∂Q ∆Q (b) to the decrease of
the cost function.

latitudes its derivative to the wind stress is zero on part of the gap between tracks
and the computed (large-scale) updates will be too small. Improvements from zonal
wind updates are indeed visible in the latitudinal band from about 30◦S to 30◦N. At
higher latitudes, the wave speed is such that improvements during the assimilation
window are not significant anymore.

Improvements from heat updates are both visible in the equatorial region
and at higher latitudes. In the equatorial region, e.g. near 120◦W, adjusting the
heat flux is an efficient way in counteracting the errors near the surface. At higher
latitudes some large-scale subsurface errors are also corrected for. An example is
shown in figure 7, where the deviations south-east of Australia are almost cleared
in the analysis. However, there are also small-scale errors at higher latitudes that
are not corrected, for example near western boundaries. Here, adjacent small areas
increase and decrease the cost function. The deviation from the truth changes sign
at small spatial scales. The term ∂J/∂Q therefore also changes sign. However, large
correlation scales in Jbg restrict the heat update ∆Q to large-scale patterns of the
same sign, giving rise to the small-scale structures. Smaller-scale updates are not
permitted as it is not natural to use heat fluxes to cancel the chaotic behaviour in
these regions.

Figure 7 compares the performance of FG1 and BOTH1 in reproducing the
ocean thermal state at the end of the experiment (July 15th), the starting point
for a seasonal forecast. The sections show that the scheme can correct for initial
state errors both near the equator and at higher latitudes. Improvements are due
to momentum and heat fluxes, which do not affect the ocean below the thermocline
in the 16-week assimilation window. In the Pacific, it is obvious that temperature
differences are reduced at many places. In the equatorial section however, some large
but small-scale deviations (e.g. at 130◦W) are reduced at the expense of small, large-
scale deviations, such as an upward shift of the thermocline. The fluxes have less
impact on the ocean state in the Indian and Atlantic basins.
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Figure 7: Final temperature differences between the truth and FG1 (L), and between
the truth and BOTH1 (R) at 100m (top), at the equator (middle) and at the dateline
(bottom).
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Figure 8: Decrease of the cost functions JSUB (a), JSSH (b) and JSST (c) as a function
of iteration and assimilation cycle.

Salinity observations are not assimilated in the experiments. However, the
simultaneous use of subsurface temperature observations and altimetry can in prin-
ciple be used to adjust the salinity [Vossepoel et al., 2002]. An example of this was
observed in the western equatorial Pacific, where the mismatch is translated in a
precipitation update that improves the salinity analysis.

4.2 Correction for Forcing Errors

Figure 8 shows the evolution of the cost function terms JSST, JSUB and JSSH in
the experiments that were started from the correct initial state, but where the
forcing was taken from the ECMWF operational fluxes rather than the reanalysis.
In this case fluxes are changed to compensate for incorrect forcing fields. In the
experiments, all three first-guess terms increase when the assimilation window is
shifted. The increase was expected since incorrect surface fluxes were applied. The
model obviously diverges from the ‘true’ subsurface state from which it was started.

At the end of the assimilation experiments all observational cost function
terms are reduced with respect to their first-guess value. The term Jbg, which en-
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sures large-scale updates with a reasonable amplitude, is the main reason why the
data assimilation procedure cannot decrease the cost function any further. The cost
functions remain sligthly higher in BOTH2, when assimilation of subsurface data
slightly increases the misfit with altimetry data and vice versa.

In the different ocean basins (figure 9), the first-guess shows large residuals
near the equator from approximately 25◦S to 25◦N. Here the ocean response to wind
forcing is fastest and forcing perturbations can easily bring about disturbances of
the ocean state. The first-guess residuals, which are caused by the perturbed fluxes,
are of course smaller than the residuals from the initial state error experiments,
which are generated by perturbing the fluxes for two years before the start date of
the experiments.

When only SST data is assimilated, some of the residuals at depth increase
and some of the residuals decrease with respect to the first-guess residuals. As will
be shown later, here the fluxes are only defined to minimize the residuals at the
surface. The deviations from the first guess are larger than in the previous set of
experiments, because SSTs were close to the truth in the perturbed initial state.
The heat fluxes perturbations in this set of experiments are not small.

In the other assimilation experiments the residuals of the first-guess are fur-
ther reduced. The reduction is not as large as the reduction in the cost function
shown in Bonekamp et al. [2001], since all grid points were taken into account again
rather than only the observational points. Different residuals were obtained when
different observational datasets were used. In the equatorial Pacific, from 8◦S to
8◦N, many subsurface temperature data are generated by the TAO array. In this
region, the subsurface data lead to smaller residuals than the altimetry data do.
Since more altimetry data are available at higher latitudes, here the opposite is true.
At these latitudes residuals from altimetry are smaller. In the Indian Ocean the ben-
efit of more datapoints being available is also illustrated. Compared to altimetry
data, the residuals are only slightly reduced when a few subsurface temperature
data are assimilated.

In the Atlantic, chaotic model behaviour results in residuals that are hardly
reduced compared to their first-guess value by varying the fluxes into the ocean. The
Gulf Stream region near 55◦N illustrates that data assimilation in chaotic regions
can even lead to an enlargement of the residuals.

The residuals as a function of depth are shown in Fig, 10 , again distinguishing
between the low and high latitudes. When perturbed fluxes are applied, the largest
residuals are found near the surface. These residuals are effectively reduced due to
the good SST observations and the easy way SST deviations can be corrected for
by adjusting the heat flux. At depth in the tropics, residuals are also reduced when
subsurface or sea level data are assimilated in addition to SST data. When SST
data are only assimated however, equatorial fluxes are defined which minimise the
residuals at the surface at the cost of residuals at depth. The residuals at depth
are even larger than the first-guess residuals. At higher latitudes the residuals are
mainly reduced by fluxes through the surface again. At depth, the residuals remain
close to zero.

Figure 11 shows the contribution to the reduction of the cost according to
variations of zonal wind stress and heat flux at the beginning (cf. equation 5) of the
last BOTH2 assimilation cycle. Again, zonal wind updates dominate the equatorial
region and the heat flux updates also appear at higher latitudes. Wind stresses
are more explicit in the equatorial region now than in the first set of experiments
and are even clear in the Indian and Atlantic basins. Adjusting the fluxes is a
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a)

b)

c)

Figure 9: Residuals (
∫

z>40m
|Ttruth−Tanalysis|dxdz) of FG2, SST2, SUB2 and SSH2

in the Pacific(a), Indian(b) and Atlantic(c) Ocean.
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a) b)

Figure 10: Residuals (
∫

|Ttruth−Tanalysis|dxdy) as a function of depth of FG2, SST2,
SUB2 and SSH2 from 20◦S to 20◦N (a) and from 30◦to 60◦(b).

straightforward method to counteract forcing errors and the larger impact from the
heat flux in these experiments is not really surprising. At higher latitudes, the heat
fluxes are again not efficient in compensating for chaotic behaviour.

Figure 12 finally compares the performance of FG2 and BOTH2 at the end of
the experiment, July 15th. Differences between the first-guess and the ‘truth’ show
that most improvements are found near the surface and in the equatorial region. The
sections show that the analyses are able to correct for forcing perturbations even
at higher latitudes. Most pronounced are the improvements in the Pacific Ocean
basin. In the Indian and Atlantic basins, they are visible but less pronounced again.
The salinity structure of the ocean was again slightly improved as well (not shown).

5 Discussion and conclusions

In this study, the 4DVAR scheme of Bonekamp et al. [2001] has been extended to a
global domain. Apart from subsurface temperature data, the scheme is now also able
to assimilate SSH and SST data. To enlarge the impact in off-equatorial regions, the
scheme has been adapted at three other points. The first point is that the scheme
uses heat and freshwater fluxes in addition to the wind stress to adjust the ocean
state. Now also heat fluxes are able to improve the ocean analysis, for example in
regions in which cloud cover is not represented correctly. The second point is that
the length of the assimilation window is doubled. Wind-generated planetary waves
can now adjust the ocean state at higher latitudes during the assimilation time.
The performance in the equatorial region is further improved by a reduction of the
error decorrelation length of the fluxes.

Various identical twin experiments have been carried out to quantify the im-
pact of the 4DVAR data assimilation on the ocean analysis. In the experiments SST
data were assimilated in combination with SSH data, subsurface temperature data
or both datasets to correct for either initial state errors or surface forcing errors.
Both by assimilating SSH data and by assimilating subsurface temperature data,
the analysis approximates the ocean state of the truth again.

From different points of view, the performance of the 4DVAR method was
illustrated. Within several cycles, the 4DVAR scheme was able to reduce all cost
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a)

b)

Figure 11: The contributions ∂J/∂τx ∆τx (a) and ∂J/∂Q ∆Q (b) to the decrease
of the cost function.

Figure 12: Final temperature differences between the truth and FG2 (L), and be-
tween the truth and BOTH2 (R) at 100m (top), at the equator (middle) and at the
dateline (bottom).
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function terms to an almost constant value. The final value of the specific cost func-
tion was barely dependent on which dataset was assimilated: assimilating altimetry
data reduces the subsurface cost function almost as effectively as assimilating the
subsurface data and vice versa. This equivalence was also found by Segschneider
et al. [2001].

Dependent on which dataset is assimilated, differences also arise between the
resulting analyses. By assimilating SST data only, the improvements are confined
to some surface layers. Subsurface and altimetry data reach somewhat deeper. Sub-
surface temperature data are highly concentrated in the equatorial region and give
information in depth. They leave relatively small residuals near the equator, at the
cost of larger residuals at higher latitudes. Altimetry data on the other side are
global with uniform coverage and resolution, but only give information at the sur-
face of an integrated heat content. Assimilating altimetry data results in a more
uniform adjustment, which also alters the thermal ocean structure at depth.

In the tropics, improvements by adjusting the wind stress are most obvious.
Planetary (Rossby) waves can bridge the gap between observations within the 16-
week assimilation window up to a latitude of 25–30◦ latitude, giving a rough limit
on the area where the zonal wind stress can improve the ocean state in this configu-
ration. The area is extended with respect to that of the shorter assimilation window
of Bonekamp et al. [2001]. The momentum induced improvement principally implies
a shift of the thermocline via Ekman pumping, which is often equivalent to a lifting
or lowering of a temperature and salinity profile. On the equator advection over a
temperature gradient is also used by the 4DVAR system.

Improvements from heat fluxes occur both in the tropics and in the extratrop-
ics. Especially large scale errors are nicely reduced by the scheme. The heat fluxes
can not reduce small-scale errors, for example near western boundary currents. This
is partly due to the high decorrelation lengths. Instead of shifting the thermocline,
heat fluxes mainly act through the surface.

The analysis at the end of the last cycle can be used as initial state for seasonal
forecasts. The subsurface structure of this analysis is investigated in some more
detail. In both experiments, the final thermal subsurface ocean state is improved
in the tropics as well as at higher latitudes. Most of the improvements are visible
in the Pacific and in the equatorial region. Contrary to the 4DVAR scheme of
Weaver et al. [2002], the flux adjustments can not correct the ocean state below
the thermocline. Deviations due to small-scale chaotic ocean behaviour also have to
be reduced by additionally adjusting the initial state of the analysis. In some areas
the salinity analysis is also improved. This is due to freshwater fluxes, and wind
updates affecting both temperature and salinity.
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A An along-track altimetry data error estimate

Along-track altimetry data was assimilated rather than gridded values, as the error
covariance structure is much easier to estimate. The raw 1Hz (7km) data were ob-
tained from DEOS [Schrama et al., 2000] as a set of values per (nominal) obervation
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point, one for each cycle (data up to cycle 234 were used). Bad tracks had been
removed, but the following quality control cuts were necesary:
1. Observation points with less than 80% data were rejected. This eliminates
regions that are sometimes covered with ice and coastal points that are dry
at low tide, in all 9.75%.

2. Measurements at an observation point that deviate more than four times the
standard deviation with respect to a 110-day running mean at that point were
rejected. These 65923 (0.06%) observations are rather uniformly distributed,
although the less stringent cut in areas of high variability means fewer are
rejected there.

3. The standard deviation with respect to a 110-day running mean was required
to be less than 52cm, the highest value found in the Agulhas retroflection
area. This eliminates 74527 observations (0.07%), mainly in estuaria where
the tide model is not accurate enough, but some in mid-ocean.

A visual inspection of the remaining anomalies show that the the largest remaining
problem is the geoid gradient. The sea surface height is not always measured at the
nominal observation position, but can deviate a few kilometers, mainly along-track,
but also cross-track. In regions with large geoid gradients, such as the islands in the
West Pacific and Caribean, these offsets give rise to sizable spurious anomalies. The
along-track component shows up as large anti-correlated spurious signals on either
side of an island or seamount, up to 30cm. These could be removed by estimation
of the geoid from the data [Dorandeu et al., 2003], however this requires more
information than we had available.

The data are used in Eq. 3 together with an estimate of the error covariance
matrix ESSH. This matrix is approximated by a block diagonal structure

E =
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. . . 0 En+1 . . .
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. . .













(6)

The boundaries between the blocks are halfway between the latitudes of the HOPE
grid points (around 20 points when treating the odd and even grid separately). All
correlations between different blocks are neglected.

Within each block an effective sea surface height S(t) =
∑

i αisi(t) is defined.
The si(t) are the measurements and

∑

i αi = 1. The weights αi are determined by
minimising the error

(δS)
2
=

N−1
∑

i,j=0

(si(t)− S(t))Cij(sj(t)− S(t)) , (7)

with (C−1)ij = s′is
′
j the covariance matrix of the measurements with a running mean

subtracted, which is used as an approximation for the unknown error covariance
matrix. This means that all sub-gridscale variability is considered noise.

The minimisation gives an effective sea surface height for each box

S(t) =

N−1
∑

i,j=0

si(t)Cij/

N−1
∑

i,j=0

Cij . (8)
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and an estimate of the error of this effective measurement:

(δS)2 =

N−1
∑

i,j=0

αiαjs′is
′
j . (9)

The position of the effective measurement is (X,Y )(t) =
∑

i αi(x, y)i(t). The block
diagonal assumption means that the effective measurements are assumed to be
uncorrelated and can be used directly in Eq. 4.

A few practical consequences of this method are noted. In a first approxima-
tion, neglecting off-diagonal elements of C, it weighs the points according to their
variance. Points with large errors are simply given less weight.

The covariance also solves the along-track geoid gradient problem. Two highly
negatively correlated measurements are averaged to give a much more accurate
estimate of SSH. Suppose N = 2 and

s′is
′
j =

(

1 δ − 1
δ − 1 1

)

, (10)

then α1 = α2 = 1/2 and S(t) = (s1(t) + s2(t))/2, (δS)
2 = δ/2¿ (δs1)

2.
Finally, highly correlated measurements simply count as a single measure-

ment. Again, for N = 2:

s′is
′
j =

(

1 1− δ
1− δ 1

)

, (11)

gives again α1 = α2 = 1/2 and hence S(t) = (s1(t)+s2(t))/2, but (δS)
2 = 1−δ/2 ≈

(δs1)
2.
A problem is immediately visible: measurements are often highly correlated,

even after subtraction of a running mean. This leads to an inverse that is very
badly conditioned, giving rise to large eigenvalues αi that cancel each other. In
order to regularize the solution one has to perform a singular value decomposition
and reject eigenvalues until all αi have a reasonable magnitude; we choose the
condition αi > 0 ∀i.
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