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The propagation properties of obliquely incident, weakly nonlinear surface waves in

shallow water of varying depth are studied analytically. The depth changes slowly in

a direction that makes a constant angle with the propagation direction of the incident

wave, initially travelling in a region of uniform depth. In the adjacent inhomogeneous

region, depth variations are relatively slow. On the other hand, it is assumed that these

occur on a scale shorter than that on which the wave evolves. As a consequence, the

problem can be reduced to an evolution equation with constant coefficients. Since weak

three-dimensional effects are also taken into account, this equation is related to the KP

equation (Kadomtsev & Petviashvili 1970). Based on these results, the mechanism of

mass transfer is studied. In a subsequent analysis, devoted to the case of a normally

incident wave, the problem of describing the leading-order mass balance is solved. A

normally incident solitary wave breaks up into a finite number of separate solitons if

certain specific conditions are satisfied, such as the condition that this wave enters a

region of smaller depth. In the more general case of an obliquely incident solitary wave,

it is shown that this phenomenon can also occur, although the conditions are different.
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1 Introduction

In the present paper, the effects of varying depth on the development of a long, obliquely

incident, weakly nonlinear surface wave in shallow water are investigated theoretically.

The rate of change of the depth (specified below) is relatively large. The fluid motions

are assumed to be inviscid, incompressible and irrotational. At the free surface, we

assume that the pressure is constant.

To describe the configuration, we choose a fixed Cartesian coordinate system Ox∗y∗z∗,

where the asterisk denotes a dimensional variable. The z∗-axis points vertically up-

wards, and the undisturbed free surface is located at z∗ = 0. The depth varies in the

x∗-direction, but is independent of y∗. We introduce the dimensionless coordinates

x = x∗/L, y = y∗/L, z = z∗/H and the dimensionless time t = V t∗/L. Here L is a

characteristic length of the surface wave, H is a characteristic depth, and V = (gH)1/2

is a reference speed, with g the gravitational acceleration. The surface elevation η∗

is described by η∗ = aη, where a is the wave amplitude. The depth is described by

z∗ = −Hh(ζ), with ζ = x∗/L0 (where L0 is the scale of the depth variation.)

The relevant dimensionless parameters, given by

ε =
a

H
, δ =

H

L
, µ =

L

L0

, (1.1)

are assumed to be small. Since the parameter ε is a measure of the effect of nonlinearity,

this implies that the problem is weakly nonlinear. Accordingly, the potential ψ∗ is

scaled as ψ∗ = εLV ψ. The parameter δ controls the effect of dispersion. In the case of

a uniform depth, the problem can be reduced to the Korteweg-de Vries (KdV) equation

if δ2 = O(ε), which expresses a leading-order balance of nonlinearity and dispersive

effects; see e.g. Whitham (1974). In what follows, we take δ2 = ε for convenience,

obtained by a suitable choice of the horizontal length scale, L. The parameter µ

controls the degree of inhomogeneity, induced by the slowly varying depth h = h(µx).

We consider the case of a relatively high degree of inhomogeneity, namely,

ε� µ� 1. (1.2)

This order of magnitude of µ describes the situation in which the depth change occurs

on a scale shorter than that associated with the spatial evolution of the wave.
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Now assume a depth change 4H in a region of length L0, which corresponds to an

average bed slope α = 4H/L0. Then the initial scaling (1.1), (1.2) implies that the

α-values are limited to the range

(a/H)3/24H/H � α� (a/H)1/24H/H, (1.3)

where 4H/H is the fractional change of depth.

For µ = ε the problem can be reduced to a KdV equation with varying coefficients

(Johnson 1973). At a lower degree of inhomogeneity (µ � ε), the scale on which

the depth varies is much longer than the scale on which the wave evolves. This case

has been studied extensively; see e.g. Peregrine (1967), Grimshaw(1970, 1971), Kaku-

tani (1971), Leibovich & Randall (1973), Kaup & Newell (1978), Karpman & Maslow

(1979), Candler & Johnson (1981). For the case of a relatively high degree of inhomo-

geneity (µ � ε) we refer to Benilov (1992), van Groesen & Pudjaprasetya (1993) and

Johnson (1994). Benilov considers the case of periodic or random depth variations.

The majority of the previous studies is devoted to the case of a normally incident

plane wave, i.e., the propagation direction of the wave is aligned with the direction of

changing depth. For the more general case of an obliquely incident wave, the reader is

referred to e.g. Ryrie & Peregrine (1982) and Peregrine & Ryrie (1983). The present

paper is also devoted to the case of oblique incidence. The study includes an investiga-

tion of weak three-dimensional effects, which slightly distort the incident plane wave.

At a sufficient degree of inhomogeneity, it is found that the problem can be reduced

to an evolution equation with constant coefficients, which proves to be related to the

so-called KP equation (Kadomtsev & Petviashvili 1970). A solitary wave, described by

such an equation, varies slowly in a direction perpendicular to the direction of propa-

gation. For a review the reader is referred to Akylas (1994).

In §2 the governing equations are derived, based on a degree of inhomogeneity

given by (1.2). The actual evolution equation, which is related to the KP equation,

describes the development of the uni-directional primary wave, initially propagating in

a region of uniform depth. The adjacent region of variable depth is characterized by

a transition to another region of uniform depth. We also study the case of formation

of a caustic, and derive equations governing higher-order phenomena, induced by the
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primary wave as it enters the inhomogeneous region. The occurrence of reflection of

the wave was already described by Peregrine (1967), starting from a set of linearized

long-wave equations. In §3 a different approach is adopted, and extended to the case

of an obliquely incident wave. This approach allows a detailed study of the problem

of mass transfer from the primary waves to the right-going and reflected shelves. The

results differ significantly from the case of a slower change of depth.

A normally incident solitary wave eventually breaks up into a finite number of soli-

tons if this wave enters a region of rapidly decreasing depth; see Tappert & Zabusky

(1971), Johnson (1973) and the review by Miles (1980). In §4 we describe the occur-

rence of this phenomenon, known as fission, in the case of an obliquely incident solitary

wave. Due to the presence of weak three-dimensional effects, a detailed description of

this phenomenon requires the construction of the N -soliton solution of the KP equa-

tion, which is known to exist (Satsuma 1976). Rather than follow Satsuma’s original

analysis, however, we prefer to show that this solution can be derived directly from

the known N -soliton solution of the KdV equation by a simple transformation of the

independent variables. It is shown that the conditions for fission also depend on the

angle of incidence. Finally, in §5 the principal results are summarized.

2 The evolution equation for the primary wave

In section §1 we described the problem of a weakly nonlinear, obliquely incident surface

wave (with amplitude ε) in shallow water of slowly varying depth h = h(µx); the small

parameters ε and µ are given by (1.1) and (1.2). All variables are dimensionless, and

it is assumed that nonlinearity and dispersion are of equal importance, i.e. δ2 = ε.

It is tempting to consider first the case of two-dimensional depth variations h(x, y),

with hx = O(1) and hy = O(1), i.e. the scales of these variations are of the same order

of magnitude as the wavelength.

The Laplace equation

ε∇2ψ + ψzz = 0, (2.1)

4



with ∇2 = ∂2/∂x2 + ∂2/∂y2 , has a solution of the form

ψ(x, y, z, t) = φ(x, y, t)− ε[(z + h)2∇2φ/2 + (z + h)(∇h.∇φ)] + o(ε), (2.2)

which satisfies the bottom boundary condition

ψz = −ε(∇h.∇ψ), (z = −h). (2.3)

Bernoulli’s equation is given by

2η = −2ψt − ε(ψ2
x + ψ2

y)− ψ2
z , (z = εη). (2.4)

Substitution of (2.2) into (2.4), and differentiation with respect to t, yields

ηt = −φtt + ε[(h2/2)∇2φtt − φxφxt − φyφyt + h(∇h.∇φ)tt] + o(ε). (2.5)

Substitution of (2.2) into the equation for mass conservation, given by

ηt +
∂

∂x

∫ εη

−h
ψxdz +

∂

∂y

∫ εη

−h
ψydz = 0, (2.6)

leads to the result

ηt = −(hφx)x−(hφy)y+ε[(φtφx)x+(φtφy)y+∇2(h3∇2φ)/6+∇2(h2(∇h.∇φ))/2]+o(ε),

(2.7)

where use is made of (2.4), which implies that η = −φt + o(1).

Elimination of ηt between (2.5) and (2.7) leads to the equation

φtt − (hφx)x − (hφy)y + ε[2φxφxt + 2φyφyt + φt∇2φ+∇2(h3∇2φ)/6

−(h2/2)∇2φtt +∇2(h2(∇h.∇φ))/2− h(∇h.∇φ)tt] = o(ε), (2.8)

expressed in terms of the potential. Equation (2.8) is a generalisation of a result derived

previously by Newell (1985). This author considered the case hy = 0, hx = O(ε).

Next we revert to the case where the depth depends on x only, with hx � 1. Using

the relation φtt = h∇2φ+ o(1), equation (2.8) reduces to

φtt − (hφx)x − hφyy + ε[2φxφxt + 2φyφyt + φt∇2φ− (1/3)h3∇4φ] = o(ε). (2.9)
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As a solution of equation (2.9) we consider an uni-directional primary wave, propa-

gating to the right, i.e. in the direction of increasing x. Accordingly, we introduce the

characteristic coordinate

θ =
∫ x

0
k(µχ)dχ+ `y − t, (2.10)

which corresponds to propagation in the direction of the vector (k, `), with k = k(µx),

and `= const. The relevant slow variables are given by

ξ = ε1/2(−`
∫ x

0

dχ

k(µχ)
+ y), ζ = µx, ϑ = ε

∫ x

0
(1/6k(µχ))dχ. (2.11)

The variable ξ is introduced to include weak three-dimensional effects, which slightly

distort the wave. In fact, ξ is a slowly varying coordinate along lines of constant phase;

cf. section 3.4.5 in Johnson(1997). The variables ζ and ϑ are multiple-scale variables

in the x-direction.

Expressing the potential and the surface elevation in terms of the new variables θ,

ζ, ξ, ϑ, the partial derivatives transform as follows

∂

∂x
= k

∂

∂θ
+ µ

∂

∂ζ
− ε1/2(`/k)

∂

∂ξ
+ (ε/6k)

∂

∂ϑ
,

∂

∂y
= `

∂

∂θ
+ ε1/2

∂

∂ξ
,

∂

∂t
= − ∂

∂θ
.

Strictly speaking, the small parameter µ, specified by (1.2), cannot be considered

as an independent parameter. As will be shown below (2.17), the appropriate scale of

the depth variation in terms of ε is given by

µ = ε1/2. (2.12)

Accordingly, we introduce the asymptotic expansions

φ = φ0 + ε1/2φ1 + εφ2 + o(ε), η = η0 + ε1/2η1 + εη2 + o(ε). (2.13)

Then Bernoulli’s equation, given by η = −φt +O(ε), implies that

η0 = φ0θ, η1 = φ1θ. (2.14)

Substitution of (2.10)-(2.14) into (2.9) leads to a hierarchy of equations, obtained

by equating terms of the same order of magnitude as ε → 0. Routine application of

the method of multiple scales leads, to lowest order, to the equation

h(`2 + k2) = 1, (2.15)
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which determines k(ζ). Furthermore, (2.15) implies that the condition for the asbsence

of a caustic is given by hm`
2 < 1, where hm denotes the maximum depth. When

rewritten in terms of dimensional variables, (2.15) corresponds to c2 = gh, where c is

the speed of the linear wave. The nonlinear correction to this speed (which includes

the wave amplitude), is determined by the solution of the evolution equation for the

surface elevation, derived below.

At higher order we obtain the equations

∂

∂ζ
(hkη2

0) = 0, (2.16)

and

(h/3)η0ϑ + (h/3)η0θθθ + (3/h)η0η0θ + (1/k2)φ0ξξ + 2(hk)1/2 ∂

∂ζ
((hk)1/2η1)

+
∂

∂ζ
(hφ0ζ)− 2(h`/k)1/2 ∂

∂ζ
((h`/k)1/2φ0ξ) = 0, (2.17)

derived by equating the terms proportional to ε1/2 and ε, respectively. Equation (2.16)

corresponds to Green’s law, extended to the case of oblique incidence. To derive equa-

tion (2.17), we also used (2.15).

The previous results were derived by introducing the scaling (2.12). To demonstrate

that this is the appropriate one, we introduce the asymptotic expansions

φ ∼
∞∑

m=0

∞∑

n=0

µmσnφmn, η ∼
∞∑

m=0

∞∑

n=0

µmσnηmn, µσ = ε, µ, σ, ε→ 0,

with µ given by (1.2). Choosing µ � ε1/2 or µ � ε1/2, the terms with φ0ζ and φ0ξ

in equation (2.17) drop out. Apparently, the maximum number of terms of the same

order of magnitude is obtained by taking µ = ε1/2. According to this ”principle of the

richest equation” (Kevorkian & Cole 1981), the scaling (2.12) seems to be the proper

one if the restriction (1.2) is taken into account.

The equations (2.16) and (2.17) can be simplified considerably by writing

η0 = (hk)−1/2S0. (2.18)

Then equation (2.16) reduces to

S0ζ = 0, (2.19)
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which implies that S0 = S0(θ, ϑ, ξ).

The evolution equation for the surface elevation is derived from equation (2.17).

Differentiation of (2.17) with respect to θ, and substitution of the expressions (2.14)

and (2.18) for η0, leads to the equation

2
∂

∂ζ
((hk)1/2η1θ) = −(1/3k)(S0ϑ + S0θθθ)θ − (3/h)(hk)−3/2(S0S0θ)θ − (1/hk3)S0ξξ

+
∂

∂ζ
((`/k2)S0ξ)− (hk)−1/2 ∂

∂ζ
(hη0ζ). (2.20)

The depth is uniform in the region x < 0. In particular, we take

h = 1, k = k0 = const. (2.21)

In this region, all variables are independent of ζ, and equation (2.20) reduces to

(S0ϑ + S0θθθ)θ + 9k
−1/2
0 (S0S0θ)θ + (3/k2

0)S0ξξ = 0, (2.22)

which is related to the KP equation (Kadomtsev & Petviashvili 1970).

Initially, the primary wave propagates to the right in the direction of the vector

(k0, `), with `2 + k2
0 = 1; cf. (2.15) and (2.21). Writing

k0 = cosϕ, ` = sinϕ, (2.23)

this means that the wavefront of the incident wave moves in the direction that makes

an angle ϕ with the positive x-axis. In the region of varying depth, (2.23) should be

rewritten as kh1/2 = cosϕ, `h1/2 = sinϕ, which determines ϕ(ζ).

In the inhomogeneous region, x > 0, the depth varies according to

h(ζ)→ h1 as ζ →∞, (2.24)

where h1 is a constant. This corresponds to k(ζ) → k1 as ζ → ∞, say. In fact, h(ζ)

describes a transition to another region of uniform depth as ζ increases.

To proceed, we consider a class of bounded functions of the variable ζ. For f(ζ)

belonging to this class we introduce the decomposition

f(ζ) = f + fp(ζ), f = lim
ζ→∞

[
1

ζ

∫ ζ

0
f(s)ds]. (2.25)
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The overbar denotes averaging on the interval [0,∞); the index p denotes the pertur-

bation to the mean part, with fp = 0. If f(ζ)→ f1 as ζ →∞, say, the definition (2.25)

implies that f = f1. Furthermore, if g(ζ)→ g1 as ζ →∞, we have fg = f1g1.

It will be convenient to omit three-dimensional effects for the time being. Using

(2.19) and (2.25) equation (2.20) then has a solution of the form

2(hk)1/2η1 = −
∫ ζ

0
[(1/3k1)(S0ϑ + S0θθθ) + (3/h1)(h1k1)−3/2S0S0θ]dζ

−
∫ ζ

0
[(1/3k)p(S0ϑ + S0θθθ) + ((3/h)(hk)−3/2)pS0S0θ]dζ −

∫ ζ

0
(hk)−1/2(hφ0ζ)ζdζ, (2.26)

with

φ0ζ = −
∫ ∞

θ
η0ζdθ. (2.27)

In what follows, we suppose that the primary wave, η0, vanishes as ζ →∞. Then

the last term in (2.26) is bounded in this limit. The term η1 represents the right-

going shelf, induced by the primary wave as it enters the region of varying depth. The

requirement that this shelf is bounded as ζ →∞ necessarily leads to the equation

S0ϑ + S0θθθ + (9/h2
1)(h1k1)−1/2S0S0θ = 0, (2.28)

obtained by averaging (2.26).

When weak three-dimensional effects are incorporated, it is easily verified that the

resulting equation is of the form

(S0ϑ + S0θθθ)θ + (9/h2
1)(h1k1)−1/2(S0S0θ)θ + (3/h1k

2
1)S0ξξ = 0, (2.29)

To sum up, it is observed that the development of the wave is governed by the equa-

tions (2.22) and (2.29), valid in the homogeneous region x < 0 and the inhomogeneous

region x > 0, respectively. Note that both equations have constant coefficients, and

that either of them is related to the KP equation. In what follows, it is assumed that

the depth is continuous throughout.

Since the governing equations (2.22) and (2.29) have different coefficients, one might

expect that this gives rise to a reflected wave with amplitude of O(1) with respect to

that of the incident wave. To demonstrate that this is not the case, it is noted that

both S0 and S0θ are constant along the characteristics θ=constant. Since the depth
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varies continually, it is found that η0x = (hk)−1/2S0θ + O(ε1/2) also varies continually

along these characteristics, which necessarily implies that η0x is continuous at x = 0.

The varying depth gives rise to modulation of the primary wave. Using (2.15),

(2.18), (2.19) and (2.23), this is epressed by the equation

η0ζ = (1/4)h−5/4(1− h sin2 ϕ)−5/4(−1 + 2h sin2 ϕ)h′(ζ)S0(ϑ, θ), (2.30)

which reveals that an obliquely incident wave can increase in height as it propagates

into deeper water. This occurs in the region where 2h sin2 ϕ > 1. If the angle of

incidence exceeds 45◦, the wave height increases as soon as the region of increasing

depth is entered (remember that h = 1 initially). If the angle of incidence is smaller

than 45◦, the wave height decreases at first, followed by a transition to growth.

The present analysis also applies to the case of periodic depth variations in the

region x > 0. For simplicity we consider the case of normal incidence, and weak three-

dimensional effects are not taken into account. On averaging equation (2.20), with

` = 0 and ∂/∂ξ = 0, and using (2.15), (2.19) and (2.25), this leads to the equation

h1/2(S0ϑ + S0θθθ)θ + 9h−7/4(S0S0θ)θ = (3/16)h−3/2(h′(ζ))2S0. (2.31)

which agrees with a result derived previously by Benilov(1992).

The term proportional to S0 on the right-hand side of equation (2.31) is of crucial

importance in describing specific effects inherent to periodic depth variations (Benilov

1992). This again justifies the choice of the scaling (2.12). Indeed, if a different scaling

were chosen, the resulting equation is again of the form (2.31), with the exception that

the term proportonal to S0 vanishes identically.

Finally, we briefly comment on the case where the incident wave enters a region of

steadily increasing depth. Then a caustic is located along the line h`2 = 1, in view of

(2.15). The present analysis, based on ray theory, ceases to be valid near the caustic

and needs to be modified. With regard to this, the following points are relevant. First,

the distance travelled by the incident wave in the inhomogeneous region to reach the

caustic, is an order of magnitude shorter than the scale on which nonlinear effects

modify the wave. This limits the effect of nonlinearity on the wave in the region ahead

of the caustic. Secondly, it seems reasonable to suppose that beyond the caustic the
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effect of nonlinearity is actually negligible due to rapid decay of the wave. Clearly, it

suffices to consider the linearized version of equation (2.9) in this case. This leads to

the conclusion that linear theory gives a reflection with the appropriate change of phase.

3 Mass conservation

3.1. General

In what follows, we briefly comment on the mechanism of mass transfer between

the primary wave and the wave-induced components, known as the shelves. Three-

dimensional effects will not be taken into account. Then the governing equations for

the primary wave are given by (2.22), with ∂/∂ξ = 0, and (2.28).

Consider an incident solitary wave of the form

η0 = Asech2β θ̃, β2 = 3A/4, (3.1)

with constant amplitude A; the nonlinear characteristic coordinate θ̃ is of the form

θ̃ = θ − 4β2ϑ, with θ and ϑ defined by (2.10) and (2.11), respectively.

We shall restrict the analysis to a solitary wave centered at x = 0 initially. In

addition, the nonlinear correction in θ̃ will be neglected in the region x > 0 because

we only consider the further development of the primary wave in a region that is an

order of magnitude smaller than the scale on which nonlinear effects modify the wave.

Accordingly, the characteristic θ̃ = 0 reduces to the equation
∫ ζ

0
k(χ)dχ+ `ξ − τ = 0, (3.2)

with ζ = ε1/2x, ξ = ε1/2y, τ = ε1/2t.

The primary wave (3.1) propagates along rays ,y = y(x), determined by the equa-

tion dy/dx = `/k. In deriving an expression for the mass carried by this wave along a

ray, we choose the ray through the origin. This is given by

ξ = `
∫ ζ

0
k−1(χ)dχ. (3.3)

The intersection of this ray, denoted by C+, and the characteristic (3.2) is described

by the equation ∫ ζ

0
(h(χ)k(χ))−1dχ− τ = 0, (3.4)
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with a solution ζ = ζ(τ), say.

The mass carried by the primary wave along C+ is given by
∫

C+

η0ds = m0(k/k0)−1/2 = m(τ), (3.5)

with k = k(ζ(τ) and m(0) = m0. In deriving this result, it is noted that the dominant

part of the integral (3.5) arises from the immediate neighbourhood of the intersection

of (3.2) and (3.3); cf Johnson (1994).

As expressed by (3.5), the mass carried by the primary wave decreases if a region

of decreasing depth is entered. Since the mass flow, induced by this wave, is aligned

with the rays, we conclude that mass is transferred to the shelves.

We first consider the right-going shelf, generated by the primary wave as this enters

the region of varying depth. Using (2.26)-(2.28) this leads to the expression

η1 =
1

2
(hk)−1/2

∫ ζ

0
(hk)−1/2[h((hk)−1/2)′]′dζ

∫ ∞

θ
S0dθ − 1

2
S0S0θ(hk)−1/2

∫ ζ

0
Pdζ, (3.6)

with P (ζ) = 3[(1/kh2
1)(h1k1)−1/2− (1/h)(hk)−3/2]. The prime denotes differerentiation

with respect to ζ. In the case of normal incidence, the expession (3.6) agrees with a

result derived previously by Johnson (1994).

In general, the contribution of the shelf (3.6) to mass transport is O(1), see e.g.

Miles 1979), Knickerbocker & Newell (1980, 1985) and Johnson (1994). The shelf

stretches between the point to which infinitesimal disturbances would have travelled

from the position at which the depth change first occurs, and the center of the solitary

wave. This implies that inclusion of this wave component is not enough to compensate

the mass loss of the primary wave.

In order to accommodate an exact mass balance, we must add another wave com-

ponent. As is well known, the effect of a reflected shelf on mass transfer should also be

taken into account. However, a more general approach is to seek a solution of equation

(2.9) of the form φ = φ̂(θ+, θ−) + O(ε1/2), with the slow characteristic coordinates θ+

and θ− defined by

θ+ =
∫ ζ

0
k(χ)dχ + `ξ − τ, θ− = −

∫ ζ

0
k(χ)dχ+ `ξ − τ. (3.7)

The potential φ̂(θ+, θ−) corresponds to a shelf of the form ηc = ε1/2η̂(θ+, θ−), with an

amplitude of order ε1/2 with respect to the primary wave.
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Substitution of (3.7) into (2.9) leads to the equation

η̂θ+θ− = (4hk)−1[(hk)θ+ − (hk)θ−](η̂θ+ − η̂θ−), (3.8)

the normal form of an equation of hyperbolic type, with characteristics θ+= const. and

θ−= const.

In the region of varying depth, the solution of equation (3.8) consists of right-going

and left-going wave components. The amplitudes of these coupled components are of

the same order of magnitude. Accordingly, this solution will be called a composite

shelf. The cumulative effect of nonlinearity is taken into account by adding a term

−4ε1/2β2ϑ to the expression for θ+; see below (3.1).

3.2. The case of normal incidence

In what follows, we shall restrict ourselves to the case of a normally incident wave,

i.e. k0 = 1, hk2 = 1, ` = 0 and ∂/∂ξ = 0. Then equation (3.8) reduces to

η̂θ+θ− = (8h)−1[hθ+ − hθ−](η̂θ+ − η̂θ−). (3.9)

The solution η̂(θ+, θ−) should satisfy the initial condition

η̂(0, 0) = 0. (3.10)

The conditions imposed on the solution of equation (3.9) are prescribed by the

requirement that mass is conserved. In order to derive these, we reconsider the equa-

tion for mass conservation, given by (2.6), and note that (to leading order) the wave

components η̂, φ̂ satisfy a similar equation, namely,

η̂τ + (hφ̂ζ)ζ = 0. (3.11)

In this equation, the term hφ̂ζ (denoted by F ) should be interpreted as a mass flux,

induced by the composite shelf.

Integration of (3.11) over ζ from θ− = 0 to θ+ = 0, corresponding to an interval

with end points ζ = −τ and ζ = ζ(τ), respectively, leads to the equation

d

dτ

∫ ζ(τ

−τ
η̂dζ + [hφ̂ζ − h1/2η̂]+ − [φ̂ζ + η̂]− = 0. (3.12)
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Here [..]+ and [..]− denote evaluation along the characteristics θ+ = 0 and θ− = 0,

respectively.

In the region ζ < 0 the right-going component of η̂ should vanish, i.e. η̂θ+ = 0.

This implies that [η̂]−= const. From (3.10) it then follows that

[η̂]− = 0. (3.13)

Furthermore, the mass flux induced by the shelf should vanish along the characteristic

θ− = 0, i.e. [F ]− = 0; see below (3.11). This leads to the result that the third term in

(3.12) vanishes identically. Expressing the resulting equation in terms of the variables

θ+ and θ− yields
d

dτ

∫ ζ(τ

−τ
η̂dζ − 2[h1/2φ̂θ−]+ = 0. (3.14)

To emphasize the main features, the contribution of the right-going shelf (3.6) to

mass transfer will be ignored. This seems justified as long as the effect of nonlinearity

on the development of the primary wave can be neglected; see below (3.6). Then the

requirement that mass is conserved leads to the equation

∫ ζ(τ)

−τ
η̂dζ = m0(1− h1/4

), (3.15)

with h = [h]+; cf. the expression (3.5) for the mass carried by the primary wave.

From (3.14) and (3.15) it follows that

2[h1/2φ̂θ−]+ = −m0[
d

dτ
(h1/4)]+, (3.16)

which reveals that mass transfer to the composite shelf is quenched as the primary

wave enters a new region of uniform depth.

Assuming that the contribution of the right-going shelf (3.6) to mass transfer is

negligible, it follows from equation (3.14) that the total mass carried by the primary

wave and the composite shelf is conserved if the second term satisfies (3.16). However,

the composite shelf should satisfy the initial condition (3.10).

Using (3.7), equation (3.16) can be rewritten as

[φ̂θ−]+ = −m0
d

dθ−
(h−1/4). (3.17)
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The equation for the potential, derived from (2.9) by using the transformations

(3.7), is given by

φ̂θ+θ− = (8h)−1[hθ+ − hθ− ](φ̂θ+ − φ̂θ−). (3.18)

¿From (3.13) it follows that [φ̂θ+ + φ̂θ−]− = 0. Furthermore, [F ]− = 0 implies that

[φ̂θ+ − φ̂θ−]− = 0. Then [φ̂θ+]− = 0, i.e. [φ̂]−= const. Choosing the initial condition

φ̂(0, 0) = 0, this implies that

[φ̂]− = 0. (3.19)

From (3.17) and (3.19) it follows that

[φ̂]+ = m0(1− h−1/4), h = h(ζ(θ−)). (3.20)

The expressions (3.19) and (3.20) prescribe the potential along the characteristics.

For θ+ = 0, i.e. along the θ−-axis, equation (3.18) converts into an ordinary differ-

ential equation of the form

d

dθ−
φ̂θ+(θ−, 0) + (4h)−1 dh

dθ−
φ̂θ+(θ−, 0) = (4h)−1 dh

dθ−
φ̂θ−(θ−, 0),

with φ̂θ−(θ−, 0) given by (3.17). Solving this equation, and using (3.19), yields

[η̂]+ = m0[− d

dθ−
(h−1/4) + (h−1/4/16)

∫ θ−

0
(h−1 dh

ds
)2ds. (3.21)

The expressions (3.13) and (3.21) prescribe η̂ along the characteristics.

The mass carried by the reflected shelf in the region ζ < 0 is easily calculated as

follows. It is recalled that η̂θ+ = 0 in this region. Furthermore, [F ]− = 0; see below

(3.13). Then (3.13) implies that φ̂θ+ = 0 for ζ < 0, and integration of (3.11) over ζ

from −τ to 0 yields
d

dτ

∫ 0

−τ
η̂dζ − [φ̂θ−]0 = 0, (3.22)

where the second term in (3.22) is evaluated at ζ = 0. Now, in the region ζ < 0 the

potential is given by φ̂ = Φ(θ−), say, where (3.19) implies that Φ(0) = 0. Furthermore,

φ̂ = Φ(−τ) at ζ = 0, which implies that dφ̂/dτ = −dφ̂/dθ−. This leads to the result

∫ 0

−τ
η̂dζ = −Φ(−τ). (3.23)
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Thus, in order to calculate the mass carried by the reflected shelf in the region ζ < 0,

it suffices to determine the solution of the equation for the potential along the curve

θ+ = θ−.

As a specific example we consider the depth profile

h(ζ) = (1− αζ)2, (3.24)

with α = const. and positive, and h(ζ) = h1 = (1 − α)2 for ζ > 1. Thus, at ζ = 1

the primary wave enters a new region of uniform depth. The equation (3.18) for the

potential reduces to an equation with constant coefficients, namely,

φ̂θ+θ− = −α
4

(φ̂θ+ − φ̂θ−). (3.25)

The right-hand side is non-zero only in the region of varying depth, 0 < ζ < 1. Mass

transfer is confined to this region.

From (3.7), (3.19), (3.20) and (3.24) we obtain

[φ̂]− = 0, [φ̂]+ = m0(1− exp(−αθ−/4)), 0 < ζ < 1. (3.26)

Equation (3.16) implies that [φ̂]+= const. for ζ > 1. Requiring that [φ̂]+ is continuous,

we find

[φ̂]+ = m0(1− (1− α)−1/2), ζ > 1. (3.27)

Using standard methods (Garabedian 1964), it is found that equation (3.25) has

an implicit solution of the form

φ̂(θ−, θ+) = [φ̂]+ +
α

4

∫ θ+

0
dy
∫ θ−

y
(φ̂x(x, y)− φ̂y(x, y))dx. (3.28)

The curve ζ= const., 0 < ζ < 1, in the (ζ, τ)-plane corresponds to the curve

θ+ = θ− − (2/α) log(1 − αζ) in the (θ−, θ+)-plane; cf. (3.7) and (3.24). Thus, the

region of varying depth is mapped on a region bounded by the curves θ+ = θ− and

θ+ = θ− + θ0, with θ0 = −(2/α) log(1 − α) > 0. The physically relevant region is

confined to the third quadrant in the (θ−, θ+)-plane, bounded by the characteristics

θ− = 0 and θ+ = 0. Curves of constant τ are mapped on the curves θ+ = −θ− − 2τ .

At increasing τ these move away from the origin.
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The integral equation (3.28) is solved iteratively by writing

φ̂(θ−, θ+) =
∞∑

n=0

µnφ̂n(θ−θ+), φ̂0(θ−, θ+) = [φ̂]+, (3.29)

with µ = α/4. If µ is relatively small, (3.29) can be considered as an asymptotic

expansion. Note, for instance, that h1 = 0.5 corresponds to µ = 0.075. On the other

hand, the validity of this expansion is restricted to θ− = O(1), θ+ = O(1).

Substitution of (3.29) into (3.28) leads to the recurrence relation

φ̂n+1(θ−, θ+) =
∫ θ+

0
dy
∫ θ−

y
(φ̂nx − φ̂ny)dx, (n = 0, 1, 2, . . .). (3.30)

Substitution of the first two terms of (3.29) into (3.23) yields
∫ 0

−τ
η̂dζ = m0(−1 + exp(µτ)) +O(µ2), (3.31)

valid for τ < τ0, with τ0 = −(1/2µ) log(1−4µ). Thus, initially, the mass carried by the

reflected shelf in the region ζ < 0 increases exponentially. For τ > τ0 the right-hand

side of (3.31), with τ replaced by τ0, is constant, which corresponds to stationary mass

transport in this region. It is easily verified that the mass carried by the relected shelf

is almost the same as the total mass loss of the primary wave.

4 Fission of a solitary wave

4.1. Preliminaries

Consider an incident solitary wave of the form

S0 = Asech2(αϑ+ βθ + γξ), β2 = (3/4k
1/2
0 )A, αβ + 3γ2/k2

0 + 4β4 = 0, (4.1)

propagating to the right in the homogeneous rgion x < 0. As this wave enters the

region of varying depth, the further development is governed by equation (2.29). The

solution of this equation is written as

S0 = −2

3
β2h2

1(h1k1)1/2u(χ, Y, τ), χ = βθ, Y = h
1/2
1 k1β

2ξ, τ = β3ϑ. (4.2)

Then the new independent variable u(χ, Y, τ) satisfies a KP equation of the form

(uτ − 6uuχ + uχχχ)χ + 3uY Y = 0. (4.3)
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The initial condition, prescribed by (4.1), is given by

u(χ, Y, 0) = −2k
1/2
0 h−2

1 (h1k1)−1/2sech2(χ+ pY ), (4.4)

with

p = γ/h
1/2
1 k1β

2. (4.5)

Introducing the transfomation

X = χ+ pY − 3p2τ, T = τ, (4.6)

equation (4.3) reduces to

(uT − 6uuX + uXXX)X = 0. (4.7)

Thus, if u(X, T ) is a solution of the KdV equation

uT − 6uuX + uXXX = 0, (4.8)

(4.6) implies that the KP equation (4.3) has a solution of the form u(χ+pY −3p2τ, τ).

In other words, any known solution of the KdV equation can be transformed into

a solution of the KP equation with similar properties. This result will be useful in

deriving sufficient conditions for fission when weak three-dimensional effects are taken

into account.

The initial condition

u(X, 0) = −σsech2X, (4.9)

uniquely determines the solution of equation (4.8). Applying the transformation (4.6),

this corresponds to the initial condition (4.4) if

k
−1/2
0 (h1k1)1/2h2

1 = 2/σ. (4.10)

It is recalled that h1(`2 + k2
1) = 1 in the region ζ � 1; cf. (2.15) and (2.24). Then

(2.23) implies that (4.10) can be rewritten as

(cosϕ)−1/2(1− h1 sin2 ϕ)1/4h
9/4
1 = 2/σ, (4.11)
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where ϕ denotes the angle of incidence in the region of uniform depth. Thus, in view

of (4.4), the solution of the KP equation is uniquely determined by ϕ and h1.

If the angle of incidence and the depth h1 are such that

σ = N(N + 1), N = 1, 2, . . . , (4.12)

the KdV equation (4.8) has an N -soliton solution. Introducing the variable

ξn = X − 4n2T, (4.13)

the asymptotic behaviour of the solution of this equation, as T → ∞, ξn fixed, is of

the form

u(X, T ) ∼ −2n2sech2(nξn − ϕn), n = 1, 2, . . . , N, (4.14)

where ϕn is a constant phase (Drazin & Johnson 1989).

The solution (4.14) represents N separate solitons, ordered according to their speeds

as T → ∞. If (4.11) and (4.12) are satisfied, the KP equation (4.3) also has an N -

soliton solution. The asymptotic behaviour of this solution is again of the form (4.14),

but with (4.13) replaced by ξn = X + pY − (3p2 + 4n2)τ . The solution of equation

(2.29) is obtained from (4.2).

4.2. Analysis of results

Denoting the left-hand-side of equation (4.11) by q(ϕ, h1), the substitution (4.12)

leads to the relation

q(ϕ, h1) = 2/(N(N + 1)), (4.15)

which is the condition for fission of the solitary wave (4.1).

It is important to note that the formation of separate solitons does not necessarily

imply that N is a positive integer. In fact, (4.15) can serve to define a value of N ,

where the integer part of N determines whether or not solitons can form. Nevertheless,

(4.15) is usually called the condition for fission. Note that this is independent of weak

three-dimensional effects.

In the case of normal incidence, the condition for fission reduces to

h1 = (
2

N(N + 1)
)4/9. (4.16)
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This implies that fission only occurs if the incident wave enters a region of smaller

depth. The values of h1, determined by (4.16), are called the eigendepths.

The result (4.16) was previously derived by Tappert & Zabusky (1971) and Johnson

(1973), based on methods that differ from the present one. There is some evidence

that (4.16) is confirmed by the numerical work of Madsen & Mei (1969), satisfactorily

compared by them with experimental results; cf. the discussion in Johnson (1973).

In the case of oblique incidence, equation (4.15) applies. Then it is found that

q > 0 within the range 0 < h1 < 1/ sin2 ϕ. This corresponds to the condition h1 < hc,

where hc = 1/ sin2 ϕ is the depth of the caustic. Furthermore, q has a maximum at

h1 = 9/10 sin2 ϕ, and the zeroes are given by h1 = 0 and h1 = 1/ sin2 ϕ. For fixed N

and ϕ, with ϕ 6= 0, this implies that (4.15) has precisely two distinct roots. Denoting

these by h1α and h1β, with h1α < h1β, it follows that

h1α < 9/10 sin2 ϕ, 9/10 sin2 ϕ < h1β < 1/ sin2 ϕ. (4.17)

In what follows, we restrict ourselves to the range sin2 ϕ < 9/10, which limits

the angle of incidence. Then (4.17) implies that h1β > 1. To determine the order

of magnitude of h1α more precisely, it is noted that ∂q/∂h1 > 0 within the range

0 < h1 < 9/10 sin2 ϕ (for fixed ϕ), which includes the point h1 = 1. From (4.15), with

q(ϕ, 1) = 1, it then follows that h1α < 1 if N > 1.

The result h1α < 1 implies that fission can occur if the incident wave enters a

region of smaller depth. The result h1β > 1, on the other hand, suggests that fission

can also occur if the incident wave enters a region of larger depth. However, it turns

out that h1β ≈ 1/ sin2 ϕ, valid within a high degree of accuracy. In view of (2.15) this

corresponds to h1β ≈ 1/`2, which implies that the depth h1β is located quite close to

the depth hc = 1/`2 of the caustic. This leads to the conclusion that the present theory

does not predict that fission will occur if the wave enters a region of larger depth.

Equation (4.15) implies that, for fixed N ,

h1ϕ = −2h1(1− h1) tanϕ

(9− 10h1 sin2 ϕ)
. (4.18)

Combined with the preceding results it then follows from (4.18) that the eigendepths

h1α are largest in the case of normal incidence. It should be noted, however, that the
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Figure 1: Variation of the eigendepth with the angle of incidence; N = 2.

present theory breaks down if the direction of wave propagation is almost parallel to

the depth contours. In figure 1 the dependence of the eigendepth h1α on the angle of

incidence is depicted for N = 2.

As remarked below (4.8), we only derived a sufficient condition for fission if weak

three-dimensional effects are taken into account. It will now be shown that this condi-

tion is both sufficient and necessary for N = 2.

The two-soliton solution of equation (4.3) is of the form (Johnson 1997)

u(χ, Y, τ) = −2
∂2

∂χ2
log(1 + E1 + E2 +DE1E2), (4.19)

where Ei = exp[−(ki + `i)χ+ (k2
i − `2

i )Y + 4(k3
i + `3

i )τ + αi] and

D =
(k1 − k2)(`1 − `2)

(k1 + k2)(`1 + `2)
. (4.20)

The initial condition (4.4), written as u(χ, Y, 0) = −2Msech2(χ + pY ), is uniquely

determined by the incident solitary wave. Substitution of this condition into (4.19) for

Y = 0, τ = 0 leads to the equation

α0(coshχ)M exp(α1χ) = 1 + E1 + E2 +DE1E2, (4.21)

where α0 and α1 are constants. With E1 and E2 defined below (4.19) this necessarily

implies that M = 3, which just corresponds to N = 2 in the condition for fission (4.15).
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5 Summary

We derived the governing equations for an obliquely incident surface wave in shallow

water of slowly varying depth. Based on the assumption that the depth variations

occur on a scale shorter than that on which the wave evolves, and incorporating weak

three-dimensional effects, it is found that the development of the wave is governed by

an evolution equation with constant coefficients, which is related to the KP equation.

When three-dimensional effects are not taken into account, the evolution equation

is of KdV-type. The present theory also applies to the case of periodic depth variations,

and in the case of normal incidence there is agreement with results derived previously

by Benilov (1992).

In the case of varying depth the KdV equation fails to satisfy the local conservation

of mass flow. Subject to the condition of relatively fast change of depth, we studied the

problem of mass transfer from the obliquely incident primary wave to the shelves. In a

subsequent more detailed analysis, devoted to the case of a normally icident wave, we

were able to solve this problem systematically. The main features were derived without

the need to specify the depth-variation profile.

A principal result we derived is that a so-called composite shelf is generated, which

consists of both right-going and reflected wave components. In the region of varying

depth these components are coupled, and the amplitudes are of the same order of

magnitude. Coupling occurs because the width of the composite shelf and the scale

of the depth variation are of the same order of magnitude. In fact, the right-going

component of the shelf is generated by the reflected component in the region of varying

depth, a phenomenon known as re-reflection.

The conditions imposed on the solution of the governing equation for the composite

shelf along the characteristics are prescribed by the requirement that mass is conserved.

These conditions were systematically derived, based on an alternative equation for the

composite shelf, which takes the form of a local mass conservation equation. The theory

also applies to the case of slower depth variations.

Finally, we derived sufficient conditions for break up of an obliquely incident solitary

wave into a finite number of solitons. As in the case of normal incidence, this requires
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that the depth change should occur on a sufficiently short scale, and that the wave

should propagate into a region of decreasing depth. In addition, the angle of incidence

proves to be a relevant parameter. In particular, it is found that the eigendepths are

largest in the case of normal incidence. Weak three-dimensional effects do not affect

the conditions for fission.
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