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ABSTRACT

This study is intended to summarize and to simplify the complicated processes in boundary layer cloud regimes
using a single parameter, Q1, the normalized saturation deficit.

With the aid of large eddy simulation (LES) data from different boundary layer cloud regimes it is illustrated
i) that the in-cloud buoyancy flux is maximized when the fractional cloudiness approaches zero; ii) that the
ensemble average buoyancy flux possesses two maxima, one for the trade wind cumulus case and one for the
stratocumulus case; and iii) that the preferred mode for boundary layer clouds is either small cumuli or high
values of cloudiness, and that cloudiness transitions from one regime to the other are difficult to represent
numerically as in the transition regime the cloud-water-related variables are very parameter sensitive.

In addition, the importance of the contribution of the liquid water flux to the in-cloud and total buoyancy
flux is outlined, and simple analytical and empirical methods are presented to compute the liquid water flux as
a function of the fluxes of conserved variables for different boundary layer cloud regimes.

1. Introduction

We can go back as early as 1938 to the work of
Bjerknes (the famous ‘‘slice’’ method) or later to the
work of Asai and Kasahara (1967) to get a demonstra-
tion of the fact that boundary layer clouds, that is, shal-
low nonprecipitating convection, organize in such a way
as to maximize the upward heat transport and that the
buoyancy of cloudy updrafts in a clear environment is
maximized as the fractional updraft area approaches
zero. These results were confirmed by Randall (1987)
using a classic convective mass flux model. One of the
objectives of Randall was to bridge the gap between
cumulus (Cu) convection as studied by the former au-
thors and stratocumulus (Sc) convection. However, the
shortcoming of the model applied by Randall is that
there is no general method to determine the convective
mass flux (this would require the knowledge of the frac-
tional entrainment and detrainment rates) and the frac-
tional area covered by updrafts.

The recent Atlantic Stratocumulus Transition Exper-
iment (ASTEX) was dedicated to study the Sc to Cu
transition over an oceanic region with strong surface
temperature gradients. The observations revealed that
the transformation of a Sc cloud field into a Cu cloud
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field implies an intermediate state with Cu occuring un-
der the main Sc cloud deck (Bretherton et al. 1995a,b).
However, it was difficult to develop a parameterization
of cloudiness transitions from the observed data alone.
Krueger et al. (1995a,b) studied the transformation of
a Sc-topped boundary layer in a trade wind Cu type
boundary layer using a 2D cloud ensemble model. One
of their major findings was that the Sc to Cu transition
can be explained by the observation that the differences
between updraft and downdraft properties in the cloud
layer gradually increase during the SCT; that is, the
updrafts become more and more vigorous and the down-
draft properties approach that of the environment. Fur-
thermore, in contrast to a Sc boundary layer where the
large eddy circulations extend over the entire boundary
layer (cloud and subcloud layer), one observes separate
cloud and subcloud layer circulations in the case of a
Cu boundary layer, and only very few intense updrafts
succeed in penetrating from the surface to the top of
the cloud layer.

As shown by Betts (1973) or Hanson (1981), shallow
nonprecipitating convection is essentially a mixing pro-
cess. Therefore, a model that allows for nonlocal mixing
should be able to represent the shallow convective
boundary layer. Historically, essentially two types of
models are utilized to represent boundary-layer clouds
in mesoscale and large-scale numerical models, the mass
flux model, and the turbulence ensemble model. We
could enumerate here also the mixed-layer or bulk mod-
els, but this type of model contains elements of the first
two types. Whereas mass flux models are generally used
to describe the convective transport (which is propor-
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tional to the buoyancy flux) in Cu-topped boundary lay-
ers, turbulence ensemble models are generally used for
Sc convection, where they proved to be very efficient
(Bechtold et al. 1996). Bougeault (1981) was the first
to apply a higher-order turbulence model to the trade
wind boundary layer by relaxing the Gaussian cloud
relations developed by Sommeria and Deardorff (1977)
and Mellor (1977). Later, Lewellen and Yoh (1993) used
binormal distributions to represent the fractional cloud-
iness in boundary layers with a non-Gaussian (positively
skewed) structure, whereas Xu and Randall (1996) also
tested the validity of simple analytical distribution func-
tions for deep convective cases. Cuijpers and Bechtold
(1995, hereafter referred to as CB) tried to generalize
these statistical cloud relations by empirically deter-
mining the fractional cloudiness, the cloud water con-
tent, and the liquid water flux as a function of the nor-
malized saturation deficit Q1 using a large number of
large eddy simulation (LES) data. Their results showed
that apart from the trade wind Cu case the Gaussian
cloud relations hold to a good approximation.

The objective of the present paper is to revisit the
findings of CB using new LES data and to discuss the
fundamental changes in the in-cloud buoyancy flux we
observe as a function of the cloud fraction. It is not
intended to derive a mathematical similarity between
the mass flux and statistical model [the work of Wyn-
gaard and Moeng (1992) can be considered as a first
step in this direction]; however, the reader is guided in
an intuitive way through the buoyancy flux concept that
links the two models. Finally, even if not directly re-
lated, the recent approaches of Kain and Fritsch (1991)
and Emanuel (1994), who tried to introduce some sta-
tistical mixing through a buoyancy sorting mechanism
in a mass flux convection scheme, should also be seen
in the context of the present problem.

2. Possible general buoyancy flux formulation

Using conserved thermodynamic variables, for con-
vience we use here the liquid potential temperature ul

5 u(1 2 Lql/cpT) and the total water specific humidity
qw 5 qy 1 ql, the ensemble mean or grid-mean buoy-
ancy flux can be written as

5 (1 1 1 1 bFql,F 0.61q )F aFu w u qy l w
(1)

where a 5 0.61u and b 5 (u /T)(L/cp) 2 1.61u . All
notations are classic; that is, u and T are the potential
and absolute temperature respectively, ql is the liquid
water specific humidity, L is the specific heat of va-
porization, and cp is the specific heat of moist air at
constant pressure.

In contrast to a mass flux model, the liquid water flux
term in (1) cannot be determined directly in a turbulence
model and must therefore be parameterized. Cuijpers
and Bechtold showed that this term can be expressed
as

Fql 5 FsNf N, (2)

where N is the fractional cloudiness and f N is a function
that has the exact value of one in the special case that
ul and qw possess a joint Gaussian probability distri-
bution—we come back to the particular function f N later
in this text. The variable s is defined as a linear com-
bination of ul and qw,

s 5 aqw 2 bul 1 c, (3)

where the thermodynamic coefficients a, b, and c are
derived utilizing a linearized form of the water vapor
saturation relation (see appendix A). To fix the ideas, a
is of order 1021 and b of order 1024. Finally, using (2)
we can rewrite the expression of the ensemble mean
buoyancy flux (1) as

5 (1 1 0.61q w 2 1 (a 1 .F bbf N)F baf N)Fu N u N qy l w

(4)

This is our desired formulation, and we recognize that,
apart from the ensemble average fluxes of ul and qw that
can be computed with any model, two further variable
coefficients appear in (4), that is, the fractional cloud-
iness N and the flux enhancement factor f N. As shown
by CB these coefficients can be expressed as a function
of the variable Q1 only, where Q1 5 c/ss is a normalized
measure of the degree of saturation of the ensemble
(e.g., for Q1 5 0 the mean state is just saturated and
the value of the fractional cloudiness is about 0.5).

The interesting point is that in addition to determining
the factor f N in (2) empirically as a function of Q1 as
done in CB, we can also compute f N or the product
f NN that intervenes in (4) directly from (2) using a mass
flux approach. In a mass flux approach the flux of a
variable C is expressed as

FC 5 w9C9 5 n Mc(Cu 2 Cd), (5)

where Mc is the convective mass flux and n is a pro-
portionality factor. The superscripts u and d denote up-
and downdraft values respectively. If we know the up-
draft and downdraft values of ql, ul, and qw, we can
easily compute f N from (2) using (5) and (3). In the
limit of a trade wind Cu field the updraft values are
equal to the cloudy values, that is, Cu 5 Cc, and the
downdraft values are equal to the unsaturated environ-
mental properties, Cd 5 C . Furthermore, Bechtold and
Cuijpers (1995) showed that the required cloudy values
can be approximated by

c c cq 5 q /N; q 5 q (T) 1 q ;l l w s l

c cu 5 u(1 2 Lq /c T). (6)l l p

The main assumption in (6) is that uc 5 u , but this
approximation is generally good to within 0.2 K as shal-
low convective clouds tend to be slightly cooler than
the environment. Therefore, in the trade wind Cu case
we get from (2)–(3) and (5),

nMc 5 nMc[a( 2 q w) 2 b( 2 u l)]Nf N, (7)c c cq q ul w l

and after some rearrangements using (6), we finally get
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FIG. 1. The in-cloud buoyancy flux (W m22) as a function of height
(a) and fractional cloudiness (b) from two 1-h time averages of a
BOMEX simulation. In (b) the cloud base values are distinguished
by open circles.

Nf N 5 /[a(qs(T) 2 q w) 1 ].c cq ql l (8)

In the other limit case of a Sc deck (i.e., N → 1) (7)
must be replaced by

nMc( 2 ) 5 nMc[a( 2 ) 2 b( 2 )]Nf N.u d u d u dq q q q u ul l w w l l

(9)

If we now assume that the downdrafts are just saturated,
then the updraft values are again given by (6) and the
downdraft values by 5 0, 5 qs(T), and 5 u .d d dq q ul w l

Using these values in (9) we finally obtain Nf N 5 1 so
that f N approaches the desired Gaussian limit value of
one as N → 1; note that the same result is obtained if
it is assumed that the downdrafts contain some liquid
water, for example, 5 0.5 .d uq ql l

3. Discussion

Large eddy simulation data for different meteorolog-
ical situations have been generated including shallow
GARP Atlantic Tropical Experiment (GATE) and deeper
Barbados Oceanographic and Meteorological Experi-
ment, (BOMEX) trade wind boundary layers with low
(,20%) cloud cover, a cumulus-topped boundary layer
observed over the North Sea (Smith and Jonas 1995),
as well as boundary layers with intermediate cloud cover
(ASTEX) and boundary layers topped by solid or broken
Sc with cloud cover .80% (FIRE, SEMAPHORE).1

With the aid of this data we can examine the dependence
of the liquid water flux (2) and the buoyancy flux (4)
as a function of the fractional cloudiness N or, more
generally, as a function of the parameter Q1. All sim-
ulations were run until a quasi steady state was reached.
The horizontal and vertical resolutions were 125 and 50
m, respectively [see Siebesma and Cuijpers (1995) or
CB for the technical details]. In addition to the data
used in CB, we also use here data from a longtime (17
h) BOMEX run over a large computational domain as
well as data from a 4-h North Sea cumulus run.

In this study the in-cloud values of the fluxes are of
particular interest. Denoting the vertical velocity by w,
the in-cloud value of the flux of a scalar field C is
defined as

c eF 5 NF 1 (1 2 N )F , (10)C C C

with
n

cF 5 (1/n) (w 2 w)(C 2 C)OC i i
i51

n n

5 (1/n) w C 2 C w , (11)O Oi i i1 2i51 i51

where the subscript i stands for a cloudy sample, n de-

1 FIRE: First ISCCP Regional Experiment SEMAPHORE: Struc-
ture des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités
Océaniques: Recherche Experimentale.

notes the total number of cloudy samples, and w is zero
by definition. In the present study we evaluate (11) as
well as the values of N and ql at every vertical level in
the cloud layer and try to represent all results as a func-
tion of a single parameter N or Q1 only. We ignore any
information about the structure of the cloud field as
could be gained, for example, from the skewness pa-
rameter.

a. Trade wind Cu case

In Fig. 1a we have plotted the in-cloud buoyancy flux
as defined in (10) as a function of height for the BOMEX
case. The samples correspond to two 1-h averages taken
after 10 and 17 h of simulation, respectively. The pro-
files produced by these two hourly averages are slightly
shifted with respect to each other as cloud top and cloud
base are slightly rising with time. We observe that close
to the cloud base the in-cloud buoyancy flux is constant
with height, then increases continously with height to
very large values of up to 700 W m22, and finally de-
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FIG. 2. The parameter f NN for BOMEX as computed from Eq. (2)
(solid circles) and with the aid of the analytical solution (8) (open
circles).

FIG. 3. The in-cloud buoyancy flux (W m22) for all experiments
as a function of Q1. The different experiments are denoted by different
symbols. The FIRE and SEMAPHORE stratocumulus experiments
are regrouped under the acronym FIRE.

creases again close to cloud top due to enhanced mixing
with the environment.

In Fig. 1b we have replotted the same results as a
function of the fractional cloudiness, but this time cloud
base values are depicted separately by open circles.
Again, we observe that the in-cloud buoyancy flux in-
creases with decreasing cloudiness as the fractional
cloudiness decreases with height. However, the cloud
base values show a large scatter and do not fit on this
monotonic function. As discussed in CB, the reason for
this is that in trade wind Cu boundary layers the en-
semble distribution in the active part of the cloud layer
is different from the Gaussian distribution prevailing in
the subcloud layer and for continuity reasons also at
cloud base. Interestingly, also in three-dimensional
high-resolution simulations of a single cumulus cloud
[see, e.g., Fig. 6b in Vaillancourt et al. (1997)], one
observes a Gaussian cloud base with relatively high
cloud cover and a deep active part of the cloud with
small cloud cover.

Finally, the BOMEX results are also utilized to com-
pare the analytical approximation for the product f NN
that intervenes in the buoyancy flux formulation with
the actual values that are obtained from (2) computing
the fluxes of ql and s directly from the LES. In Fig. 2
the vertical profiles of f NN are illustrated using (2) and
the analytical approximation (8). It turns out that the
analytical solution (8) is an excellent approximation for
both the shape of the profile and the absolute values of
f NN. The analytical solution (8) shows the expected
parabolic profile we already observed in Fig. 1a; un-
fortunately, we could not use the experimental values
using (2) for heights close to cloud top (above 1600 m)

as the statistics become very bad (we are actually di-
viding two very small fluxes by each other). Further-
more, one should have in mind that the maximum values
of about 0.6 for f NN compare favorably to the value of
0.03 that would be obtained using the Gaussian cloud
relation f NN 5 N.

b. All cloud types

Most of the transport in cloudy boundary layers is
done by clouds. This means that the environment is
more or less ‘‘quiet’’ and that the ensemble average
buoyancy flux inside the cloud layer is to a good ap-
proximation given by the product of the in-cloud flux
with the cloud fraction. The dependence of the in-cloud
buoyancy flux as a function of Q1 for all cloud types is
illustrated in Fig. 3. Note that the Sc cases also include
small values of the fractional cloudiness occuring at
cloud base and cloud top levels. Figure 3 indicates that
for each case the in-cloud buoyancy flux is a monotonic
function of Q1. In general, its magnitude increases from
a value of order 10 W m22 in the Sc case to a value of
some hundreds W m22 in the trade wind Cu case, with
a particular strong increase in the interval 23 , Q1 ,
21. The in-cloud value of the buoyancy flux in the Sc
case is of course close to the ensemble average value.
Of course, it cannot be expected that for all cases the
in-cloud flux is a universal function of one parameter
only. However, we could not find any useful correlation
between the in-cloud buoyancy flux and the skewness
parameter.

Corresponding to Fig. 3, the flux enhancement factor
f N and the product f NN as computed from (2) are il-
lustrated in Fig. 4. Similar to the in-cloud buoyancy
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FIG. 4. As in Fig. 3 but for the coefficients f N (a) and f NN (b).
Additionally, cloud base values for the BOMEX case are denoted by
open circles.

FIG. 5. As in Fig. 3 but for the ensemble average flux of uy as a
function of the flux of s (a) and as a function of Q1 (b).

flux, we observe a strong increase of the factor f N (Fig.
4a) for Q1 , 0. Its value increases exponentially from
one in the Sc or Gaussian limit to infinity in the limit
of Q1 → 2`; that is, N → 0. For completeness, we
have approximated f N(Q1) by a piecewise exponential
function that is defined in appendix B. However, we
stress that this functional dependence might not be uni-
versal and that the analytical solution (8) is preferable
for practical applications. As seen from Fig. 4b, the
product f NN shows a completely different behavior. We
observe two maxima, one for the trade wind Cu case
with a value of about 0.7 and the other for the Sc case
with a value of 1. For the intermediate cloudiness cases
with 21.5 , Q1 , 0 corresponding to fractional cloud-
iness values ranging from about 15% to 50% the product
f NN shows an absolute minimum. Here f NN is always
limited to the theoretical interval [0, 1] as in the limit
of Q1 → 2` the decrease in N is faster than the increase
in f N. For the Sc cases and the intermediate ASTEX
Cu cases f NN is very well approximated by a Gaussian
function (solid line in Fig. 4b) as f N 5 1 and, as shown

in CB, N is approximately given by the Gaussian cloud
relation N 5 0.5[1 1 erf(Q1/ 2)], where erf is the errorÏ
function. However, the approximation of the factor f N,
as suggested in CB, was not sufficient as it does not
assure the particular shape of the function f NN for Q1

, 21.5. The possible parameterization of f N and N is
resumed in appendix B.

The above results for f NN, that is, a double maximum
for the trade wind Cu case and the Sc case and a min-
imum for intermediate cloudiness values, suggest that
the ensemble average liquid water flux (2) and buoyancy
flux (4) behave in a similar way. Indeed, it was suspected
by Randall (1987) that the ensemble average buoyancy
flux might attain its largest possible value for either a
fully overcast or partly cloudy layer with N K 1. Similar
to the previous plots, the ensemble average buoyancy
flux is depicted in Fig. 5 as a function of the flux of s
(a) and as a function of Q1 (b). Figure 5b clearly re-
sembles Fig. 4b and shows two maxima, one for the
trade wind case with a maximum of roughly 20 W m22

and one for the Sc case with maximum values of about
60 W m22. However, as expected, the scatter in Fig. 5
is much larger than in Fig. 4b, especially for the Sc and
the intermediate cloudiness cases. In contrast to Fig. 5b,
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FIG. 6. The fractional cloudiness N as a function of Q1. The dotted
line denotes the experimental results of CB; the solid line is computed
using the Gaussian assumption.

the scatter is greatly reduced in Fig. 5a, where we have
replaced the dimensionless quantity Q1 by the flux of
s. Interestingly, we observe a pronounced maximum/
minimum dependence for the Gaussian cases where the
minimum for the Gaussian cases coincides with the flux
maximum for the cumulus cases. However, these results
must still be confirmed by a larger number of 3D long-
time high-resolution simulations over large domains.

c. Theory and observations

Observations of boundary layer cloud cover (see, e.g.,
Henderson-Sellers and McGuffie 1991) show that the
frequency of occurence of either small Cu or broken or
solid Sc is high compared to the frequency of occurence
of cloud fields with intermediate values of the cloud
cover. When the observed cloud cover in octas is plotted
against its frequency of occurence, one obtains a typical
U-shaped probability function. The question is if this
characteristic behavior is also intrinsically included in
our present method of plotting the cloud-water-related
variables as a function of Q1.

In Fig. 6 we have replotted the fractional cloudiness
N as a function of Q1. The results are taken from CB
who showed that N (not the factor f N) can be well
described by the Gaussian relation N 5 0.5[1 1 erf(Q1/

2)]. We recognize from Fig. 6 that for Q1 , 21 smallÏ
Cu clouds exists, whereas Sc can roughly be charac-
terized by values of Q1 . 1 measured in the bulk of
the cloud layer. Therefore, the main changes in cloud-
iness from about 80% to 20% occur in the small interval
21 , Q1 , 1. Furthermore, the maximum slope in the
function N(Q1) occurs at Q1 5 0, so that small changes
in Q1 (through turbulent mixing or radiative heating)
imply that the cloud field with medium cloud cover
evolves to the more ‘‘stable’’ regime of small Cu or Sc
clouds. These findings are in accordance with that of

Betts et al. (1995), who tried to parameterize cloudiness
transitions as a function of the slope of the mixing line.
Their conclusions were that the change in cloudiness
with changing mixing line slope is so strong that it might
be difficult from a modeling point of view to properly
represent cloudiness transitions.

However, using dynamical arguments together with
Figs. 4b and 5c we can even advance some further ex-
planations concerning the characteristics of observed
cloud distributions and cloudiness transitions. In Fig.
4b we observe two main branches, the Gaussian branch
and the trade wind Cu branch. It appears that for each
point on the Gaussian branch a positive perturbation of
Q1 (especially around Q1 5 0) implies a larger buoyancy
flux and so stronger mixing that might lead to even
larger values of Q1 and N, respectively. In contrast, when
a positive Q1 perturbation is applied to the trade wind
Cu branch in Fig. 4b, the buoyancy flux strongly de-
creases (note the strong local minimum of the buoyancy
flux at Q1 ø 22), which would mean less mixing so
that the large negative values of Q1 can persist. It follows
that the trade wind Cu is a stable regime and might not
evolve into a Gaussian high cloudiness Sc regime. Of
course, this simple analysis cannot explain the compli-
cated Sc to Cu transition as discussed by Bretherton and
Wyant (1997) using decoupling arguments. But it is
concordant with the fact the Sc is not directly trans-
formed into a Cu cloud but the main Sc deck is eroded
through increased cloud-top entrainment due to Cu
clouds that form under and penetrate into the main Sc
cloud deck.

4. Conclusions and perspectives

With the aid of LES data from different boundary
layer cloud regimes we illustrated i) that the in-cloud
buoyancy flux is maximized when the fractional cloud-
iness approaches zero; ii) that the ensemble average
buoyancy flux possesses two maxima, one for the trade
wind Cu case and one for the Sc case; and iii) that the
preferred mode for boundary layer clouds are either
small cumuli or high values of cloudiness, and that
cloudiness transitions from one regime to the other are
difficult to represent numerically as in the transition
regime the cloud water related variables are very pa-
rameter sensitive. However, we further have to inves-
tigate the applicability of the above results to cases of
active cumuli detraining below a strong inversion.

This study summarizes and generalizes the work of
previous authors and shows that the ensemble average
buoyancy flux can be represented as a function of the
fluxes of conserved variables plus two additional vari-
ables: the fractional cloudiness and the flux enhance-
ment factor f N. It points out that the factor f N, which
is a measure for the deviation from the Gaussian dis-
tribution inside the boundary layer, is directly related
to the in-cloud buoyancy flux. As the fractional cloud-
iness and the factor f N are unique functions of the nor-
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malized saturation deficit Q1, it is in principle possible
to represent in a consistent way cloudiness transitions
as a function of the parameter Q1. Alternatively to the
empirical solution, an analytical solution for the product
Nf N based on a mass flux approach seems to be very
attractive and accurate.

The authors hope that the present study on the or-
ganization of boundary layer clouds and their represen-
tation with the aid of a single parameter, Q1, is a first
step in the direction of developing unified cloud
schemes, even if it would be desirable to have more
data from longtime high-resolution LESs. The study
conserves a general character as no assumptions about
distributions were made and as it leaves open the ques-
tion of how to compute the fluxes of conserved variables
(either with a turbulence or a mass flux scheme). As an
example, one line for future development could be the
combination of a mass flux approach and a prognostic
equation for the turbulent kinetic energy through Eq.
(4). Finally, from a practical point of view the proposed
boundary layer cloud representation depends on a rea-
sonable estimation of the parameter Q1; a discussion of
this point is given in CB.

Acknowledgments. The first author is especially en-
debted to Prof. A. A. M. Holtslag for making his stay
at KNMI a scientific and personal pleasure. We have
also profited from discussions with Drs. J. W. M. Cuij-
pers, A. P. van Ulden, and A. C. Petersen. This work
was supported by grants from program PATOM of
CNRS/INSU (France). Computer facilities were made
available by IDRIS (Paris, France).

APPENDIX A

Definition of Thermodynamic Coefficients

Let

21a 5 (1 1 Lq /c ) , b 5 a(T /u)q ,sl,T p sl,T

c 5 a(q 2 q ), (A1)w sl

where the temperature Tl and the saturation specific hu-
midity qsl are defined as T l 5 u l(T /u), q sl 5 qs(T l).
Finally, qsl,T is defined as

q sl,T 5 ]qs/]T(T 5 T l) 5 Lqs(T l)/(Ry ), (A2)2T l

with Ry the gas constant of water vapor.

APPENDIX B

Parameterization of N, ql, and fN

Following CB, the partial cloudiness and the ensem-
ble average liquid water specific humidity can be par-
ameterized as

N 5 max{0, min[1, 0.5 1 0.36 arctan(1.55Q )]} (B1)1

21 2q e 1 0.66Q 1 0.086Q , Q $ 0l 1 1 15 (B2)
1.2Q 215 1s e , Q , 0.s 1

Note that (B1) is a numerically simple and accurate
approximation of the actual value of N, but due to the
use of the arctan function we had to impose bounds to
avoid erroneous values for large negative/positive val-
ues of Q1.

The parameterization of the product f NN is more dif-
ficult. This can be done either by parameterizing directly
the product f NN or by parameterizing each factor sep-
arately. As shown in Fig. 4b, for Q1 . 21.5, f NN is
well approximated by the Gaussian relation f NN 5 N.
For the remaining values of Q1, f NN can be computed
from the analytical approximation (8) after having com-
puted N and q l from (B1) and (B2). Another possibility
consists in parameterizing f N separately as a piecewise
exponential function following Fig. 4a:

1, Q $ 11

20.4(Q 21) 1e , 21.7 # Q , 11f 5N 23.8(Q 11.7)13 1 e , 22.5 # Q # 21.71
21.6(Q 12.5)123.9 1 e , Q , 22.5. 1
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