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ABSTRACT

The generation and propagation of internal tides has been studied with an isopycnic three-dimensional
ocean model. The response of a uniformly stratified sea in a channel, which is forced by a barotropic tide
on its open boundary, is considered. The tide progresses into the channel and forces internal tides over a
continental slope at the other end. The channel has a length of 1200 km and a width of 191.25 km. The
bottom profile has been varied. In a series of four experiments it is shown how the cross-channel geometry
affects the propagation and trapping of internal tides, and the penetration scale of wave energy, away from
the continental slope, is discussed. In particular it is found that a cross-channel bottom slope constrains the
penetration of the internal tidal energy. Most internal waves refract toward a cross-channel plane where
they are trapped. The exception is formed by edge waves that carry part of the energy away from the
continental slope. In the case of rotation near the continental slope, the Poincaré waves that arise in the
absence of a cross-channel slope no longer bear the characteristics of the wave attractor predicted by 2D
theory, but are almost completely arrested, while the right-bound Kelvin wave preserves the 2D attractor
in the cross-channel plane, which is present in the nonrotating case. The reflected, barotropic right-bound

VOLUME 37

Impact of Channel Geometry and Rotation on the Trapping of Internal Tides

Kelvin wave acts as a secondary internal wave generator along the cross-channel slope.

1. Introduction

Near rough-bottom topography the turbulent mixing
that is associated with the breaking of internal waves
contributes about half of the mixing that is required to
maintain the large-scale meridional overturning circu-
lation in the ocean (Munk and Wunsch 1998; Wunsch
and Ferrari 2004). These internal waves are generated
by flow over the topography; in the deep ocean, the
most important source is the barotropic tide. Egbert
and Ray (2001) examined the tidal dissipation by com-
paring models for the global barotropic tide and the
Ocean Topography Experiment (TOPEX)/Poseidon al-
timetry data. It appeared that most tidal energy was lost
at locations where the currents were perpendicular to
the topography, in agreement with the mechanism for
internal tide generation.
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Internal wave theory suggests that less than 30% of
the associated energy flux is generated at small spa-
tial scales that may dissipate locally (St. Laurent and
Garrett 2002), while the remainder radiates away as
low-mode internal tides or in the form of beams (Pin-
gree and New 1989; Morozov 1995; Lam et al. 2004).
Topographically enhanced mixing that is driven by
the dissipation of internal tides that are locally gener-
ated above rough-bottom topography was observed by
Polzin et al. (1997). A parameterization for this locally
enhanced mixing was suggested by St. Laurent et al.
(2002), based on a combination of theoretical and
heuristic arguments. The lower modes that radiate
away are relatively insensitive to most dissipation
mechanisms (St. Laurent and Garrett 2002) and they
have been tracked up to 1000 km from their genera-
tion site (Ray and Mitchum 1997). As a result the
dissipation sites for these waves must be unrelated to
their generation site. This is in agreement with the
more or less universal internal wave spectrum in the
open ocean (Garrett and Munk 1972), and the as-
sumption of a uniform, constant background diffusiv-
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ity, away from rough topography (St. Laurent et al.
2002).

Reflection of internal tides at slopes and ridges away
from their generation site may, however, lead to energy
concentration in specific locations (Miiller and Liu
2000). The reason for this is that after their generation
internal wave beams, propagating downward, maintain
their inclination. As a result, upon reflection from a
sloping bottom they get focused when the inclination of
the reflecting bottom is opposite to that of the wave
beam (Phillips 1963). Upon multiple reflections, in two-
dimensional (2D) basins, such focusing predicts the
concentration of energy on wave attractors (Maas and
Lam 1995). Due to wave focusing, in the open ocean
hot spots of mixing may occur at places where the dis-
sipation of the internal wave energy flux is unrelated to
the local conversion of barotropic to internal tides.

Wave attractors have been observed experimentally
in three-dimensional (3D) confined basins for internal
gravity waves (Maas et al. 1997) and also for the analo-
gous class of inertial waves (i.e., for waves in a homo-
geneous, rotating fluid; Maas 2001; Manders and Maas
2003, 2004). Extending the 2D theory to 3D configura-
tions, ray theory suggests that internal wave attractors
may still exist (Manders and Maas 2004), but they
would coexist with a regular kind of coastal trapped
(edge) wave (Maas 2005). The latter seems to explain
near-bottom enhancement of internal tides observed
near the concave part of the continental slope (Horn
and Meincke 1976; Lerczak et al. 2003). In section 2 we
will apply this ray approach to the channel geometry
that we investigate. In the present study a fully 3D
ocean general circulation model is used to study the
possible trapping of internal waves and the existence of
internal wave attractors in a 3D geometry. The ocean
model is configured for a channel geometry with an
open boundary on the “oceanward” side and a “conti-
nental” slope at the opposite side. The cross-channel
bottom profile is varied. The flow is forced by an in-
coming barotropic tide at the open boundary. While
this configuration is thus not able to model the possible
trapping of incident internal waves that have been gen-
erated elsewhere in the open ocean, its extension to
include remotely forced internal waves is conceptually
similar and potentially straightforward.

It is the goal of the present study to show in a series
of four experiments how channel geometry affects the
3D propagation of internal tides, to discuss the penetra-
tion scale of wave energy, away from the continental
slope, and to address the effect of rotation on these
issues. The results from the numerical model are com-
pared with the 2D theory of Maas and Lam (1995) on
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geometric focusing of internal waves and with the pre-
dictions based on 3D ray theory discussed next.

2. Review of wave focusing in confined basins

Historically, internal waves have often been consid-
ered as interfacial waves in two-layer or multilayer sys-
tems (Gill 1982). Such interfacial waves retain many
similarities with surface waves. Similar to surface
waves, their horizontal spatial structure is determined
by an elliptic (Helmholtz type) equation, which has
regular solutions everywhere. However, this classical
approach disregards that in continuously stratified flu-
ids internal waves propagate principally beamwise
(with a slope ¢) and that their spatial structure satisfies
a hyperbolic equation:

pe

% —c—=0, (1)
where iy denotes the streamfunction, and y and z are
the horizontal and vertical coordinates of a Cartesian
frame of reference. The reflection of a beam from a
sloping bottom entails a change of vertical wavenumber
and an abrupt change of scale, which ultimately may
lead to the singularities within the fluid domain that are
typical for these hyperbolic problems. The beamwise
propagation of internal waves follows from the disper-
sion relation that relates frequency to the wavenum-
ber’s direction and not, as for surface waves, to wave-
number magnitude (Maas 2001, 2005). Thus, internal
waves that reflect from a sloping boundary may focus
or defocus, depending on the relative inclination to that
boundary.

In 2D containers having sloping sidewalls a remark-
able finding is that focusing always dominates over de-
focusing. Focusing and defocusing are at best in bal-
ance, but never does defocusing prevail (Maas and Lam
1995). The net effect is that internal waves focus their
wave energy onto limit points or limit cycles, so-called
wave attractors. These attractors are independent of
the source location. The focusing and defocusing reflec-
tions, as well as the dominance of the former through
the establishment of a wave attractor, can be appreci-
ated by considering the fate of a single ray (see Fig. 1a).
The 2D fluid domain is bounded by a rigid surface at
z = 0 and a parabolic bottom, nondimensionally given
by z = —7(1 — y?). Here 7 = A/c is a lumped param-
eter, or nondimensional depth. It presents the ratio of
two inclinations. The first is a gross measure of the
channel inclination A = D/L,, based on maximum
depth D and channel half-width L,. The second repre-
sents the slope of the internal wave characteristics:



2742

(a)

JOURNAL OF PHYSICAL OCEANOGRAPHY

Fi1G. 1. Ray paths of internal wave beams in a parabolic channel
with depth 7 = 0.94 starting at the surface. (a) Single ray (dashed)
launched at x = 0, y = 0 toward the right, displaying the appear-
ance of an attractor (solid) in the meridional cross-sectional plane.
(b) Two ray paths, both launched at the surface at x = 0,y = 0.75,
one partly cross channel, the other strictly down channel. The
former again approaches the wave attractor in the cross-channel
plane. The latter propagates oceanward and is stuck to the corri-
dor over the critical slope at y = 1/(21) = 0.532.

2 2
W2 —
c= r];z . 2)
Here o denotes the tidal frequency, N is the stratifica-
tion rate, and f is the Coriolis frequency. The attractor
consists of two rectangles (solid lines) and eventually
attracts all rays, which also represent the paths along
which the wave energy flux is directed (one example
shown as dashed line). This leads to mixing hot spots as
the internal wave energy of such focused beams will
lead to enhanced shear and internal wave breaking. In
real fluids, the intensification is balanced by viscous
effects; free internal boundary layers form around the
wave attractors (Rieutord et al. 2001; Ogilvie and Lin
2004).
The attractor shape depends fractally on T (Maas and
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Lam 1995). Finite-sized 7 windows, containing large-
scale attractors, are interrupted by smaller windows,
containing small-scale attractors. Only the former are
considered to be physically realizable as the number of
boundary reflections needed to cover the small-scale
attractors becomes prohibitively large. In the following
we choose 7 to reside within the window where the
largest-scale attractor lies. Clearly, in any realistic situ-
ation one needs to check if any of the relevant tidal
frequencies does indeed lie within such a parameter
interval before drawing conclusions on its applicability
to the internal tide(s).

In the present study, we consider internal tides in a
3D configuration. The internal tides are generated over
the continental slope at one end of the channel, and
then propagate oceanward. The spatial structure of the
internal wave’s pressure field is now governed by the
3D Poincaré equation:

2 2 2

Lhoello, ©
ox ay 9z
where p denotes pressure and x is the dimensionless,
along-channel coordinate. The pressure field obeys ob-
lique derivative boundary conditions that prohibit find-
ing exact analytical solutions. In this case some indica-
tion of the behavior of the internal waves can be ob-
tained by following individual wave rays. These rays
can be locally perceived as representing a plane wave
whose path is followed upon multiple reflections from
boundaries that are locally approximated as being pla-
nar. For any single such reflection Phillips (1963, 1977)
solved the reflection problem by computing the
changes in wavenumber and amplitude. By applying
this ray method in a channel of trapezoidal cross sec-
tion, Manders and Maas (2004) showed that upon many
boundary reflections refraction may lead to down-
channel trapping of rays. In a paraboloidal basin, inter-
nal wave trapping is accompanied by another, regular
type of ray behavior (Maas 2005). It is a quasi-periodic
ray structure in which rays hug the critical circle. This
circle connects critical points, where the bottom incli-
nation is the same as that of the rays. The ray structure
suggests a kind of internal edge wave, similar to the
whispering gallery mode in elliptic problems, but now
trapped to the critical circle. Applied to the parabolic
channel configuration, employed in the present study,
we anticipate that successive focusing and defocusing
reflections may lead to partial trapping and partial leak-
ing of the internal waves: waves are either attracted to
the cross-channel plane, such that they will be trapped
at a finite penetration distance from the source, or
waves propagate outward by following the waveguide
around the critical depth.



NOVEMBER 2007 DRIJFHOUT

AND MAAS 2743

open

boundary_
D

—— barotropic tide

internal tide

T closed

0 |
topography in

cross—channel direction

{2a

X

[
topography in L

along—channel direction

FI1G. 2. Schematic of the numerical model configuration. The bottom topography in the
cross-channel direction is shown in the cross-channel plane at the open boundary; the topog-
raphy in the along-channel direction is shown in the along-channel plane in the middle of the
channel, denoted with stippled lines. The incoming barotropic tide is forced at the open
boundary. The outgoing internal tide is excited above the continental slope near the inward

end of the channel.

Figure 1b shows two rays, computed by the above ray
theory. It confirms the existence of these two types of
rays. One ray approaches a wave attractor at a finite
distance (x =~ —2) from its generation point at the slope,
at x = 0. Its shape in the cross-channel plane is identical
to the one reached in Fig. 1a. This ray represents the
most common type of behavior, although the trapping
distance may vary depending on launch angle and po-
sition. The second ray, which is less common, straddles
the critical line (near y = 0.53) and represents a type of
edge wave. The extent to which rotation modifies the
previous results will be addressed numerically.

3. Experimental setup

The numerical simulations were performed with the
Miami Isopycnic Coordinate Ocean Model, version 2.7
(MICOM 2.7), which is an extended version of the
ocean general circulation model described by Bleck and
Smith (1990). Apart from the different boundary con-
ditions and geometry, the model is similar to the one
used in Drijfhout (2003) and Drijfhout et al. (2003).
The present configuration consists of a channel with an
open boundary at one, oceanward side and a continen-
tal slope at the opposite side. The length L, is 1200 km.
The horizontal resolution is 3.75 km and there are 43
layers of 100-m depth, so that total depth D = 4300 m.
The width of the domain 2L, is 191.25 km. Figure 2

illustrates this model configuration. In this study, X, Y,
and Z denote dimensional Cartesian coordinates whose
origin is situated at the lower boundary, at the entrance
of the channel on the left. Height Z is measured above
the deepest point of the channel. Note that these coor-
dinates differ from the dimensionless coordinates used
in Fig. 1 that are given by x = (X — L,)/L, and y =
(Y — L,)/L,, while the vertical coordinate z = 7Z/D is
stretched. In that case, coordinates have their origin at
the surface on the right, in the middle of the channel,
and the characteristics have an inclination of 45° with
respect to the horizontal plane.

The channel is chosen to be relatively long in order to
give the internal waves the chance to respond to the
particular cross-channel shape of the bottom, that is
either flat at a depth D, or parabolic. The minimum
depth has been set to 50 m. The continental slope has a
width of 120 km. The slope follows a sinusoidal profile,
but the depth is constrained to a minimum value of
50 m. Following Bleck and Boudra (1981), the model
uses a harmonic lateral diffusion, quadratic bottom
stress, and a harmonic, partly deformation-dependent

lateral friction:

du  Jv\? dv  du\? |2
o=masf o (555 + (R0 5) [} o
Here u and v are the velocities in along- and cross-
channel direction, respectively; v, is a minimum back-
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ground viscosity; v, = 0.0l ms~' X Ax, with Ax being
the grid size; and v, is the amplitude of the deforma-
tion-dependent part of the viscosity, with v, = 0.2(Ax)?.
At the slope, lateral friction is enhanced whenever the
depth is less than 800 m, where it is taken proportional
to the inverse of the model depth times 800 m. This
mimics enhanced dissipation in shallow seas. No wind
and buoyancy forcing are applied and the diapycnal
mixing is set to zero.

The flow is forced at the open boundary by a baro-
tropic, semidiurnal tide with a typical period T = 27/w
of 12 h. We have experimented with prescribing either
the barotropic pressure (sea surface height) or the
barotropic velocity in the along-channel direction. In
both cases no profile in the cross-channel direction was
assumed. It turned out that prescribing the along-
channel barotropic velocity slightly reduced the partial
reflection of barotropic and internal tides that is inevi-
table at the open boundary. In all experiments the am-
plitude of the tidal velocity was set unrealistically small
to 1073 m s, to ensure that the model remains in the
linear regime. This was motivated to facilitate compari-
son with (linear) theory. Consequently, all results are
qualitative.

To prevent shocks, the along-channel barotropic flow
was relaxed to the open boundary value with a qua-
dratic profile, decreasing from 1 to 0 over 13 model
points:

U=aUz+(1—-a)U, i=12,...,13, (5

where Uy is the value at the open boundary, U,- is the
unrelaxed value at grid point i, and

(1B
%_( 13 > 6)

(see, e.g., Holloway 1996). This relaxation zone also
acts as a sponge layer for the baroclinic flow. In a simi-
lar way the baroclinic velocities were relaxed to 0 over
the same 13 grid points, that is a patch of 48.75-km
width. Ideally one would prefer to use a radiation con-
dition for the internal wave field at the open boundary.
Various formulations have been tested (Orlanski 1976;
Raymond and Kuo 1984; Flather 1988), each of them
worked reasonably well in case of a flat bottom and no
rotation; none of them worked in case of rotation and a
quadratic bottom slope in the cross-channel direction.
So, we relied on a sponge layer for the baroclinic ve-
locities at the open boundary. Although most of the
outward-propagating wave field is absorbed, a sponge
layer is always partially reflecting. To minimize reflec-
tion, an along-channel phase velocity for the internal
wave field was estimated in the sponge layer by calcu-
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lating the phase velocity for the baroclinic pressure
field according to Orlanski (1976). When wave propa-
gation was oceanward, the interface displacement A, or
pressure p was left unaffected. The interface displace-
ment was calculated by vertically integrating the
(anomalous) layer thickness of each isopycnal layer.
The layer thickness itself is a prognostic variable obey-
ing a continuity equation. When inward propagation
was found, the phase velocity of the neighboring inward
grid point was used to calculate a new value for 4 from
the Orlanski (1976) radiation condition. Although this
procedure did not eliminate all wave reflection in the
sponge layer (interference of an outward-propagating
and reflected inward-propagating wave may still yield
net outward propagation in which case # is left unaf-
fected), it helped to improve the solution. Extending
this procedure to a wider zone than the sponge layer
did not have any effect.

Four experiments are discussed in this paper. In two
experiments the earth’s rotation is neglected and the
Coriolis frequency f = 0. In the other two experiments
we use an fplane with f = 10~ *s~'. Both cases are run
with two channel configurations: in one case the chan-
nel has a flat bottom at 4300-m depth and vertical walls
in the cross-channel direction; in the other case the
channel has a parabolic cross-channel bottom profile
with a maximum depth of 4300 m and sloping side-
walls. In the case of no rotation the buoyancy frequency
was chosen as N = 3.05 X 1072 s7!, in the case of
rotation N = 2.2 X 1072 s™'. These values were moti-
vated to keep the lumped parameter 7 to be equal for
all experiments. For channels with a parabolic bottom
profile and 0.87 < 7 < 1.0 the internal wave is expected
to be trapped onto a simple-shaped symmetric attractor
(e.g., the one reached in Fig. 1a). In all four experi-
ments, 7 = 0.94 right in the middle of the trapping
regime for the sloping-bottom runs. For the flat-bottom
runs no focusing is expected and therefore no trapping.

4. Results

a. Trapping

A barotropic tide forces stratified water to oscillate
over topography, which generates long internal waves
or internal tides. Baines (1982) suggested that a critical
parameter that determines the strength of the internal
tides that are generated was given by: r = a/c, where o
is the local bottom slope and c again denotes the slope
of the internal wave characteristics, Eq. (2), which is
fixed for any given frequency. Note the similarity with
our lumped parameter 7. Baines argues that generation
is strongest when r is approximately 1 (i.e., when the
bathymetry has a critical slope). Therefore, unless a
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supercritical region of the slope exists, the generation
of internal tides is likely to be weak (Holloway and
Merrifield 1999). The model used here features a sinu-
soidal slope near the inward boundary. The slope is
steepest at X = 1140 km, where r = 1.11. The slope is
supercritical between X = 1131 km and X = 1149 km.
The points X = 1131 km and X = 1149 km define the
concave and convex critical points, respectively, where
the slope r = 1. Figure 3a illustrates the internal tide
generation above the continental slope in the flat-
bottom run without rotation. Shown is the magnitude A
in centimeters of the complex harmonic amplitude (that
also contains phase ¢ ), which is obtained by a projec-
tion of the model field after 15 days of runtime onto the
forcing frequency (harmonic analysis):

T16
h(x,y, z,t) exp(iot) dt.

T1s

Alx, y, z) explid(x, y, 2)] = f

)

Here T, denotes the start of day n (i.e., after 2n tidal
periods). As the forcing amplitude is very small, the
flow is linear and the response to the forcing is almost
completely contained in the forcing frequency w. In the
present experiment the harmonic analysis was per-
formed with 16 output fields that were saved between
days 15 and 16, sampling twice the tidal period with 8
fields during each tidal cycle.

In Fig. 3a, the internal tide manifests itself as a beam
that propagates obliquely, both in the horizontal as well
as the vertical direction as observed at sea (Pingree and
New 1991). The wave progresses outward, opposite to
the direction of the incoming barotropic tide. It gradu-
ally diminishes due to dissipation by friction and diffu-
sion. At the open boundary there are no signs that the
signal is degraded by spurious reflections. The internal
tide features five reflections at the sea surface and six at
the bottom. The wavelength, determined by character-
istic slope ¢ [Eq. (2)], and the depth of the fluid (4300
m), is about 200 km.

About halfway the slope, a weaker, initially upward-
moving beam can be seen, which reflects 6 times at the
surface and 5 times at the bottom. New (1988) pre-
dicted that three beams would emanate from the con-
vex, upper critical point, which, in that model, occurred
at the shelf break where the linear slope was connected
to the flat shelf. One beam radiated downward into the
deep sea, one upward onto the shelf. But later it was
argued that the third, initially upward and oceanward
beam was elusive (e.g., Gerkema et al. 2004; Azevedo
et al. 2006) because the induced fluid motion would not
satisfy the bottom boundary conditions. However, here
we see that a third beam does occur, emanating from
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the concave, lower critical point at X = 1131 km (indi-
cated by an arrow in Fig. 3a). This presumably results
from convergence of bottom boundary layer transport.
For this critical point, the only possible motion is up-
ward, away from the bottom slope and as a result the
third beam emerges.

The 2D, inviscid stationary wave theory predicts that
when the cross-channel bottom profile is parabolic, a
simple-shaped wave attractor of the internal tide will
occur for the parameters used here (Maas and Lam
1995). Strictly speaking, the theory applies to 2D flows
and holds only for rays propagating in the cross-channel
direction. However, when the sloping sidewalls have
enough curvature (i.e., contain both a supercritical as
well as subcritical part), the rays will refract toward the
cross-channel direction in a 3D configuration. The
question now is whether refraction will cause wave mo-
tion to become sufficiently oriented in the cross-
channel plane to make trapping possible in 3D. The
answer is given by Fig. 3b. Trapping indeed occurs and
the main beam can no longer be distinguished for X <
800 km.

Figure 4 shows the amplitude at a cross-channel sec-
tion at X = 990 km to illustrate that trapping occurs in
the cross-channel plane. The attractor, as predicted
from 2D theory, is indicated by black lines and the
amplitude of interface displacement clearly displays
maxima along the attractor. We also see from Fig. 4
that the attractor is associated with small-scale gradi-
ents in the wave field, a consequence of the repeated
focusing. Even higher amplitudes can be found in the
upper-left and -right corners, outside the attractor do-
main. This is because the barotropic tide will attain a
3D structure. At first sight this may seem surprising, as
in the present case the channel is nonrotating and the
barotropic currents might be expected to be oriented
strictly in along-channel direction. However, the bot-
tom slope has a cross-channel component, so that near
the slope, at the end of the channel, the reflected baro-
tropic tide also acquires a cross-channel component such
that part of its motion is directed in cross-channel direc-
tion. As a result, there is a continuous conversion from
the barotropic to the baroclinic tide all along the cross-
channel slope, with a maximum conversion near the
along-channel boundaries where the slope is steepest.

To make comparison possible with Fig. 3a, Figs. 3b
and 4 make use of the harmonic analysis of the data of
days 15-16. All other figures for this experiment show
results from the harmonic analysis of data of days 3—4.
Because part of the outgoing internal waves reflect at
the sponge layer near the open boundary, interference
of the outward-propagating waves with reflected, in-
ward-propagating waves occurs as time proceeds. As a
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FiG. 3. (a) An along-channel cross section in the middle of the channel of the harmonic
amplitude of interface displacement in centimeters for the flat-bottom run without rotation,
obtained at days 15-16. This figure shows unimpeded oceanward propagation of the internal
tide. Over the concave critical point on the slope at X = 1131 km (indicated by an arrow) an
upward, oceanward beam is generated. (b) Harmonic amplitude of interface displacement for
the sloping-bottom run without rotation. This figure shows trapping of the internal tide due to
geometric focusing.
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F1G. 4. A cross-channel section at X = 990 km of the harmonic amplitude of interface
displacement in centimeters for the sloping-bottom run without rotation. Superimposed is the
predicted 2D attractor. This figure shows that energy is maximized on the attractor. Arrows
indicate the locations where the cross-channel slope is critical and where along-channel cor-
ridors exist along which waves may leak away.
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result, in each run a compromise in runtime had to be
found, allowing the wave field to develop in time, but at
the same time minimizing reflection from the open
boundary sponge layer. In the sloping-bottom runs the
runtime was 4 and 5 days for the runs without and with
rotation, respectively; in the flat-bottom runs the run-
times were longer, allowing the full wave field and
higher baroclinic modes to reach the open boundary
(i.e., 12 days for the run with rotation and 16 days for
the run without rotation).

Inspection reveals strong phase gradients in the
lower half of that same cross section, perpendicular to
the cross-channel slope (Fig. 5a). The total phase angle
wt — ¢ is constant with progressing time when ¢ in-
creases. From the phase gradients we infer that phase
propagate obliquely upward and inward; for height Z <
2000 m the phase gradients are almost perpendicular to
the slope, pointing to the center of the channel, which
implies that energy moves downward along isophase
lines; from Z > 2000 m upward, in the middle of the
channel, phase lines are aligned along the cross-channel
slope and propagate toward the bottom so that energy
propagates upward. Figure 5b shows an along-channel
cross section of the phase at Y = 56.25 km, where the
phase gradient near the bottom is large in the cross-
channel plane at X = 990 km, as shown in Fig. 5a.

Figure 5b shows that, except near the continental slope,
phase (and also energy) progresses oceanward, illus-
trated by the nearly vertical alignment of phase lines.
Along the continental slope, upward energy propaga-
tion, implied by the phase field at X = 1065 km (Fig. 6),
is in the opposite direction to the energy propagation at
X = 990 km. (Note that the phase gradient perpendicu-
lar to the sloping bottom in the lower half of the do-
main is opposite to the gradient shown in Fig. 5a.) This
upward energy propagation occurs just after the first
bottom reflection of the downward-propagating beam
that was generated at the continental slope.

b. The edge wave

There exist two along-channel corridors of limited
extent in the Y direction and centered around the con-
cave critical lines, along which waves may leak away
perpendicular to the previously considered cross sec-
tions. One such corridor can be associated with the rays
of Fig. 1b that cluster around the critical lines in an
endless succession of focusing and defocusing reflec-
tions (Maas 2005). These rays represent an internal
edge wave. Theoretically, the critical line is at height
Z = 1300 m. The edge wave manifests itself at some-
what shallower depth, around height Z = 2000 m (see
Fig. 7a). Figure 7b clearly shows how energy leaks away
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F1G. 6. Meridional cross section of the phase field at X = 1065 km, showing upward energy
propagation, in contrast with Fig. Sa.

along the boundaries, while in the middle of the chan-
nel the energy remains trapped near the continental
slope (cf. Figs. 3b and 7b).

An even more dramatic illustration of the edge wave
is given by Fig. 8. This figure shows horizontal cross
sections of the wave amplitude at height Z = 2300 m,
comparing the runs with a flat and a sloping bottom.
The flat-bottom case shows a plane internal gravity
wave that propagates oceanward and gradually loses
energy by friction. In the inward half of the channel, the
sloping-bottom case shows trapping of the internal
gravity “wave” (as it no longer clearly propagates it has
lost part of its wave properties) in the middle of the
domain, and leakage along the boundaries by an edge
wave. The edge wave has a double structure, reminis-
cent of the two nearly vertical branches of the edge
wave ray pattern in Fig. 1b.

c. The effects of rotation

The main effect of rotation is breaking of the cross-
channel symmetry that is associated with the runs with-
out rotation. In the case of a flat bottom, the plane
internal gravity wave is replaced by internal Poincaré
modes that are quantized in the vertical and cross-
channel directions, determined by wavenumbers n and
m, respectively. These modes move outward unless 7>
2n/m, when they are trapped to the slope (LeBlond and
Mysak 1978, their section 28). In our domain, the m =

n = 1 mode seems to dominate, having a node at 65%
of the channel width (see Fig. 9). Moving along the
boundary to its right we also find an internal Kelvin
wave with maximum amplitude at the wall decaying
exponentially with distance from that wall. A horizon-
tal cross section (Fig. 10a) clearly demonstrates that the
Poincaré and right-bound Kelvin waves have different
along-channel wavelengths. A cross section of the
phase field (Fig. 10b) underscores that the Poincaré and
Kelvin waves propagate independently, with a complex
superposition near the nodal point, at Y ~ 145 km.

When sloping sidewalls are included the symmetric
signature of the trapped internal gravity wave, charac-
teristic for the rotation-off solution (Fig. 3b), is now,
with rotation on, replaced by the asymmetric signature
of a combination of trapped Poincaré and Kelvin waves
(Fig. 11). At X = 945 km (Fig. 12), the phase field only
shows the oblique upward movement, perpendicular to
the slope, and along-slope, downward movement of en-
ergy that was characteristic for the attractor in the no-
rotation case (Fig. 5), near the wall where the right-
bound Kelvin wave resides. The trapped Poincaré
wave, especially visible at the opposite wall, shows
hardly any phase propagation, and is completely ar-
rested.

Comparing horizontal cross sections of the cases with
and without rotation reveals some remarkable differ-
ences. In both cases trapping of energy in the middle of



2750 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 37

(@)

3500

2500

Z(m)

1500

500 -

0 40 80 120 160
Y(km)
X = 750 km, f=0

(b)

3500

2500

Z(m)

1500 18

500 =

T T T 0.2
0 300 600 900 1200
X(km)
amplitude in cm at Y = 33.75 km, f=0, parabolic
FI1G. 7. (a) Meridional cross section of the harmonic amplitude of the interface displacement

at X = 750 km, and (b) zonal cross section of the same field at Y = 33.75 km showing the edge
wave for the sloping-bottom run without rotation.

the channel occurs close to the continental slope at the walls into the interior, visible by the oblique lines of
right (Fig. 13). High amplitudes of interface displace- maximum amplitude that emanate from the walls with
ment at Y = 95 km can be seen between 800 km < X < approximate 150-km intervals. For example, one such a
1100 km. Without rotation, energy propagates from the line can be traced in the top panel of Fig. 13, from (X =
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case. This figure shows geometrical trapping and the outward-propagating edge waves.

950, Y = 45) to (X = 700, Y = 75). When rotation is on, etration of the energy is decreased. This increased pen-
this leakage of energy from the sidewalls into the inte- etration of the edge waves can be inferred from the
rior is absent, see the bottom panel of Fig. 13. As a  higher amplitudes at Y = 45 and Y = 145 km for X <
result, the along-channel penetration of edge waves is 400 km in the bottom panel of Fig. 13. Also, it appears
increased, while in the middle of the channel the pen- that the arrested Poincaré wave is more perfectly
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trapped than the right-bound Kelvin wave or the plane
wave in the no-rotation case. Apparently, the absence
of strong phase gradients (see Fig. 12) is associated with
a more complete stagnation of the outgoing energy flux
than in case of a phase gradient signature that is asso-
ciated with the 2D attractor in the cross-channel plane.

Figure 14 presents an illustration of the evolution of
the combination of internal waves trapped in the
middle and leaky edge waves at the boundary. Initially,
near the continental slope the trapped Poincaré waves
and left-bound edge wave dominate the signal. Farther
downstream, the right-bound edge wave becomes
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stronger. This asymmetry is further illustrated by the
along-channel cross sections of Fig. 15. In the middle of
the channel trapping is even stronger than in the case
without rotation (cf. Figs. 3b and 15a), due to the lack

of energy leakage from the boundaries to the middle
when rotation is on. The left-bound edge wave (Fig.
15b) shows more signs of oblique, upward propagation
than its right-bound counterpart (Fig. 15¢). As a result,
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the right-bound edge wave has a larger along-channel
penetration and shows more signs of reflection at the
sponge layer, as can be inferred in Fig. 15¢ from the
higher amplitudes near Z = 2000 for X < 600 km.

A second reason why the right-bound edge wave has
a larger along-channel penetration is suggested by Fig.
16. At the top of the slope, along the boundary, the
reflected barotropic tide acts as a secondary source for
the internal tide. There is an energy maximum at height
Z = 4200 m that propagates downward along the slope.
The energy maximum manifests itself by the high am-
plitudes at 180 < Y < 190 km for X < 600 km, while the
edge wave itself is not present at this height, being cen-
tered around Z = 3000 m (see Fig. 14). When rotation
is on, the reflected barotropic tide manifests itself
mainly as an outgoing, right-bound Kelvin wave. Con-
trary to the textbook example of a Kelvin wave that
travels along a vertical boundary, this reflected, baro-

tropic Kelvin wave has an associated cross-channel mo-
tion, perpendicular to its direction of propagation (Le
Cann 1990). Because of the cross-channel slope, this
motion acquires a vertical component and by lifting
isopycnals acts as the source for the right-bound inter-
nal edge wave. Along the opposite boundary such a
secondary source for the internal tide is absent, which is
illustrated by the much lower amplitudes between 0 <
Y < 10 km.

S. Energy transport

A summary of the previous results on geometric trap-
ping of the internal tide can be given by comparing the
depth and cross-channel integrated horizontal baro-
clinic energy fluxes for all four runs discussed. The en-
ergy flux E is defined as the transport of energy past a
point and averaged over a tidal period. We consider the
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down-channel energy transport by baroclinic motions
only; thus,

T
E=?J’O up dt, 8
where T = 27/w is the tidal period, u is the along-
channel baroclinic velocity, p is the fluctuating part of
the baroclinic pressure, and ¢ is time. In general it is
more convenient to consider the depth-integrated en-
ergy flux F through a cross-channel plane:

1 (2Ly (D
F=-— f f EdZdy, )
Ao 0

with A = [ D(Y) dY is the cross-channel area. In
isopycnic coordinates this becomes

1 JszLy JD
F=— uM dh dY dt, (10)
AT ]y Jo 0

where £ is the layer depth and M is the fluctuating part
of the Montgomery potential (see Bleck and Smith
1990).

Lu et al. (2001) have argued that the baroclinic en-
ergy transport includes a contribution that is associated
with density and baroclinic pressure variations due to
heaving by the surface tide. As a result, the baroclinic
energy flux exhibits large-amplitude periodic variations
in X over regions where the bottom slope is indepen-
dent of X. They proposed a method to separate surface
and internal tide components in the baroclinic energy
flux. Applying this procedure to the isopycnic coordi-
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internal tide.

nate framework implies that in Eq. (10), M has to be
replaced by a quantity M*, where M* is defined as

-1

oM*
as

?ap
P

(11)

where p is the density, p* is the fluctuating baroclinic
pressure from which the tidally averaged pressure
change due to divergence of the barotropic mass trans-
port is subtracted, and s is the vertical (isopycnal) co-
ordinate.

The resulting energy flux will be negative over most
of the region in the four experiments discussed above,
implying oceanward energy transport. For comparison,
we scale the energy transport in all runs with the mini-
mum value. The result is displayed in Fig. 17. In the

flat-bottom runs the decrease in energy transport is
larger when rotation is on, probably because some of
the Poincaré waves are trapped in the along-channel
direction, contrary to the internal gravity waves in the
case without rotation (LeBlond and Mysak 1978). The
parabolic channel runs clearly show that the penetra-
tion scale of the energy transport away from the conti-
nental slope significantly decreases by geometric focus-
ing due to a sloping bottom in the cross-channel direc-
tion. When rotation is on, trapping is even stronger
than without rotation. While rotation apparently inhib-
its the constant leakage of energy from the sidewalls
toward the middle of the channel that occurs in the
latter case (see Fig. 13a), it still provides further rota-
tional constraints on the down-channel propagation, in
particular, by completely arresting the Poincaré wave.
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FiG. 17. The scaled energy flux of the internal tide (inward
positive). The dash—dotted curve (without rotation) and dotted
curve (with rotation) show the frictional decay of the energy
transport in the case of a flat bottom. The dashed curve (without
rotation) and solid curve (with rotation) show stronger trapping of
internal tidal energy near the continental slope when the cross-
channel bottom profile is parabolic.

Figure 17 still shows some oscillations in the along-
channel direction, although these oscillations would
have been much larger when heaving was not removed
(Lu et al. 2001). The oscillations grow in time and
should be attributed to the interference of the outward-
propagating waves with reflected, inward-propagating
waves. As was discussed in section 4, for each run a
compromise in runtime had to be found, allowing the
wave field to develop in time, but at the same time
minimizing reflection from the open boundary sponge
layer. The overall runtime length, however, has hardly
any impact on the shape of the energy transport curves
displayed in Fig. 17. Increasing the runtime (slightly)
increases the absolute values of the transport curve,
with decreasing amounts when the runtime becomes
larger, but most prominently increases the oscillations
on the energy transport curve. The difference in along-
channel penetration of the energy transport between
flat-bottom and sloping-bottom runs does not change
anymore after runtimes of 4 days or longer.

Any decrease in energy transport must be associated
with energy dissipation. As the sloping-bottom runs
featuring geometric trapping show a much larger de-
crease in energy transport than the flat-bottom runs,
the simulations that feature trapping should be subject
to much larger energy dissipation. To be consistent with
Fig. 17 we scale the energy dissipation in each run with
its maximum (oceanward) energy transport. Figure 18
displays the energy dissipation in nondimensional units
for the runs with rotation included. It is evident that the

AND MAAS 2759

dissipation is much larger in the sloping-bottom run and
that the dissipation is maximal near the continental
slope and along the cross-channel slope where the
right-bound Kelvin wave generates internal tides. We
have tried to estimate whether the dissipation can be
related to high-frequency motions by calculating a re-
sidual amplitude from the difference between the full-
field variables and the sum of the harmonic amplitudes
associated with the frequencies ranging from /2 to 2w,
but this appeared not to be the case. In hindsight, this
result is not surprising as the signature of trapping is
prominent at the tidal-forcing frequency, and is associ-
ated with small-scale variations in wave energy (see Fig.
4). The implication of this is that when trapping occurs,
even low-frequency motion leads to small spatial scales
and subsequently to enhanced mixing.

6. Discussion and conclusions

a. Discussion

In the present study we have discussed results for a
very specific value of the lumped parameter 7 (7 =
0.94), using an unrealistically small-amplitude barotro-
pic tide to ensure a linear internal wave field response.
This prompts the question of how general the findings
are that we discuss. Both a systematic analysis of the
effects of nonlinearities, as well as an analysis of the
dependence of the results on the parameter —after all
fractal in the inviscid, analytical 2D case (Maas and
Lam 1995)—justify a complete study of their own,
which is beyond the scope of the present paper. How-
ever, we feel the need to briefly address these issues, in
order to comment on the robustness of the results pre-
sented above for different parameter settings. Figure 19
shows the scaled energy flux of the internal tide for the
trapped solution shown in Fig. 17 (with rotation on and
a parabolic bottom profile), but now with a barotropic
tide having a 100 times larger amplitude. The amplitude
of the internal tide becomes a few meters instead of a
few centimeters. We conclude from Fig. 19 that the
scaled energy flux is very similar to the small-amplitude
solution shown in Fig. 17. Nonlinear effects do not ap-
pear to affect the trapping of the internal wave field,
which is determined by the slope of the bottom and the
inclination of the beams. We do see some enhanced
reflections near the open boundary, which can be ex-
plained by the reduced performance of the linear ra-
diation condition for higher-amplitude internal waves.

Figure 19 also shows the effect of trapping for
values that differ from the “optimal” value, T = 0.94.
According to 2D theory, the trapping regime of the
simplest attractor is delimited by 7 values of nearly
0.87 and 1. In that theory, outside this regime one finds
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(top) The sloping-bottom case and (bottom) the flat-bottom case. Energy dissipation is scaled
with maximum energy transport to explain the different decrease in outward transport. It is
shown that trapping is associated with enhanced dissipation levels.

regimes with very geometrically complicated attractors, parameter range of 7 exhaustively, our first results sug-
which would be reached after many more boundary gest that the 3D model exhibits a less discrete param-
reflections, presumably leading to less trapping to the eter sensitivity than the 2D theory predicts. In the 3D
continental slope. Although we have not explored the model, the range over which trapping occurs, seems to
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be wider and the transition from trapped to “un-
trapped” (free) solutions occurs more gradual. We
show the energy flux for 7 = 1.04 and 7 = 0.84, having
changed the channel width from 191.25 km to 172.5 and
210 km, respectively, keeping all other parameters con-
stant. Figure 19 shows that trapping still occurs, but the
penetration scale of the energy flux, measured in dis-
tance from the slope, has typically doubled with respect
to that found for the optimal value, T = 0.94. This result
emphasizes that trapping occurs over a distinct regime
of parameter values and is not the result of a very spe-
cific parameter setting like the phenomenon of reso-
nance. This implies that the results we have discussed
show a certain robustness to parameter changes and
might, when conditions are favorable, be detected in
nature as well.

Circumstances in the (nearly parabolically shaped)
Faeroe-Shetland Channel, north of Britain, in fact
strongly suggest that internal tide penetration into the
channel is severely restricted. Strong internal tides
(baroclinic velocities of about 22 cm s~ ') are forced by
tidal motions across the Wyville-Thomson ridge at the
southern end of the Faeroe-Shetland Channel, where
they are observed close to the ridge (Sherwin 1991).
However, observations about 200 km to the northeast,
in the down-channel direction, hardly contain any re-
maining internal tides (baroclinic amplitudes of about 5
cm s~ '; Hosegood and van Haren 2006). Recent field
observations by a British-Dutch team (H. van Haren
2006, personal communication) reveal that, in between
these two locations, at about 100 km from the ridge,
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moderate-amplitude internal tides (10 cm s~ ') can still
be discerned. While the stratification in this case is far
from uniform (the weakly stratified upper and lower
parts of the water column are separated by a pycnocline
at about 500-m depth), all in all this suggests that the
internal tides are trapped in the down-channel direc-
tion, possibly through the refractive trapping mecha-
nism as discussed in the present study.

As mentioned in the introduction, other observations
also bear evidence of the existence of a “leaking” edge
wave. At the continental slope, this takes the form of a
deep internal tide that seems to be trapped in the cross-
slope direction while propagating in the along-slope di-
rection. These waves were encountered in the vicinity
of the concave critical line both in the Atlantic Ocean
near the African continental slope (Horn and Meincke
1976), as well as in the Pacific off California (Lerczak et
al. 2003). Puzzling, the latter observations showed off-
shore phase propagation of the cross-shore currents,
however, without following an offshore internal beam.
A closer look at the ray structure of the edge wave in
Fig. 1b shows that it is periodic and that each wave-
length comprises six reflections. The ones at the bottom
comprise focusing and defocusing reflections. We ex-
pect that only the intensified, near-bottom parts of the
ray, that follow focusing reflections, will be observable
and responsible for the wave’s bottom-trapped appear-
ance and apparent cross-shore phase propagation. Re-
cent additional observations confirm the occurrence of
such trapped, intensive internal tides, in this case at a
depth of 1200 m, near the critical concave line on the
continental slope off Portugal in the eastern Atlantic
(Dias 2006).

b. Conclusions

It has been demonstrated that a wave attractor may
occur in an isopycnic, primitive equation ocean general
circulation model when applied to a uniformly stratified
3D channel having sloping sidewalls. The attractor lies
in the cross-channel plane, leading to down-channel
trapping of the internal tides and mixing. The attractor
coexists with a leaky kind of edge wave, for which fo-
cusing reflections are compensated by defocusing re-
flections. The latter wave propagates down channel
along the critical line that connects points where the
cross-channel slope is identical to the slope of the wave
rays. The net energy transport associated with internal
tides has a much smaller along-channel penetration
when trapping occurs, which is associated with en-
hanced energy dissipation and mixing. Trapped solu-
tions feature a much more finescale structure than the
flat-bottom cases where the internal tide propagates
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outward almost unimpeded. In the case of rotation, a
marked asymmetry between the right- and left-bound
edge wave occurs, with the right-bound edge wave be-
ing much more energetic. The reflected, barotropic
right-bound Kelvin wave acts as a secondary internal
wave generator along the cross-channel slope that feeds
this internal edge wave.
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