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ABSTRACT

A four-dimensional data-assimilation method is described to derive synoptic ozone fields from total-column
ozone satellite measurements. The ozone columns are advected by a 2D tracer-transport model, using ECMWF
wind fields at a single pressure level. Special attention is paid to the modeling of the forecast error covariance
and quality control. The temporal and spatial dependence of the forecast error is taken into account, resulting
in a global error field at any instant in time that provides a local estimate of the accuracy of the assimilated
field. The authors discuss the advantages of the 4D-variational (4D-Var) approach over sequential assimilation
schemes. One of the attractive features of the 4D-Var technique is its ability to incorporate measurements at
later times t . t0 in the analysis at time t0, in a way consistent with the time evolution as described by the
model. This significantly improves the offline analyzed ozone fields.

1. Introduction

Data assimilation is an essential tool in numerical
weather prediction, which depends on an accurate anal-
ysis of the present state of the atmosphere. In climate
and atmospheric chemistry research, however, the in-
terest in data assimilation is more recent, related to the
increasing availability of satellite data for chemical spe-
cies. Combining measurements and models by means
of data assimilation provides an estimate of the state of
the atmosphere at any position and time within the res-
olution of the model. It serves as a tool to test atmo-
spheric models and to validate the measurements.

Modern data-assimilation schemes like four-dimen-
sional variational assimilation (4D-Var) (Lewis and Der-
ber 1985; Le Dimet and Talagrand 1986) and Kalman
filtering (Jazwinski 1970) have interesting additional
properties due to the explicit appearance of the model
in the analysis equations. In atmospheric chemistry
modeling the observation of certain chemical species
(e.g., O3, NO2) can result in a balanced time and space
distribution of others (e.g., NO, N2O5, etc.) due to the
explicit chemical equations in the 4D-Var analysis (see
Fisher and Lary 1995; Elbern et al. 1997). Another ex-
ample is the combination of a global circulation model,
ozone measurements, and a 4D-Var assimilation
scheme. The additional ozone data may lead to an im-
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proved description of the wind in the lower stratosphere
(e.g., Riishøjgaard 1996).

In this paper the advantages of the 4D-Var assimi-
lation method to derive global tracer fields will be in-
vestigated. A detailed forecast error estimation approach
is introduced. Ozone is transported by a simple and
practical global 2D (lat–long) advection model (Levelt
et al. 1996) using European Centre for Medium-Range
Weather Forecasts (ECMWF) wind fields. As input data
we use retrieved total ozone from the Global Ozone
Monitoring Experiment (GOME) spectrometer (Bur-
rows 1993).

The swath of the GOME instruments is relatively nar-
row (960 km), and a global coverage is obtained in about
three days. The observed ozone distribution shows
strong variations on large and small scales, and these
structures are transported by the wind over several thou-
sands of kilometers in this period. The sparseness of the
data, the large ozone fluctuations, and the transport sug-
gest the usefulness of combining the measurements with
a tracer-transport model by means of data assimilation.
This will fill the spatial and temporal gaps in the data
and provide (almost) global ozone distributions at any
moment required.

The maximum knowledge of the ozone distribution
will be obtained when truly three-dimensional mea-
surements are combined with a 3D model. GOME is a
unique instrument, combining the good horizontal res-
olution of nadir viewing instruments with a high spectral
resolution of 0.2–0.4 nm over a broad spectral range in
the UV and visible, from 240 to 790 nm. This spectral
data can be inverted in order to obtain detailed height-
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resolved ozone information, including the troposphere
(Munro et al. 1998; Eichmann et al. 1997). However,
at present the retrieval of ozone profiles from the spectra
is time consuming and the main real-time GOME prod-
uct consists of total columns of ozone. Furthermore, the
important Total Ozone Mapping Spectrometer (TOMS)
instruments from National Aeronautics and Space Ad-
ministration (NASA) and the Television Infrared Ob-
servation Satellite (TIROS) Operational Vertical Sound-
er instruments from the National Oceanic and Atmo-
spheric Administration also deliver vertically integrated
ozone fields. A practical tool to assimilate ozone column
measurements is useful, given this abundance of total
ozone data.

The assimilation of total ozone in a 3D model is ham-
pered by a lack of information. At what altitude should
the ozone be inserted in the model, or, how should the
vertically integrated mismatch between model and mea-
surement be distributed over the vertical model layers?
Uncertainties in the vertical covariances lead to corre-
sponding uncertainties in the quality of the model pro-
files. Unfortunately there is not much experimental data
from which to obtain the required vertical error statis-
tics. Nadir satellite instruments are theoretically limited
to a vertical resolution of 5–8 km. Limb instruments
reach a resolution of about 1 km, but the horizontal
resolution is much worse. Ozone sondes are very sparse
and the quality is often difficult to judge. Different strat-
egies to model the vertical ozone distribution have been
introduced (Riishøjgaard et al. 1992; Lary et al. 1995;
Jeuken et al. 1999). In this paper this profile problem
will be circumvented by using the advection equation
in a two-dimensional model. The 2D model, fed with
2D observations, allows a direct estimate of the forecast
error covariance. The model is simple and runs with a
relatively high resolution of about 100 3 100 km with
only limited computer demands. This grid-cell area is
comparable to the area of a GOME ground pixel. On
the other hand, the 2D approach is a considerable sim-
plification of the 3D transport in the atmosphere, and
model errors will correspondingly be larger than in a
proper 3D general circulation model.

The 2D assimilation model KNMI (AMK) was dis-
cussed in a previous paper by Levelt et al. (1996). The
assimilation model discussed here contains several ad-
justments compared to the original AMK. The 4D var-
iational assimilation replaces the original single-correc-
tion scheme. The program now uses a semi-Lagrangian
advection, instead of the original upwind formulation.
An important prerequisite for an assimilation tool is a
realistic estimate of the forecast error distribution.
Therefore, a considerable part of this paper is devoted
to covariance modeling.

In the next section the 4D-Var assimilation scheme
and several implementation aspects are explained. Sec-
tion 3 discusses the GOME ozone observations. The
advection model is discussed in section 4. The forecast
error covariance is constructed out of a homogeneous

and isotropic correlation function and a local error field.
These two ingredients and the forecast and correlation
statistics are described in section 5. The paper is con-
cluded by discussing the results of the assimilation of
GOME ozone columns with the 4D-Var approach.

2. Four-dimensional variational assimilation

In data-assimilation schemes like optimal interpola-
tion or successive correction, data are analyzed at given
instants in time and only the spatial distribution of mea-
surements is taken into account. This implies that the
model, describing the time evolution of the system, does
not have a direct influence on the error covariances, and
the relation between observations at different analysis
times is not properly accounted for. In four-dimensional
variational assimilation and Kalman filtering, however,
the model is an active ingredient of the analysis scheme.
In 4D-Var a time interval t ∈ [0, T] is chosen, and all
the data in this interval is incorporated in a single anal-
ysis. The covariance matrix acquires a flow-dependent
component on the interval [0, T], leading to an addi-
tional coupling between the field variables that is con-
sistent with the dynamics as specified by the model.

The optimal analysis field (assuming Gaussian error
statistics) is the tracer (ozone) field x that minimizes the
cost or penalty function J (Daley 1991; Lewis and Der-
ber 1985; Le Dimet and Talagrand 1986; Talagrand and
Courtier 1987; Lorenc 1988; Courtier et al. 1993):
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21J[x , x , · · · x ] 5 (H x 2 y )(O ) (H x 2 y )O0 1 T m t m m,n n t nm n2 m,n

1
b T 21 b1 (x 2 x ) B (x 2 x ).0 02

(1)

The vector xt is a list of all model variables at time t
(total ozone values at every grid point), which are the
ozone total-column values in our case. Here M is the
number of measurements in the interval. The obser-
vation operator Hm calculates a prediction for measure-
ment m using the model field at time tm (see also section
3). Since the field has to be known at all measurement
times, J is, in principle, a function in a space with a
very large dimension equal to the number of model
variables (ozone values) times the number of time steps
in the interval [0, T]. The innovation numbers (H xm tm

2 ym) quantify the mismatch between model and mea-
surements. The quadratic form of J is related to the
assumption that the errors are distributed in a Gaussian
way. The matrix O is a combined instrument, retrieval,
and representativeness error covariance:

Om,n 5 ^(Hm 2 ym)(Hn 2 yn)&,t tx xt tm n
(2)

where xt represents the unknown true field values on
the model grid. The model ozone values are interpreted
as the average ozone column in the corresponding model
grid cell. Similarly the GOME total ozone is an average
over the footprint of the instruments. These two areas
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FIG. 1. The 4D-Var assimilation process. A first-guess field at time
t 5 0 is integrated forward in time (dashed line), and the differences
(vertical arrows) between the measurements (dots) and the model are
recorded. The adjoint field is set to zero at time T and then advanced
backward in time using the linear adjoint model LT. At the measure-
ment times the innovations are added (jumps). Reaching time t 5 0
the background term [see Eq. (7)] is added to the adjoint, resulting
in the gradient of the cost function. Using this gradient a new im-
proved start field is constructed, and the cycle is repeated until con-
vergence is reached.

are not identical and this introduces a representativeness
mismatch between the model and the observation. The
last term in Eq. (1) measures the difference between the
field x and the first guess field xb at time t 5 0. This
field xb will normally be the result of the analysis at the
end of the previous time interval, [2T, 0]. The covari-
ance matrix B 5 ^(xb 2 xt)(xb 2 xt)T&.

The time evolution of the field xt is described by the
2D advection model M:

xt 5 M[xt21] 5 M[M[ · · · M[x0]]]. (3)

Note that the model M is a function of time since the
wind field is updated every time step. All future times
are now fully determined by the field at time t 5 0. By
means of this deterministic relation the dimension of
the control variable x0 · · · xT of J is reduced consid-
erably, and the cost is only a function of the start field
x0. Eq. (3) represents a strong constraint: model errors
are not taken into account explicitly in the interval t 5
[0, T] and a model error term is not included in the cost
function Eq. (1). This simplification is usually made in
4D-Var and we also use it in the derivation below. How-
ever, the model error, accumulated over the interval
[0, T], will result in a contribution to the forecast error
covariance at time T, the matrix B for the next interval
[T, 2T]. This will be discussed further in section 5.

To minimize J in an efficient way it is necessary to
compute its gradient. Consider a small incremental field
Dx. The model M can now be linearized around a ref-
erence trajectory xt:

dM
x 1 Dx 5 M[x 1 Dx ] ø M[x ] 1 Dxt11 t11 t t t tdx

5 M[x ] 1 L(x )Dx . (4)t t t

The matrix L consists of the derivatives of the vector
operator M with respect to the model variables x. When
the model is nonlinear, the matrix elements of L still
depend on the field values xt. The departure Dx leads
to a small increase in the cost:

DJ 5 J(x 1 Dx ) 2 J(x )0 0 0

M
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This increase in J is, by definition, equal to the inner
product of the gradient of J, =J, and the field increment
Dx0. Inserting Eq. (4) in Eq. (3) gives

Dxt 5 L(xt21) · · · L(x0)Dx0. (6)

The gradient of the cost function is therefore
M

T T T T=J(x ) 5 L (x )L (x ) · · · L (x )HO0 0 1 t 21 nn
m,n

21 21 b3 O (H x 2 y ) 1 B (x 2 x ). (7)m,n n t n 0n

Note that the fields x1 to are computed from Eq.xt 21n

(3), and therefore =J is a function of x0 only. The trans-
pose LT of the linear forward model is called the adjoint
model.

Given the cost function and its gradient, a minimi-
zation routine can be used to approach the minimum,
equivalent to the analyzed field xa. We used the quasi-
Newton routine m1qn3 (Gilbert and Lemaréchal 1989).
The 4D-Var data-assimilation process is summarized in
Fig. 1. As time interval we take T 5 24 h; see next
section.

Instead of the ozone field x, also a monotonically
increasing function w(x) may be used as control variable
in the minimization. This ‘‘preconditioning’’ does not
change the minimum of the cost function, but it can
have a considerable effect on the convergence of the
iteration process. As will be described in the next sec-
tions, we write the covariance matrix as a product of a
diagonal variance field D and a homogeneous correlation
matrix F 5 A2, B 5 ADA. Various choices for the con-
trol variable w were tested, and the best convergence
was obtained using w 5 A21(x0 2 xb). In this case the
cost function and its gradient become

M1
T 21J[w] 5 (H x 2 y ) O (H x 2 y )O m t m m,n n t nm n2 m,n

1
T 211 w D w,

2

x 5 x 1 Aw. (8)0 b

M

T T T T=J(x ) 5 A L (x ) · · · L (x )HO0 0 t 21 nn
m,n

21 213 O (H x 2 y ) 1 D w. (9)m,n n t nn

This choice can be understood in the following way.
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FIG. 2. The 40 3 320 km2 GOME pixel has an overlap with sever-
al model grid cells.

The measured innovation numbers give rise to local
corrections and, therefore, the adjoint field in Eq. (7)
contains large amplitudes at high wavenumbers. In the
next iteration the cost function [Eq. (1)] is evaluated,
and the inverse background matrix B21 will add large
contributions to J due to the observation spikes. (In
general, a homogeneous covariance matrix in spectral
space decreases rapidly with increasing wavenumber.)
In Eq. (9) the observation term is multiplied with the
A matrix, which suppresses the high-wavenumber os-
cillations, leading to a much smaller increase in J in the
next iteration due to the background term. With the
above expressions the cost function decreases rapidly
and monotonically as a function of the iteration number.
After 3 iterations the norm of the gradient has typically
decreased by about a factor of 5, and after 15 iterations
by a factor of 40. In the assimilation runs the minimi-
zation is usually stopped after 15 iterations, with an
additional check on the size of the gradient.

The choice of the assimilation time window T de-
pends on both the model and the structure of the mea-
sured data. GOME scans the earth in one day, but be-
cause of the swath width of 960 km a global coverage
(apart from the polar caps) is obtained in roughly three
days. As assimilation window we use T 5 24 h. This
choice is motivated as follows. In order to profit from
the 4D-Var approach the time interval should be at least
several hours. In this way measurements in neighboring
orbits are analyzed simultaneously, leading to a smooth-
er and more realistic field in between the orbits. The
off-line analysis error is improved due to the inclusion
of future observations, as is explained in the sections
below. For short time intervals, artificial structures ap-
pear in the field with shapes reflecting the GOME
swathes. In one day, GOME circles the earth once, and
an accurate analysis can be made of the ozone field for
a 24-h interval. We tested longer time intervals, but both
the forecast and analysis error increase rapidly with in-
creasing assimilation window, due to the neglect of the
model error term. For shorter windows the forecast error
shows no significant dependence on the window length.

The advantage of the 4D-Var approach is the absence
of an explicit time-dependent covariance matrix. In this
way the storage and computational costs of running the
assimilation scheme are very low compared to full Kal-
man filtering. Data assimilation becomes feasible for a
control variable dimension N of the order of 104–106.
The storage consists of just a couple of field vectors of
size N, instead of a matrix of size N 2. Also the number
of model iterations is reduced by N. Note that, on the
time interval [0, T], the error propagation is correctly
treated by the 4D-Var approach, and 4D-Var is equiv-
alent to the Kalman smoother given the same boundary
conditions (for linear, unbiased problems with Gaussian
error distributions).

At the same time, the disadvantage of 4D-Var is the
absence of an explicit covariance matrix. This means
that no direct information about the analysis error and

correlations is available from the 4D-Var analysis. An
alternative approach is needed to estimate and/or prop-
agate the covariances. This is discussed in section 5 for
the total ozone assimilation problem.

3. GOME total ozone

The Global Ozone Monitoring Experiment on board
the European polar orbiting satellite ERS-2 measures
the spectrum of solar radiation scattered from the earth’s
atmosphere between 240 and 790 nm, with a resolution
of 0.2–0.4 nm. GOME is a nadir-viewing instrument.
Total ozone columns are retrieved from the spectra by
the GOME Data Processor, which uses the differential
optical absorption spectroscopy (DOAS) technique. The
result is a slant column ozone density, the amount of
ozone along the path of the light. A radiative transfer
model is used to calculate the airmass factor. Dividing
the slant column by the airmass factor leads to an es-
timate of the vertical ozone column. GOME has a foot-
print of 320 3 40 km2, shown schematically in Fig. 2.
The observation operator Hm consists of taking the sum
of the ozone values in the grid cells overlapping the
GOME pixel, weighted by the overlap area. The GOME
swath is three pixels wide.

Comparison of GOME-retrieved ozone values with
ground-based ozone experiments demonstrates the high
accuracy that can be obtained from the instrument com-
bined with the DOAS retrieval. Comparisons with
Brewer values show a standard deviation of the order
of 4%, but part of this may be caused by time–space
differences between the two measurements. The random
error, correcting for this representativeness mismatch, is
estimated by Piters et al. (1997) to be of the order of 6
Dobson units (DUs) or smaller (about 2%). Apart from
this error estimate by validation, the DOAS procedure
gives an error related to the precision of the fit to the
experimental spectrum. Normally this is much smaller
than 6 DU. We used sobs 5 6 DU in the assimilation
runs, except when the DOAS error is larger, in which
case the latter is used as an estimate of the random
experimental error. The retrieved GOME pixels are as-
sumed to be uncorrelated, and therefore the matrix O
in Eq. (1) is diagonal (see also section 5).
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4. The advection model

As discussed in the introduction, we use a 2D model
to advect the ozone columns, using a wind field at a
single pressure level (Levelt et al. 1996). This model is
simple and convenient for the analysis of total-column
tracer data. With the 2D model the problem concerning
the height assignment of the total ozone mismatches to
the various vertical layers is simplified. Consequently,
the 2D wind field will only approximately describe the
full 3D transport.

The 2D model is based on a few assumptions. (i) The
chemical processes are slow compared to the dynamical
redistribution of ozone and a characteristic timescale for
the assimilation. The latter two timescales are of the
order of 1 day, while the photochemical lifetime of
ozone in the lower stratosphere is of the order of months:
ozone at these altitudes behaves like a passive tracer.
(ii) The transport of ozone is dominated by horizontal
advection. We estimate that a vertical transport term in
an equation for the total column is, on average, about
twice as small as the zonal or meridional term. Note,
however, that this number cannot be related directly to
the model errors in the global field, since vertical mo-
tions are often small scale, and may partly average out.
[For a discussion of the importance of vertical motion
see, for instance, Riishøjgaard et al. (1992).] (iii) The
total ozone variability is dominated by a relatively thin
vertical layer. Note that not the ozone maximum but the
layer with the maximum temporal variability in ozone
determines the fluctuations in total ozone. It was found
by Levelt et al. (1996) that the 200-hPa winds minimize
the forecast error (for the case of April 1992). This is
consistent with the maximum variability assumption and
most of the changes in ozone occuring around the tro-
popause.

Given the above assumptions we are left with a simple
linear 2D advection model, described by the following
continuity equation:

]S ]S ]SO O O3 3 35 2u 2 y . (10)0 0]t ]x ]y

The increase in the ozone column field is determinedSO3

by the 2D lat–long wind field y and the 2D gradient of
the ozone field.

The wind field is taken from the ECMWF archive.
The 6-h forecast, or first guess, horizontal wind fields
of a single pressure level are used with a resolution of
18 by 18, and they are interpolated to the model grid
and the model time. These wind fields are available
every 6 h. The model grid consists of nearly square grid
boxes of roughly 100 3 100 km. In the latitudinal di-
rection the grid points are 18 apart (181 latitude values),
and in the longitudinal direction the number of grid
boxes is equal to 360 3 cos(f ), where f is the latitude,
ending with a single grid box at f 5 6p/2. The total
number of lattice points is 41 258. This is also the di-
mension of the control variable in the cost function.

Two numerical schemes to solve Eq. (10) have been
implemented. The upwind approach was described in
Levelt et al. (1996). The results described in this paper
are obtained using a semi-Lagrangian (SL) scheme
(Robert 1981). Equation (10) is written as

5 ).S (r, t 1 Dt) S (r 2 yDt, tO O3 3
(11)

If r is taken to coincide with one of the lattice points,
then (r 2 yDt) can be estimated from the modelSO3

grid values of ozone (the vector x) by interpolation. This
value is calculated using third-order interpolations, in-
volving 16 grid points. The scheme does not conserve
ozone, but the ozone loss turns out to be small and does
not present a problem. The adjoints of the advection
routines, needed for the calculation of the gradient in
the 4D-Var approach, were written using the adjoint
model compiler TAMC (Giering and Kaminski 1998).

The disadvantage of the first-order upwind scheme is
its large diffusion. Sharp features are considerably
smeared out in a few days. This is greatly improved
using the SL approach, which conserves the dynamical
range of ozone values over much larger time spans.

In the SL code a few switches occur to prevent os-
cillations to build up during the advection. This makes
the numerical implementation of the model nonlinear
and even nondifferentiable. As mentioned before [Eq.
(4)], this implies that the linearized model and the ad-
joint are both functions of the ozone field. This field
has to be stored on disk for all time steps in the interval
[0, T] in order to be able to calculate the adjoint field.
However, this nonlinearity in the SL code is very weak.
Therefore, we used the linearized version of the SL
routine to construct the adjoint LT, and the storage of
fields is no longer needed. We carefully studied the per-
formance of this construction, using the standard adjoint
checks: the gradient test, =J · Dx J(x 1 Dx) 2 J(x);?

5
and the adjoint test, ^x; Ly& ^LTx; y& (Huang and Yang?

5
1996). Deviations from the real adjoint are small, typ-
ically of the order of 0.1%, and do not significantly
influence the minimization.

Figure 3 shows an example of the model forecast
performance. A free model run is compared with GOME
total ozone measurements, and the globally averaged
root-mean-square (rms) of the innovation numbers is
plotted. Two numerical advection schemes are com-
pared, using the same starting ozone distribution and
wind fields. In the ‘‘no-wind’’ reference run the ozone
distribution is kept fixed. After one day the model error
is about 20 DU. This will consist of model, represen-
tativeness, and measurement errors. After the second
day there is no evident growth of the error for the SL
case for a period of about two weeks. A comparison of
figures of assimilated and free model run ozone fields
shows that, although there are quantitative local differ-
ences, the overall large-scale patterns in the free model
run field show a correspondence with the analyzed fields
in the first 1–2 weeks. After this initial period the field
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FIG. 3. Increase of the root-mean-square model-GOME deviation,
starting from an analyzed field at day 0. The semi-Lagrangian scheme
is compared with upwind advection and with a fixed ozone field.
Period: 1–31 Mar 1997.

becomes more homogeneous, due to mixing and nu-
merical diffusion, and the error starts to increase.

In the first few days the diffusive upwind scheme
performs a few Dobson units better than the SL scheme
for this particular run. On average, the upwind and semi-
Lagrangian schemes show a very similar forecast skill
during the first few days. The sharp gradients in ozone
are better conserved in the SL scheme but are sometimes
slightly displaced in the 1-day forecast compared to the
analysis. The absence of sharp gradients in the upwind
scheme forecast results in the absence of error variance
on the smaller scales, and therefore a better rms forecast
score in those cases. After a few days the large-scale
error in the upwind run increases (due to the diffusion),
and the SL fields compare better with the measurements.

In the assimilation runs the SL advection scheme is
used. This scheme gives a better, more detailed descrip-
tion of the ozone minima and maxima and, correspond-
ingly, a more realistic ozone distribution than the first-
order upwind scheme. The SL advection descibes the
range in ozone values better when no observations are
available (near the poles).

5. Covariance modeling

Apart from deriving a global ozone field from the
model and the GOME measurements, it is important to
have a reliable estimate of the errors involved. The spa-
tial error distribution will be far from homogeneous: on
a GOME swath measured just half an hour ago the error
in the analyzed ozone field is considerably smaller than
the error of a parcel of air observed two days ago due
to the model error growth. Furthermore, at the equator
the field is fairly homogeneous and model errors are
much smaller than at midlatitudes and in the polar re-

gions. Another important aspect is the correlation be-
tween errors. When a model grid point shows a positive
forecast field deviation, then the field at neighboring
grid points, within a correlation radius, is most likely
also too large and should obtain a correction in the
analysis procedure as well.

With this in mind the forecast covariance matrix B is
modeled as a product of a homogeneous correlation ma-
trix F 5 A2 and a position- and time-dependent variance
field described by a diagonal matrix D, B 5 ADA. The
variance and correlation matrices are discussed sepa-
rately below.

The 4D-Var assimilation does not calculate the ex-
plicit form of the covariance matrix at the end of the
time interval t 5 T. This propagation of the error struc-
ture from time t 5 0 to t 5 T will be estimated by a
separate foreward model run, as described below. A
sequential approach is used that does not start directly
from the 4D-Var equations. In contrast to the 4D-Var
analysis of the field, the model error term is explicitly
included in this error analysis procedure. The aim of
this combined procedure is to analyze the ozone field
as accurately as possible, making use of the advantages
of the 4D-Var method, and at the same time to obtain
a realistic estimate of the accuracy of these model ozone
values.

a. Correlations

For computational convenience we will assume the
horizontal error correlations to be homogeneous (and
isotropic). The multiplication with the matrix A (the
square root of the correlation matrix F) occurring in
Eqs. (8) and (9) is then conveniently calculated by first
transforming the field to spectral space. Since A is di-
agonalized by this transformation, the matrix product is
now a simple multiplication of each spectral component
with the corresponding eigenvalue of A.

The covariance radius and the shape of the decay of
the correlations are estimated from the forecast depar-
tures (di [ 2 yi):H xi ti

^d d &i jF(|r 2 r |) ø . (12)i j
2 2Ï^d &^d &i j

Note that this expression contains the sum of forecast
and measurement errors. The average is over pairs of
measurements (i, j) the same distance r 5 |r i 2 r j| apart.
We used only measurements in the same time step to
evaluate the products didj. This time step is 30 min in
the case of SL advection, and in this period the satellite
travels about 12 000 km. Note that the GOME data used
to evaluate F are later used in the assimilation. The
assumed shape of F used in the assimilation will slightly
influence the estimated F. These dependencies may in-
troduce errors in the calculation.

The correlation as a function of the distance between
the measurements is plotted in Fig. 4, using the GOME
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FIG. 4. The correlation F as a function of the distance r between
the measurements. The line is a one-parameter fit. The lower curve
shows the analysis minus observation covariance, normalized by the
forecast minus observation variance.

total ozone data of March 1997. The correlation shows
a roughly exponential decay, except for the first 300–
400 km. A reasonable fit (dashed line) is obtained using
the functional form F(r) 5 (1 1 r/L) exp[2r/L], L 5
360 km. This function was derived by Thiebaux (1976)
from the assumption that the errors can be represented
as a second-order autoregressive process.

In general, the model and observation covariance will
show a different functional behavior. When measure-
ments are uncorrelated in space, the total covariance
will consist of a sharp peak at zero distance on top of
a broad forecast covariance. In this idealized case the
forecast error contribution to the total mismatch can be
estimated as the extrapolation of the broad feature to
zero distance. The remaining error is then attributed to
the observations. In our case, however, there is no clear
sign of two features in the forecast minus observation
correlation. There may be several reasons for this. First,
the dependence of the retrieval on clouds (coverage and
heights) and albedo (snow, ice, sand), as well as the use
of a priori climatological data in the retrieval, may well
cause significant spatial correlations in the total ozone
errors with large scales, making it more difficult to sep-
arate this from the forecast error term. Second, the spa-
tially uncorrelated random noise of the retrieved GOME
total ozone values is estimated to be much smaller than
the model forecast error (Piters et al. 1997, 1998). We
will therefore use the functional form in Fig. 4 as an
approximation to the forecast correlations.

The analysis minus observation covariance provides
additional information about the performance of the as-
similation scheme (Hollingsworth and Lönnberg 1989).
The result is also plotted in Fig. 4. The analysis data
are plotted using the normalization factor of the forecast
statistics, the denominator in Eq. (12). The correlation
length (half-width, half-maximum) is about 140 km for

the analyzed field (600 km for the forecast field). The
model-measurement mismatches are reduced by more
than a factor of 4 by the analysis. This again demon-
strates the small uncorrelated random error component
in the retrieved observations.

In the discussion of Hollingsworth and Lönnberg an
‘‘efficient’’ analysis system is defined as one that leads
to negative correlations after the analysis, in which case
the field fits the data well. In our case the analysis errors
are small, but the correlations remain positive. Note that
the discussion about efficiency is based upon the as-
sumption of uncorrelated observation errors, while the
GOME total ozone values may well be correlated.
GOME provides a very dense set of measurements, with
a distance of 40 km between the pixels along the track.
The effective resolution of the assimilation system is a
few grid cells, and the smallest-scale features along the
tracks will not be resolved. Keeping this in mind, an
analysis performance with a resolution of about 100–
200 km is quite satisfactory.

b. Error field

The correlation matrix is kept fixed during the assim-
ilation run, but the diagonal part D, or the error field,
is continuously recomputed. After the iterative mini-
mization of the cost function using the 4D-Var approach,
the variance field is estimated in a separate integration
from time t 5 0 to time T. This forward integration of
the error involves advection of the variance, a model
error increase every time step, and a replacing of the
forecast error by an analysis error when a measurement
occurs. The variance thus obtained at time T determines
the new matrix B for the next assimilation interval. An
additional backward integration is used to estimate the
analysis error at any time t inside the assimilation in-
terval. The various ingredients are discussed below.

In a Kalman filter approach (Jazwinski 1970) the co-
variance matrix is recomputed every time step using the
following recipe:

Bt11 5 LBtLT 1 Q, (13)

where L is again the linearized model, and Q is a model
error term, added every time step. The first term on the
right shows that the error covariance is transported by
the model, similar to the ozone transport itself. For the
tracer advection equation this is intuitively clear: the
uncertainty in ozone is a property of a parcel of air and
this parcel is transported by the wind field. Unfortu-
nately, it is prohibitively expensive to compute all the
matrix elements. As an approximation to this covariance
transport, we apply the advection equation M to the
error field s, Dij 5 dij :2s i

at11 5 M[st]. (14)

For a discussion on the evolution of forecast error co-
variances, see, for instance, Cohn (1993).

The error field is not only transported, but it will also
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FIG. 5. Model–measurement mismatch plotted against the time field
interpolated to the measurement position. Data are accumulated for
Mar 1997 and for latitudes between 608 and 708N. The line shows
the one-parameter fit used to model the error increase with time.

FIG. 6. Modeled season and latitude dependence of the error
growth.

grow in time as indicated by the random model error
term Q in Eq. (13). This error growth can be estimated
using the forecast errors. A ‘‘time field’’ is introduced,
which is advected in the same way as the ozone and
error fields. At every time step this field is incremented
by 1 in every grid box. When the GOME instrument
observes ozone belonging to a certain grid box and the
measurement is analyzed, the time field is reset to 0 at
that position. A plot of the forecast error versus the time
field defined in this way gives an estimate of the error
growth with time. An example of the forecast minus
observation error statistics is shown in Fig. 5. The figure
shows a strong increase in the error in the first 36 h,
but then the error saturates (see also Fig. 3). Plots for
other latitudes f show a similar behavior with a cross-
over after about 1 day. We model the behavior by a one-
parameter curve. For small times the covariance is as-
sumed to grow linearly with time with a large slope.
After a day this rapid increase is smoothly turned into
a slow linear increase for large times. Note that the data
points are very scattered. This is the case for all plots
and the curve is just a crude approximation of the real
error. The single parameter c(f ) is defined as the total
error after 36 h. The example shown is one of the largest
error increases observed. For other seasons and latitude
bands the error is generally smaller. Note that in reality
the departure will not go to zero for small time intervals
between measurements, as the drawn curve seems to
suggest. In the assimilation scheme only the slope of
the curves is used to calculate the error increase in a
grid box as a function of the previous value of s i in
that grid box.

If model errors are completely uncorrelated with time,
Eq. (13) predicts a square root dependence of the error
with time. However, it is reasonable to assume that er-
rors for successive time steps are similar in both mag-

nitude and sign. In the fully correlated case the error
growth is linear. On the other hand, in nonlinear models
small perturbations will grow exponentially, or ds/dt is
proportional to s for small s. Unfortunately, the data
as shown in Fig. 5 are too noisy to discriminate between
these three functional forms, but a linear growth as used
in Fig. 5 seems a reasonable choice [see Savijarvi (1995)
and references therein].

The error plots and the corresponding parameters
c(f ) are strongly latitude and season dependent. There-
fore, we collected data for various months and in 108-
latitude bands. The errors found are large at midlatitudes
and around the poles, and much smaller at the equator.
The yearly oscillation is described approximately by the
following form:

1 m 2 8
c(f) 5 c (f) 1 1 cos 2paug 1 2[ ]2 12

1 m 2 2
1 c (f) 1 1 cos 2p . (15)feb 1 2[ ]2 12

Here m is the month, m ∈ [1, . . . , 12], and the 36-h
error is written as a function of the latitude-dependent
error in August and February. This is shown in Fig. 6.
The figure shows a striking similarity to the behavior
of the climatological annual ozone variation (Whitten
and Prasad 1985). The relative error, that is, the model
forecast error divided by the natural variability, is more
homogeneous.

When a measurement occurs the forecast errors are
replaced by analysis errors as a result of the assimilation
process. We use a simplified Kalman filter equation to
estimate these analysis errors at the time of the mea-
surement.

One of the Kalman filter equations describes the re-
duction of the covariances when a new set of obser-
vations is analyzed:



3568 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

A 5 B 2 BHT[O 1 HBHT]21HB. (16)

Here the analysis and forecast covariances A and B are
defined on the model grid, O has a dimension equal to
the number of observations, and H interpolates the mod-
el field to the measurement positions. When the inter-
polation matrix H is generalized by including a ‘‘time
interpolation’’ as well [e.g., Eq. (6)], then this formula
also applies to the analysis covariance of the 4D-Var
(Lorenc 1988).

To understand the implications of this equation, con-
sider a grid point at a distance r from a group of n
measurements centered at an origin 0. Assume that the
distances between the measurement points are small
compared to r and are shorter than the forecast covari-
ance radius. For this situation the term BHT will assign
almost equal weights to all the measurements. When O
and B are assumed to be roughly homogeneous, these
matrices can be replaced by and , respectively.2 2ms nsobs b

A second number, m, is introduced as the average num-
ber of measurements inside a circle with a radius de-
termined by a measurement covariance length (similar-
ly, n is the number of measurements within a forecast
covariance radius). In other words, m is related to the
average number of correlated measurements. Writing the
covariance as a product of a distance-dependent cor-
relation function and local forecast errors,

2 2s (r) ø s (r)a b

n
2 F(r)s (r)s (0) F(r)s (r)s (0).b b b b2 2ms 1 ns (0)obs b

(17)

When K , the following simple approximate2 2ms nsobs b

formula is obtained:
2msobs2 2 2 2 2s (r) ø [1 2 F (r)]s (r) 1 F (r)s (r) . (18)a b b 2ns (0)b

Two important features of the covariance analysis equa-
tion are now clear. First, the influence of the measure-
ments [F 2(r)] extends over a distance determined by the
forecast correlation length. Far away from the GOME
swath F ø 0 and sa ø sb. On the GOME track F ø
1 and sa ; sobs. Second, the observation variance is
reduced by the prefactor m/n. This prefactor is related
to the ratio of the correlation lengths of the forecast and
observation errors and may be interpreted as a grouping
of GOME measurements into ‘‘superobservations’’ with
a reduced observation error. We assume that the obser-
vation covariance radius is smaller than the forecast
covariance radius, which implies m/n , 1. Unfortu-
nately, we do not have a quantitative guess of the cor-
relations between the GOME measurements. However,
the estimated forecast error field, a combination of anal-
ysis and model errors, is mainly determined by the error
growth described above, as long as m/n , 1 and/or the
observations are accurate. Therefore, the forecast error
estimate is not very sensitive to the choice of m/n.

The sequential error estimate described above ac-
counts only for the influence of past measurements on
the error field. In the 4D-Var approach, however, future
and past measurements have an equal influence on the
analysis. For the total ozone assimilation we want a
realistic estimate of the error at all times t0 in the as-
similation window [0, T]. The error due to past mea-
surements, s p, is estimated using the procedure de-
scribed above, by advecting the error field, adding a
forecast error increment every time step, and replacing
the forecast error by an analysis error when a measure-
ment occurs. For the set of future measurements with t
. t0, s f at t 5 T is initialized to a large value reflecting
the natural variability in ozone. This error field is ad-
vected backward in time by changing the sign of the
wind fields. Every negative time step a forecast error
increment is added and the analysis [Eq. (18)] is used
near measurement positions. The estimated error field
is obtained from a combination of these two error fields
at t 5 t0:

1 1 1
5 1 . (19)

2 p 2 f 2s (s ) (s )

This means that the ozone field is considered as resulting
from independent future and past assimilation runs with
local Gaussian errors s f and s p. The resulting error
estimate is smaller than either s p or s f .

The error-modeling procedure described above pro-
vides a forecast error estimate at any position and time,
also when no observations are available. We checked
the approach a posteriori by plotting the predicted error
field versus the observed forecast-minus-measurement
innovation numbers. The results are quite satisfatory.
Although there are some oscillations, the data points on
average follow a straight line with slope 1.

6. Assimilation results

In Fig. 7 the GOME tracks of 9 March and the cor-
responding assimilated ozone field are shown. For com-
parison we also show the accumulated Advanced Earth
Observing Satellite (ADEOS) TOMS total ozone field
made available by NASA. One prominent difference
between GOME and ADEOS–TOMS is the swath width.
For GOME this is relatively narrow, while the TOMS
swaths are wide, covering the globe in 1 day. The
GOME and TOMS pictures are 24-h composites; that
is, the columns of 24 h of measurements are all plotted
in the same figure. Because ozone transport is not taken
into account, a mismatch occurs at the date line (1808
longitude), where the time difference between the tracks
is about 24 h.

The assimilated ozone field is shown for t 5 1200
UTC, and the assimilation time window is from t 5
0000 UTC to t 5 T 5 2400 UTC. The field is only
plotted when the estimated error is smaller than 25 DU.
We choose to plot the field at t 5 T/2, because in this
case the analysis is influenced by 12 hours of past mea-
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FIG. 7. (a) Collected GOME total ozone measurements in the North-
ern Hemisphere, for 9 Mar 1997; (b) assimilated ozone field for 9
Mar 1997. Field values are only plotted when the estimated error
,25 DU. (c) Composition of ADEOS–TOMS measurements for the
same day. (a), (c) The white areas indicate the absence of satellite
data.

surements and 12 hours of future measurements, re-
sulting in an accurate description of the ozone field.
Note that at t 5 12 the satellites are approximately flying
at 08 longitude. The field in the lower half of the picture
therefore closely matches the measurements, while in
the field in the upper half, displacements occur due to
almost 12 hours of transport.

The figure demonstrates the added value of data as-
similation: with an upper boundary for the error of 25
DU most of the large areas without GOME data are
filled in and the result is an almost global ozone field
with a realistic uncertainty at any moment required.

There is an interesting data void in the track above
Kazakhstan, 458N, 608E. The assimilated field predicts
a peak in ozone at this spot although no trace of a peak
is found in the GOME data of 9 March. This peak is
the result of GOME observations of previous days,
transported by the wind to this location. That this ozone
peak is realistic is demonstrated by the TOMS data.

Another interesting feature of the ozone field of 9
March are the low ozone values above Scandinavia and
Scotland. The assimilated result shows that this is a large
intrusion of midlatitude air into the polar vortex, with
ozone values almost a factor of 2 lower than above
northern Canada. Note that especially the ozone values
above 450 DU are higher in the case of TOMS compared
to GOME. This is a difference between the DOAS re-
trieval for GOME and the TOMS-retrieved ozone val-
ues, and may be related to the albedo (snow) and the
high solar zenith angles.

The early stage of the ozone hole is shown in Fig. 8.
On 11 September the sun is about to reappear at the
South Pole. The ozone hole has already formed but the
UV/visible GOME spectrometer observes only the outer
rim on the South America side of the globe. The 4D-
Var assimilation is nevertheless able to reconstruct the
hole from the low ozone values at the end of the tracks.
The measured low ozone spots are connected smoothly
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FIG. 8. (a) Collected GOME total ozone measurements in the Southern Hemisphere, 11 Sep 1996; (b) assimilated ozone field for the
same day. Field values are plotted when the estimated error ,30 DU.

FIG. 9. The estimated error field (a) halfway through the 4D-Var time interval of 24 h, compared with the similar error estimate (b) for a
sequential data-assimilation technique where only past measurements are accounted for; 1200 UTC 9 Mar 1997.

and form a ring of total ozone values below 200 DU.
In the center of the hole there is still a hump of high
ozone values. There are no measurements available
here, and since the model does not account for chem-
istry, the only way that these higher values can disappear
is by means of transport away from the pole. Before,
we chose the 200-hPa wind field to advect total ozone.
However, for the Antarctic ozone hole the variability
due to the heterogeneous chemistry occurs predomi-
nantly around the ozone maximum. Therefore, we use
50-hPa winds in the period when the ozone hole is pre-
sent.

The effect of the 4D-Var method on the estimated
error is shown in Fig. 9. The error distribution is com-

pared with an error that would approximately result
from a sequential data-assimilation scheme, such as op-
timum interpolation, in which only past measurements
are incorporated in the analysis. This latter error esti-
mate is obtained by running the simplified error esti-
mate, described in the previous section, foreward in time
until 1200 UTC. Since 12 hours of future data are in-
cluded in the 4D-Var analysis at 1200 UTC, the reli-
ability of the field, especially west of the position of
the current orbit of the satellite, has improved consid-
erably. The efficient way of using both past and future
data (in an off-line data analysis) is an important ad-
vantage of the 4D-Var approach over sequential data-
assimilation methods.
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7. Conclusions

In this paper we presented a detailed description of
an assimilation scheme for global total-column ozone
satellite data. The advection model transports O3 col-
umns using a 2D (lat–long) wind field at a fixed pressure
level and on a 100-km horizontal grid. A 4D-variational
assimilation scheme with a 24-h time interval is used
to assimilate ERS-2 GOME total ozone retrieved values.
The 4D-Var implementation as described in section 2
shows a fast convergence. The analysis and covariance
computations for one day of GOME data take about 20
min on an average modern workstation without exces-
sive memory demands.

In 4D-Var the evolution of the error covariance is
implicitly taken into account, but no explicit covariance
matrix appears in the algorithm. Due to the spatial and
temporal distribution of measurements from an instru-
ment like GOME, the forecast error is largely inho-
mogeneous and the distribution of errors is strongly time
dependent. Because of this the error modeling requires
special attention. The covariance matrix is written as a
product of a homogeneous correlation matrix and an
error field depending on both space and time. The cor-
responding covariance distance dependence, model er-
ror growth in time and latitude, and seasonal dependence
of the forecast and model errors were determined from
the forecast error statistics. As a result, a realistic error
bar can be attached to the assimilated ozone columns.

The preconditioned 4D-Var algorithm converges well
also in the case of large covariance radii. In this case,
minimizing of the forecast–measurement mismatch for
one pixel will influence many others. The algorithm has
to find the optimal compromise between the rapidly os-
cillating increments from the measurements and the
smooth adjustments demanded by the covariance ma-
trix.

The added value of data assimilation is demonstrated
in the previous section. It delivers an almost global
ozone field at any time desired. The large data voids in
the measurements are filled in by the transport in the
model.

The 4D-Var approach has a few advantages over other
assimilation schemes. Inside the assimilation window of
24 h all the data are incorporated into a single analysis.
Furtheremore, the error correlations become state de-
pendent (as in a Kalman filter) and are partly determined
by the model dynamics. These features help to connect
the data from neighboring GOME tracks in a smooth
and realistic way. This is demonstrated in Fig. 8, show-
ing the September ozone hole. Artificial structures re-
lated to the distribution of the measurements (GOME
tracks) are found to be reduced compared to the single
correction approach. Perhaps the most attractive feature
of the variational approach, in the present context of the
off-line assimilation of (chemical) tracer observations,
is that the information of future measurements is built
into the analysis of the fields with t , T, in a way that

is consistent with the dynamics of the model. Because
of this we showed the analyzed fields at t 5 T/2. This
efficient use of the data results in a large improvement
of the estimated error, as shown in Fig. 9. In some sense
up to twice as many measurements are available in the
4D-Var approach as compared to sequential assimilation
techniques.

In the present approach we avoided the problem of
distributing the forecast–measurement mismatch in the
total column over the various vertical layers of a 3D
model of the atmosphere. The price we paid is that the
model predictions are not very good and the forecast
errors increase rapidly with time. This may be expected
since all ozone is assumed to be transported horizontally
with the same wind field. Probably more important is
the neglect of vertical transport. We checked the pos-
sibility to improve the 2D model by adding a term that
mimics this neglect of vertical motion. The temperature
(Stanford and Ziemke 1996) and vertical velocity are
possible candidates. However, we did not find a con-
vincing correlation between these variables and forecast
error structures.

The 4D-Var total ozone assimilation approach de-
scribed above is practical and results in an almost global
ozone field with an estimated error below 25 DU, despite
the simplicity of the model. Due to the relatively high
resolution the model can resolve small features present
in the GOME data. This makes it a useful tool for the
analysis and validation of total ozone satellite data.
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