
Basic

Envisat

Atmospheric

Toolbox

Tutorial

Basic Envisat Atmospheric Toolbox
Tutorial

S. Cadot
S. Niemeijer
M. de Graaf

December 2004

c© science [&] technology bv.
Royal Netherlands Meteorological Institute (KNMI)
European Space Agency (ESA)

Front page picture: Mini-ozone hole over Europe of 1 December 1999,
based on KNMI GOME Fast Delivery data visualised with VISAN.

Contents

Contents i

BEAT: An introduction ii

1 Ozone map from GOME L4 data. 1
1.1 The problem . 1
1.2 The work that needs to be done 2
1.3 Overview of the VISAN program 2
1.4 The BEAT routines . 4

2 Ozone profiles from GOMOS and MIPAS 5
2.1 The problem . 5
2.2 The work that needs to be done 6
2.3 Overview of the IDL program . 6
2.4 The BEAT routines . 10

3 PMD imager 11
3.1 The problem . 11
3.2 The work that needs to be done 12
3.3 Overview of the IDL program . 12
3.4 The BEAT routines . 16

4 SCIAMACHY and GOME reflectance comparison 17
4.1 The problem . 17
4.2 The work that needs to be done 18
4.3 Overview of the IDL program . 18
4.4 The BEAT routines . 22

i

BEAT: An introduction

BEAT, the Basic Envisat Atmospheric Toolbox, is a set of libraries and programs
that provide access to gome, gomos, mipas and sciamachy data-products in
a variety of ways.

A short history of BEAT

Prior to the introduction of BEAT, atmospheric scientists who wanted to use
remote sensing data for research purposes often needed to dedicate a significant
effort to the implementation of data ingestion routines, based on (sometimes
incomplete) specifications. This work would usually be duplicated by different
institutions, universities, or even individual scientists.

With the inception of the Envisat platform, this already difficult situation
threatened to become a real problem. Envisat carries 10 scientific instruments,
most of which exceeded their predecessor instruments both in complexity and in
the amount of data produced. In order to cope with this increased complexity,
ESA mandated that all Envisat data products should follow a common format
(the Payload Data Segment or ‘PDS’ format).

While this was a very good idea that prevented an enormous number of
heterogeneous and incompatible formats from springing into existence, it also
placed a serious burden on both the producers and consumers of Envisat data
products. On the ‘consumer’ side (i.e., the scientific community), it raised
the software-engineering complexity of data ingestion beyond a level that the
individual scientist could reasonably be expected to cope with.

In recognition of this fact, ESA decided to fund the development of three
‘software toolboxes’ that would provide functionality to do ingestion and basic
analysis and visualisation: BEAM (Basic ERS/Envisat (A)ATSR and MERIS
Toolbox), BEST (Basic Envisat SAR Toolbox) and BEAT: the Basic ERS/-
Envisat Atmospheric Toolbox. These toolboxes are distributed as open source
software, meaning that source-code is available to end-users, who are allowed
(in fact, encouraged) to improve the functionality of the software.

The BEAT software has been available for three years now, and is still con-
stantly being improved based on new insights and user feedback. In its current
form, BEAT consists of three major parts:

• BEAT Layer 1 provides access to each and every byte of data contained
in Envisat and gome data products, from within C, FORTRAN, IDL and
MATLAB.

• BEAT Layer 2 provides a simplified but powerful interface to the main

ii

scientific data contained in each of the data products. It can be used from
C, FORTRAN, IDL, MATLAB and Python.

• The VISAN application combines the popular open source scripting lan-
guage Python with the power of BEAT Layer 2 in one integrated GUI
environment, providing advanced analysis and interactive visualisation ca-
pabilities.

About this tutorial

This tutorial provides an introduction to BEAT and its capabilities for use in
atmospheric science. It considers a number of real-life scientific case studies. As
such, it shows how one proceeds from asking a scientifically interesting question
to answering it, using the tools provided by BEAT.

The first case is an example of the simplicity for end-users of BEAT’s data
ingestion capabilities and the powerful GUI environment that VISAN provides.
With only two lines of code and a few intuitive manipulations, global assimilated
ozone fields from gome covering an entire month can be loaded and visualised
in a sequence of 3D pictures.

The second chapter shows how BEAT layer 2 can be used to load and com-
pare ozone profile data from gomos and mipas, without any knowledge of the
data-products, using IDL. Within IDL the user can access the data, manipulate
and plot it. In this example mipas ozone profiles are compared with a gomos

ozone profile, after selection of co-located data and conversion of units.
The third case shows how to use the Polarisation Measurement Device

(PMD) channels from sciamachy to make RGB pictures from the Earth’s sur-
face. Although sciamachy is a spectrometer, with a poor spatial resolution
compared to imagers, RGB pictures from this sensor can be very helpful for
cloud detection, guidance of the human eye, first verification of geolocation in-
formation, etc. The PMD channels have the best spatial resolution and can
be used for this. To access the right data a thorough knowledge of the scia-

machy data structure would be necessary. The tool provided with this tutorial
guides the user through the necessary steps, explaining everything in detail and
showing the capability of BEAT layer 1 to access all the data.

The last case compares gome reflectances with sciamachy reflectances.
gome and sciamachy are both spectrometers, with a broad spectral range
and a high spectral resolution, making them unique instruments for the study
of the Earth’s atmosphere. In-flight calibration is crucial to these space-borne
sensors, which can be done by inter-comparison with independent data sources
like other sensors. Although gome and sciamachy have different spatial and
spectral resolutions, they fly in the same orbit, half an hour apart, which makes
them very suitable for a comparison study.

The case studies in this tutorial are specifically designed examples or based
on earlier work on verification of sciamachy data products performed at KNMI.
Except for the first example, the IDL interface is used like in the original routines.
Both BEAT layer 1 and layer 2 routines are used. By showing different ways of
using BEAT, it is our hope that this document will help atmospheric scientists
to decide if this toolbox is the right tool for their work, and to ease the learning
curve.

iii

Further information

BEAT consists of an elaborate set of libraries, command line tools, and a
GUI-based visualisation and analysis application (VISAN). This tutorial doc-
ument only scratches the surface of the many ways in which BEAT could
be used to do science. If you need a more in-depth look or an authoritative
reference, your first source of information is the documentation that comes
with BEAT, the most current version of which is available from http://www.

science-and-technology.nl/beat/.
For some issues, the best source of information is provided by the BEAT

developers themselves. Feel free to contact them by e-mail (contact information
can be found on the BEAT website).

iv

1

1
Ozone map from GOME L4

data.

1.1 The problem

In April 1995, gome was launched on-board the ERS-2 satellite with the ob-
jective of determining the global distribution of ozone, and several other trace
gases which are important for the ozone chemistry in the Earth’s stratosphere
and troposphere. From it’s launch until June 2004, gome has been constantly
monitoring the variations of the ’ozone layer’. Daily global measurements are
available on the Internet at the Tropospheric Emission Monitoring Internet Ser-
vice (TEMIS) website (http://www.temis.nl). In September 2002 predictions
of an early split up of the ’ozone hole’ over Antarctica received world wide at-
tention. The ozone hole appears over the cold region of Antarctica when the
sun returns after the polar winter - strong ozone depletion occurs with the com-
bination of very low temperatures and high solar radiation. The ozone hole is
surrounded by a vortex of strong winds that stops air moving between polar
regions and warmer mid-latitude regions, keeping the hole in the ozone stable.

In this exercise gome level 4 data, downloaded from the TEMIS website,
will be used to produce a sequence of plots in VISAN showing this early split up
of the ozone hole.

1. Ozone map from GOME L4 data. 2

Figure 1.1: The VISAN world plot window.

1.2 The work that needs to be done

• The assimilated level 4 gome data, provided locally, needs to be read.

• Plots must be created using a colour table displaying the ozone values
overlaying a globe or world map.

• The plots must be displayed after one another to produce a sequence or
movie.

1.3 Overview of the VISAN program

A python script ozone map.py is provided in the directory ozone-map, which
will help the user perform the steps of the previous section. Here some extra
information is given.

To start the tutorial, go to the ozone-map directory and start VISAN. Load
and execute the script by selecting ’Load and Execute Script...’ from the
File menu (or type CRTL+O) and select ozone map.py.

That’s all there is to it. A window will open like the one in Figure 1.1.
Examination of the script will show that it consists of only two lines:

>>> data = beatl2.ingest(’tutorial-data/ga*.gom’,’product_type=GOME_L4’)

>>> wplot(data, colortable="Ozone", colorrange=(150.0, 500.0))

The first line loads the data, using the BEAT command beatl2.ingest.
This command can be used for ingestion of all data that is supported by BEAT
Layer 2. The first argument of this command is the filepath parameter, telling
it where it can find the data. Other arguments are filter options, in this case
to tell BEAT that it is to expect GOME level 4 (assimilated) data. For more
information see the BEATL2-Python documentation.

The second line opens the VISAN world plot window, showing the data in the
default setting, usually a 3D picture like Figure 1.1. The last two arguments of
this command tell it to use a proper colour table and plot range. Of course, this
can also be changed interactively from the plot window. The world plot window

1. Ozone map from GOME L4 data. 3

Figure 1.2: gome L4 ozone map, using a Plate Caree projection.

has a Properties tab, where the properties of the plot can be changed. It can
be selected from the View menu. From the Properties tab the projection type
can be changed, e.g. for those more at ease with a world map, instead of a 3D
plot, a plate caree projection might be more appropriate, see Figure 1.2.

Using the properties tab, change the projection to Lambert azimuthal, set
the central point to -90.0 latitude and 0.0 longitude and press Animate. The
ozone hole over Antarctica will rotate, split up, fill up and return again.

Figure 1.3: Still of the ozone distribution animation. Shown is the split up of
the ozone hole over Antarctica at 24 September 2004.

1. Ozone map from GOME L4 data. 4

1.4 The BEAT routines

This was a very simple example of the ease with which BEAT-II handles data
in an intuitive manner. With only two lines of code, data can be visualised and
manipulated using user-friendly GUI software. In this example the only BEAT
routine used was

BEATL2.INGEST()

In the next chapters more advanced uses of BEAT will be demonstrated, using
all kinds of atmospheric data products. Although more knowledge of the data
products is required to understand what can be done with it, the use of BEAT
is always the same: a straightforward approach to loading the data in the most
intuitive way. The same BEAT commands can be used in IDL and MATLAB

as in VISAN, but notice that the dot (.) in the commands is replaced by an
underscore () in these languages.

5

2
Ozone profiles from

GOMOS and MIPAS

2.1 The problem

On-board the Environmental Satellite ENVISAT are three instruments that can
measure ozone: gomos (Global Ozone Monitoring by Occultation of Stars),
mipas (Michelson Interferometer for Passive Atmospheric Sounding) and SCIA-
MACHY (Scanning Imaging Absorption SpectroMeter for Atmospheric Cartog-
raphY). All instruments have different characteristics and different purposes;
e.g. gomos was specifically designed to measure ozone using star occultation,
while mipas was designed to measure high-resolution gaseous emission spectra
at the Earth’s limb in the near- to mid-infrared (IR) and SCIAMACHY was
designed to measure entire reflectance spectra from the UV to the far IR. It is
interesting, however, to inter-compare the ozone profiles from the various in-
struments, because they all are on the same platform, so potentially the various

2. Ozone profiles from GOMOS and MIPAS 6

instruments will be scanning air masses close together. Only, gomos and mipas

are backward scanning instruments, where SCIAMACHY is scanning forward
in limb mode.

In this module ozone profiles of mipas and gomos will be sought that are
sufficiently close together and compared with each other, using BEAT layer-II
software and gomos and mipas level 2 data.

2.2 The work that needs to be done

In order to compare ozone profiles, the following steps need to be taken:

• The level 2 data from both instruments must be read.

• The data must be scanned to find co-located data, i.e. only data that
are sufficiently close together can be used for the comparison. Of course,
’sufficiently’ is very subjective and will vary according to the application,
availability of data and needed accuracy. Here we will compare any mipas

data that is closer than 200 km from the measurements from gomos.

• In order to compare the data, the ozone profiles of mipas given as number
densities, must be converted to mixing ratios, the unit of the gomos ozone
profiles.

2.3 Overview of the IDL program

The IDL program ozone profile.pro (in the directory O3-profile) will guide
the user through the steps of the previous section. Here some background
information will be given about the program.

To start the tutorial program, go to the O3-profile directory and start IDL
or IDLDE. From the IDL prompt type

IDL> ozone_profile

or in IDLDE load the file ozone profile.pro, compile (CTRL+F5) and run (F5)
it.

The user is asked to load a gomos file. This must be a level 2 file. A
sample file is provided, but any other gomos level 2 file containing ozone profile
measurements will do. After the file is selected, the ozone profile data is loaded.
This can be done with the BEAT II command beatl2 ingest():

IDL> gomosdata = beatl2_ingest(gomosfile,’species=o3’)

Here, gomosfile is the file that was just selected and ’species=o3’ the filter
for the beatl2 ingest() command. See the BEAT-II data description for other
filters. Obviously, this filter will make sure the ozone data of the gomos file is
loaded.

The data is loaded into a standard (anonymous, or unnamed) IDL structure,
containing the ingested BEAT-II record. Type HELP, gomosdata, /STUCTURE

to view the contents of this structure. It is a BEAT-II record, a descrip-
tion of which can be found in the BEAT-II data description, (under the link
GOM NL 2P profile). Note that this record contains all the ozone data, with

2. Ozone profiles from GOMOS and MIPAS 7

Figure 2.1: Left panel: World plot with gomos data location (green) and
mipas data locations (blue and cyan and red). Right panel: Location of the
selected, co-located, gomos and mipas ozone profiles.

time, longitude/latitude, altitude and some more information. We can directly
see where, when and how this information was acquired. The location of this
gomos ozone profile, e.g., is shown on a world map.

Next, we need some mipas data to compare to our gomos profile. Since we
do not know a priori at which location the gomos profile is taken, we may start
with an entire day of mipas data and select suitable profiles from that. The user
is asked to specify a directory containing mipas level 2 data. A directory with
sample files is provided, but any mipas level 2 files containing ozone profiles will
do. The sample files are from the same day as the sample gomos file. All the
ozone data in all these files can be ingested with the same command as with the
gomos data:

IDL> mipasdata = beatl2_ingest(filenames,’species=o3,include_nan=1’)

The include nan filter option will be explained later and filenames is now
a string containing all the mipas filenames. This single command will load all
ozone data from all the files into a BEAT-II record, a description of which can
again be found in the BEAT-II data description (under MIP NL 2P profile).
Note that the two data-records from both gomos and mipas have the same
generic structure, only the lengths of the records differ.

If all the files of one day were loaded, it will look something like the blue
data in the left panel of Figure 2.1: the mipas data of one day. This will be too
much too use for a comparison. One way to reduce the amount of data is to use
additional filter option in the BEAT INGEST() command. If, e.g., a geographical
filter is used allowing only data that was retrieved within 30◦ longitude and 15◦

latitude from the gomos profile, only the data depicted in cyan in Figure 2.1
would have been loaded.

However, we will use the BEAT function beat find colocated data() to
select a data-subset that is sufficiently close to the gomos data. This function
takes five arguments: the first two arguments are datasets from which co-located
data should be found. The last three arguments are limits within which the co-
location must fall, the first limit being time (in seconds), the second distance
(in kilometers) and the third altitude (in kilometers). So when we want only

2. Ozone profiles from GOMOS and MIPAS 8

Figure 2.2: Profiles of the selected data sets. Left panel: gomos ozone pro-
file in number densities. Right panel: mipas ozone profile in mixing ratios,
temperature profile in ◦C and pressure in hPa.

mipas data that is closer to the gomos profile than 200 km, we can run these
commands:

IDL> distance = 200

IDL> codata = beatl2_find_colocated_data(mipasdata, gomosdata, $

-1, distance, -1)

The negative values for the time and altitude limit indicate that these limits
should be ignored in the search for co-located data. Doing so will yield a subset
from the mipas data that is shown in red on the world map (Figure 2.1). Time
can also be used as a constraint, as a first crude filter on the data, e.g., to select
only data that were taken less than one second from the gomos profile.

Now we will concentrate on the selected data. The gomos ozone profile
values are given in number densities, whereas mipas ozone values are given in
mixing ratios, see Figure 2.2. Note that errorbars in a logarithmic plot (like
the gomos ozone number densities plot) can be a bit deceiving; the errors may
look small where they can be rather substantial. The mipas profile nicely shows
the stratospheric ozone maximum at 40 kilometers, whereas the gomos profile
shows the secondary ozone maximum in the mesosphere at about 90 kilometers
altitude. To compare both ozone profiles, we need to convert the ozone mixing
ratios of mipas into number densities (or vice versa the gomos data into mixing
ratios).

The mixing ratio cx of a gas x is the number of moles of x per mole of air,
given here in parts per million volume [ppmv]. The mixing ratio is constant
under temperature and pressure changes and therefore a robust measure of the
atmospheric composition.

The number density nx of a gas x is defined as the number of molecules of
x per unit volume of air, given here in cm−3. It is useful for calculating the
atmospheric column of a optical active gas like ozone.

The number density and the mixing ratio of a gas are related by the number
density of air na: nx = cxna. The number density of air can be determined

2. Ozone profiles from GOMOS and MIPAS 9

Figure 2.3: Ozone profiles of gomos (green circles) and mipas (red squares)
of the selected data as a function of altitude.

with the ideal gas law,

PV = NRT, (2.1)

where P and T are the pressure and temperature of a volume V of atmosphere,
containing N number of molecules, respectively. R = 8.31 J mol−1 K−1 is the
gas constant, and

na =
AvN

V
, (2.2)

where Av = 6.023 · 1023 molecules·mol−1 is Avogadro’s number. Combining all
this we get

nx =
AvP

RT
cx. (2.3)

So in order to convert the ozone mixing ratios of mipas into number densities,
we need the temperature and the pressure profiles. The pressure is given in the
structure containing the ozone values. This can be checked by typing HELP,

codata, /STRUCTURE
The temperature can be loaded with the same command as we used to load

the ozone data, except that the filter will now be ’T’ for temperature:

IDL> mipastemp = beatl2_ingest(filenames,’species=T,include_nan=1’)

This is where the include nan option comes in: without it only valid tem-
perature data will be read and these might be different measurements than valid
ozone measurements. With the include nan option all data are read, so the
records have definitely the same size and can be compared. The temperature
profiles must of course be filtered in the same way as the ozone profiles. This
will be done automatically and the temperature, pressure and ozone profiles will
be shown in a plot, see the right panel of Figure 2.2.

Using the pressure and temperature, the mipas ozone number density profile
can be determined and compared to the gomos ozone number density, see
Figure 2.3.

2. Ozone profiles from GOMOS and MIPAS 10

2.4 The BEAT routines

This program is an example of the use of the BEAT-II software. All datasets are
loaded using simple commands and the returned data structures are intuitive
and can be used directly. All data described in the BEAT-II data description can
be loaded with no a priori knowledge of the data structures of the instruments.
The only BEAT routines used in this program are

BEATL2_VERSION()

BEATL2_INGEST()

BEATL2_FIND_COLOCATED_DATA()

11

3 PMD imager

3.1 The problem

Polarisation Measurement Devices (PMDs) are used to determine the degree of
atmospheric polarisation of the incoming light measured by sciamachy. There
are seven PMDs on-board sciamachy, which measure the polarisation param-
eters in relatively broad spectral bands, see table [3.1]. Because of this low
spectral resolution the spatial resolution of the PMDs can be higher than that
of the normal radiance measurements of sciamachy. The read-out frequency
of the PMDs is 32 Hz, which yields a pixel size on the Earth of 7.5 × 30 km2

in Nadir mode. This is four to eight times smaller than the normal pixel size
of the Nadir mode of sciamachy and therefore the PMDs can be used to make
relatively high resolution true colour images of the Earth.

3. PMD imager 12

PMD wavelength (width)
[nm] [nm]

1 344 (67)
2 487 (75)
3 661 (88)
4 853 (95)
5 1577 (137)
6 2322 (115)
7 854 (103)

Table [3.1]: sciamachy PMD frequencies and channel width.

3.2 The work that needs to be done

To make true colour images of the Earth the following steps must be taken:

• The reflectance measured by the PMDs must be determined; the radiation
measurements are given in binary units (BU), which do not have a physical
unit, but the PMD measurements (in BU), the solar spectrum measure-
ments (in BU) can be used to derive a reflectance. Also the geometry of
each measurement is needed.

• A true colour image can be made with Red, Green and Blue; PMD-3
can be used for red (∼ 675 nm) and PMD-2 for blue (∼ 450 nm). The
green colour (∼ 525 nm) can be determined from a combination of these
two channels, but we will take the PMD-4 signal as the green colour.
This PMD measures in Infrared (IR) and vegetation is known to reflect
strongly both the colour green and IR, so we will use IR as an artificial
green colour.

• The colour pixels must be drawn on a world map; therefore the geoloca-
tions (corner coordinates) of the pixels must be read. Because the PMDs
are read out more frequently than the normal measurements and no spe-
cial PMD geolocations are provided, we need to determine the corner
coordinates by interpolation.

• In order to make a nice plot, the backward scans must be removed.

3.3 Overview of the IDL program

The IDL program pmd tutorial.pro (in the directory pmd-imager) will guide
the user through the steps of the previous section. Here some background
information will be given about the program.

To start the tutorial program, go to the pmd-imager directory and start IDL
or IDLDE. From the IDL prompt type

IDL> pmd_imager

or in IDLDE load the file pmd imager.pro, compile (CTRL+F5) and run (F5) it.

3. PMD imager 13

���
�

���
�

���
�

���
�

��	
	Flight direction

EW

3

2 0

1

Figure 3.1: Definition of the corner coordinates of a sciamachy nadir pixel.

The user is asked to load a sciamachy file. This must be a level 1c file,
containing at least PMD measurements. A sample file is provided, but any other
sciamachy level 1c file will do, provided it contains PMD measurements. From
any sciamachy level 1b file such a file can be created by calling the SciaL1C

tool with the options for all calibrations (-allcal) and PMD measurements
(-pmd). The sample file also contains normal nadir measurements from clusters
1-31, so it was created using1:

~> SciaL1C -allcal -pmd -type nadir -cluster 1,2,..,31 $SCIAfile

where $SCIAfile is the input level 1b file.
Instructions on what to do next is printed on screen (at the prompt in IDL or

in the Log window of IDLDE). The program will continue each time after typing
.continue (or just .c).

The first step is to identify the datasets that are in the file. This can
be achieved using the beat datasetnames() function. It lists the principal
datasets present in the file. We are interested in the PMD measurements so we
need the nadir pmd dataset.

The nadir pmd dataset (and the other datasets present) can be accessed with
the beat fetch() function. The data can be accessed for any state present in
the file. We will process only one state for simplicity, this can be any state in
the file indicated by the integer state. The user can change this integer to any
number (note that IDL counts array indices starting at zero).

The measurements of all 7 PMDs are stored in a sciamachy file as a one
dimensional array per state, first all measurements of 1 PMD of one state, then
all measurements of the second PMD, etc. This one dimensional array (type
help, pmds.int pmd to verify this) can be split up into a matrix with the
measurements of the seven PMDs in columns, using

pmd = reform(pmd,7,npmd/7)

where npmd is the total number of PMD measurements. This is done automat-
ically.

Next, the geolocations are extracted, using beat fetch(). The longitudes
and latitudes in corner coord are used. This is a bit more work because

1all clusters must be given one by one, separated by comma’s

3. PMD imager 14

of the way the geolocations are nested. BEAT handles these issues using
BEAT DATAHANDLES, see the BEAT documentation. The latitudes and longi-
tudes are extracted using this piece of code:

FOR igeo = 0,ngeo-1 DO BEGIN

geon = BEAT_FETCH(pmds.GEO[igeo])

FOR i = 0,3 DO BEGIN

lat[i,igeo] = geon.CORNER_COORD[i].LATITUDE

lon[i,igeo] = geon.CORNER_COORD[i].LONGITUDE

ENDFOR

ENDFOR

Because the PMDs are read out more frequently than the normal measurements,
the geolocations of the intermediate PMD measurements must be determined
by interpolation of the corner coordinates. This is done in the obvious way, as
fractions of the corner coordinates 0 and 2 and the corner coordinates 1 and
3, respectively, see Figure 3.1. The interpolated coordinates are written to the
arrays lon dev and lat dev.

The values of the PMD measurements determine the colour that must be
used to fill the pixel defined by these coordinates. First the measurements,
which are given in byte counts, must be transformed to reflectivities R, which is
the fraction of the sunlight that is reflected by the atmosphere and the surface
and detected by the sensor. It is defined as

R =
πI

µ0E0

, (3.1)

where I is the radiance measured by the sensor, µ0 is the cosine of the solar
zenith angle (sza) and E0 is the solar irradiance. The solar irradiance is a quan-
tity that is measured once a day and can be found in the sun reference dataset
of the open file. The quantity that is needed here is the solar irradiance aver-
aged over the (broad) PMD spectral region, this is the 7 values array mean pmd.
The sza can be found in the geon structure. It is an array of three values,
corresponding to the east, middle and west points of each pixel. We will take
the sza for the middle point of the pixel. Fetch these quantities by following the
instructions.

Figure 3.2: Reflectances of the 7 PMD channels.

3. PMD imager 15

Figure 3.3: Example of an RGB plot of a state over the Earth, based on PMD
measurements. Black colours indicate ocean, white/pinkish colours indicate
clouds, green indicates vegetation, yellow indicates deserts.

Using all this the reflectivity measured by the PMDs can be determined. This
is shown in a plot like Figure 3.2. All reflectances are between 0 and 1. Most of
the signals will be rather close together, the signal of PMD-7 is different from the
others, because it is configured in a different way. To use the PMD signals for
an RGB picture, we need the PMDs closest to the colours red, green and blue,
which are at approximately 675 nm, 525 nm and 450 nm, respectively. PMDs
2 and 3 can be used for blue and red, but the green colour is not represented
by a different PMD channel, see table [3.1]. Therefore, we use PMD-4, which
measures in the IR, because vegetation is known to reflect both the green colour
as the IR strongly. The way to convert a three channel RGB colour to a one
dimensional colour in IDL can be found in the IDL documentation: First the
three signals must be converted to a byte array ranging from 0 to 255. Then
the three channels can be combined using

IDL> rgb = red + 256 (green + (256 * blue)),

where red, green and blue are the byte arrays of the PMD signals.
Having done this we can plot the coloured pixels on a world map. This can

be done using

IDL> map_set

IDL> for i=0,n_elements(data)-1 do $

polyfill,lon_dev[*,i],lat_dev[*,i],color = data(i)

IDL> map_continents

This will be done automatically (type .c).
The plot will show you the selected state on a map of a piece of the Earth,

like Figure 3.3. Clouds will be shown in a pinkish white colour, the sea is black,
the land varies from green (if there is a lot of vegetation) to yellow (over deserts).

Typing .c once more will start a tool where all the states will be plotted in
the same way as before. With this tool the way in which the geolocations are
handled can be easily changed. Especially the backscan contains little informa-
tion and obscures the plot, so it is desirable to remove it. The tool can also be

3. PMD imager 16

Figure 3.4: Screen shot of the PMD imager tool.

used to investigate the influence of using different PMD channels in the RGB
picture. With the mouse the picture can be zoomed in and out. See the HELP
function of the tool for more information.

3.4 The BEAT routines

This program is an example of a low level use of the BEAT-I software. All
datasets are accessed directly, requiring an extensive knowledge of the scia-

machy data structures. The BEAT routines used in this program are

BEAT_UNLOAD

BEAT_OPEN()

BEAT_IS_ERROR()

BEAT_DATASETNAMES()

BEAT_FETCH()

BEAT_CLOSE()

17

4
SCIAMACHY and GOME

reflectance comparison

4.1 The problem

sciamachy and gome are both spectrometers on-board space-borne platforms,
measuring the Earthshine spectrum and Solar spectrum. sciamachy was launch-
ed in May 2002 on-board ESA’s envisat, gome was launched in April 1995
on-board the ers-2 satellite. sciamachy measures the Earthshine spectrum
between 240 – 2380 nm with a resolution of 0.2 – 0.4 nm, while gome measures
from 237 – 794 nm, with a resolution of 0.2 – 0.4 nm.

Although well characterised in the laboratory, space-borne sensors must be
calibrated in-flight using independent data to ensure the data quality. One
opportunity to do this is to compare the reflectance spectrum of gome with
that of sciamachy as both sensors fly in the same orbit, with gome following
sciamachy by half an hour.

4. SCIAMACHY and GOME reflectance comparison 18

4.2 The work that needs to be done

To compare sciamachy and gome reflectance the following steps must be taken:

• A place on Earth must be selected where both gome and sciamachy

measure in nadir mode (sciamachy switches between nadir and limb mea-
surements) and this scene is preferably homogeneous (i.e. the reflectance
of the surface is constant over the area). gome and sciamachy spectra
between 240 and 800 nm must be read and converted to reflectances.

• gome pixels are about 320 × 40 km2, while sciamachy pixels are about
60×30 km2. We will look at a rectangular spot on the Earth of 5 co-added
gome pixels and this area is filled with sciamachy pixels which must also
be co-added.

• The co-added reflectances can then be compared.

4.3 Overview of the IDL program

The IDL program sciamachy gome.pro (in the scia-gome directory) will guide
the user through the steps of the previous chapter.

To start the tutorial program, go to the scia-gome directory and start IDL
or IDLDE. From the IDL prompt type

IDL> sciamachy_gome

or in IDLDE load the sciamachy gome.pro, compile (CTRL+F5) and run (F5) it.
First the data files must be read. Two sample files are provided, a gome file

of orbit 19227 and a sciamachy file of orbit 2509.
The gome file (GOME *.el1) is a simple ASCII file containing the Solar

Spectrum of 16 Oct 2001 12:17:58 and the Earth shine Spectrum of 23 Aug
2002 starting at 09:38:28. It was made with the standard extraction software
provided by ESA, using the call

~> gdp01_ex -r 32.6 4.0 26.9 35.0 $GOMEIN $ASCOUT

where $GOMEIN and $ASCOUT are the binary input and ASCII output files, re-
spectively. The time difference between the Solar and Earth shine spectra is
caused by a pointing problem of gome: the exact position of the sun could not
be determined anymore after October 2001. This causes a problem in the de-
termination of the reflectance, because the Earth shine spectrum detectors are
degrading since 1998. Usually a gome file covers a whole orbit, but the sample
file was stripped to reduce the file size, so only the necessary information is
retained.

The sciamachy file sample was described in section 3.3.

The geolocation First we will read the gome data. Instructions on what
to do next is printed on screen (at the prompt in IDL or in the Log window of
IDLDE) screen. The program will continue each time after typing .continue (or
just .c).

After opening the gome file and accessing the data, the structure named
GOME PRODUCT can be examined to see what is in the file. The geolocations can be

4. SCIAMACHY and GOME reflectance comparison 19

Figure 4.1: The GOME pixels (blue), SCIAMACHY pixels (white) and the
rectangle (red) defining the area of 5 adjacent GOME pixels.

retrieved with the GET GOME GEO.pro procedure, using BEAT FETCH() to access
the data. This simple procedure fetches the geolocation data from the structure
format and puts it into IDL arrays (GOME LONGITUDE, GOME LATITUDE). As an
extra the pixel type (East, Nadir, West or Backscan, which is given in the gome

product) is also stored in the array GOME PIXELTYPE.
After continuing the program will show a plot of the location of the gome

pixels on the Earth, similar to the blue lines in Figure 4.1.
Next, the sciamachy file is opened and the data accessed. Follow the di-

rections on screen. Note that although the gome file is a simple ASCII file and
the sciamachy file has its own binary structure, both can be accessed using the
same BEAT commands. The structure SCIA PRODUCT can again be examined
to see what is in the file (Type HELP scia product, /STRUCTURE).

For the extraction of the sciamachy geolocations there are several options,
because of the internal structure of the sciamachy data format, which reflects
the measuring strategy. sciamachy measures (almost) the entire spectrum
between 240 and 2400 nm, but not all wavelengths are measured with the same
accuracy. Depending on the channel and the place on Earth, measurements are
co-added with an integration time (IT) of 0.125, 0.25, 0.5, 1.0, 5.0 or 10.0 s.
The reason is to ensure high signal-to-noise ratio when the amount of radiation
is low and/or to reduce the data rate over less interesting areas. A smaller IT
results in smaller pixels and more detailed information. Usually between 60◦N
and 60◦S the smallest integration time is 0.25 s except for certain parts of the
spectrum and this is the case here, so we will continue with an IT of 0.25 s.

We must distinguish between forward scans and backward scans: Using
BEAT FETCH(scia product.STATES[5]) information on the measuring strategy
can be retrieved (State 6 is the Sahara state that we are interested in, remember

4. SCIAMACHY and GOME reflectance comparison 20

Figure 4.2: Coverage fraction of the sciamachy pixels. Open pixels are com-
pletely outside the selected rectangle, white pixels are completely inside the
selected rectangle and shaded pixels are partly within the selected rectangle.
The shading indicates the amount of coverage of the pixels, which will be used
as a weighing function.

that IDL starts to count at 0). The STATE.DUR SCAN PHASE gives the duration
of measurement of the current state (65 s in this case). With an integration time
of 0.25 s this means that DUR SCAN PHASE/IT number of measurements (260 in
this case) have been performed. STATE.NUM DSR gives the number of data set
records (13 in this case), which is the number of scans in this state (forward
+ backward). So one scan contains 260/13 = 20 geolocations, of which the
first 4/5th belong to the forward scan. This ratio is always constant (1/5th to
East, 1/5 to Center-East, 1/5th to Center-West, 1/5th to West and 1/5th to
backscan).

To extract the geolocation of sciamachy the procedure GET SCIA GEO.pro

is available. It will extract geolocations from the structure format into simple
arrays. The state number, IT and ground pixel number are given as arguments
to this procedure. Continuing the program will show the sciamachy in the
same plot, like the white pixels in Figure 4.1.

The scene that we will concentrate on here is a rectangular part of the
Saharan desert with a more or less homogeneous surface albedo and which was
cloud free on 23 August 2002. The rectangle is given in Figure 4.1 in red.

The spectra The next step is to retrieve the spectra of the pixels within
the selected area and co-add them in the right way. For this the coverage
of the sciamachy pixels must be determined. This is done by determining
for each sciamachy pixel the area that is located within the rectangle. A
plot like Figure 4.2 shows the coverage by shade of the each pixel. White
pixels lie completely within the selected area, open pixels are completely outside
the rectangle, and shaded pixels lie partly within the rectangle. The shading
indicates coverage fraction. This coverage fraction can be used as a weighing
factor during the co-adding of the reflectances of the pixels.

4. SCIAMACHY and GOME reflectance comparison 21

Figure 4.3: Left panel: Reflectance of the 5 co-added gome pixels (blue)
and the reflectance of the co-added sciamachy pixels lying (partly) within
the selected rectangle (red). Right panel: Relative difference of the gome and
sciamachy reflectance.

There is now enough information to retrieve the spectra of the selected gome

pixels and the sciamachy pixels lying withing the selected area. The spectra
will be loaded automatically. The reflectance is defined in equation (3.1). We
need the measurements from 4 × 1024 detector pixels for both gome and scia-

machy, divide them by the solar measurements of the same detector pixels and
the solar zenith angles. This is done in READ GOME PIXEL.pro. This routine
can be called for each gome pixel with arguments the BEAT product id of the
open gome file (gome product), the groundpixel-number and a name for the
output. It returns a structure named spectrum, containing pixel information,
reflectances and wavelengths and geolocations. So the call for each pixel i is

IDL> READ_GOME_PIXEL, gome_product, gome_pixels[i], gspectrum

Browsing the procedure, the user will find again that the same BEAT routine
(BEAT FETCH()) is used to extract all the information.

The sciamachy data is retrieved using a call to BIN SCIA PIXELS.pro. It
retrieves the spectrum information of all or several pixels in a state with a certain
integration time and co-adds them. It has as arguments the BEAT product id
of the open sciamachy file (scia product), the state number, the requested
integration time, an array of the ground pixels indices that must be co-added,
the array of the weights of the pixels and a name for the output. So the call for
each state is

IDL> BIN_SCIA_PIXELS, scia_product, stateID, IT, pixelNr, $

coverage, sspectrum

It also returns a structure also named spectrum, which contains all necessary
information. Again one can find that this procedure also retrieves all information
using the BEAT routine BEAT FETCH().

Having read the spectral information, we can plot and compare the data from
gome and sciamachy, see figure 4.3. The sciamachy reflectance is 10− 20%
lower than the gome reflectance. This is a well-known offset also found by
other comparisons with known reflectance spectra and the gome reflectance
has been used to correct the sciamachy reflectances. There are some gaps in
the sciamachy plot, because we have only retrieved information of pixels with

4. SCIAMACHY and GOME reflectance comparison 22

an integration time of 0.25 s. In this state there are some spectral regions in
which a longer integration time than 0.25 s was used. This is mainly in the
overlap regions, i.e. the regions at channel boundaries.

4.4 The BEAT routines

This program is an example of the use of the BEAT-I software for different
files formats. Although gome and sciamachy file formats are very different
internally, the same BEAT routines can be used for the same actions on both
file types. The BEAT routines used in this program are

BEAT_VERSION()

BEAT_UNLOAD

BEAT_OPEN()

BEAT_IS_ERROR()

BEAT_FETCH()

BEAT_TIME_TO_STRING()

BEAT_CLOSE()

