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ABSTRACT

The seasonal predictability of cold spring seasons (March–May) in Europe from hindcasts/forecasts of
three operational coupled general circulation models (CGCMs) is investigated. The models used in the
investigation are the Met Office Global Seasonal Forecast System (GloSea), the ECMWF System-2 (S2),
and the NCEP Climate Forecast System (CFS). Using the relative operating characteristic score and the
Brier skill score the long-term prediction skill for spring 2-m temperature in the lower quintile (20%) is
assessed. Over much of central and eastern Europe the predictive skill is found to be high. The skill of the
Met Office GloSea and ECMWF S2 models significantly surpasses that of damped persistence over much
of Europe but the NCEP CFS model outperforms this reference forecast only over a small area. The higher
potential predictability of cold spring seasons in eastern relative to southwestern Europe can be attributed
to snow effects as areas of high skill closely correspond with the climatological snow line, and snow is shown
in this paper to be linked to cold spring 2-m temperatures in eastern Europe. The ability of the models to
represent snow cover during the melt season is also investigated. The Met Office GloSea and the ECMWF
S2 models are able to accurately mimic the observed pattern of monthly snow-cover interannual variability,
but the NCEP CFS model predicts too short a snow season. Improvements in the snow analysis and land
surface parameterizations could increase the skill of seasonal forecasts for cold spring temperatures.

1. Introduction

The seasonal prediction of near-surface temperatures
over many parts of the globe has received considerable
attention. In fact, together with precipitation, seasonal
prediction of 2-m temperature has a wide application.
Considerable effort has gone into predictions of mean

temperatures over many parts of the globe including
Europe (e.g., Barnston and Smith 1996). However, it is
extreme temperatures such as heat waves and cold out-
breaks that have a larger effect on human society. De-
spite the worldwide notion of global warming and its
impacts, the absence of a clear trend toward fewer ex-
treme cold events in Europe (Klein Tank et al. 2002)
has prompted an investigation of their potential pre-
dictability in this study. These extreme events typically
occur in winter and spring possibly due to snow effects,
and have huge impacts on transportation systems, en-
ergy supply, ecology, agriculture, winter tourism, the
clothing industry, etc.

The predictable component of atmospheric variabil-
ity at seasonal to interannual time scales is that forced
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by changes in boundary conditions (e.g., Barnston et al.
2005). Walsh et al. (2001) related extreme winter and
spring cold outbreaks to negative North Atlantic Oscil-
lation (NAO) signatures consistent with a “blocking” of
westerly airflow into Europe. However, at smaller spa-
tial scales the influence of large-scale circulation
anomalies such as those related to SST variability is
modulated by interactions and feedbacks between the
atmosphere and the land surface. Among other land
surface processes, observational and modeling studies
have revealed that snow impacts near-surface tempera-
ture variability in the Northern Hemisphere extratrop-
ics during the cold season (Walsh et al. 1982, 1985;
Yang et al. 2001; Kumar and Yang 2003).

In Europe near-surface temperature variability has
been attributed to three main factors: large-scale flow,
which determines the origin and tracks of air masses
(e.g., van Oldenborgh and van Ulden 2003), radiation
balance (as determined by cloudiness among other fac-
tors; Lenderink et al. 2006), and local lower boundary
conditions (Ferranti and Viterbo 2006). Palmer et al.
(2004) have shown that seasonal predictability of large-
scale flow in Europe is low. The effect of cloudiness
offers some limited predictability. Skill from SST per-
sistence has been shown to be confined mainly along
coastal areas (Van den Dool and Nap 1985).

This paper aims to investigate the predictability of
cold spring seasons in Europe. We investigate the hy-
pothesis of snow accumulated during the preceding
winter being a source of skill in predicting cold spring
seasons in Europe. Snow increases the surface albedo,
thereby altering the terrestrial heat balance and pro-
viding a positive feedback mechanism that modulates
atmospheric variability. In the first part of the paper,
we assess the coupled general circulation models
(CGCMs) below-median, lower-, and upper-quintile
(i.e., coldest and warmest 20% of the climatological
records) 2-m temperature seasonal predictive skill over
Europe in spring [March–May (MAM)]. Near-surface
temperature forecasts obtained from damped persis-
tence of low temperatures from the previous winter and
early February snow depth are used as a baseline to

judge the performance of the CGCMs. We then relate
the 2-m temperature to snow water equivalent (SWE)
and snow cover to explain the physical basis of the
model skill.

2. Data and methods

a. CGCM predictions

The CGCMs used in this study are the Met Office
Global Seasonal Forecast System (GloSea), the Euro-
pean Centre for Medium-Range Weather Forecasts
System-2 (ECMWF S2), and the National Centers for
Environmental Prediction Climate Forecast System
(NCEP CFS). For more details on these models see
Table 1. The model data are accessible through the
Royal Netherlands Meteorological Institute (KNMI)
Climate Explorer (see online at climexp.knmi.nl; van
Oldenborgh and Burgers 2005). The ECMWF S2 con-
sists of five members in each ensemble for the hindcast
period (1987–2001) and 40 members thereafter. Only
five members in the forecast period have been used to
match the hindcast period. The NCEP CFS and GloSea
models have 15 ensemble members each in hindcast
mode, which are used in this study. However, since
2004, the NCEP CFS model produces twice-daily op-
erational forecasts resulting in about 60 ensemble mem-
bers. GloSea produces 40 ensemble members for the
operational forecasts since 2004. The February-start
hindcasts/forecasts have been verified against MAM
2-m temperature, implying a 1-month lead time (but
half-month from dissemination time, usually the 15th of
each month). An extreme event is defined whenever
2-m temperatures fall within the lower quintile of the
climatological records, otherwise it is a nonevent.
Events were defined for model predictions and obser-
vations independently (i.e., based on their own model
predictions and observed distributions). When using
this approach model biases are inherently corrected.
Model ensemble predictions are converted into proba-
bilistic forecasts by expressing, as a percentage, the
fraction of the ensemble predicting the extreme event.

TABLE 1. Coupled GCMs used in this study. Model resolution is given as wavenumber of spectral truncation (T) and number of
vertical layers (L). The Met Office GloSea model horizontal resolution is given as a latitude–longitude grid.

Model
Atmospheric

resolution Initialization
Hindcasts

from
Ensemble

size
Forecasts

from
Ensemble

size References

ECMWF S2 T95L40 ERA-15 1987 5 2001 40 Anderson et al. (2003);
van Oldenborgh et al.
(2005a,b)

NCEP CFS T62L64 NCEP 1981 15 2004 60 Saha et al. (2006)
Met Office GloSea 2.5° � 3.75°, L19 ERA-40 1987 15 2004 40 Graham et al. (2005)
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For instance if 9 members out of 15 are fall into the
lowest quintile, and the rest fall outside this category,
then the probability for the event occurring (not occur-
ring) is 60% (40%).

b. Observations

The snow-depth data (expressed as SWE) used in
this study are a combination of data from the 40-yr
ECMWF Re-Analysis (ERA-40) project (Uppala et al.
2005) up to 2002, and the ECMWF snow analysis
(White 2003) from 2003 to present. Weekly snow-cover
data spanning the 1972–2006 period, obtained from Na-
tional Oceanic and Atmospheric Administration/Na-
tional Environmental Satellite Data and Information
Service (NOAA/NESDIS) datasets (Robinson et al.
1993), are also used. The weekly snow cover has been
averaged into monthly data. To compare these two
datasets, snow extent has been generated for each grid
by assigning a one if the ECMWF SWE on a given day
is at least 3 mm, and 0 otherwise. The 3-mm SWE
threshold yielded the best agreement with the NOAA/
NESDIS dataset. Monthly averages are generated
based on these derived variables. Given that the effect
of the extent of snow cover on 2-m temperature is felt
during and after its existence (e.g., Groisman et al.
1994) and because the atmosphere adjusts rapidly in
response to anomalous land surface forcing, only short
(1 month) lead–lag relationships are considered
whereby February–April (FMA) mean snow is related
to MAM mean 2-m temperature. The 2-m temperature

data have been obtained from the recently de-
veloped high-resolution (0.5° � 0.5° latitude–longitude
grid) gridded monthly dataset of Fan and Van den
Dool (2007), which combines the Global Historical
Climatology Network (GHCN), version 2, and the
Climate Anomaly Monitoring System (CAMS)
datasets.

Pointwise correlations between FMA NOAA/
NESDIS and ERA-40-derived FMA mean snow cover
calculated over the period 1972–2005 are shown in Fig.
1. Statistical significance at the 5% (1%) level (as ob-
tained from a one-sided two-sample t test with 32 de-
grees of freedom) corresponds to a correlation coeffi-
cient of 0.34 (0.44). The high correspondence between
the two datasets is evident over a wide area extending
eastward from 10°E. Areas with zero standard devia-
tion during FMA (e.g., northern Scandinavia and Af-
rica in or close to the Sahara Desert) are masked out in
the plot. Biases in remotely sensed data such as
NOAA/NESDIS satellite data exist (Robinson et al.
1993; Foster et al. 1996). The ERA-40 snow-depth
analysis assimilates some observations, otherwise it re-
lies completely on the model snow precipitation and
melt parameterizations, which are known to have bi-
ases. These limitations notwithstanding, the high corre-
lation between the remotely sensed and reanalysis data
over Europe is encouraging. Because it is quite unlikely
that both datasets would have the same biases, both
snow datasets should be reliable enough for our pur-
poses.

FIG. 1. Correlation plot between FMA NOAA/NESDIS and ERA-40-derived snow cover.
A correlation of 0.34 (0.44) is found to be statistically significant at the 5% (1%) level, and the
corresponding contours are plotted.
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c. Forecast verification

Skill measures used to assess the CGCMs probabilis-
tic temperature forecasts are the relative operating
characteristic (ROC) score and the Brier skill score
(BSS). These metrics and other forecast verification
measures are computed by the KNMI Climate Explorer
using statistical software developed by the R Software
for Climate Analysis (RCLIM) initiative (see online at
http://www.secam.ex.ac.uk/index.php?nav�696). The
ROC score measures the ability of the forecast system
to correctly detect events or nonevents. The reference
ROC score of 0.5 implies no skill in the forecasts, and
the score increases to a maximum of 1.0 for perfect
forecasts. Scores less than 0.5 are indicative of negative
skill (i.e., worse than chance). The numerical formula-
tion and comprehensive discussion of the ROC score
can be found in Mason and Graham (1999, 2002). For a
set of n forecasts, if n1 (n2) is the number of cases in
which the event occurs (does not occur), Mason and
Graham (2002) define the ROC score for probabilistic
forecasts from an ensemble of size m as

Am,n � 1 �
1

n1n2
�

1�i�n1
1�j�n2

I�P1i � P2j�

�
1

2n1n2
�

1�i�n1
1�j�n2

I�P1i � P2j�, �1�

where P1i (P2j) are the forecasts issued prior to an event
(nonevent), and I(B) � 1 if condition B holds, 0 oth-
erwise. Suppose a subset K1i (K2j) of the ensemble pre-
dict the event (nonevent). Given an ensemble of size m,
C. A. T. Ferro (2007, unpublished manuscript) has
shown that an unbiased estimator for the expected
ROC score that would be obtained by an ensemble of
size M � m is

ÂM,n � 1 �
1

n1n2
�

1�i�n1
1�j�n2

� �
�k,l�∈Lij

�K1i

l ��m � K1i

M � l �
� �K2j

k ��m � K2j

M � k � �
1
2 �

k∈�ij

�K1i

k �
� �m � K1i

M � k ��K2j

k ��m � K2j

M � k ����m

M�2

,

�2�

where Lij is the subset of {(k, l): 0 � l � k � M}, such
that the combinations in the first summation exist, and
	ij is the subset of {0, . . . , M} such that the combina-
tions in the second summation exist.

Aware of the effect of ensemble size on ROC scores

across the three CGCMs used in this research, the ex-
pected ROC scores have been estimated for each
model for 50% (for below-median 2-m temperature
predictions) and 20% (lower quintile) thresholds using
M � 5 corresponding to the ECMWF S2 ensemble size
before 2002 (see Table 1). This gives us confidence that
the intermodel-ROC-score differences shown below re-
flect true CGGMs’ individual strengths and weak-
nesses. Critical values are calculated from a normal ap-
proximation to the distribution of the ROC score under
a null hypothesis of random forecasts, with issued prob-
abilities distributed uniformly on M � 1 distinct values.
Differences in the ROC scores have been computed
and their statistical significance tested using the method
discussed by C. A. T. Ferro (2007, unpublished manu-
script).

The relative improvement of numerical model pre-
dictions of cold seasons over an empirical approach is
assessed using Brier skill scores with reference to fore-
casts from a simple statistical model. The BSS measures
the forecast system’s improvement over a reference
forecast strategy (Wilks 1995).

The reference empirical model for spring tempera-
ture (T 
MAM) is a linear model based on three predic-
tors: global warming, temperature persistence from
winter into spring (T 
NDJ), and snow depth at analysis
time (H1Feb):

T �MAM�y� � ��y�T �NDJ�y � 1� � ��y�H1Feb�y� � ��y�,

�3�

T �s�y� � Ts�y� �
1

10 �
y��y�11

y�1

Ts�y��, �4�

with y the year being forecast. Global warming is taken
into account as a running mean of the local observed
temperature 10 yr prior to the forecast time as shown in
Eq. (4) for a given season. In many areas this “optimal
normal correction” gives most skill to seasonal fore-
casts (Huang et al. 1996). The persistence predictor is
the November–January-averaged temperature anomaly
relative to this climatology. Temperature persistence
from winter into spring is known to be significant in
Europe. The third predictor is the ERA-40 snow-depth
analysis at analysis time, 1 February. The coefficients
�(y) and �(y) are determined by linear regression of all
years except the ones being forecast (jackknife). Winter
temperature and snow depth are correlated (r  0.5 in
eastern Europe) as a thick snow layer in eastern Eu-
rope on 1 February is often produced by a cold winter
preceding it. Because of this, statistical forecast models
based on persistence only (� � 0), snow depth only
(� � 0), and a combination of the two have very similar
skill in forecasting the spring temperature.
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To compute probabilistic skill scores for the empiri-
cal forecast model, an ensemble of forecasts is required.
This ensemble, of equal size N as the CGCM ensemble,
is generated by sampling the distribution of the residu-
als �(y) at the quantiles i /(N � 1), (i � 1, . . . , N).

d. Near-surface temperature–snow relationships

Scatter diagrams are plotted to show relationships
between spatial averages of observed FMA mean snow
and MAM mean 2-m temperature over the 1972–2005
period. Canonical correlation analysis (CCA) is then
used to diagnose the spatial extent of the linear rela-
tionship between the two fields. CCA is a multivariate
statistical technique that seeks to identify a sequence of
pairs of patterns in the data whose time evolution is
optimally correlated. This technique has been widely
applied in seasonal climate prediction studies (e.g.,
Landman and Mason 2001; Shongwe et al. 2006), and
its procedure in the context of climate data analysis can
be found in Wilks (1995) and von Storch and Zwiers
(1999). Prior to the CCA, the spatial degrees of free-
dom were reduced by projecting original data onto
their empirical orthogonal functions (EOFs; Barnett
and Preisendorfer 1987). Performing the CCA on the
EOF space minimizes large sampling errors (Brether-
ton et al. 1992) at the expense of possible losses of
useful information in the original data from EOF trun-
cation. The EOF space is truncated at 70% of the av-
erage characteristic root, which is the Guttman–Kaiser
criterion (Jackson 1991) modified after Jolliffe (1972).
The length of the sequence of successive pairs of ca-
nonical variates (CCA modes) is limited to be the mini-
mum of the number of principal components (EOF
modes) retained in the EOF analysis. The optimal com-
bination of EOF and CCA modes producing the best fit
are then determined from cross-validated sensitivity
tests.

3. Skill of MAM 2-m temperature forecasts

a. Model ROC scores

Maps of ROC scores calculated for CGCM probabi-
listic predictions of MAM 2-m temperatures over the
region 30°–75°N, 30°W–60°E are shown in Figs. 2–3.
Figure 2 compares the ROC scores for the GloSea
model for median (Fig. 2a) and lower-quintile (Fig. 2b)
2-m temperature. Differences between scores for
model predictions of cold springs and below-median
temperatures (representing normal seasons) are shown
in Fig. 2c. Areas where the null hypothesis of no dif-
ference in ROC scores for the different thresholds
(here, 20% and 50%) could be rejected at the 10%

error level are shaded in Fig. 2c. Corresponding com-
parisons are made for the ECMWF S2 (Figs. 2d–f) and
NCEP CFS (Figs. 2g–i) systems.

ROC scores in excess of 0.6 for below-median 2-m
temperature are confined to the area around the Baltic
Sea extending from Poland northward into Scandinavia
in GloSea (Fig. 2a) and ECMWF S2 (Fig. 2d) systems.
At the 10% significance level, the critical ROC scores
for rejection of the null hypothesis of unskillful fore-
casts are 0.7 for GloSea and ECMWF S2, and 0.68 for
the NCEP CFS models. For below-median forecasts the
models’ ROC scores are not statistically significant over
much of Europe. The NCEP CFS forecasts show little
or no skill (Fig. 2g).

ECMWF S2 and GloSea models show elevated ROC
scores (�0.7) for predictions of 2-m temperature in the
lowest quintile. This is particularly the case over east-
ern Europe east of 10°E. GloSea and ECMWF S2 at-
tain ROC scores in excess of 0.8 for the cold extremes
(Figs. 2b,e). Widespread positive differences between
scores for the 20% and 50% thresholds are evident over
much of Europe except the southwest, although only
statistically significant differences are shaded in the fig-
ures. Remarkably, for GloSea and ECMWF S2 sys-
tems, statistically significant differences at the 10%
level are found over a wide area extending from the
North Sea through central toward eastern Europe
(Figs. 2b,f). The CGCMs show either no skill or nega-
tive skill over southwestern Europe. Albeit least skillful
overall, the NCEP CFS model also can provide skilful
forecasts over eastern Scandinavia and western Russia.

The high ROC scores and differences for below-
median and lower-quintile 2-m temperature over much
of central and eastern Europe warrants an investigation
of their physical basis. Interestingly, the lowest-quintile
2-m temperature forecasts are more skillful than those
of the upper quintile (�80% of the distribution), nota-
bly in the ECMWF S2 model (Fig. 3). We hypothesize
that elevated ROC scores could be due to a successful
representation of snow persisting in spring and influ-
encing near-surface temperatures (Cohen and Rind
1991). This mechanism naturally gives rise to higher
skill for cold extreme forecasts than below-median or
upper-quintile 2-m temperature forecasts.

b. Model BSSs

The CGCMs advantage over a statistical model as-
sessed using BSS are shown in Fig. 4. For below-median
2-m temperature predictions GloSea outscores the sta-
tistical model forecasts over much of Europe west of
40°E (Fig. 4a). The ECMWF S2 and NCEP models
perform slightly better than damped persistence fore-
casts only over patchy areas in Europe, otherwise the
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models attain skill equal to or less than that of the
reference forecast over a wide area in Europe (Figs.
4b,c).

For lower-quintile 2-m temperature forecasts, Glo-
Sea and ECMWF S2 models surpass damped persis-
tence over a wide area extending from the North and
Baltic Seas through central Europe toward the Medi-
terranean area. Negative skill scores are confined to a
narrow area from about 15° to 20°E in GloSea. The
BSS provide further evidence that there is more poten-
tial for forecasting cold spring seasons than below-
median seasons; this is particularly noticeable in the
case of ECMWF S2, which attains more widespread
positive skill scores in Europe (Fig. 4e). However, in
southwestern Europe, the models perform worse than
damped persistence. The NCEP CFS outperforms the
reference forecasts over isolated areas (Fig. 4f). At the

short lead time considered in this paper, Brier skill
scores show that statistical models provide competitive
predictions of lower-quintile 2-m temperatures over
certain regions (e.g., southwestern Europe and western
Russia).

c. Ensemble 2-m temperature predictions in eastern
Europe

Bias-corrected ensemble model predictions for
March and spring 2-m temperature, spatially averaged
over eastern Europe (45°–55°N, 20°–30°E) for the pe-
riod 1987–2005 (common to all models) are shown in
Fig. 5. The number of members in each model en-
semble are as shown in Table 1. The spatial averages
are taken over the area characterized by high skill for
lowest-quintile 2-m temperature forecasts in spring (as
shown in Figs. 2 and 4). Prior to the area averaging, the

FIG. 2. Geographical distribution of ROC scores for GloSea predictions of MAM 2-m temperature: ROC scores for (a) below-median
and (b) lower-quintile 2-m temperature predictions. ROC scores in excess of 0.7 are statistically significant at the 10% level. (c)
Differences in the ROC scores (i.e., ROC20 � ROC50). Areas where the differences are statistically significant at the 10% level are
colored. (d), (e), (f) Same as in (a), (b), (c), but for ECMWF S2. (g), (h), (i) Same as in (a), (b), (c), but for NCEP CFS. ROC scores
greater than 0.68 are statistically significant at the 10% level.
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CGCM predictions were bias corrected for the mean in
a cross-validation mode. Anomalies are defined as de-
partures from the 1971–2000 climatology. Observed
2-m temperature anomalies for the month and season
in a given year are denoted by squares. The climato-
logical lower-quintile category is shown by the gray
shaded region. SWE anomalies for February, March,
and April averaged over the same area are plotted in
Fig. 6.

In Fig. 5b, years characterized by cold spring 2-m
temperatures common to all models are 1987, 1996,

2005, and 1997, although in some cases not all 3 months
in each season fell in the lowest quintile. Noting that
March exhibits the highest skill of all spring months
(mainly from snow signal; map not shown), attention is
placed on the distribution of the ensemble members
during March of each cold spring (leaving out the
warmer March 1997; Fig. 5a). As shown in Fig. 6, a thick
snowpack occurred from February to March preceding
each coldest event, an exception being 1997.

In the prediction for March 1987, GloSea had 12 en-
semble members (80%) falling within the lowest quin-

FIG. 3. Geographical distribution of ROC scores for CGCMs predictions of MAM in the upper quintile: (a) GloSea, (b) ECMWF
S2, and (c) NCEP CFS.

FIG. 4. Evaluation of the CGCM MAM 2-m temperature forecasts’ BSS with reference to damped persistence. Skill scores for (a),
(b), (c) below-median 2-m temperature forecasts and (d), (e), (f) lower-quintile scores. Skill scores are for (a), (d) GloSea; (b), (e)
ECMWF S2; and (c), (f) NCEP CFS.
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tile, while 9 NCEP CFS model members (60%) pre-
dicted the extreme event. The ECMWF S2 model pre-
dicted the event with 40% probability (two members).
In 1996, GloSea had seven of its members (47%) cor-
rectly predicting the event. ECMWF S2 anticipated the
event with 40% probability, while the NCEP CFS
model indicated about 27% (four members) chance.
March 2005 cold event was predicted with 60% prob-
ability (nine members) by GloSea, NCEP CFS with
about 27% while the ECMWF S2 system indicated only
a 5% chance of 2-m temperatures falling within the
lowest quintile.

Considering all spring months (MAM), the 1987 cold
event was predicted very well by the GloSea and
ECMWF S2 systems with each indicating at least 80%
probability (12 and 4 members, respectively) of lowest-
quintile 2-m temperatures. The NCEP CFS model pre-

dicted this event with about 53% probability. The
ECMWF S2 system predicted the 1996 cold event with
high probability (60%), with GloSea and NCEP CFS
models indicating a 47% and 27% likelihood, respec-
tively. The 1997 and 2005 events were least skillfully
predicted with all models predicting the 1997 cold
spring with 20% probability, equivalent to the lower-
quintile prior probability or climatological forecasts.
The 2005 event was predicted with low probability of
about 33% and 20% by GloSea and NCEP CFS mod-
els, respectively, while the ECMWF S2 model almost
completely missed (3% probability) the 2005 cold
spring season in eastern Europe. As shown in Fig. 6, the
1997 cold event was preceded by negative SWE anoma-
lies from February to March. It is therefore not surpris-
ing that this “atypical” event was either underforecast
or completely missed by the CGCMs.

FIG. 5. CGCM ensemble predictions for (a) March and (b) spring. In both (a) and (b) and for a given year (left) the squares show
the observed anomalies, (middle left) the circles show the ECMWF S2 ensemble predictions, (middle right) the triangles show the
GloSea ensemble predictions, and (right) the diamonds show the NCEP CFS ensemble predictions. The observations/predictions have
been averaged over eastern Europe (45°–55°N, 20°–30°E). The gray shaded region shows the lower-quintile category defined from the
1971–2000 climatology.
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4. Snow influence

Snow-cover variability for FMA expressed as stan-
dard deviations of the extent of snow cover on the
ground is shown in Fig. 7. The figure shows that areas in
central and eastern Europe are characterized by the
greatest interannual fluctuations of early spring snow
cover. The other neighboring regions (e.g., southwest
Europe and parts of Scandinavia) have a high fre-
quency of either 0% or 100% snow cover during early
spring months. There is a close correspondence in geo-
graphical area between the regions where this land sur-
face condition is most variable from year to year, and
where ROC scores for cold springs are highest (in
GloSea and ECMWF S2 models; Fig. 2).

a. 2-m temperature–snow relationships in
observations

1) SNOW AND NEAR-SURFACE TEMPERATURE

RELATIONSHIPS IN EASTERN EUROPE

To illustrate the influence of changes in local land
surface forcing associated with snow on near-surface
temperature, spatial averages of SWE, snow cover, and
2-m temperature were calculated for a rectangular area
(45°–55°N, 20°–30°E) and plotted in Fig. 8. As shown in
Fig. 7, the area averages are taken over a region with
highest interannual snow-cover variability in FMA and
highest skill for cold spring forecasts (Fig. 2). In Fig. 8a,
MAM 2-m temperature is plotted against February

FIG. 6. Area-averaged FMA SWE in eastern Europe (same geographical area as in Fig. 5). Boxplots show the climatological range
based on the 1971–2000 period, while the black squares indicate the observed SWE in a given month. For each year, the first series
shows February SWE, the second series shows March, and the third series shows April SWE.

FIG. 7. FMA snow-cover variability in Europe expressed as standard deviations of the
extent of snow on the ground.
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SWE. The plot shows that very cold temperatures oc-
curred often following high SWE at the beginning of
February, and vice versa for the warm extreme. The
correlation is �0.57 (statistical significance at the 1%
level). The plot for MAM 2-m temperature against
FMA snow-cover extent (Fig. 8b) is consistent with the
results from SWE (obtained from ERA-40), despite the
fact that the snow datasets are obtained from indepen-
dent sources. The plot shows that the coldest MAMs
over eastern Europe have occurred following extensive
snow cover from February to April (correlation �
�0.63). The plots make physical sense. Snow influences
near-surface temperatures through its high reflectivity
to incident radiation, low thermal conductivity, which
inhibits sensible heat flux from the ground into the
overlying air, and by acting as a latent heat sink during
the melting process. Even after melting, the resulting
soil moisture influence near-surface air temperature
through its effect on the surface heat balance in the
form of alterations in partition of latent and sensible
heat fluxes. These results are in qualitative agreement
with Groisman et al. (1994), who classified eastern Eu-
rope as a temperature-sensitive zone from December to
March. The scatterplot for FMA fractional snow extent
against February SWE is presented in Fig. 8c. The
strong correlation of 0.74 indicates that a thick snow-
pack on 1 February on average translates into longer
lingering snow in spring, despite the well-known obser-
vations that a snowpack can be melted in surprisingly
short times by, for example, heavy precipitation at high
temperatures.

2) CCA DIAGNOSTICS

To the extent that there exists some linear relation-
ship between snow cover and 2-m temperature as sug-
gested by the scatterplots, the use of a linear statistical
technique such as CCA to diagnose the spatial patterns

of covariability between the two fields is justified.
Cross-validated sensitivity tests suggested that a sub-
space consisting of 11 observed snow-cover EOFs (70%
cumulative variance) and six 2-m temperature EOFs
(72% cumulative variance) could optimally be used in
conjuction with four CCA modes (successive pairs of
canonical variates). The spatial patterns for the first
canonical mode (whose canonical correlation is high-
est) and the corresponding time series are shown in Fig.
9. In Fig. 9a, the first canonical eigenvectors of the
snow-cover field leading spring 2-m temperature by 1
month are plotted. The corresponding canonical eigen-
vectors for spring 2-m temperature are presented in
Fig. 9b. The magnitude of the loadings (elements of the
canonical eigenvectors) indicate the relative contribu-
tion of each grid to the corresponding canonical pat-
tern. The time series for this pattern is shown in Fig. 9c.

The first canonical mode represents a pattern of co-
variability that is located in eastern Europe and western
Russia. The snow cover and 2-m temperature patterns
for this mode explain about 15% and 24% of the total
variance of each field, respectively. This mode shows
that years with excessive (deficient) snow cover over
eastern Europe from February to March are those with
anomalously cold (warm) spring 2-m temperature over
the area stretching from about 15°E in eastern Europe,
western Russia, and parts of Scandinavia. Indeed there
is close correspondence between the geographical area
of anomalous land surface forcing from snow (highest
loadings in Fig. 9a) on the lowest atmosphere as sug-
gested by this CCA mode and the area exhibiting high-
est FMA snow-cover interannual variability (Fig. 7). In
addition to providing some empirical evidence in sup-
port of snow-radiation (e.g., increasing ground reflec-
tance) and snow-hydrological (e.g., energy used for
melting snow and evaporating the resulting water) ef-
fects on 2-m temperature, the maps also show the spa-

FIG. 8. Scatterplots of spatially averaged (i.e., averaged from 45°–55°N to 20°–30°E) (a) MAM 2-m temperature (°C) vs 1 February
SWE (mm), (b) MAM 2-m temperature (°C) vs FMA fractional snow cover, and (c) FMA fractional snow cover vs 1 February SWE
(mm).

4194 M O N T H L Y W E A T H E R R E V I E W VOLUME 135



FIG. 9. CCA diagnostics: (a) FMA snow-cover CCA loadings for mode 1, (b) the corresponding CCA
loadings for MAM 2-m temperature, and (c) the canonical component time series for snow (gray bars) and
2-m temperature (line).
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tial extent of the snow influence. The results show that
the impact of anomalous snow-cover forcing could oc-
cur through local feedback mechanisms and possible
changes in atmospheric circulation. The effect of snow-
albedo–temperature feedbacks is more localized (e.g.,
Dewey 1977), which explains the eastern Europe case.
The impact of snow on atmospheric circulation can ex-
tend much deeper into the middle or even the upper
troposphere (e.g., Zhang et al. 2004) thus exerting a
remote influence on the weather/short-term climate.

The canonical component time series for this mode
whose correlation is 0.91 show that this pattern of
anomalously extensive snow cover and the associated
colder 2-m temperatures in eastern Europe occurred
more frequently from the 1970s to the late 1980s (Fig.
9c). The frequency declined since the 1990s. Possible
mechanisms forcing this pattern of temporal variation
have not been investigated in this paper. A statistically
significant reduction in western Eurasia (40°–60°N,
20°–90°E) spring (particularly April) snow-cover extent
(SCE) has been shown elsewhere (Brown 2000) using
reconstructed snow-cover data. Superimposed to the
significant downward SCE trend shown in Brown
(2000) are decadal–multidecadal fluctuations. Consis-
tent with our findings, the decade from the late 1970s to
the late 1980s fell above the trend line (Brown’s Fig. 14)
with a more rapid decline in the early 1990s. A link
between snow cover and concurrent NAO cannot be
ruled out. The correlation between the snow-cover ca-
nonical time series for this mode and the FMA-
averaged NAO–Gibraltar index (Jones et al. 1997) is
�0.34 (statistical significance at the 5% level).

b. Model snow predictions

1) FORECAST–OBSERVED SNOW CORRELATION

To determine the performance of the CGCMs in
terms of snow extent predictions, the FMA model snow
predictions are validated against NOAA/NESDIS snow
data using correlation analysis. The FMA CGCMs
snow predictions issued in February are considered, im-
plying zero lead time. Snow extent is defined as the area
covered by at least 3-mm thickness of SWE for the
model data, which have been interpolated to a 2° � 2°
latitude–longitude grid consistent with the validation
dataset.

The spatial pattern of correlation between model
FMA snow conditions and observed snow cover is
shown in Fig. 10. At the 5% (1%) level, a correlation
coefficient of 0.44 (0.54) is found to be statistically sig-
nificant. Remarkably, in agreement with results from
2-m temperature forecast verification, statistically sig-

nificant correlations are found over much of central and
eastern Europe in GloSea and ECMWF S2 systems
(Figs. 10a,b). For the NCEP CFS system, statistically
significant correlations are only confined to a limited
area in eastern Europe and around the Caucasus (Fig.
10c).

FIG. 10. Spatial pattern of correlation between modeled FMA
snow cover and NOAA/NESDIS observations: the correlation for
the (a) GloSea model, (b) ECMWF S2, and (c) NCEP CFS. The
critical values for statistical significance at the 5% (1%) error
level are 0.44 (0.54), and are shown by contours in the figure.
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2) MODEL REPRESENTATION OF MONTHLY SNOW

VARIATION

To assess the discrepancies that exist between mod-
eled and observed SWE interannual variations, a nor-

malized standard deviation is calculated for February to
April based on the 1987–2005 period and shown in Fig.
11. Assessing the models’ ability to capture the snow
migration at monthly time scales reveal more informa-
tion than would have been obtained from the seasonal

FIG. 11. Snow-depth-normalized standard deviation (coefficient of variation) over Europe from February to March: (a), (b), (c) the
observed SWE variation; (d), (e), (f) GloSea; (g), (h), (i) ECMWF S2; and (j), (k), (l) NCEP CFS. Coefficients are shown for (a), (d),
(g), (j) February; (b), (e), (h), (k) March; and (c), (f), (i), (l) April.
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(FMA) patterns considered in foregoing sections. The
dimensionless coefficient used to make the assessment
is the ratio of the standard deviation to the monthly
mean SWE. In the figure, each column shows the spa-
tial distribution of the statistic in the same month.
These plots allow a visual comparison of the ability of
the models to capture the year-to-year monthly snow
variations expressed as a proportion of average
monthly snow depletion. The monthly snow line can be
inferred from the plots.

In February, the observed snow line stretches from
the Alps in southeastern France (about 5°E) southward
into Bulgaria and northward through Germany toward
Scandinavia (Fig. 11a). The year-to-year February
SWE variation is highest in eastern Europe where the
standard deviation either equals or exceeds the mean.
All the models satisfactorily capture the broad pattern
of February SWE variability. GloSea and ECMWF S2
also capture the mean SWE amounts adequately (map
not shown). The NCEP CFS model, while locating the
snow boundary close to the observed, underestimates
the thickness of the snowpack over eastern Europe.
Such an underestimate in snow depth would result in a
subsequent underestimate of snow properties such as
its albedo, which is one factor that influences the short-
term climate, particularly near-surface temperatures.

By March the snow line in the observations does not
retreat significantly with the westmost boundary still
located over the French and Swiss Alps (Fig. 11b). Re-
markably, year-to-year SWE in eastern Europe exhibits
the highest variation during this month. In this snow-
transient region, interannual standard deviations as
high as twice the monthly mean are found. Indeed, the
thickness and area extent of the snowpack during this
month has a direct impact on spring near-surface tem-
perature in the lowest quintile. The observed magni-
tude of March SWE variability in eastern Europe is
adequately represented in the GloSea and ECMWF S2
models (Figs. 11e,h). This accuracy shows that in years
when snow occurred in eastern Europe in March,
GloSea and ECMWF S2 hindcasted/predicted the
thickness of the snowpack successfully. As noted in
(Slater et al. 2001), snow albedo changes in models’
snow-albedo schemes as a function of its age and depth
(up to a certain limit after which is becomes constant).
In their discussion, most models attain a maximum al-
bedo of about 85% for the visible, and about 65% for
the near-infrared portions of the spectrum at SWE val-
ues less than 50 mm. Climate models that predict snow
thickness at these “crucial” levels with some skill
should commensurately represent the magnitude of the
land surface forcing on the lower atmosphere reason-
ably well, thereby predicting cold spring seasons with

some degree of accuracy. As shown in Fig. 11k, the
NCEP CFS system hardly predicts any snow in eastern
Europe in March. In this model the snow boundary
migrates too rapidly so it is situated much farther east
(western Russia) than the climatological snow line. This
serves as a clear illustration of differences in model
snow simulation during the melt season. Discrepancies
in model snow simulations during transition seasons
have been noted elsewhere (e.g., Foster et al. 1996) and
are in part attributable to differences in parameteriza-
tion of snow processes in the models’ land surface
schemes (Slater et al. 2001).

Except for patches of snow over the Swiss Alps and
the Caucasus, there is no observed or modeled snow
over Europe in April (Figs. 11c,f,i,l). This is in response
to the seasonal increase in available solar energy that
forces a rapid migration of the climatological snow line.
The snow patches in the Swiss Alps and the Caucasus
are well predicted in the ECMWF S2 and GloSea mod-
els. In extreme cases (e.g., April 1996) some remnants
of seasonal snow still survive during this month over
much of eastern Europe and western Russia resulting in
a delayed onset of seasonal warming. During this ex-
treme case, the GloSea model accurately captured the
delayed migration of the seasonal snow line (map not
shown). The ECMWF S2 and NCEP CFS models on
the other hand located the snow boundary much farther
east along the western Russian border.

5. Discussion and conclusions

Predicting land temperatures more than 14 days
ahead is a difficult task. One of the few extratropical
areas with high skill scores in the current generation of
operational seasonal forecast models is central and
eastern Europe in spring. Forecasts started on 1 Feb-
ruary show some skill as evidenced by ROC scores for
the below-median MAM-averaged temperature ex-
ceeding 0.6. The skill for forecasting cold extremes is
even higher (reaching 0.8) and statistically significant.
The models’ skill surpasses that of damped persistence
forecasts.

Comparisons of skill measures for below-median and
colder spring (2-m temperature in the lower quintile)
for each CGCM suggests that there could be more pre-
dictive potential for cold extremes than “normal” sea-
sons at the short lead time considered here. This is
indeed the case over snow transient regions in central
and eastern Europe. A notable difference in the skill of
the CGCMs used in this research is evident. The
GloSea and ECMWF S2 models attain the highest
overall skill in predicting spring cold extremes during
the verification period. The NCEP CFS model on the
other hand performs the least well.
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Noting that cold spring forecasts have higher skill
than below-median seasons prompted a further inves-
tigation of the physical basis of the higher skill in pre-
dicting 2-m temperatures in the lowest quintile. The
correspondence in geographical area between the high-
skill area and the climatological snow line hinted at
land surface processes as a possible source. Both re-
motely sensed and model-generated snow fields have
been used to test our hypothesis. Both datasets inher-
ently have their own biases. However, the close agree-
ment between the two datasets over the study area sug-
gested that they could reliably be used for the purpose
of this paper.

Correlation analysis has shown a statistically signifi-
cant relationship between modeled snow cover and the
NOAA/NESDIS datasets over eastern Europe. The
highest correlations (�0.5) were obtained for the
GloSea system. Albeit of a lesser magnitude, correla-
tions attained by the ECMWF S2 model were statisti-
cally significant over a large area. The NCEP CFS
model had the lowest overall correlations. It is remark-
able that the snow predictions from GloSea and
ECMWF S2 are in closer agreement with observations
and that the same models show higher skill in predict-
ing cold spring seasons. This consistency provides evi-
dence that the CGCMs’ different ability to accurately
model snow cover is a physical basis for the skill differ-
ences shown in the previous sections.

The abilities of the models to mimic the monthly
migration of the climatological snow line and interan-
nual variability of monthly SWE during the melt season
further substantiates the snow-being-the-source hy-
pothesis. Notable discrepancies in the model’s ability to
accurately locate the monthly climatological snow
boundary and the year-to-year variations in monthly
snow thickness have been shown. Again, the monthly
snow line and the interannual variations of snow thick-
ness in the GloSea and ECMWF S2 CGCMs models
are very close to what is observed. In February, the
NCEP CFS system predicts an almost realistic snow
boundary but underestimates the thickness of the snow-
pack in eastern Europe. As snow albedo varies with
snow depth (up to a certain limit) and age, underesti-
mating the SWE in February would imply lower-than-
observed albedo, and higher surface heat fluxes and
hence warmer temperatures. In March, snow-depth
variability is highest in eastern Europe. The NCEP CFS
model misses the pattern of the interannual variability
in March because the snow line migrates too rapidly in
this model. In April all models faithfully represent the
observed snow distribution.

The ability of GloSea and ECMWF S2 models to
capture the observed pattern of interannual variability

of February–April snow thickness suggests that these
models adequately represent snow processes during the
melt season. The NCEP CFS model on the other hand
simulates a shorter snow season in eastern Europe, thus
underestimating the amount of snow on the ground in
February and March. The overall poorer performance
shown by the NCEP CFS model in predicting cold
springs in Europe could be attributable to the earlier
melting of snow.

Patterns of covariability between FMA snow cover
and MAM 2-m temperature have shown a link between
snow cover in eastern Europe and western Russia and
2-m temperature, with temperature lagging a month
behind. The patterns show that extensive snow cover
from February to March has often preceded cold tem-
peratures in spring. The underlying physics has been
discussed extensively in the literature. Snow alters sur-
face radiant energy fluxes through its high albedo and
low thermal conductivity. Energy is extracted from the
air during the melting process. Soil moisture from
melted snow leads to a release of surface latent heat
flux from the wet ground.

The initial snow conditions are important for cold
spring season forecasts over Europe except over the
western areas where temperatures are modulated by
nearby oceans. High snow depth in eastern Europe and
western Russia at the beginning of February (model
initialization), persisting into early spring is closely re-
lated to cold springs in eastern Europe. Strong corre-
lation shows that a thick snowpack early in February
generally precedes lingering snow in spring. However,
the dependence of snowpack duration on the ground on
several factors complicates modeling of the snow fields
during late winter and/or early spring. Over and above
the seasonal increase in solar radiation, the frequency
and strength of ablation events determines the snow
durability. For instance, a large (or a sequence of) rain-
storm(s) would provide large amounts of energy for
melting the snowpack. Such rapid snowmelt would di-
minish the chances of an extremely cold spring. There-
fore snow initial conditions would lead to skillful cold
spring seasons’ forecast if the CGCMs temperature and
precipitation schemes were more realistic.

The skill of the Development of a European Multi-
model Ensemble System for Seasonal-to-Interannual
Prediction (DEMETER) versions of the ECMWF S2
and GloSea models (Palmer et al. 2004) in predicting
lowest-quintile spring 2-m temperatures over 1958/59–
2001 has also been assessed. The Met Office model
attains higher ROC scores over a wide area in eastern
Europe extending into Scandinavia (map not shown).
No attempt has been made to investigate the strengths
and weaknesses of the individual land parameterization
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schemes used in the model. In a models’ land surface
schemes intercomparison study (Slater et al. 2001), it
was noted that specific snow properties such as its al-
bedo and thermal conductivity vary from model to
model. Also the ablation rates were found to differ,
which apparently is the case in the models used here as
evidenced by the differing lengths of the snow season. It
is clear that the predictive skill of spring cold spells in
numerical models is tied to their accuracy in predicting
snow fields.
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