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ABSTRACT

In this paper, the degree of scatter in flux–gradient relationships for stably stratified conditions is ana-
lyzed. It is generally found that scatter in the dimensionless lapse rate �h is larger than in the dimensionless
shear �m when plotted versus the stability parameter z/� (where � is the local Obukhov length). Here, this
phenomenon is explained to be a result of self-correlation due to the occurrence of the momentum and the
heat flux on both axes, measurement uncertainties, and other possibly relevant physical processes left aside.
It is shown that the ratio between relative errors in the turbulent fluxes influences the orientation of
self-correlation in the flux–gradient relationships. In stable conditions, the scatter in �m is largely sup-
pressed by self-correlation while for �h this is not the case (vice versa for unstable stratification). An
alternative way of plotting is discussed for determining the slope of the linear �m function.

1. Introduction

Flux–gradient relationships are used to relate gradi-
ents of mean atmospheric profiles to turbulent fluxes.
The concept of flux–gradient relationships has proven
to be very useful in estimating surface fluxes both in
atmospheric models and from observed profiles. The
relevant quantities to relate fluxes and gradients are
obtained from dimensional analysis. Consequently, the
functional form of the flux–gradient relationships must
be found by experiment. Some of the current problems
in atmospheric boundary layer modeling (e.g., Holtslag
2006), may be associated with uncertainties in the form
of the flux–gradient relationships. In the near neutral
regime, different studies on the determination of the
flux–gradient relationships show similar results with
little scatter. In contrast, the proposed functional forms
diverge considerably for stronger stability (Högström
1988, 1996; Andreas 2002).

For the stable boundary layer (SBL) a systematic
difference in scatter between the dimensionless shear
�m and the dimensionless lapse rate �h is found when
plotted versus the stability parameter z/� (where � is
the local Obukhov length). Typically, scatter in �h is
larger than in �m for a large majority of field experi-
ments (see e.g., Oncley et al. 1996; Forrer and Rotach
1997; Duynkerke 1999; Howell and Sun 1999; Yagüe et
al. 2001; Cheng and Brutsaert 2005; Steeneveld et al.
2006). Figure 1 illustrates this point for observations
from the Cooperative Atmosphere–Surface Exchange
Study 1999 (CASES-99).

In this paper we explain the difference in scatter be-
tween �m and �h to be a result of self-correlation. Self-
correlation is also referred to in literature as spurious
correlation or the shared variable problem and arises
when one (dimensionless) group of variables is plotted
against another, and the two groups under consideration
have one or more common variables (e.g., Hicks 1978;
Kenney 1982; Aldrich 1995). In that case, correlation is
partly caused by artificial, mathematical reasons, apart
from physical and observational aspects. For plots suf-
fering from self-correlation, the amount of scatter is not
directly related to the quality of the data or the validity
of the physical relationship under consideration.
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In general, the influence of self-correlation depends
on two factors. First, on the relative variation of the
fundamental variables, Vxi

� �xi
/xi . Here �xi

denotes
the standard error of a certain variable xi. When Vxi

of
the common variable is large compared to Vxi

of the
other variables, the degree of self-correlation is consid-
erable (Kim 1999; Klipp and Mahrt 2004). Second, the
relationship between the orientation of the self-
correlation on the one hand and of the true physical
correlation on the other hand is important. Depending
on this relationship, the influence of self-correlation
can be either negligible or very large.

Dimensional analysis is a widely applied tool in
boundary layer meteorology (e.g., Stull 1988). How-
ever, often not sufficient independent scaling variables
are present to construct completely independent di-
mensionless groups (Andreas and Hicks 2002). As a
consequence, some amount of self-correlation is often
inevitable.

The aim of this paper is to explore the influence of
self-correlation in �m and �h for stable conditions. Fur-
thermore we discuss the influence of self-correlation as
a function of atmospheric stability and we discuss an
alternative way of plotting for determining the slope of
the linear �m function independent from self-
correlation. While earlier studies mainly examined the
effect of the shared momentum flux, here we investi-
gate the combined effect of the momentum flux and the
heat flux on the influence of self-correlation.

In section 2 the background of Monin–Obukhov
similarity theory (MOS) is briefly summarized. Section
3 gives a short description of the observational data and
section 4 presents a sensitivity analysis on the influence

of self-correlation on the flux–gradient relationships. In
section 5 the stability dependence of self-correlation
will be investigated and in section 6 we will apply an
alternative technique to illustrate the influence of self-
correlation. In section 7 we suggest some characteristics
we think a new scaling approach should meet. Finally in
section 8 we draw conclusions.

2. Monin–Obukhov similarity theory

Turbulent motions in the atmospheric surface layer
can be well described in terms of MOS (e.g., Stull 1988).
This theory states that under homogeneous and station-
ary conditions every dimensionless group is a universal
function of z/L, where z is the height above the surface
and

L � �
u3

*

k
g

�
w���0

�1�

is the Obukhov length. Here k is the Von Kármán con-
stant (taken as 0.4; Högström 1996), g is the accelera-
tion due to gravity, and � is the mean potential tem-
perature;

u* � 	�0 �� � �u�w�0
2


 ��w�0
2
�1�4 �2�

is the friction velocity and w���0 is the surface kinematic
turbulent heat flux. The momentum flux is denoted by
� and 
 (1.2 kg m�3) is the air density. Overbars indicate
mean values; primes indicate deviations from the mean.

The dimensionless shear �m and the dimensionless
lapse rate �h are defined as

�m� z

L� �
kz

u*

�U

�z
�3�

�h� z

L� �
kz

�*

��

�z
� �

kzu*
�w����0

��

�z
. �4�

Here U is the mean wind speed and �* � �w���0 /u* is
a turbulent temperature scale.

In principle MOS is only valid in the surface layer.
Above this layer the magnitude of the fluxes generally
decreases with height in the SBL (e.g., Stull 1988) and
Monin–Obukhov scaling is no longer appropriate. Al-
ternatively, Nieuwstadt (1984) used local fluxes instead
of surface fluxes (local scaling). All dimensionless
groups now depend on z/�, where

	 � �
u3

*

k
g

�
w���

�5�

FIG. 1. Dimensionless shear (�m) and lapse rate (�h) vs stability
(z/�) for CASES-99 observations. Error bars indicate one stan-
dard error around the mean.
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is the local Obukhov length at height z (Nieuwstadt
1984; Holtslag and Nieuwstadt 1986). MOS can be con-
sidered as a special case of local scaling theory.

3. Observational data

To illustrate our results, we use observations from
the CASES-99 measurement campaign (Poulos et al.
2002), which was organized in October 1999, 50 km east
of Wichita, Kansas (37.65°N, 96.74°W; �440 m asl),
over gently rolling terrain with slopes from 0.1 to 0.8
degrees. The experimental area was covered with prai-
rie grass with a roughness length of 0.03 m.

A 60-m tower was equipped with a dense vertical
array of either 20-Hz Campbell Scientific (CSAT3) or
Applied Technologies K-style sonic anemometers at 10,
20, 30, 40, 50, and 55 m. Temperature profiles are ob-
tained at six levels from slow response aspirated tem-
perature/humidity sensors at 5, 15, 25, 35, 45, and 55 m.
(All the data were obtained from http://www.atd.ucar.
edu/rtf/projects/cases99/asciiDownload.jsp.)

Around the main mast a network of flux stations was
set up. Hartogensis and De Bruin (2005) operated a 10
m mast with a CSAT3 sonic anemometer and a KH20
Krypton hygrometer at 2.6 and 10.2 m. To investigate
the impact of self-correlation as a function of atmo-
spheric stability, we use eddy-correlation data from the
10.2-m level. To calculate turbulent fluxes, the raw data
are processed by a software package (Van Dijk and
Moene 2004; see also http://www.met.wau.nl/projects/
jep/report/ecromp.pdf). The package provides a statis-
tical error for each flux variable. This error is mainly
based on the measurement accuracy and the number of
independent samples from which the averaged flux
value is composed. For normally distributed samples
the statistical error equals 2 times the standard devia-
tion.

4. Influence of self-correlation on flux–gradient
relationships

The impact of self-correlation can be investigated by
imposing errors on the common variables. When the
resulting contaminated points move roughly along the
reference curve, self-correlation has significant influ-
ence. By reference curve we mean a first-order guess of
the relationship, based on earlier studies. To be more
specific, for the flux–gradient relationships in the SBL
this is a log-linear relationship in the near-neutral re-
gime. With increasing stability, the functions gradually
deviate from log linear. Of course, in principle, even
this first-order guess in itself suffers from self-
correlation, but this second-order effect is discarded.

By imposing a 10% error on u*, Andreas and Hicks
(2002) show that self-correlation indeed causes a differ-
ence in scatter between �m and �h for unstable condi-
tions. For stable conditions, Klipp and Mahrt (2004)
found that self-correlation explains 65% of the variance
between �m and z/�, owing to the occurrence of u* in
both quantities.

In this section we will impose errors on both the
momentum flux � and the sensible heat flux H. The
erroneous fluxes can be expressed as

�error � �true 
 
�

Herror � Htrue 
 
H, �6�

where, for example, �� and �H can be considered as
random or systematic measurement errors. In this study
we ignore uncertainties in the gradients, although these
can be considerable (Akima 1970; Oncley et al. 1996;
Frentzen and Vogel 2001). When we reduce the errors
�� and �H to infinitesimal values, we obtain from
Eq. (6)

�error � �true�1 

��

�true
�

Herror � Htrue�1 

�H

Htrue
�. �7�

At first we assume the relative errors in � and the H
to be equal, so ��/� � �H/H. In this case, the direction
in which a reference point shifts as a result of the im-
posed errors reads

� ��m

��z�	��error
� � ��h

��z�	��error
�

�m

z�	
�

�h

z�	
. �8�

This result is found by differentiating �m, �h, and z/�
with respect to both � and H and using the assumption
��/� � �H/H (see the appendix). Equation (8) states
that the effect of an imposed error ��/� � �H/H on a
reference point in the �, z/� space causes a deviation
from the reference point along a line through the ref-
erence point and the origin. Equation (8) indicates that
the response of �m and �h on imposed errors is exactly
equal. Consequently, when ��/� � �H/H, any difference
in observed scatter between �m and �h cannot be ex-
plained as an effect of self-correlation. For the Busing-
er–Dyer relationships (�m � �h � 1 
 5z/�; Dyer
1974), this result implies that for increasing stability, the
deviation becomes more aligned with the slope of the �
function, � (Fig. 2).

In reality the assumption ��/� � �H/H is not gener-
ally valid (see section 5). Because often the exact cor-
relation between ��/� and �H/H is unknown, we exam-
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ine four limit situations of the error ratio parameter
� � (�H/H)/(��/�):

(a) ��/� � �H/H (� � 1; as above)
(b) ��/� � 0 and |�H/H | � 0 (� → |� |)
(c) |��/� | � 0 and �H/H � 0 (� � 0)
(d) ��/� � �H/H (�� � � � �)

The magnitude of the imposed relative errors is ran-
domly taken from a uniform distribution and is be-
tween �20% and 
20%. Starting from a reference
point, for each of the four limit situations 100 artificial
data points are generated. Figure 3 shows the results of
this numerical simulation. The solid lines correspond to
the reference curve, in this case the Beljaars–Holtslag
(1991, hereafter BH91) formulation for momentum.
The results of the current study do not depend on the
choice of this specific function. Other realistic functions
lead to similar conclusions.

Figure 3a confirms our analytical approach of Eq.
(8): �m and �h behave similarly and all points are on a
straight line through the reference point and the origin.
When the relative errors in � and the H are not equal as
in the cases (b), (c), and (d), the flux–gradient functions
indeed scatter differently. In these cases the random �m

data scatters approximately along the reference curve,
while for �h the data scatters roughly perpendicular to
this curve. For case (c) this leads to the interesting para-
doxical result that when � contains an error and H is
perfect, �m(z/�) shows little scatter while �h(z/�)
shows large scatter. Except for Fig. 3d all points are on
straight or slightly bent lines. Figure 3d shows much
more scatter, because contrary to the cases (a), (b), and
(c), there is no fixed correlation between ��/� and �H/H

in this case (�� � � � �). In fact, in case (d) the three
other cases are enclosed. Figure 3 also infers that the
magnitude of the deviations depends on �. For ex-
ample, the maximum deviation in case (a) is much
smaller than in case (d) for both �m and �h.

In general, when ��/� � �H/H, �h will always have
more scatter around the reference curve than �m for a
given dataset in stable conditions. This is a nonphysical
effect that rises from the mathematical expressions for
�m, �h and z/�. For �m the shift along the reference
curve demonstrates that self-correlation has substantial
influence, while for �h self-correlation only is important
when ��/� � �H/H. The different behavior of �m and �h

illustrates the fact that just common variables on both
axes does not automatically imply that self-correlation
is important. Only when the mathematical relationship
of the common variables is roughly in line with the
physical relationship (like in �m), scatter remains hid-
den and self-correlation will have significant influence.

For a given � the direction in which a certain refer-
ence point will shift due to errors in the fluxes reads for
�m(z/�)

� ��m

��z�	��error
� � �0.5

� � 1.5� �m

z�	
, �9�

and for �h(z/�)

� ��h

��z�	��error
� �0.5 � �

� � 1.5� �h

z�	
. �10�

These expressions are derived in the appendix and
agree with the limit situations of Fig. 3. For example,
when � � 1 as in Fig. 3a, Eqs. (9) and (10) both reduce
to Eq. (8). In fact, these equations predict the orienta-
tion of self-correlation for a given value of � in a certain
point (z/�, �m,h).

The above analysis can also be applied to the un-
stable regime. As such, it can be shown that the effect
on scatter in �m and �h is then mostly opposite: in the
unstable regime �m exhibits more scatter than �h (see
also Andreas and Hicks 2002; Johansson et al. 2001).

5. Stability dependence of self-correlation

In section 4 we found that � influences the orienta-
tion of scatter in flux–gradient plots. In practice how-
ever, it is hard to estimate the actual value of �. In this
section we show how � may be influenced by atmo-
spheric stability.

For our analysis we use eddy-correlation data from
CASES-99, but similar results were obtained with rou-
tine flux observations from the Wageningen University

FIG. 2. Effect of errors in the momentum flux and the heat flux
(�H/H � ��/�) on the position of a reference point in the �–z/�
space. Application to the Businger–Dyer relations (� � 5).
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weather field (Jacobs et al. 2003). With the statistical
error described in section 3, relative errors of � and H
can be obtained according to


x

x
�

se�x�

xref
, �11�

where x is � or H and se(x) is the corresponding statis-
tical error. Note that the statistical error is not equal to
the actual measurement error and does also not provide
information about the sign of it. Therefore, it is impos-
sible to determine unambiguously the effect on the ori-
entation of scatter in the flux–gradient plots. However,
it is still possible to indicate that a stability dependence
is present. For example, when se(�) K se(H), it is rea-
sonable to assume that most of the true errors in � will
also be much smaller than those in H.

We analyze � as a function of stability and anticipate
which of the four cases from Fig. 3 is more likely to
occur. Figure 4a shows that in the near neutral situa-
tion, the value of �H/H is likely to be larger than the

value of ��/�. This is caused by the fact that in these
conditions � has much larger values than H. In general,
smaller values of a certain variable are accompanied by
larger relative errors. In the weakly stable regime (Figs.
4b,c), the relative errors are slightly related, especially
for small error values. To quantify the spread, we made
a linear fit to the data (using perpendicular offsets) and
calculated for each data point the absolute deviation
from the fit. The 75th percentile of these deviations is
used as an indication for the spread. In the very stable
regime (Fig. 4d), this measure is increased compared to
the weakly stable regime demonstrating that the rela-
tionship between the relative errors in the fluxes disap-
pears. The difference in behavior between the stability
regimes demonstrates that � depends on stability. With
respect to our analysis on self-correlation this implies
that, in a certain flux–gradient plot, the orientation of
scatter due to errors in the turbulent fluxes also de-
pends on z/�.

To summarize, the near neutral situation of Fig. 4a
compares to Fig. 3b; the weakly stable situation of Figs.

FIG. 3. The impact of errors in the momentum flux and the heat flux on plots of �h and �m vs z/� for different
values of the ratio between �H/H and ��/�: (a) ��/� � �H/H, (b) ��/� � 0 and |�H/H | � 0, (c) |��/� | � 0 and �H/H
� 0, and (d) ��/� � �H/H. Open triangles (�) indicate �h, solid circles (�) indicate �m. The solid line represents
the BH91 function for momentum. The maximum error margin amounts to | 20% |.
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4b,c roughly compares to Fig. 3a; and the very stable
situation of Fig. 4d compares to Fig. 3d.

6. Randomizing real observations

In this section we illustrate our earlier findings by
applying an alternative method to examine self-
correlation. We randomize the original dataset, by mix-
ing all available values for each of the different vari-
ables (�, H, dU/dz, etc.) at random. In this way the
characteristic statistical distributions of the variables
are conserved, which is important because only then a
good comparison with the real data is possible. From
the randomized data we recompute z/�, �m and �h. It
is clear that the new data points do not have any physi-
cal meaning at all (Hicks 1981; Andreas and Hicks
2002; Klipp and Mahrt 2004; Mahrt and Vickers 2003).

Figure 5 shows the result of our analysis. For �m, the
unphysical randomized points are close to the original
data. This occurs because the common variable u* ap-
pears in the denominator in both �m and z/�, combined

with the fact that the physical relationship between �m

and z/� has a positive slope from itself. This result
corresponds to the parallel shift we found in section 4
and demonstrates again that �m(z/�) is heavily influ-
enced by self-correlation.

Contrary to �m, plots of �h versus z/� are not af-
fected by self-correlation in the sense that erroneous or
even randomized data can still give misleadingly good
results. However, the randomized data do not look
completely chaotic for �h. Just as in the case of �m, the
statistics of the common variables are reflected. The
difference is that in �h u* appears in the nominator,
which causes the randomized �h data to show some
hyperbolic relationship. This behavior corresponds to
the normal shift of a reference point relative to the
reference curve that we found in section 4.

The result of Fig. 5a raises the question if there is any
information in a plot of �m versus z/�. The small dif-
ferences between the randomized data and the real
data cannot result from limited data ranges: Table 1
shows that for each variable the range amounts at least

FIG. 4. Observed stability dependence of the ratio � � �H/H/ ��/� for CASES-99; (a) 0 �
z/� � 0.1, (b) 0.1 � z/� � 0.5, (c) 0.5 � z/� � 1, (d) z/� � 1. The solid lines indicate the 1:1
line (� � 1), the dashed lines indicate the least square fit based on perpendicular offsets for
each stability regime. As a measure of scatter we use the 75th percentile of the deviations from
the fit. The respective values are (a) 0.036, (b) 0.029, (c) 0.060, and (d) 0.109.
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a factor of 10, which is considerable. Fortunately, as is
also known from practice, �m indeed contains useful
information. We can determine the slope of �m versus
z/� independent from self-correlation by anticipating a
linear relationship of the type �m � 1 
 � z/�. Noting
the definitions of �m and z/� and multiplying both sides
with u3

*/(kz), we can plot u2

*dU/dz � u3

*/(kz) versus
–g/�w��� (Fig. 6b). The slope of this plot provides an
independent estimate for the slope � of the standard �m

plot as given in Fig. 6a. We limit our analysis to data for
which z/� � 1.5, since only then a linear relationship
can be assumed (e.g., Holtslag and De Bruin 1988;
BH91). Comparing Figs. 6a and 6b shows that the
slopes of both figures agree well. This indicates that,
contrary to the scatter, the shape of �m is not very
sensitive to self-correlation. Note that scatter in Fig. 6b
is small, despite the fact that we plot a difference term
on the y axis.

7. Discussion and future research

Scatter can be misleadingly small in plots were self-
correlation is important. Consequently, there is need
for an alternative way to relate fluxes and profiles. One
way to deal with this problem is to search for alterna-
tive scaling approaches that are less vulnerable to self-
correlation (e.g., Klipp and Mahrt 2004).

The Buckingham–Pi theorem does not prescribe how
to compose the different dimensionless groups. When
information on relative errors of the different variables
(u*, H, �U/�z, ��/�z, etc.) is available, it would be pos-
sible to construct the dimensionless groups in the most

advantageous way. In practice this means that the most
uncertain variables (here the turbulent fluxes) are
raised to the lowest power in order to minimize the
influence of their high relative error. Because in stable
conditions fluxes are much smaller than gradients,
fluxes should be raised to the lowest possible powers. In
the unstable regime the situation is opposite: fluxes are
large and gradients are small. Consequently, higher
powers for the fluxes (e.g., u3

*) combined with lower
powers for the gradients are preferable. Based on this
arguments, it can be stated that MOS is much more
suitable for unstable than for stable conditions. MOS
can be regarded as a flux-based scaling approach, while
for the SBL a gradient-based scaling might be more
suitable.

For the SBL, in many cases the above reasoning
leads to a scaling based on the gradient Richardson
number, which is given by

Ri �
g

�

��

�z���U

�z �2

. �12�

By using a Ri-based scaling for the stable regime, Klipp
and Mahrt (2004) also largely circumvent the problem
of self-correlation (see also Sorbjan 2006).

TABLE 1. Data ranges for the relevant variables in Fig. 5.

Min value Max value

dU/dz (s�1) 0.03 0.32
d�/dz (K m�1) 0.03 1.50
u* (m s�1) 0.03 0.57
|w��� | (K m s�1) 0.006 0.093

FIG. 5. Flux–gradient relationships for real and randomized data for (left) �m and (right)�h

vs z/�. Black dots represent real data, gray squares randomized data.
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8. Conclusions

Flux–gradient relationships are traditionally used to
relate turbulent fluxes and atmospheric mean profiles
in the atmospheric boundary layer. However, self-
correlation significantly influences the relationships be-
tween the dimensionless shear �m and the dimension-
less lapse rate �h versus the stability parameter z/�. In
general, self-correlation arises when two parameters
share some common variable. For �h(z/�) and �m(z/
�), the common variables are the momentum flux � and
the heat flux H. The former appears in �m, �h, and z/�,
the latter in �h and z/�. Here we consider stable strati-
fication only.

The impact of self-correlation on the flux–gradient
relationships depends highly on the ratio of relative
errors in the momentum flux and the heat flux. This
ratio governs both the orientation and the magnitude of
the scatter. In general, scatter in �m remains unrealis-
tically small, because the data are scattered roughly
along the physical curve. Contrary, for �h scatter is
much larger, because the data are scattered roughly
perpendicular to the physical curve; �h will therefore
always show more scatter than �m. This holds only for
the stable regime. In the unstable regime the effect of
self-correlation is mostly reversed. In this analysis, er-
rors associated with possible violations of Monin–
Obukhov similarity theory and errors in ��/�z and �U/
�z are not taken into account, although in reality these
are also important.

When imposed relative errors on the fluxes are
equal, the difference in behavior between �h and �m

disappears: in both cases a reference point shifts along
a straight line through this reference point and the ori-

gin. Therefore no difference in scatter between �m and
�h arises in this special case. However, it is not realistic
to assume the ratio between the relative errors of the
fluxes to be a constant within a single dataset, because
this ratio depends strongly on stability. In practice this
means that in a certain flux–gradient plot, the influence
of self-correlation on the orientation of the scatter also
varies with stability. While self-correlation occurs in
both �m and �h, only in case of �m the influence is
significant. Self-correlation only becomes important
when the mathematical relationship of the common
variables is roughly in line with the physical relation-
ship of the parameters that include them.

Overall, current practice of evaluating �m and �h

functions from field data is troublesome. The large in-
fluence of self-correlation may lead to false confidence
in the found relationship, in particular for �m. By plot-
ting quantities in an alternative way, we are able to
determine the slope of �m independent from self-
correlation. It seems that, contrary to the scatter, the
slope of �m is not very sensitive to self-correlation. The
evaluation of �h does not suffer from artificially en-
hanced correlation. However, due to the factor u3

*,
small deviations in u* may lead to large scatter, which
can hamper an accurate estimation of �h.
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FIG. 6. (a) Standard plot of �m vs z/� and (b) an alternative plot from which the slope of �m vs z/� can be
estimated independent of self-correlation. The gray line in (b) is a least square fit to the data. The slope of this fit
is passed on to (a) to illustrate that this slope gives indeed a reasonable fit for the �m(z/�) data.
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“land surface climate and the role of the stable bound-
ary layer.”

APPENDIX

Sensitivity of Flux–Gradient Relationships to
Changes in the Momentum and the Heat Flux

The dimensionless wind shear, �m, and the dimen-
sionless lapse rate, �h, are given by

�m �
kz

	���

�U

�z
and �h � �

kz�cp	���

H

��

�z
.

�A1�

According to Monin–Obukhov similarity theory these
dimensionless groups are universal function of

z

	
� 
 � �

zgk

T

H

�cp
��

���3�2

. �A2�

We are interested in ��m,h/�� as a result of imposed
errors on the common variables, the momentum flux �
and the sensible heat flux H.

We assume the relative errors in the fluxes to be
related:

�
��

�
�

�H

H
. �A3�

First we calculate ��m, ��h, and �� separately, after
which we perform the division. Using formal differen-
tiation rules and Eq. (A3) we obtain

��m � kz�1�2
�U

�z
�� 1

�1�2� � C1�� 1

�1�2� � �
1
2

��

�3�2 C1

�A4�

��h � �
kz�cp

�1�2

��

�z
���1�2

H � � C2���1�2

H �

�

1
2

H�� � ��H

�1�2H2 C2 �
�1

2
� ����

�1�2H
C2 �A5�

�
 � �
zgk

T

�3�2

�cp
�� H

�3�2� � C3�� H

�3�2�
� � �H

�3�2 �
3
2

H��

�5�2 �C3. �A6�

Using Eqs. (A4), (A6), and (A3) we can now calculate
��m/��:

��m

�

�

�
1
2

��

�3�2 C1

�dH

�3�2 �
3
2

H��

�5�2 �C3

�

�
1
2

��

H
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��H

H
�

3
2
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� �C3
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1
2

��

H
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�� �
3
2� ��

�
C3

�

�
1
2

�� �
3
2�

�m



. �A7�

The same exercise can be done for ��h/��. Using Eq.
(A5), (A6), and (A3) we obtain

��h

�

�

�1
2

� �� ��

�1�2H
C2

�dH

�3�2 �
3
2

H��

�5�2 �C3

�
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2

� �����

H2 C2

��H

H
�

3
2

��

� �c3

�

�1
2

� �����

H2 C2

�� �
3
2���

�
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�
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2
� ��

�� �
3
2�
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. �A10�
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