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1 Preface 
KNMI extended its contribution to the EUMETSAT Climate Monitoring Satellite Application 
Facility (CM-SAF, hosted by DWD) by developing a scatterometer ocean stress (SOS) gridded  
product. The SOS project is initiated by two sections of KNMI in two different departments, 
namely the Oceanographic Research division (OO) within the Department of Climate research 
and Seismology (KS), and the division on Observation Research (RW) in the Observations and 
Modelling department (WM).  

Ten years of ESA ERS-1 and ERS-2 scatterometer swath data have been reprocessed with the 
most recent ERS Scatterometer Data Processor as developed within the OSI and NWP SAFs and 
processed to gridded SOS products. This activity fits into the ESA Data User Programme (DUP) 
acknowledging ESA for the provision of the ERS-1 and ERS-2 scatterometer data. Currently 
KNMI seeks support for the further development, extension (into the NASA/NOAA Seawinds 
and METOP-A ASCAT era starting in 1999) and maintenance of the SOS product. This report 
has been written by  

Ad Stoffelen (Project leader; WM-RW),  

Geert Jan van Oldenborgh (KS-OO),  

Jos de Kloe (WM-RW), 

Marcos Portabella (Un. Of Barcelona; visiting WM-RW),  

Anton Verhoef (WM-RW) 
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2 Overview SOS project 

2.1 Scope 

The CM-SAF working group on ocean parameters solicited proposals to meet the core 
requirements on ocean parameters for climate applications in its Development Phase, DP. Wind 
stress forces motion in the ocean and in turn the motion in the ocean determines the weather and 
climate in large portions of the world. Scatterometer Ocean Stress, SOS, products incorporate 
wind stress, as measured by a scatterometer, to establish climatologies of this important 
parameter. Almost ten years of ERS scatterometer data are reprocessed using software developed 
within the Ocean and Sea Ice and Numerical Weather Prediction SAFs. 

In a later stage, by reprocessing SeaWinds scatterometer data on QuikScat and ADEOS-II, and 
ASCAT on EPS, the time series of scatterometer ocean stress (SOS) may be extended. Moreover, 
resources permitting, the abundant wind measurements from passive sensors could be added to 
the database for improved time and space coverage. 

2.2 Motivation 

A 10-year SOS product of high quality may be useful for the understanding of several processes 
on climate time scales: 

Wind forcing is essential in the El Niño Southern Oscillation (ENSO) phenomenon, but large 
uncertainties of about 30% exist in its structure and amplitude. This remains one of the main 
uncertainties in the modelling of ENSO. A homogeneous data set of high quality would much 
advance research on the prediction and mechanisms of ENSO seasonal forecasting. Vialard 
(2000) emphasizes that wind stress is certainly the most important forcing in the tropics. 
Moreover, ENSO plays a key role in the earth’ climate.  

There is now much evidence that the onset of ENSO depends on westerly wind events (bursts) 
that only last a few days, which is small compared to the time scale of ENSO. Complementary to 
the TAO buoy array, it would be useful to have continuous wind stress time series of high 
temporal and spatial resolution, extending beyond the TAO buoy area. This would aid in the 
understanding of the unexplained variability of these wind events from year to year. 

Also in the tropical Atlantic Ocean there is a pattern of ocean-atmosphere interaction similar to 
ENSO, however, more moderate in amplitude and faster. Again, a high-quality SOS product 
would much improve the picture as compared to the current situation with the PIRATA buoys. 
The detailed observation of these phenomena is crucial for understanding climate variability 
issues. 

Besides tropical needs, obvious applications of SOS would be among others in the modelling of 
the Antarctic circumpolar current, forcing of the southern oceans, research on the variability and 
occurrence of storms, and forcing in complex basins, e.g., the Mediterranean.  

Within the NWP SAF and the OSI SAF scatterometer processing software and scatterometer 
products are developed at KNMI. This includes sophisticated calibration procedures for the 
measurements and for the resulting winds. A new geophysical retrieval algorithm had been 
established for ERS and ASCAT measurements. Moreover, KNMI has developed a technique to 
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investigate and validate geophysical retrievals by a triple collocation technique (Stoffelen, 1998). 
This technique is now frequently used in the scatterometer and altimeter community for wind 
calibration purposes. KNMI extended this technique to incorporate comparisons with the surface 
stress parameter with the aim to reduce the geophysical retrieval error. Other existing processing 
centres producing climate data sets do not use the geophysical model function recommended by 
the ESA/EUMETSAT ASCAT Science Advisory Group (Hersbach et al, 2006), nor do they use 
the same sophisticated validation tools. For climate research purposes, it is of interest to 
reprocess the ERS data in order to get an accurate and uniform 10-year time series, using the 
most up-to-date processing scheme, and to make these data easily available.  

2.3 Background 

Climate applications have strong requirements for reprocessing capability and availability of long 
time series of high quality products (e.g., Vialard, 2000). The KNMI climate explorer therefore 
contains sets of observations and model data over long time periods and of high quality. This also 
includes wind stress data, e.g., from ECMWF re-analysis (ERA15), and NCEP/NCAR re-
analyses, FSU and CERSAT ERS analyses, and TAO buoy data. In this section some background 
information is provided on the characteristics of these data sources in comparison to the proposed 
SOS. 

Wind stress can be computed from conventional platforms, such as ship or buoy. However, since 
these represent sparse and local measurements, only temporally and spatially course 
climatologies can be computed. Moreover, these systems measure the atmospheric flow at 
measurement height that can vary between 4 m and 60 m, and are thus not a direct measure of 
surface stress. Stress computation requires the transformation of these winds by Planetary 
Boundary Layer (PBL) parameterisation schemes in order to represent the sea surface conditions. 
These PBL schemes are not very accurate and contain transformation errors of typically 30%.  

Atmospheric observations are combined into atmospheric analyses through NWP data 
assimilation systems. Re-analysis efforts are ongoing to produce long and consistent time series. 
Ideally, it would be best to incorporate scatterometer wind stress observations into such re-
analysis projects. However, data assimilation of satellite products is not yet a completely 
mastered technique and direct estimates of wind stress from satellite instruments can provide a 
better product. This is particularly the case in the tropical region, but also in semi-enclosed seas 
such as the Mediterranean. Note that the abundant provision of surface wind stress data from 
scatterometers is not accompanied by a similarly abundant provision of upper air (wind) data. As 
such, it is extremely difficult in an NWP system to provide a spatially consistent analysis at the 
resolution of a scatterometer (25-50 km). Several studies have shown that the response of an 
ocean model depends on whether the wind stress forcing is by NWP analyses or by climatologies 
directly based on observation systems.  

Such responses depend on data general quality, for example as expressed in table 1, but also on 
the spatial structures resolved by an observation system or NWP model. Table 1 illustrates that 
the general accuracy of data depends on geographical region; NWP models are known to be 
relatively poor in the tropical region. However, this region is very important for climate studies. 

 
 

Vector RMS error  [m/s] TAO buoys - Tropical NDBC – Extra-tropical 
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Buoy  1.6 2.8 

Scatterometer  1.8 2.5 

NWP model  2.2 1.6 

 

Table 1. Vector error estimates by wind triple collocation method for a data set collocated with 
TAO tropical buoys, second column (preliminary result), and NDBC extra tropical buoys, last 
column (Stoffelen, 1998). 

 
 

 
 
Figure 1a. (Courtesy: Kathryn Kelly, APL, Un. of Washington, Seattle, USA) 
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Figure 1b. 4-year Average Wind Stress Curl over the period from August ’99 to July ’03 as 
computed from SeaWinds scatterometer winds (left) and the NCEP operational NWP model 
(right). (© Chelton, Schlax, Freilich, Milliff, Science, 2004) 

Buoy wind observations and, by implication, the NWP analyses that exploit these data use a fixed 
frame of reference. However, the wind stress depends on the difference of motion between 
atmosphere and ocean. Figure 1a shows an example of the effects of ocean currents and thus of 
the errors that may be introduced by computing ocean wind stress from buoy winds. 

A scatterometer measures the electromagnetic radiation scattered back from ocean gravity-
capillary waves and it is difficult to validate quantitatively the relationship between the roughness 
elements associated with gravity-capillary waves and the measurements. As such, empirical 
techniques are employed to relate microwave ocean backscatter with geophysical variables. Since 
the launch of the First Earth Remote Sensing Satellite, ERS-1 (on 17 July, 1991), with on board 
the active microwave instrument operating at 5.4 GHz (C band) numerous retrieval optimisations 
and validation studies have been carried out. Usually the retrieved products from satellite 
scatterometers are validated by collocation with NWP model (European Centre for Medium 
Range Forecast, (ECMWF)) background winds, and/or buoy measurements (Stoffelen, 1998). A 
multitude of wind observations is available at a reference height of 10 m, and as such 
scatterometer winds are traditionally related to 10m winds. 

Using collocated meteorological observations during the RENE-91 experiment (from 16 
September to 10 December, 1991) and NWP daily forecast winds, the ERS-1 scatterometer winds 
are calibrated and the CMOD4 algorithm (Stoffelen, 1998) is selected by ESA for wind retrieval 
from the ERS-2 scatterometer data (Offiler, 1994). In particular, wind direction retrieval is 
superior for CMOD4. More recently, CMOD5 has been derived, which provides a higher-order 
correction to CMOD4 wind speeds, in particular at hurricane-force wind speeds.  
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CMOD5 and the long series of comprehensive buoy measurements (see e.g. Chelton et al, 2001) 
provide a good basis to intercompare scatterometer and NWP model and buoy wind stress data in 
a triple collocation exercise (see Stoffelen, 1998). 

The web application "KNMI Climate Explorer" offers the standard download capabilities and 
some visualisation possibilities. Its strength lies in the capabilities to quickly correlate and 
compare data with a lot of other data, such as other estimates of the wind stress (see above). The 
data retrieval and visualisation capabilities of the LDEO system, http://ingrid.ldeo.columbia.edu, 
are more advanced, but the data analysis and comparison capabilities are more restricted 

Activities in the field of stress retrieval from scatterometers exist at JPL, COAPS, and SOC. The 
added value of the proposed KNMI wind stress product with respect to other scatterometer-based 
products that are available thus lies in  

• Use of ESA/EUMETSAT ASCAT SAG recommended wind retrieval procedures resulting in 
best performances for wind speed and wind direction; 

• Consistency between near-real-time wind products (OSI SAF) and climate stress products 
CM-SAF); 

• Sophisticated methodology to minimise the geophysical retrieval error by a triple collocation 
comparison scheme using scatterometer observations,  buoy measurements, and NWP model 
analyses for validation; 

• Production of stress fields made available through a data analysis and comparison tool, the 
KNMI Climate Explorer. 

 

2.4 Objectives 

2.4.1 Proposal for CM-SAF development phase 
Scatterometer wind products and processing are limited to level 2 in NWP and OSI SAF. In the 
oceanographic community, there is much need for higher level products that can be used directly 
to force ocean models. Such products are already available at KNMI through the “Climate 
Explorer”. Here, we propose to add the level 3 ERS scatterometer product in the “Climate 
Explorer” and put the data available to the world-wide research community. 

What is of particular interest in a scatterometer is that it provides a measure of the relative motion 
between atmosphere and ocean, not the absolute motion of the atmosphere as a buoy does (e.g., 
see figure 1a). The forcing of the ocean obviously depends on relative motion. Furthermore, we 
propose to deliver surface stress as output, and not 10-m wind, to facilitate use in the 
oceanographic community. In order to achieve this, an existing triple collocation database of 
scatterometer, TAO buoy, and ECMWF boundary layer parameters will be exploited (e.g., see 
table 1 ). 

The data is made available to researchers 

• The web application "KNMI Climate Explorer" offers the standard download capabilities and 
some visualisation possibilities. Its strength lies in the capabilities to quickly correlate and 
compare data with a lot of other data.  
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2.4.2 Future plans 
Figure 1b illustrates the ocean inertial features that may be obtained from scatterometer data. 
These structures are obviously relevant to force ocean eddies. Due to the low-pass filtering 
characteristics of NWP data assimilation systems, these observed structures are lost in NWP 
fields (figure 1b, left). As such the SOS product for SeaWinds and ASCAT may be crucial for 
realistic ocean forcing, both in operational oceanography and climate studies. 

Our intention is to commit to routine / operational responsibilities. At a later stage we would add 
SeaWinds scatterometer data to the database. The SeaWinds data coverage is representative of 
ASCAT, whereas the ERS coverage is more limited. On the longer term, ASCAT reprocessing 
and higher level products could be envisaged. Moreover, resources permitting, the abundant 
winds from passive microwave sounders may be investigated for use in the CM-SAF wind stress 
package as these present some of the same advantages as scatterometers, though lack good 
information on wind direction.  

2.5 Deliverables 

The processing algorithms for ERS data are described, tested, and verified in the OSI SAF DP 
and IOP and will be used here. New stress algorithms are described scientifically, technically, are 
tested, verified, and validated in this report. 

The SOS development in the CM-SAF DP aimed at the following deliverables 

1. Wind stress vectors on an along-track/cross track grid at a resolution of 50 km in a simple 
format specifying latitude, longitude, meridional wind stress component, zonal stress 
component, and stress amplitude; 

2. Fields of the wind stress vectors on a lat-lon-time grid with a spatial resolution of 50 km and 
temporal resolutions of one month and one day in the netcdf format with the COARDS 
conventions. 

3. Fields of higher moments of the wind stress, on a lat-lon-time grid with a spatial resolution of 
50 km and a temporal resolution of one month in the netcdf format with the COARDS 
conventions. 

4. Web-based tools to let the user define products at other time scales which are then available 
for download and study in the same way as the standard monthly fields. 

All produced data cover the period 1991-2000 and are freely available through a set of web pages 
that also allow visualisation and comparisons with other estimates of the wind stress. 

2.6 Work packages 

The above deliverables result from a set of work packages with associated tasks.  

1) Co-ordination of the different work packages and of communication with and reporting to the 
CM-SAF steering group. 

2) Acquisition and reprocessing of all ERS data using OSI SAF produce and control software: 
• Retrieve full ERS scatterometer data set from ESA or ECMWF; 
• Ocean calibration using ECMWF re-analysis data; 
• Reprocessing and monitoring (validation); 

3) Conversion of scatterometer 10-m wind to scatterometer surface stress;  
• Literature review; 

 10 



• Exploitation of triple collocation data bases with NWP model, buoy, and scatterometer 
data to tune and test the conversion algorithm; 

• Conversion of ERS wind time series to stress time series; 

4) Conversion from level 2 to level 3 product (monthly gridded data) and incorporation into the 
KNMI “Climate Explorer”. 

5) Extension of the Climate Explorer to include intelligent time-averaging routines to construct 
sensible fields from the sub sampled data that are available. 

6) Investigation of wind-stress conversion using SeaWinds 

• Literature review; 
• Comparison of SOS data bases with SeaWinds scatterometer data to validate the 

conversion algorithm; 
 

An overview of the activities is provided in the diagram below. 
 

Work Breakdown structure and responsabilities SOS

Reprocess
WP2

Ad Stoffelen

Wind2Stress
WP3

Ad Stoffelen

Stress2Grid
WP4

Geert Jan van Oldenburgh

Climate Explorer
WP5

Geert Jan van Oldenburgh

SeaWinds to sea stress
WP6

Adf Stoffelen

Co-ordination
WP1

Ad Stoffelen
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3 Wind to Stress conversion 

3.1 Wind stress data sources 

Wind stress can be computed from conventional platform observations, such as ship or buoy. 
These systems measure the atmospheric flow at a measurement height that can vary between 4 m 
and 60 m, and are thus not a direct measure of surface stress. Stress computation requires the 
transformation of these winds by Planetary Boundary Layer (PBL) parameterisation schemes in 
order to represent the sea surface conditions. These PBL schemes and more in particular, the 
Surface Layer (SL) schemes embedded in the PBL schemes, have improved accuracy over the 
years (Smith et al., 1992; Donelan et al., 1993; Taylor and Yelland, 2001; Bourassa, 2006) 
although they still contain transformation errors. 

Furthermore, buoy wind observations and, by implication, the NWP analyses that exploit these 
data use a fixed frame of reference. However, the wind stress depends on the difference of motion 
between atmosphere and ocean. Kelly et al. (2001) show that the ocean currents do produce a 
significant bias in the buoy-derived wind stress estimations. In contrast, they show that 
scatterometer observations provide a measure of the relative motion between atmosphere and 
ocean, and therefore can potentially provide accurate wind stress information. 

Since the conventional systems represent sparse and local measurements, only temporally and 
spatially course climatologies can be computed. Several studies have shown that the response of 
an ocean model depends on whether the wind stress forcing is by Numerical Weather Prediction 
(NWP) analyses or by climatologies directly based on observation systems. Such responses 
depend on data general quality but also on the spatial structures resolved by an observation 
system or NWP model. Stoffelen (1998a) illustrates that the general accuracy of data depends on 
geographical region and, in particular, NWP models are known to be relatively poor in the 
tropical region. However, as already mentioned, this region is very important for climate studies. 

Several authors have pointed to the mesoscale wave number gap in NWP wind datasets (e.g., 
Chelton et. al., 2004; Chelton and Schlax, 1996; and Stoffelen, 1996). This gap is caused by the 
aforementioned sparse conventional observations at the sea surface, but also aloft since NWP 
data assimilation systems are 4-dimensional (4D) in nature and thus require 4D observations to 
achieve uniform quality. In fact, mesoscale atmospheric waves are poorly observed. 
Scatterometers, however, do have the capability to observe the surface component of such waves. 
Moreover, scatterometers provide information on the inertial scale of ocean models and thus can 
potentially provide essential information to drive ocean models (e.g., Milliff, 2005; Chelton et al., 
2004; Chelton and Schlax, 1996). 

3.1.1 How do we measure wind stress from scatterometers? 
A scatterometer measures the electromagnetic radiation scattered back from ocean gravity-
capillary waves and it is difficult to validate quantitatively the relationship between the roughness 
elements associated with gravity-capillary waves and the measurements. As such, empirical 
techniques are employed to relate microwave ocean backscatter with geophysical variables. Since 
the launch of the Earth Remote Sensing Satellites, ERS-1 (on 17 July, 1991) and ERS-2 (on 21 
April, 1995), with on board the active microwave instrument (Attema, 1991) operating at 5.4 
GHz (C band) numerous retrieval optimisations and validation studies have been carried out. 
Usually the retrieved products from satellite scatterometers are validated by collocation with 
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NWP model (e.g., European Centre for Medium Range Forecast, ECMWF) background winds, 
and/or buoy measurements (Stoffelen, 1998a). A multitude of wind observations is available at a 
reference height of 10 m, and as such scatterometer winds are traditionally related to 10m winds. 
For ERS scatterometers, the function that relates the 10-meter wind to the backscatter 
measurements, i.e., the Geophysical Model Function (GMF), and is used nowadays by ESA and 
KNMI for wind retrieval is the so-called CMOD-5 (Hersbach et al., 2006). 

Stoffelen (1998a) shows that for varying ocean wind conditions, the backscatter measurements 
vary along a well-defined conical surface in the 3D measurement space, i.e., the measurements 
depend on two geophysical variables or a 2D vector. CMOD-5 indeed well explains the 
distribution of backscatter measurements in measurement space. 

Chelton et al. (2001) and Stoffelen (2002) show a high correlation between scatterometer-
retrieved winds and wind stress. In fact, scatterometers measure sea surface roughness (rather 
than 10-meter wind), which is highly correlated with the wind stress. So, if one collocated wind 
stress or its equivalent value at 10-meter height (i.e., 10-m neutral wind) to CMOD-5 winds and 
estimated their relationship, one would obtain a CMOD-5 stress model (or CMOD-5 neutral wind 
model) providing the same conical fits in 3D measurement space. For example, Milliff and 
Morzel (2001) use a 10-m neutral wind GMF to transform SeaWinds scatterometer winds to 
stress. 

The problem is that wind stress observations, as computed from buoy or NWP models, are not 
perfect. As already mentioned, the SL schemes which convert buoy or NWP wind observations 
into wind stress observations, are inaccurate. Therefore, in order to define a scatterometer wind-
speed1-to-stress transformation, we need to account for the uncertainties of all data sources. 

3.1.2 Surface layer models 
There are several SL models in the literature that could be used to compute wind stress from buoy 
observations and/or NWP output. Given the inaccuracy of such models, prior to transforming 
scatterometer winds to stress, we first take a close look at them and compare their performance. 
For such purpose, we pick two of the most commonly used models, i.e., the LKB model (Liu et 
al., 1979) and the ECMWF SL model (Beljaars, 1997), and compare them in chapter 3. Such 
intercomparison, however, does not provide an independent framework to assess the accuracy of 
the SL models. 

3.1.3 Triple collocations 
Stoffelen (1998b) shows that given a triple collocation dataset, e.g., scatterometer, buoy, and 
NWP observations, the uncertainty of the three observing systems can be uniquely determined, 
provided that one of the systems is used as reference for calibration (scaling) of the other two 
systems. As such, in chapter 4, we perform the triple collocation exercise as described by 
Stoffelen (1998b), using scatterometer winds as calibration reference, to assess the random 
accuracy and scaling properties of both buoy and NWP wind stress derived from the SL models. 

 

                                                           
1 Note that the transformation only refers to wind and stress intensities since the direction of the air flow is assumed 
to be constant in the SL. 
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The triple collocation exercise is also used to investigate whether the ERS scatterometer-derived 
(CMOD-5) winds are closer to a 10-m neutral wind (uniquely related to the wind stress) rather 
than to 10-m real wind, given the uncertainties of the different data sources and SL models used 
in the triple collocation. A scatterometer wind-to-stress transformation is finally recommended in 
order to produce an SOS product from ERS scatterometer winds. Finally, a summary of the work 
and recommendations for future developments of the SOS product are presented in chapter 5. 

As a first step towards a global ERS SOS product, and given the crucial role of wind stress in the 
tropics, we put here our focus in this work. This implies a focus on atmospheric stability and 
humidity effects as well. On the other hand, effects due to wave age or fetch are known to be 
relevant in the extra-tropics and therefore not considered here but in a companion report 
(Portabella and Stoffelen, 2006). 

3.2 Dataset 

A triple collocation dataset for the year 2000 is generated to carry out the work described in this 
report. The three observing systems used in this dataset are the ERS-2 scatterometer, the 
TAO/PIRATA buoy array, and the ECMWF model. 

KNMI produces the scatterometer wind and stress products of the EUMETSAT-sponsored OSI 
and Climate Monitoring (CM) SAFs, and develops the wind software in the Numerical Weather 
Prediction (NWP) SAF. In the framework of these SAFs, KNMI has developed an ERS 
scatterometer data processing (ESDP) package for the generation of operational wind products. 
As such, ERS-2 ESDP 10-m winds are used in this study. 

The National Oceanic Atmospheric Administration (NOAA) TAO and PIRATA buoy arrays are 
located in the tropical Pacific and Atlantic oceans, respectively (see Figure 2). 10-minute average 
winds (at 4 meter height) together with other surface layer relevant parameters, such as sea 
surface temperature (SST), air temperature (T) and relative humidity (rh), are retrieved from the 
following NOAA sites: http://www.pmel.noaa.gov/tao and http://www.pmel.noaa.gov/pirata). 
ECMWF ERA-40 lowest level (approximately 10 meter height) winds, T, specific humidity (q), 
pressure (p), SST, surface pressure (sp) and Charnock parameters are retrieved from the ECMWF 
MARS archive. 

The triple collocations are performed in the following way. The ESDP collocation software is 
used to spatially and temporally interpolate the ECMWF ERA-40 forecast data to the ERS-2 
scatterometer data acquisition location and time, respectively. Then the ECMWF-ERS dataset is 
collocated to the TAO/PIRATA buoy dataset using the following criteria: only observations 
separated less than 25 km in distance and 30 minutes in time are included in the ECMWF-ERS-
TAO/PIRATA triple collocation dataset. In practice, most of the collocations are within 12.5 km 
and 10 minutes, thus considerably reducing the collocation error, i.e., uncertainty due to spatial 
and temporal separation between collocated observations. 

Several Quality Control (QC) procedures have been applied to this dataset. The nominal ESDP 
QC procedure is applied to the ERS-2 retrieved wind dataset and only the TAO/PIRATA data 
with the “highest quality” flag are used. Moreover, a 4-sigma test is performed to the triple 
collocated dataset as in Stoffelen (1998b). 
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a) 

 
b) 

   
Figure 2. Geographical location of the NOAA TAO (top) and PIRATA (bottom) buoy arrays. 
Please note that no collocations were found for TRITON buoys (west of 160°E). 

 

3.3 SL models 

Most of the equations that describe the physical balances and the turbulent budgets in the lowest 
10% of the PBL, i.e., the surface layer, cannot readily be solved, due either to the presence of 
highly nonlinear terms or the requirement for enormous in-situ data bases (Geernaert, 1999). One 
can alternatively characterize the flow’s dominant dynamic, geometric, and temporal scales, 
which involve characteristic time, space, or velocity scales, by dimensionless groups of variables. 
The similarity theory, first postulated by Monin and Obukov (1954), states that there exists such 
groups of variables which have functional relationships to the flow field and/or fluxes, and these 
in turn can be used to characterize the behavior of the higher order terms of the above mentioned 
equations. 
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The surface layer is assumed to be a constant flux layer and it extends up to a few tens of meters 
above the surface. In the bulk parameterization of the similarity theory, the fluxes are determined 
with the transfer coefficients which relate the fluxes to the variables measured, i.e., 

)()( TTUUCcH ssH −⋅−⋅⋅= ρ , 

)()( qqUUCE ssE −⋅−⋅= ρ , (1) 

2)( sD UUC −⋅= ρτ , 

where ρ and c are the density and isobaric specific heat of air; τ , H and E are the stress, heat and 
moisture fluxes; U, T and q are the wind speed, potential temperature and specific humidity at a 
reference height in the surface layer; U , T  and qs s s are the wind speed, temperature and specific 
humidity at the surface; and CD, CE and CH are the transfer coefficients for momentum, heat and 
moisture, respectively. The CD, also known as the drag coefficient, has been extensively studied. 
For deep water with large fetch, it has been expressed as a function of wind speed or assumed to 
be constant over a range of moderate wind speeds, e.g., Businger, (1975), Garrat, (1977). The 
transfer coefficients CE and CH are less well known and are usually treated as constants, and their 
variations with wind speed and stability neglected, e.g., Pond et al. (1974), and Friehe and 
Schmitt (1976). 

The bulk transfer coefficients can be determined by integrating the U, T and q profiles. Close to 
the surface, the distributions of U, T and q are governed by diabatic processes. As such, the wind 
profile can be written as (e.g., Businger 1973): 

)(
)]/()[ln(

0

* sUU
Lz

z
z

ku −
−

=
ψ

 (2) 

where k is the von Karman constant,  is the friction velocity, z is the height above the 
surface, z

ρτ /2
* =u

0 is the roughness length for momentum, ψ is the stability function for momentum 
(positive, negative, and null, for unstable, stable, and neutral conditions, respectively) and L is the 
Monin-Obukhov length, which includes the effects of temperature and moisture fluctuations on 
buoyancy. Similar profiles to the one in Eq. 2 are also derived for the scale temperature (T*) and 
the scale humidity (q*) (see Liu et al., 1979). Since stability (z/L) depends on T and q, the set of 3 
dimensionless profiles (u , T , and q ) have to be solved at the same time. * * *

In order to solve for u*, the wind at certain height, among other parameters, is required (see 
section 3.3.1) and z  and L must be estimated (see Eq. 2). Once u0 * is estimated, the SL models 
can be used to compute the wind at any height (within the SL) and any stability, e.g. neutral 
wind, just by modifying z and L, respectively, in Eq. 2. In other words, given a wind observation 
at certain height (within the SL), we can estimate the winds at any other height and stability, 
provided that we first go down to the surface and compute stress. 

The discussion of air-sea transfer is not about the validity of the approach described above but 
generally about the details of parameter and function choices. As such, most SL models are based 
on Eqs. 1 and 2, and differences among them lie in the parameterization of L and/or z0. This is the 
case for the two SL models used in this work, i.e., the LKB and the ECMWF SL models. Their 
similarities and differences are further discussed in the following section. 
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3.3.1 LKB versus ECMWF: formulation 
The LKB and ECMWF SL models present the same roughness length function (see Liu et al., 
1979, and Beljaars, 1997), which is written as: 

g
u

u
z

2
*

*
0

11.0 ⋅
+

⋅
=

αν  (3) 

where ν is the kinematic viscosity of the air (1.5x10-5 m2/s), g is the gravitational constant of the 
Earth (9.8 m/s2), and α is the Charnock parameter (see Charnock, 1955). However, the Charnock 
value, which is a sea-state parameter, is substantially different, i.e., 0.011 for LKB and around 
0.018 for ECMWF SL (the latter is not a fixed value). 

The same happens with the formulation of the stability function ψ(z/L), which is identical for 
both models, although the computation of the L parameter (Monin-Obukhov length) differs from 
one another (see Liu et al., 1979, and Beljaars, 1997). 

The stand-alone ECMWF SL model uses as input U, T, q, pressure (p), observation height (z), 
SST, surface pressure (sp), and Charnock data. Similar input is used in LKB; the main difference 
is that no Charnock input but a default value of 0.011 is used instead. If q information is not 
available, LKB also allows relative humidity (rh) observations as input. Both SL models can 
solve for wind stress provided that U, T, and SST are available. That is, when humidity and 
pressure observations are not available, default values are used instead. Those values are slightly 
different, i.e., relative humidity (rh) of 0.8 and sp=1013 hPa for LKB versus rh=1 and sp=1000 
hPa for ECMWF. 

Another relevant aspect of these models is the convergence procedure the models use to solve for 
u  (and T  and q ). That is, u  depends on two unknowns, z* ** * 0 and ψ (see Eq. 2), which in principle 
are independent from one another. In other words, the roughness length, which directly depends 
on the forcing (u*) and the sea state (Charnock) as expressed in Eq. 3, should not be correlated 
with atmospheric stability (z/L). However, since the wind information available is always at 
certain height (z) above the surface, we need stability correction to go down to the surface and, as 
such, certain correlation between z0 and z/L is inevitable. This is especially the case for LKB 
algorithm, which solves Eqs. 2 and 3 at the same time. In the case of ECMWF, the mentioned 
correlation is much smaller since z0 (Eq. 3) is solved prior to z/L, making a set of assumptions 
about u  and stability. *

3.4 LKB and ECMWF comparison 

In this section, we present some results of comparing the LKB model against the ECMWF SL 
model, using the TAO/PIRATA buoy data and the ECMWF data described in section 3.2. 
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Figure 3. Two-dimensional histogram of LKB estimated u  versus ECMWF SL estimated u* * for 
two different input datasets: TAO/PIRATA buoys (a) and ECMWF model output (b). N is the 
number of data; mx and my are the mean values along the x and y axis, respectively; m(y-x) and 
s(y-x) are the bias and the standard deviation with respect to the diagonal, respectively; and 
cor_xy is the correlation value between the x- and y-axis distributions.

 

 

Figure 3 shows the two-dimensional histogram of LKB estimated u* versus ECMWF SL 
estimated u* for two different input datasets: TAO/PIRATA buoys (left plot) and ECMWF model 
output (right plot). Since the two datasets contain different parameters (see discussion in section 
3.2) and the two SL models allow somewhat different input (see section 3.3.1), we select the 
coincident parameters for all 4 combinations: U, T, and SST. As it is clearly discernible, the 
distribution lies on the diagonal, it is very narrow, and the correlation is 1, meaning that the 
estimated u* is very similar, regardless of the SL model or the dataset used. In other words, the 
two models show very similar results. Moreover, very similar histograms to the ones in Figure 3 
are produced when including q (from ECMWF dataset) or rh1 (from TAO/PIRATA dataset) as 
input. 

A 5% bias at high u* values, especially visible in Figure 3a, needs to be explained, though. We 
know from earlier discussion that SL model differences must lie in the roughness length and the 
stability parameters. Therefore, we now take a closer look at them. 

 

 
                                                           
1 ECMWF SL software can be adapted to allow rh as input. 
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3.4.1 Roughness term 
Figure 4 shows the same as Figure 3, but for the z0 parameter. Again, the correlation between the 
two models is striking. However, we clearly see the differences between the two model 
formulations. As discussed in section 3.3.1, the Charnock parameter is substantially different for 
both models, i.e., 0.011 for LKB and 0.018 (default value) for ECMWF. Therefore, for very low 
u* values, where the viscosity term (first right-hand side term of Eq. 3) is dominant, the 
distribution lies on the diagonal (same z  for both models), and for higher u0 *, where the Charnock 
term is dominant (second right-hand side term of Eq. 3), the distribution is off diagonal, with a 
slope which is given by the ratio between the Charnock values of both models. 

Looking at Figures 4 and 3, one can easily realize that in order to achieve such good agreement in 
u* (Figure 3), the stability term in Eq. 3 has to compensate for the difference in the roughness 
term between the two models. Given the fact that the roughness term is logarithmic, the 
difference between LKB roughness term and ECMWF roughness term is just a constant, i.e., 
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α, where . Since the roughness term  

values vary between 13 (low z ) and 9.5 (high z0 0), provided that the stability term is relatively 
small in both models, there should be a bias of about 5% between ECMWF and LKB u*, which is 
not present at low and mid u  values (see Figure 3). *
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Figure 4. Same as Figure 3 but for the estimated z0 parameter. 
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3.4.2 Stability term 
Figure 5 shows the ratio between the roughness term and the stability term as a function of z0 for 
both the LKB model (left plot) and the ECMWF SL model (right plot). As already discussed in 
section 3.3.1, the correlation between z0 and stability (z/L) is larger for LKB than for ECMWF 
SL model. This is actually shown in these plots (note that the left plot shows higher correlation 
than the right plot). An interesting result here is that both plots show that the stability term is 
marginal (high ratio values) for high z0 values. This is consistent with the bias observed in Figure 
3, i.e., the constant k becomes relevant at increasing z0, since the stability impact becomes 

marginal and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
LKBz
z

0

ln  decreases. At low and medium z0 values, we note from Figure 5 that 

LKB stability term is more relevant than the ECMWF stability term (i.e., there are larger 
accumulations at low ratio values in the left plot than in the right one). Since most of the 
observations in the tropics correspond to unstable situations (ψ > 0), the more relevant stability 
term for LKB compensates the larger z0 values from ECMWF SL model, such that the resulting 
u  values are very similar for both models. *

Given the fact that both SL models use the same stability functions (ψ), we can easily prove that 
LKB estimates larger instability (higher negative z/L values) than ECMWF for low and medium 
z0 values, i.e., low and medium u* values. Figure 6 shows the histogram of the stability parameter 
(z/L) for both the LKB model (solid line) and the ECMWF SL model (dotted line). We note 
larger accumulations away from the origin (z/L = 0) for LKB than for ECMWF SL, indicating 
larger estimated instability in the former model. 
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Figure 5. Ratio between the roughness term and the stability term as a function of z0 for both the 
LKB model (a) and the ECMWF SL model (b). The legend is the same as for Figure 3. 
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Figure 6. Normalized histogram of the stability parameter (z/L) for both the LKB model (solid) 
and the ECMWF SL model (dotted). 

 

3.4.3 Charnock parameter 
As mentioned in section 3.3.1, the Charnock parameter is fixed for LKB but not for ECMWF SL 
model. Up to now, results have been produced with fixed Charnock values (default values) for 
both models, i.e. 0.011 for LKB and 0.018 for ECMWF. Figure 7 shows a scatter plot of z0 
against u*, as estimated by the ECMWF SL model, for TAO/PIRATA (left plot) and ECMWF 
(right plot) input datasets. For the former dataset, no Charnock is provided and therefore the 
default value is used; for the latter dataset, variable Charnock (i.e., sea-state dependent) values 
are used. Note that the right plot (variable Charnock) shows more scatter than the left plot (fixed 
Charnock). However, the scatter is modest. This is confirmed when reproducing Figure 3a with 
variable ECMWF Charnock input. The 2-D histogram (not shown) shoes only marginally larger 
spread (Standard Deviation or SD of 0.004) as compared to the one in Figure 3a (SD of 0.003). 
The main reason for this is that sea state in the tropics is rather smooth. This may not be the case 
in the extra-tropics, where the differences in the z0 parameterization of both SL models (see 
section 3.3.1) can lead to more significant differences in the wind stress estimation. Further 
investigation is therefore required. 
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Figure 7. Scatter plot of ECMWF SL estimated z  against ECMWF SL estimated u0 *, for 
TAO/PIRATA (a) and ECMWF (b) input datasets. The latter contains variable Charnock values. 

 

3.4.4 TAO/PIRATA versus ECMWF observations 
Another interesting feature in Figure 3 is that both SL models generate larger u* values from 
buoy input (Figure 3a) than from ECMWF input (Figure 3b). Figures 8a shows the distribution of 
u* given by the LKB model, using buoy (solid) and ECMWF (dotted) input. The distributions are 
very similar for low u* but different for medium and high u  values, where the buoy input u* * are 
clearly larger than the ECMWF input. Similar distributions are shown in Figure 8b for the 
ECMWF SL model. This is mainly due to the wind observations, as shown in Figure 8c. The 
latter shows the same distributions as for Figures 8a and 8b but for observed wind speed. The 
buoy and the ECMWF wind speed distributions are very similar for medium and high winds. 
However, since buoy data are closer to the surface (z = 4 m) than ECMWF lowest level 
observations (z ≅ 10 m), the corresponding u* values are larger for buoy input data than for 
ECMWF input data (see logarithmic wind profile of Eq. 2). In other words, TAO/PIRATA wind 
speed observations are relatively high as compared to ECMWF winds. 

We also note that differences between the u* distributions at high u* values in Figure 8b are 
somewhat larger than in Figure 8a. This is due to the already mentioned z0 parameterization 
differences between the SL models, which causes some bias at high u , as shown in Figure 3. *
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3.4.5 Neutral winds 
The impact of stability on wind stress estimations is often measured by the difference between 
the actual wind (U) and its equivalent neutral wind (Un), i.e., the wind that results from 
estimating u*, given a wind observation at certain height z and under certain atmospheric stability 
(z/L), and using such u  to solve Eq. 2 at the same height z assuming neutral stability (i.e., ψ=0). *
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Figure 8. Histograms of ECMWF SL estimated u  (a), LKB estimated u* * (b), and observed wind 
speeds (c), for TAO/PIRATA (solid) and ECMWF (dotted) data. 
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Figure 9 shows the difference between Un and U as a function of U using the LKB model, for 
TAO/PIRATA (left plot) and ECMWF (right plot) input datasets. It is clear that the difference is 
larger for ECMWF input as compared to buoy input. This is mainly due to the logarithmic nature 
of the wind profiles with height and the fact that ECMWF observations are higher above the 
surface than TAO/PIRATA data (see discussion of Figure 8). 

Figure 9 also shows that stability effects are small, in the order of the surface current effects 
(within ±0.5 m/s and a SD of ~0.1 m/s). Differences between neutral winds and actual wind tend 
to increase for low winds (below 3 m/s) and then slightly decrease for increasing speeds. The 
same pattern is produced when using ECMWF SL model instead of LKB (not shown). This is in 
contradiction with Liu and Tang (1996), who showed a 10% difference between neutral and 
actual winds, for winds between 4 m/s and 10 m/s, using the LKB model and TAO input data. 
Further discussion on this matter can be found in Appendix A. 

In conclusion, LKB and ECMWF SL models produce very similar u* values, except for high 
winds, where a 5% bias of the latter with respect to the former is found. The differences in the 
roughness parameterization are somewhat compensated by differences in the stability 
parameterization, except for high winds, where the stability term is negligible as compared to the 
roughness term. Differences between the (non sea state dependent) LKB and the (sea state 
dependent) ECMWF SL are expected to be larger in the extra-tropics, where sea state is 
substantially rougher than in the tropics. 
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Figure 9. Difference between the LKB estimated Un and U as a function of U, for TAO/PIRATA 
(a) and ECMWF (b) input datasets, at 4 m height. 
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3.5 Error assessment using LKB and ECMWF SL models 

In remote sensing, validation or calibration activities can only be done properly when the full 
error characteristics of the data are known. In practice, the problem is that prior knowledge on the 
full error characteristics is seldom available. Stoffelen (1998b) shows that simultaneous error 
modeling and calibration can be achieved by using triple collocations. 

When the three observing systems represent the same spatial scales, the triple collocation 
procedure can resolve the uncertainty of the three systems, provided that one of them is used as 
reference for calibration. When the systems do not represent the same resolution, we have to take 
into account the spatial representativeness error1. In particular, we need to make an assumption 
on the correlation of the spatial representativeness error, i.e., the (true) variance common to the 
two systems that can resolve the smaller scales2. 

In our case, we have one system, i.e., ECMWF that can only resolve large scales (> 200 km) and 
two systems, i.e., buoy and scatterometer that can resolve smaller scales. Since the scatterometer 
resolves wind scales of about 50 km, the true variance on spatial scales of 50 to 200 km is 
resolved by both scatterometer and buoys, but not by ECMWF. For three similar observing 
systems to the ones used in this work, i.e., NOAA buoy winds, ERS scatterometer winds, and 
National Centers for Environmental Prediction (NCEP) model winds, Stoffelen (1998b) estimated 
a correlated representativeness error (r2) of 0.75 m2/s2 in the extra-tropics. In our case, and 
because of the generally lower small-scale wind variability in the tropics (trade winds) with 
respect to the extra-tropics, we assume an r2 of 0.25 m2/s2 for the 50-to-200 km scale true 
variance. 

3.5.1 Triple collocation error assessment  
As mentioned in section 1, we can use the triple collocation exercise to assess the performance of 
the two SL models that we have compared in section 3.3, i.e., LKB and ECMWF. That is, we use 
the SL models to convert TAO/PIRATA and ECMWF wind observations to any reference height 
(e.g., 4 m, 10 m) and then estimate the errors of such buoy and NWP converted wind 
“observations”, using ERS scatterometer CMOD-5 winds as reference system for calibration. 

Table 2 shows the true variability and the observation error for each dataset, when LKB is used to 
produce the (buoy and NWP) wind datasets at 10-m height. Note that the scores are given in 
terms of wind component SD rather than wind component variance (square of SD value) since 
the former is most commonly used to refer to wind variability and observation errors. The true 
variability is substantially smaller (3.12 m/s and 4.89 m/s SD for u and v components, 
respectively) than the extra-tropical values estimated by Stoffelen (1998b) (4.68 m/s and 5.24 m/s 
SD for u and v components, respectively). 

 

 

                                                           
1 When comparing two observation systems with different resolution, the variability of the higher resolution system 
at the scales that are not resolved by the lower resolution system may be interpreted as error, i.e., the spatial 
representativeness error. In fact, this variability is resolved true variance of the higher resolution system. 
2 This common variance is, in fact, the resolved true variance embedded in the representativeness error of both 
systems. 
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The correlated part of the representativeness error, as mentioned above, represents the common 
variance in the higher resolution systems, i.e., the scatterometer and the buoys. Therefore, when 
performing data interpretation for high resolution applications, e.g., development of 25-km or 50-
km wind products, this common variance is considered as part of the true variance as well as part 
of the error (lack of high-resolution information) of the lower resolution system, i.e., NWP 
model. Table 2 accounts for such interpretation. However, when looking at lower resolution 
applications, e.g., NWP data assimilation, this common variance cannot be resolved and is 
therefore interpreted as part of the (spatial representativeness) error of the higher resolution 
systems, i.e., scatterometer and buoy. Table 3 shows the same as Table 2 but accounting for the 
latter interpretation. We note that differences between the two tables are not large since the 
assumed r2 value is small compared to true and error variance values. 

When ECMWF SL model is used (instead of LKB) to produce the (buoy and NWP) wind 
datasets at 10-m height, the triple collocation results (not shown) are almost identical to the ones 
in Tables 3 and 2. That is, the performance of both SL models is comparable. 

Table 2 Estimates of the wind component SD of the true distribution and the errors of the 
scatterometer, LKB-derived 10 m buoy and ECMWF winds, for 50-km scale wind. 

 True wind Scatterometer Buoy ECMWF 

u component 
(m/s) 

3.16 0.93 1.08 1.57 

v component 
(m/s) 

4.91 0.71 1.01 1.30 

 

Table 3 Same as Table 2, but for NWP-scale applications (~200 km). 

 True wind Scatterometer Buoy ECMWF 

u component 
(m/s) 

3.12 1.05 1.19 1.49 

v component 
(m/s) 

4.88 0.87 1.12 1.20 

 

The same exercise is repeated using buoy and NWP winds at 4 m height. The results (not shown) 
are very similar in terms of true variability and errors of the different sources, also denoting the 
similar performance of both SL models. These results are in line with the results of section 3.3, 
where both models were showing little differences. 

However, when performing triple collocation, the scaling factor for buoy (i.e., the buoy-to-
scatterometer wind calibration value) is much closer to one at a reference height of 4 m than at 10 
m, meaning that scatterometer winds should be interpreted as 4-m winds rather than 10-m winds. 
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Table 4 Estimates of the wind component SD of the true distribution and the errors of the 
scatterometer, LKB-derived 10 m buoy and ECMWF neutral winds, for 50-km scale wind 

 True wind Scatterometer Buoy ECMWF 

u component 
(m/s) 

3.15 0.94 1.08 1.57 

v component 
(m/s) 

4.91 0.70 1.01 1.31 

 

Table 5 Same as Table 4, but for NWP-scale applications (~200 km). 

 True wind Scatterometer Buoy ECMWF 

u component 
(m/s) 

3.11 1.06 1.19 1.49 

v component 
(m/s) 

4.88 0.87 1.13 1.21 

 

 

3.6 Scatterometer wind interpretation 

As discussed in the introduction, scatterometers are essentially observing wind stress. Therefore, 
one may expect scatterometer-derived winds to be best interpreted as equivalent neutral winds 
(i.e., stress) rather than real winds. In this section, we investigate the interpretation of 
scatterometer data by performing the triple collocation exercise for two different datasets: 

a) ERS CMOD-5 winds, TAO/PIRATA real winds, and ECMWF real winds; 

b) ERS CMOD-5 winds, TAO/PIRATA neutral winds, and ECMWF neutral winds. 

The first dataset is the same as the one used in section 3.5.1. The second dataset is the same as the 
first one but for buoy and NWP converted neutral winds using either LKB or ECMWF SL model. 

The true variability and error scores of dataset a) (see Tables 2 and 3) are almost identical to the 
scores obtained with dataset b) (see Tables 4 and 5), when using LKB model and 10 m height 
conversion and when using an exact fixed set of data points. The same conclusions are drawn 
when using ECMWF SL model and/or 4 m height conversion. This illustrates that scatterometer 
winds can explain the same true variability regardless of whether these are tested against real or 
neutral winds. The only significant difference between the two datasets results is in the scaling 
factor value1, meaning that provided that we use the appropriate scaling in the scatterometer 
                                                           
1 Since most of the times the Tropics present unstable stratification, the real winds are biased low with respect to the 
equivalent neutral winds at any reference height within the SL. 
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GMF (e.g., CMOD-5), scatterometer winds are as close to real winds than they are to equivalent 
neutral winds (or stress). 

In order to reinforce such conclusion, and given the fact that CMOD-5 GMF was tuned to 10-m 
real (NWP) winds, we develop a “neutral” GMF by tuning our CMOD-5 real winds to neutral 
winds. Figure 11 shows the bias of CMOD-5 winds with respect to 10-m buoy real winds (solid) 
and 10-m buoy neutral winds (dotted) as a function of wind speed. By subtracting these two 
curves, i.e., about 0.2 m/s, we can derive a real-to-neutral scaling (dashed) that can be used to 
convert CMOD-5 real winds into neutral winds. 
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Figure 10. Relative bias of CMOD-5 winds with respect to 10-m buoy real winds (solid) and 10-
m buoy neutral winds (dotted) as a function of wind speed. The buoy height conversion is 
performed with LKB model. The dashed curve corresponds to the solid minus the dotted curve. 

We then perform the same triple collocation exercise as before but using the ERS converted 
neutral winds instead of CMOD-5 winds in datasets a) and b). As expected, the results are again 
very similar (not shown). 

The fact that scatterometer winds are as close to real winds as to neutral winds can be explained 
as follows: on the one hand, the stability effects are small (see Fig. 8 in section 3.4), i.e., 
differences between real and neutral winds are subtle; on the other hand, SL models and the 
different observations (wind, SST, air temperature) used by the models to compute height 
conversions and neutral winds contain (spatial representativeness) errors, which in turn mask the 
already subtle differences between real and neutral winds. 
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3.7 Scatterometer wind-to-stress transformation 
In order to obtain stress, first a well-calibrated scatterometer 10-m neutral wind is required. Then 
a SL model like LKB or ECMWF SL can be used to convert 10-m neutral winds to wind stress. 
In fact, since the most recently developed SL models (Taylor and Yelland, 2001; Bourassa, 2006) 
have similar performance up to 16 m/s (Bourassa, 2006), either one of them can be used to do the 
neutral-to-stress conversion. Since no stability information is needed to do this conversion, an 
independent scatterometer stress (SOS) product can be developed straightforwardly. 

To obtain calibrated scatterometer 10-m neutral winds, a scatterometer-to-buoy correction 
(calibration) and a real-to-neutral wind conversion need to be applied on CMOD-5 winds as 
depicted in figure 12. The combined correction and conversion is represented by the dotted curve 
in Figure 10, which has a mean (absolute) value of 0.8 m/s. This differs somewhat from the 
combined correction value of 0.55 m/s found by Hersbach et al. (2006) and Portabella and 
Stoffelen (2006) doing the same triple collocation exercise but with extra-tropical datasets. 

Several effects may lead to these differences between tropical and extra-tropical datasets. The 
most relevant are, on the one hand, the large wind variability in the extra-tropics, and, on the 
other hand, the effect of currents in the tropics. In order to recommend a final combined 
correction value, an analysis of the uncertainties of the triple collocation exercise (mainly 
produced by the mentioned effects) is performed. One way to analyze such uncertainties is to take 
the calibrated dataset (after triple collocation) and examine the residual biases buoy by buoy, i.e., 
scatterometer wind bias versus buoy and/or versus ECMWF at a particular buoy location. Table 6 
shows the average and SD of the residual biases per buoy, for tropical buoys with more than 50 
collocations. The uncertainty found (SD of about 0.2 m/s) is consistent with the expected effect 
of currents. However, a comparable result to that of Table 6 is found by Portabella and Stoffelen 
(2006) with an extra-tropical dataset, indicating that the uncertainty produced by the large wind 
variability in the extra-tropics, amongst other effects, is comparable to the buoy-to-buoy 
uncertainty in the tropics. In other words, both combined correction values (i.e., 0.8 m/s in the 
tropics and 0.55 m/s in the extra-tropics) have a similar degree of confidence and also both fall 
within the buoy-to-buoy spread as found in table 6 and the extratropics. 

Therefore, we recommend adding 0.7 m/s (compromise between the tropical and the extra-
tropical values) to CMOD-5 winds to obtain the scatterometer 10-m neutral winds. 

 

Table 6 Average and SD of all local wind component residual biases (after wind calibration; per 
buoy location), for buoy and ECMWF winds against scatterometer winds. 

 Buoy-Scat. Buoy-Scat. ECMWF-Scat. ECMWF-Scat.
U comp. V comp. U comp. V comp. 

BIAS (m/s) 0.09 -0.02 0.21 -0.02 

SD (m/s) 0.27 0.13 0.27 0.22 

 

 

 30 



Real winds U10 Neutral winds U10n 

CMOD5 U10 + 0.5 m/s CMOD5 U10 + 0.7 m/s 
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Surface Layer model  

LKB 
ECMWF 

Friction velocity  U* 
 

Figure 11. Schematic of recommended scatterometer wind and stress conversion. The well-
validated CMOD5 winds at 10m height are used as basis for geophysical conversion to friction 
velocity. Either real or neutral 10m winds may be transformed to friction velocity by either LKB, 
ECMWF or any similar SL model. 

 31 



 32 



3.8 Summary and recommendations wind and stress 

We note the following conclusions and recommendation  

3.8.1 Summary 
In this work, we look for the most appropriate scatterometer wind-to-stress transformation, in 
order to produce a SOS product. For such purpose, a one-year (2000) triple collocated tropical 
dataset is used, i.e., ERS-2 scatterometer winds, TAO/PIRATA buoy data, and ECMWF model 
output. As a consequence, all comparisons are based on a fixed set of data points and 
uncertainties due to a difference in the number or location (e.g., by screening) of the inputs are 
absent. This is, the geophysical conditions for the comparisons are set fixed and a careful 
geophysical analysis follows. 

First, a comparison between two commonly used SL models, i.e., LKB and ECMWF, is 
performed. The main difference between the two models is in the roughness length (z0) and the 
stability (L) parameterizations. On the one hand, whereas LKB uses a constant Charnock value, 
ECMWF uses a substantially larger Charnock value. Since the ECMWF roughness 
parameterization is sea state dependent, its Charnock parameter is moreover somewhat variable. 

On the other hand, LKB has larger instability (larger negative z/L values) with respect to 
ECMWF. This difference actually compensates for the difference in the roughness formulation 
for low and medium winds, such that the resulting stress values are very similar for both models. 
At high winds though, the stability term is much smaller than the roughness term and therefore 
the different roughness formulation results in some small stress bias between the two models. 

Another relevant result of this comparison is that the bias due to the difference in the default 
Charnock values of both models remains the same when variable Charnock input is used for 
ECMWF SL model, and the SD of the difference between LKB and ECMWF estimated stress 
increases marginally. 

A triple collocation exercise based on Stoffelen (1998b) is then conducted to assess the 
performance of the LKB and the ECMWF SL models. For such purpose, we use the SL models to 
estimate wind at different reference heights from the buoy and NWP datasets. For every SL 
model, we therefore generate two new buoy and NWP stress datasets (at each height), which are 
combined with the scatterometer winds (using the latter as reference for calibration) to estimate 
their individual errors. The results show that the uncertainty in the buoy wind dataset is smaller 
than in the NWP wind dataset. They also show a similar performance of both SL models. This is 
not surprising since most of the recently developed SL models (e.g., Taylor and Yelland, 2001; 
Bourassa, 2006) produce a similar stress for surface winds below 16 m/s (Bourassa, 2006). 

The same triple collocation exercise is repeated but equivalent neutral buoy and NWP winds are 
used instead of real winds. True variability and error scores are almost identical to the ones of the 
previous exercise, and only scaling factors differ, meaning that scatterometer winds are as close 
to real winds than to neutral winds, provided that we use the appropriate conversion. A 
conversion is then derived, and to neutral converted winds are used instead of CMOD-5 winds in 
the triple collocation exercise. The results confirm the duality in the interpretation of 
scatterometer winds. An explanation for this duality is that the small stability effects (see section 
3.4) are masked by the uncertainty in SL models and their inputs. 
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3.8.2 Recommendations 
Finally, it is concluded that an independent ERS scatterometer stress (SOS) product can be 
obtained by adding 0.7 m/s to the CMOD-5 winds and use such result as the 10-m neutral wind 
input to a SL model, which is needed to compute stress, see figure 11. [Note that KNMI uses 
LKB SL model since it is widely used and publicly available.] 

In general, differences in SL-derived wind stress magnitude are small for winds below 10 m/s, 
and it is only well above 10 m/s that the different roughness formulations produce large 
differences in the estimated stress (see also Taylor et al., 2001). Moreover, differences will occur 
in cases of extreme wind variability or air-sea temperature difference when wind-stress 
discrepancies may occur. Therefore, an extended extra-tropical dataset including high winds is 
being used at KNMI to further investigate the performance of the SL models at such wind 
regime, where the differences between models are expected to be more significant. 

In the extra-tropics, differences between a non sea-state dependent SL model like LKB and a sea-
state dependent model like ECMWF may be larger. In this respect, a similar validation to the 
work presented here in the extra-tropical regions is being carried out at KNMI (Portabella and 
Stoffelen, 2006). Moreover, additional SL models (e.g., Taylor and Yelland, 2001) may be 
considered for such dataset comparison including high winds. 

The correlated spatial representativeness error of 0.25 m2/s2 assumed in here (see section 3.4) is a 
subjective extrapolation to the tropics of the extra-tropical value of 0.75 m2/s2 estimated by 
Stoffelen (1998b). The r2 value does not significantly impact the wind-to-stress calibration results 
presented in section 3.6. However, it does somewhat affect the error assessment from section 
3.5.1. That is, when comparing scatterometer or buoy data with ECMWF data, the r2 is 
interpreted as part of the scatterometer/buoy error. As such, for larger r2 values, although the 
uncorrelated scatterometer/buoy error remains the same, the “apparent” (as interpreted at NWP 
scales) scatterometer/buoy error, i.e., the sum of the uncorrelated error and r2, increases and, 
consequently, the ECMWF error becomes smaller (see discussion on r2 in section 3.5.1). 
Therefore, in order to make a more precise error assessment of the three observation systems used 
in this work, an accurate estimation of the correlated representativess error is required. Stoffelen 
(1996) presents a method to estimate r2 for ERS scatterometer winds and buoy winds in the extra-
tropics. Vogelzang (2006) extends this method to SeaWinds. Such method can be applied in the 
tropics as well. 
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4 Reprocessing of ERS swath wind data 

4.1 Introduction 

This chapter describes the reprocessing of ERS scatterometer data spanning the period of Sep 2, 
1991 to Jan 17, 2001 and for both ERS 1 and ERS 2 missions. The output products are 
scatterometer wind data in BUFR and wind stress data in ASCII format. Lecomte et al (1999) 
describe the ERS scatterometer instrument products and their processing. More information on 
the ERS SCAT Data Processor (ESDP) and the wind product can be found in the ERS 
Scatterometer Product User Manual for the EUMETSAT Advanced Retransmission Service 
(EARS), published on the KNMI and EUMETSAT web sites. 

4.1.1 Step 1: collocation of ERS data from MARS with model winds 
The first step was performed at ECGATE, the gateway computing facility of ECMWF. ERS 
BUFR and ECMWF 40-year Reanalysis project, ERA40, GRIB model data were taken from 
MARS, the ECMWF Meteorological Archival and Retrieval System. The NWP model data 
provide forecast winds, and land-sea mask (LSM) and sea surface temperature (SST) at analysis 
time. Model data with analysis times of 00 and 12 GMT were used, with the forecast time steps 
+3, +6, +9, +12 and +15 hours. The NWP data were put into an appendix of the ERS BUFR 
messages for later use. 

The model wind speed and direction at the satellite WVC (Wind Vector Cell) positions and 
acquisition times were obtained by interpolating the gridded NWP wind vector data with respect 
to position linearly and then time quadratically. For each WVC, the land fraction was calculated 
by averaging the land fractions of all NWP grid points within 80 kilometres of the WVC. Each 
grid point was weighted by 1/distance2. If this weighted land fraction was above 0.02, the WVC 
was flagged as ‘land’ and no winds were calculated in order to avoid land contamination. The 
SST of the WVC is again linearly interpolated from the four closest surrounding grid point SSTs 
of the model data. If the SST at the WVC position was below 273.16 K, the WVC was flagged as 
‘sea ice’ and no winds were calculated in order to avoid sea ice contamination. 

The output of the collocation process was sent to KNMI and stored in the KNMI MOS (Massa 
Opslag Systeem). 

4.1.2 Step 2: wind processing on collocated ERS data 
The data which have been collocated in step 1 were taken from the MOS, inverted winds were 
calculated and the resulting BUFR files were put back into the MOS. The 10-year reprocessing 
was done on a Linux workstation. 

During the reprocessing, monitoring files were produced to assure the quality of the outputs for 
each 6 hours time interval (0:00-5:59, 6:00-11:59, 12:00-17:59 and 18:00-23:59 of each day). 
From these data, time series of Max. Likelihood Estimator (inversion residual or cone distance; 
Stoffelen, 1998a), Wind Speed Bias and Wind Component RMS were plotted for each quarter. 
The figures below show an example of the fourth quarter of 1992, showing a quite stable 
behaviour over this period. 
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Figure 12a. Monitoring the ERS reprocessing for the 1st quarter of 1992. Each point represents a 
6-hour average of inversion MLE (top) and wind speed bias with respect to ECMWF model 
(bottom). 
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Figure 12b. Monitoring the ERS reprocessing for the 1st quarter of 1992. Each point represents a 
6-hour average of the across-swath wind component RMS of ERS 1 minus ECMWF model. 

 

Figure 12c. As figure 12a bottom, but for September 1991. 
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Figure 12c is from the third quarter of 1991 where ERS 1 was still in its Cal/Val. It is clear that 
the instrument was not yet stable in that period. 

ERS 1 data are available from Sep 2, 1991 until Jun 3, 1996, but there are some periods with data 
of questionable quality (see also Lecomte et al, 1999): 

• Sep 2, 1991 to Mar 1, 1992 - Cal/Val, data were not put into MOS 
• Mar 31, 1992 to Apr 13, 1992 - Large MLE and RMS values, data were not put into MOS 
• Dec 23, 1993 to Jan 13, 1994 - Large MLE and RMS values, MARS data were replaced by 

reprocessed data  available from Cersat, see below 
ERS 2 data are available from Nov 22, 1995 until Jan 17, 2001, but there are also some periods 
with data of questionable quality (see also Lecomte et al, 1999): 

• Nov 22, 1995 to Mar 19, 1996 - Cal/Val, data were not put into MOS 
• Jan 16, 2001 to Jan 17, 2001 - degraded quality, data were not put into MOS 
One period (Dec 23, 1993 to Jan 13, 1994) with questionable data quality was replaced by Cersat 
data, downloaded from http://www.ifremer.fr/cersat/en/data/download/swath/wnf.htm. The data 
were converted from Cersat format into BUFR. The BUFR files were sent to ECGATE and from 
there, step 1 and step 2 were followed. 

 

Figure 13a. As figure 12a top, but around Christmas 1993. Each point represents a 6-hour 
average of cone distance. 
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Figure 13b. As figure 13a, but after reprocessing with Cersat data. 

 

Figure 13a shows the MLE values of end 1993 and beginning of 1994, with data taken from 
MARS. Figure 13b shows the same data, but now with the data of Dec 23 – Jan 13 replaced by 
data available from Cersat. This constitutes a short period that has been reprocessed by ESA and 
incorporated in the Cersat archive. 

For the period Mar 31, 1992 to Apr 13, 1992, no data seem to be present at Cersat. 

4.1.3 Step 3: calculation of wind stress from reprocessed ERS data 
The data which have been reprocessed in step 2, were taken from the MOS, reprocessed and put 
back into the MOS in ASCII format. The stress processing was done on a Linux workstation. The 
stresses were calculated initially by simply multiplying the winds by a factor of 4.07 x 10-2. In 
chapter 2 a modification is proposed. 
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5 Swath to grid conversion 

5.1 Swath data coverage 

There are observations from 2 March 1992 until 15 January 2001.  In figure 14 the number of 
observations per 30 days is shown.  This number increases gradually over the first two years as 
the operating schedule was being optimized.  In 1996 the number almost doubles as both ERS-1 
and ERS-2 contribute, followed by a few months in which ERS-2 did not function well.  Overall, 
on the monthly time scale the observation density is reasonably constant, so that we do not expect 
large variations of the resulting fields in time. 

  

Figure 14. Number of observations per 30 days 

 

The observation coverage is not very constant on the 6-hourly time scale (Figure 15), with 
several gaps indicating empty 6-hourly fields. 
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Figure 15. Fraction of earth covered by observations per 6 hours 

 

In Figure 16 we show the number of observations per day and 0.5º by 0.5º grid box.  A few 
features are obvious from this figure. 

• Near continents with east-west coasts the coverage is poor, this is due to the time the 
instrument takes to switch from SAR mode (over land) to wind/wave mode (over sea) 

• Between Antarctica and South America, Australia, and to a lesser extend South Africa, 
coverage is poor as these short ocean stretches are often used to switch off  the scatterometer 
instrument (see also Lecomte et al, 1999). 

• There are swaths of reduced coverage in the Indian and eastern Pacific Ocean, and on the 
northern Atlantic; these disappear in 2000 due to an improved data transmission mode. 

Due to these differences the quality of the derived fields varies greatly with geographical 
location. 
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Figure 16. The number of along-track observation per day and per 0.5º grid box 

The typical gaps between observations in space and time cannot easily be read off from Figure 
16, as this also counts adjacent along-track data points that happen to fall in the same grid box. 
We therefore gathered all observations within 6-hour interval (comparable to the decorrelation 
scale of the wind) and computed how far apart these were on average.  This repeat frequency is 
shown in Figure 17.  It varies from less than once every 5 days off east-west coast, west of 
Ireland and in the Arctic Ocean, to about 3 days in most oceans, to 1.5 day in the Southern Ocean 
where the tracks are closer together. 
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Figure 17. The average number of days between observations in 6-hour intervals 
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5.2 Decorrelation scales 

To mesh with meteorological practice that is based on typical decorrelation scales in the 
atmosphere, we made 6-hourly lat-lon fields at 0.5º resolution.  All along-track observations 
within a grid box and 6 hour interval are simply averaged, with duplicate observations rejected.  
Next, undefined grid points with 2 or more defined values in the surrounding 8 points are set to 
the average at these points, this fills in holes because of the mismatch between the along-track 
grid and the lat-lon grid, especially at high latitudes.  This interpolation increases the number of 
grid boxes with valid data by about 20%. 

As was already indicated in figure 15 and figure 17 the coverage of these 6-hourly fields is very 
incomplete at 10% of the earth (15% of the ocean) on average.  As an example of the coverage in 
space and time we show in figure 18 the regions with data along the equator at a random time.  
One sees that the gaps are mostly larger than 10º and a few days. 

The decorrelation lengths of the synoptic-scale variability has been determined by first applying a 
high-pass filter to the data (anomalies with respect to a 30-day running mean, this also eliminates 
the seasonal cycle), and next computing the correlation in space and time in 5º by 10º boxes.  
These correlations are fitted to a 3D Gaussian function.  The correlations are shown in figure 19.  
On the equator one sees that in space, the autocorrelation drops off to less than 0.7 within 1.5º, in 
time it takes about 12 hours.  In the storm track the scales are larger, about 2.5º SW-NE and 10º 
NW-SE, and 12 hours in-place in time, but much higher eastwards.  This is of course due to the 
large-scale organization of depressions in this area. 
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Figure 18. Observations of zonal wind along 50ºS, the equator and 50ºN in a random month 
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Figure 18. Continued 

 
 
The fit parameters for the whole world are shown in figure 20.  These are 7º-10º zonally, half this 
meridionally for zonal wind, smaller for meridional wind.  In time the decorrelation scale is 12 
hours or less. 

One sees that interpolation between the ERS tracks is impossible as the distance between tracks is 
(much) larger than the decorrelation scales.  We contemplated blending with calibrated ERA-40 
data, but the resulting dataset would be dominantly re-analysis data with very little scatterometer 
input. 
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Figure 19. Autocorrelations of zonal wind in 47.5º-52.5ºN, 35º-45ºW (left) and 2.5ºS-2.5ºN, 
115º-125ºW (right) 
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Figure 20. The zonal, meridional and time decorrelation lengths (in degrees and days) of the 
high-frequency features in the zonal and meridional wind (1999 data only). 

 

5.3 6-hourly fields 

 

We have made available on the KNMI Climate Explorer (van Oldenborgh en Burgers 2005, 
climexp.knmi.nl) 6-hourly fields without interpolation between the tracks.  These are in the form 
of yearly fields at 0.5º resolution, which are just under 2GB uncompressed.  They can be 
downloaded as grads files, netcdf, and hdf5. 

These should be compared to the fields of Milliff et al (2004), available as ds744.4 at UCAR.  
These are QuikScat fields for 1999-2004, where the gaps have been filled using the NCEP 
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reanalysis (Kalnay et al, 1996).  The SeaWinds scatterometer has a much larger coverage, 90% of 
the ocean every 24 hours. 

To compare our fields with these we used the time window as in Milliff et al: the 0-6 UTC and 6-
12 UTC fields were averaged to obtain the 6 UTC value, for 12 UTC the 6-12 and 12-18 UTC 
fields were averaged, etc.  The spatial grid was also shifted by half a grid box for this 
comparison.  The comparison was performed for 2000, the only year in which both products were 
available. 

 

 

 
Figure 21. A comparison of the 6-hourly fields of our ERS re-analysis and the merged 
quickscat/reanalysis fields of Milliff et al.: standard deviation, RMSE and RMSE normalized to 
the standard deviation. 

 

In figure 21 one sees that the standard deviation of the merged QuikScat/reanalysis fields is in 
general larger than our ERS analyses.  After the merging high spatial frequency noise has been 
added to the areas without scatterometer data to keep the power spectrum the same.  This noise 
may explain the higher standard deviation. 

The RMS error between the fields varies from slightly less than 1 m/s in the calm subtropical 
oceans to more than 4 m/s in the storm tracks.  The global average is close to 2 m/s.  As a 
percentage of the standard deviation, the errors are large near coasts and in the Maritime 
Continent, and in the Arctic and Antarctic sea ice margins.  Near coasts data coverage of our 
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analysis is poor.  Over the Maritime Continent the reanalysis winds may suffer from poorly 
resolved islands.  Near sea ice the observations may often correspond to high-wind situations 
when there is less ice, leading to a biased estimate.  The ERS product appear suspicious close to 
the North Pole where no winds are expected. Alternatively, the SeaWinds product is known to 
have problems there; this would need to be improved in a SeaWinds reprocessing.   

The remaining differences are quite large, 20-50% of the standard deviation over most of the 
oceans.  These are due to the addition of noise to the reanalysis data when there is no QuikScat 
data, and the long time window of 12 hours, which means that on average one compares 
observations that are more than 4 hours apart (in RMS), which is already a sizeable fraction of the 
decorrelation scale. 

 

5.4 Monthly fields 

Due to the decorrelation scale being smaller than the gaps between observations in general, the 
half dozen or so observations every month can be considered a sample of the true average wind 
(stress) during that month.  A straight average of these points therefore gives a sensible monthly 
mean field.  These have also been made available in the Climate Explorer.  At this web site one 
can easily compare this product with other estimates of wind and wind stress.  All figures in the 
following have been generated directly in the web site. 

In figure 22 we show the standard deviation of the monthly zonal wind anomalies in the KNMI 
ERA analysis described here, the Ifremer ERS analysis (Quilfen et al, 2001, 
www.ifremer.fr/cersat/en/data/download/download.htm) and the ERA40 (Uppala et al, 
2005) and NCEP/NCAR reanalyses.  One sees that the Ifremer analysis, which does interpolate 
between tracks, therefore missing high-frequency variability and underestimates the standard 
deviation, especially in the eastern tropical Pacific, Atlantic and Indian Oceans (where the track 
patterns is clearly visible in the Ifremer product).  These regions have very short decorrelation 
scales (figure 20).  Also in areas with coverage problems, such as south of Australia, the Ifremer 
product underestimates variability.  On the other hand the KNMI product is noisier.  Both 
reanalyses severely underestimate variability in the eastern part of the tropical oceans.  The 
NCEP/NCAR product also shows a model bias in the central Pacific, where zonal wind is an 
important part of the ENSO cycle. 
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Figure 22. The standard deviation of zonal wind anomalies [m/s] in the KNMI, Ifremer ERS 
analyses and the ERA40, NCEP/NCAR reanalyses. 

 

These differences also show up in the RMSE and regression maps of figure 23.  The RMS error is 
large south of Australia and South-America and near east-west coasts, where the scatterometer 
was often turned off (figure 16).  Ifremer analysis is seen to have regression coefficients <1 in the 
tropical ocean between tracks where the decorrelation lengths are small.  However, the difference 
with the reanalysis wind fields is much larger, especially with the NCEP/NCAR winds, probably 
due to model error entering the reanalyses and their inability to capture the small-scale variability 
in these regions. 
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Figure 23. RMSE difference and regression of other wind products on the KNMI ERS analyses 
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6 Concluding 
 
A Scatterometer Ocean Stress (SOS) product has been developed in the context of the Climate 
Monitoring SAF as described in this report. First, ten years of ERS scatterometer data are 
reprocessed with the most up-to-date wind processor (ESDP), including improvements in QC, C-
band geophysical model (CMOD5), its inversion, ambiguity removal, and quality monitoring. 

A detailed and accurate wind-to-stress study using triple collocated observations of buoys, ERS 
scatterometer and NWP winds in combination with the ECMWF and the LKB surface layer 
models is reported on, leading to a recommendation for global wind to stress conversion. 

The spatial and temporal characteristics of the ERS scatterometer sampling and winds are 
carefully analyzed in order to develop gridded SOS products. 

The user need for such product is motivated from the fact that NWP (re)analysis fields do not 
encapsulate the mesoscale detail as observed by scatterometers. Since NWP meteorological 
analyses necessarily constitute so-called low pass filter characteristics, such mesoscale detail 
remains absent after the assimilation of scatterometer winds. Moreover, observed detail in the 
wind field at the ocean inertial scales corresponding to these scatterometer-observed phenomena 
is important for the forcing of ocean circulation models that are used in routine operations and for 
climate studies. Several oceanographic and climate community users therefore request SOS 
products. 

As such, we recommend a commitment to routine / operational SOS responsibilities for ASCAT, 
including reprocessing facilities for gridded products. SeaWinds scatterometer data would further 
bridge the ERS data base into the ASCAT era. The SeaWinds data coverage is representative of 
ASCAT, whereas the ERS coverage is more limited.  

On the longer term, ASCAT improved SOS gridded products could be envisaged. Moreover, 
resources permitting, the abundant winds from passive microwave sounders may be investigated 
for use in the gridded wind stress products as these present improved temporal coverage, though 
lack good information on wind direction. For example, such products may resolve the diurnal 
cycle as present in semi-enclosed seas such as the Mediterenean. 
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7 Appendix 
 

In order to make sure that the LKB software version that we use is consistent with the original 
one presented by Liu and Tang (1996), we successfully reproduce Figure 1 of their report, which 
shows the ratio of equivalent neutral wind to actual wind at 10 m for various air-sea temperature 
differences and wind speeds, assuming a constant rh of 0.7 and a SST of 15°C. Figure A.1 shows 
a similar plot, although using a set of parameters more representative of tropical TAO 
observations, i.e., z = 4 m, rh = 0.8, and SST = 26.5°C. We note that for a certain unstable 
stratification (constant rh and air-sea temperature difference), the ratio between neutral and actual 
wind is decreasing with increasing wind speeds. Given that the mean air-sea temperature 
difference in the tropics for TAO/PIRATA buoys is around -0.8°C (see Figure A.2), the 
mentioned ratio is already below 10% at 5 m/s winds and decreases with speed (see Figure A.1). 

 

LKB (sst = 26.5 deg C; rh = 0.8; z = 4 m)
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Figure A.1. Ratio of equivalent neutral wind to actual wind at 4 m height as a function of air-sea 
temperature differences, assuming a constant rh of 0.8 and a SST of 26.5°C, for various wind 
speeds: 0.5 m/s (solid), 1 m/s (dotted), 2 m/s (dashed), 5 m/s (dash dot), 7 m/s (dash-dot-dot-dot), 
and 10 m/s (long dashes). 

In order to maintain a constant 10% difference between neutral and actual wind (ratio of 1.1 in 
Figure A.1), not only strong instability is needed but also a very strong air-sea temperature 
dependence on wind speed, i.e., instability (negative air-sea temp. difference) should substantially 
increase for increasing speeds. Figure A.2 shows the air-sea temperature histogram for our 
TAO/PIRATA dataset1, for all speeds (solid) and several speed ranges. As it is discernible, strong 
                                                           
1 Please, note that Liu and Tang used more than 8 years (July 1986 to March 1995) of TAO buoys 0n165e and 
0n110W to produce their results, while we use 1 year (2000) of all available TAO/PIRATA buoys as described in 
section 3.2. 

 57 



instability (air-sea temp. difference below -3°C) is seldom and there is no stability dependency on 
wind speed whatsoever (all the distributions in Figure A.2 have similar mean values). 

Therefore, from these results, one can not explain a 10% difference between neutral and actual 
winds for TAO observations. Moreover, Figures A.1 and A.2 are consistent with the results 
shown in Figure 8. 
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Figure A.2. Histogram of TAO/PIRATA air-sea temperature difference, for all speeds (solid) and 
several speed ranges: below 2 m/s (dotted), 2-4 m/s (dashed), 4-6 m/s (dash dot), 6-8 m/s (dash-
dot-dot-dot), and 8-10 m/s (long dashes). 
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10 Glossary 
 

ADEOS (Japanese) Advanced Earth Observation Satellite 

AR  Ambiguity Removal 

ASCAT Advanced Scatterometer 

AWDP  ASCAT Wind Data Processor 

BUFR  Binary Universal Format Representation 

CERSAT Centre ERS d'Archivage et de Traitement 

CM SAF Climate Monitoring SAF 

DWD  German Weather Office (Deutche Wetterdienst) 

ECMWF European Centre for Medium-range Weather Forecasts 

EPS  Eumetsat Polar System 

ERA  ECMWF ReAnalysis 

ERS  European Remote-Sensing Satellite 

ESA  European Space Agency 

ESDP  ERS Scatterometer Data Processor 

ENSO  El Niño Southern Oscillation 

EUMETCast EUMETSAT’s Digital Video Broadcast Data Distribution System 

EUMETSAT European Meteorological Satellite Agency 

FSU  Florida State University 

GOES  Geostationary Operational Environmental Satellite 

HDF  Hierarchical Data Format 

HH  Horizontal polarisation send and receive mode 

IR  InfraRed 

JPL  Jet Propulsion Laboratory (NASA) 

KNMI  Royal Netherlands Meteorological Institute 

LKB  Liu Katsaros Businger 
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NASA  National (US) Air and Space Agency 

NOAA  National (US) Oceanic and Atmospheric Administration 

NSCAT NASA Scatterometer 

NWP  Numerical Weather Prediction 

OSI SAF Ocean and Sea Ice SAF 

PBL  Planetary Boundary Layer 

PIRATA Pilot Research Moored Array in the Tropical Atlantic 

QC  Quality Control 

QuikScat US dedicated scatterometer mission to bridge ADEOS-I and ADEOS-II 

rh  relative humidity 

RMDCN Regional Meteorological Data Communication Network 

SAF  Satellite Application Facility 

SAR  Synthetic Aperture Radar 

SeaWinds US scatterometer on-board QuikSCat and ADEOS-II platforms 

SL  Surface Layer 

SOS  Scatterometer Ocean Stress 

SST  Sea Surface Temperature 

TAO  Tropical Array of Buoys 

TRITON Triangle Trans Ocean buoy Network 

VV  Vertical polarisation send and receive mode 

WVC  Wind Vector Cell 
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